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Biorthogonal Wavelet Expansions

W. Dahmen and C. A. Micchelli

Abstract. This paper is concerned with developing conditions on a given finite col-
lection of compactly supported algebraically linearly independent refinable functions
that insure the existence of biorthogonal systems of refinable functions with similar
properties. In particular, we address the close connection of this issue with stationary
subdivision schemes.

1. Introduction

During the past few years the construction of multivariate wavelets has received con-
siderable attention. It is quite apparent that multivariate wavelets with good localization
properties in frequency and spatial domains, which constitute an orthonormal basis of
L»(R®), are hard to realize. On the other hand, it turns out that in many applications or-
thogonality is not really important whereas locality, in particular, compact supportis very
desirable. In this regard, the concepbafrthogonalityseems to offer more flexibility in
practical realizations while still preserving many of the advantages of orthonormality. So
far, this concept has been carefully studied in the univariate case (see, e.g., [CDF]). Inthe
multivariate case concrete results have been obtained only for certain special bivariate
examples [CS], [CD], and since the start of this paper multivariate studies have appeared
in [LC] and [KV].

The point of view taken in this paper is, to avoid trying to relax assumptions on the
initial system used for the construction of a biorthogonal system. Instead, we will focus
on locality of the initial system, that is, we will insist on local support, finitely supported
masks, and linear independence. Then we try to construct a biorthogonal system with the
same properties. The above-mentioned results, even for the univariate case, do not seem
to answer this question. So far they still require assumptions on both systems. Although
one may never be able to answer this question in great generality, the objective of this
paper is at least to contribute to the understanding of this issue.

In Section 2 we describe the concept of multiresolution based on finitely many gen-
erating refinable functions. The main objective is then to formulate algebraic conditions
to be satisfied by the biorthogonal systems.
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The possibility of realizing such conditions will be seen to be closely related to
the concept of stationary subdivision. Section 3 is devoted to the discussion of several
convergence concepts of subdivision schemes which will be discussed and interrelated.
Our findings will also extend previous results from [CDM] and should be of independent
interest.

2. Finitely Generated Shift-Invariant Spaces

We will consider here sequences of nested closed subspacdeg(ldf) which are
generated by certain dilates and integer shifts of finitely many scalar-valued func-
tionshy, ..., hy € La(R®). By h = (hy, ..., hy)T we will denote the correspond-

ing vector-valued mapping froms into RN which is assumed to be i} (RS) :=
Lo(RS) x --- x Lo(R®), N times. Generally, we use boldface letters whenever we are
dealing with objects that are associated Withuples. Also, we usEB‘(RS), JZB‘(ZS), 1<

p < oo, for Lp(RS) x -+ x Lp(R®), £p(Z%) x --- x £,(Z%), N times, respectively. For

. N 0o
h = (hy,....,hn)T € LJ(R®) we set||h||fg(Rs) = h ”Ep(RS) and likewise the
norm ofc = (cy,....on)" € €)(Z°) is defined by||c||§g(zs) =N o ||fp(ZS). Of

course, as usual far = {C,}qezs WeE use||c||fp(zs) =Y yezs ICelP@nd f e Lp(RS)
has the norm| f || ,@&s) = (fgs | f(X)|P dx)¥/P. Also, we usd - |, for the £5-norm on
R®. Therefore, if we writec € e’,}‘(ZS) asc = {Cy}aczs Wherec, € RN, then we also
have||c||fy(zs) =3,z Iculf and similarly||f||fg(Rs) = [z If(X)|5 dx. Finally, we use
£YN () for all bi-infinite sequence8 = {C,}qczs Where eacke,, o € Z8,isanN x N
matrix and for some norrfi - || on such matrices we demand that,_,. |[C, || < oo.

2.1. Expanding Scaling Matrices

Dilates of such mappings RS — RN can be formed with the aid @xpandingscaling
sxsmatricedM. HereM is called expanding if it has integer entries and all its eigenvalues
are greater than one. Perhaps the easiest exaniyilesi2] wherel denotes the identity
matrix.

As is well known the order df°/MZs equalsm := |detM|. The following example
shows that for ang and anym > 2 one can find expanding matric& such that the
order of Z5/MZ® equalsm. In fact, supposé is any unimodular integer matrix, i.e.,
|det A = 1, then

0 1 0 - 0
0O 0 1 - 0
(2.1) M=A"]: oA
0 0O 1
m 0 O 0
has eigenvaluesw;j, j = 1,...,s, wherer® = m andw; are thesth order primitive

roots of unity. ThusM is expanding fom > 2 and, moreovei® = ml.
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Given a functionf and a fixed expanding matriM, we will be concerned with its
dilates
scf =sc f = f(MK).
Although we will be mainly interested in mappings/hose components all have compact
support, it is convenient to work with the spaﬁE = Lp x --- x Ly, N-times, where
forl<p=<o
Lp:=1{g € Lp(R®): ux|g| € Ly([0, 1%},
whereu = {Ug }gezs, Uy = 1, a € Z5, and we write, in general,
CIgi= ) GO —a),  C={Culaezs-
aeZs

We extend this last bit of notation to vector-valued functignand sequences in
Ly (R®), £5(Z°), respectively, by setting

N
cxg:= ZCi 20,

i=1
whereci, gi,i =1,..., N, denote théth component o€, gin £,(Z°), L ,(R®), respec-
tively. In the same fashion we can even treat the case when{C,},czs andC, is a
matrix-valued element of)' *N (Z®), by letting

Czh:= ) Cih(-—a),

a€eZs

D ICll < o0

aeZs
for some nornj| - || on N x N matrices. Note that> g is a scalar, whil&€Zh is a vector
with N components.
We always use the letterfor a typical representer of an equivalence clasg’ifM Z3
andE for a set ofm distinct such representers f6f/MZ5. That is,

z° = e+ M2,

ecE

and, moreover, the sublattices MZ®, e € E form a partition ofZ8 into disjoint subsets.
One possible choice d is given in [DM2] by the formula

E :=Z°N M[0, 1)°.
In this case, we will frequently use the notation
E, := E\{O}.
One easily concludes that fore £} the spaces
Sh) := {czh: c e £Y(Z%)}, S¢(h) == s&, S(h) = {sc,f: f e S(h)},

are closed subspaceslof(R®), providedh is stable that is, there is a positive constant
d such that

where we require that

lClleyzs) < dllCEhl Ly s).-
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2.2. Refinement Relation

To insure that the spac&(h) are nested we require thaberefinableor, more appro-
priately, A-refinable by which we mean that there exists sonaskA = {A,}aczs €
NNz, i.e., each, is anN x N matrix fora € Z¢, such that

D ALl < o0
a€EZs

and

(2.2) h =sqAxh).

As a matter of notation we usg j, 1 <i, j < N, for the bi-infinite vectof(A,)i j}aezs
where(A,);,; stands for thei, j) entry of theN x N matrixA,, o € Z°.
Also for ¢ € £})'(Z%) the symbolof c is given by

c(2) = Z CoZ”,

a€eZs

wherez* = 2. 2%,z = (21, ... Z), & = (a1, . . ., as). Similarly, forR e £)N(z9),
we use

R(z) = Z R,Z

a€eZs

for its corresponding symbol, and the splitting45f induced byM, gives thesubsymbols
Re(2) i= Z ReimaZ, ec 7

a€eZs

Introducing the Fourier transform df € L1(R®) by

f(y) = / f(x)e XY dx,
RS
one readily verifies that (2.2) is equivalent to
(23) h(y) = m™A@E™ M Ty),
where

m := | detM|.
Moreover, forc e EQ‘(ZS), we can assemble the subsymbols

Ce(2) = ) CormaZ’

a€Zs

to recapture the symbol via the formula

(2.4) ) =) Zce(z™),
ecE
wherez™ := (zM", ..., z*)T andM! is the jth column vector of the matri.

Before starting our analysis of the general setting described so far, we pause to com-
ment briefly on some recent related developments. FoNangxamples ofinivariate
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refinable functions are encountered in connection with cardinal splines \Wwheoere-
sponds to the multiplicity of the integer knots [P2]. Multiresolution induced by several
generators is also studied in [H] and corresponding approximation properties are investi-
gated in [P1]. The construction of multiwavelets is discussed in [G] and [GL]. Recently,
certain refinable functions fal > 1 have been generated with the aid of techniques
from the theory of iterated function systems [DGH]. In particular, they may be suit-
able for tensor product finite-element applications [SS]. All these results are univariate.
For N = 1, the cube spline provides an important example of a refinable function for
M = 2| as a scaling matrix ilmny dimensioffDM1]. Also, for N = 1 and arbitrary
scaling matricedM refinable functions were studied in [GM], which generalized the
univariate Haar bases. Specifically, they showed that there exists, for a given expanding
matrix M, a finite set” C Z°, #I" = m, as well as bounded domaith C RS such that

Xa=Y_ xa(M:—a),

aels

where xq is the indicator function of2. Extensions of this result to the cabe > 1
appear as special cases of observations made in [MX]. Convolutions of generalized
Haar refinable functions again yield refinable functions but with higher regularity [S].
More quantitative smoothness results (for the scalar case) were obtained in [DDL] taking
convolutions of indicator functions relative to different fundamental domains associated
with M. Finally, we mention, from a different point of view, that the tupleas the
generator of a vector field was used in [U] to construct compactly supported divergence-
free wavelets.

2.3. Stability and Linear Independence

Recalling, as before, thdic)l,,zs) = (X qezs 1C|P)YP we can endoWZg(Zs) with
the norm|[cllpzs) 1= (Zszl lic; ||EP(ZS))1/P, wherec = (C1,...,Cn), G € £p(Z%),
j =1,..., N. Analogously, we define a norm fdzr";‘ (R®) which will again be denoted
by || - ||LB:(RS). One can show as in the scalar case (see [JM1]) that

(2.5) ICEhll Ly ey < I g lich ey czs),

wherellgliz, = IUZIglllL, .1 and|lhl gy = (Z]—N:l lIh; ||2p)1/p. The functionh is
called?,-stable if

(2.6) Clleyzs) = d ||CEh||Ly(RS)

for some constard independent o. It is well known [JM2] thath is ¢,-stable if and

only if the sequencesﬁj (Y + 2na)}eezs, ] = 1,..., N, are linearly independent for
everyy € RS. Thus¢p-stability for somep, 1 < p < oo, implies £4-stability for any
1<qg=<oo.

Whenh has compact suppocth is defined for any vector-valued sequermrcdhe
integer shifts oh are called (algebraically) linearly independent if the mapping

c— cXh

isinjective onthe space afl sequenceswhichis equivalentto the fact that the sequences
{hj(z+ 27 a)}eezs. | = 1,..., N, are now linearly independent for ale C° [IM2].

Hereh, of course, denotes the Fourier—Laplace transforim of
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2.4. Properties of the Mask
In the following 1 stands for the vector iR® all of whose coordinates are one.

Proposition 2.1. Let A be in¢)*N(Z%) and leth € £} be a stable solution of the
refinement equatiof?.2). Then there exists a uniqyes CN\ {0} of unit length satisfying

(2.7) Ac(D)Ty =y, eec E:=7Z5/MZ5.

Proof. Let p denote the spectral radius of the matrix*A(1), and lety € CN\{0} be
an eigenvector ofm~*A(1))" such that

(2.8) MA@y = iy
with [A] = p. We claim thato = 1 and that fory satisfying (2.8), the function

N
(2.9) g:=y'h:=> "yh
=1

has the property that
(2.10) 0(2ra) =0, a € Z3\{0}.

We begin the proof of these assertions by proving that 1 and that (2.10) holds. For
this purpose we follow the proof of Theorem 2.1 of [M1].

As a consequence of the refinement equation (2.3) we have for any positive integer
that

i
To use this formula, we keep in mind that becalsés expanding one has

k .
(2.12) hey) = (mlA(e“M'T)Jy))} h(M~ky).
=1

(2.12) lim M~ T)l =o0.
j—o0
Now, suppose to the contrary that< 1. Then for everyw € (p, 1) there is a nornfl - ||
onCN such that
IM™*A@XI| < ulixll,  xeCN,

(see [SB, p. 384]). Sinca e ¢)*N(z%) andh e £} both the symbol oA and the
Fourier transform oh are continuous. Thus, by (2.12), for everg R® ands > 0 there
is a positive integelr such that forj > | both

ImAE M O < (u+e)lx],  xeCN,
and

IR~ < & + I1hO)].
Therefore, we infer from (2.11) witk replaced by + | that

IR < k(e + &)X,
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where

| ) .
©= {H Im~*AE ™M) (e + [AO)).
j=1
Hence,h(y) = 0,y € RS, which is an obvious contradiction. Consequently, we have
established that

(2.13) p = 1.

Next we lety € (CN\{O} be any vector satisfying (2.8) withh| = p. Returning to
(2.11) and evaluatlng at 2r(MT)ke wherea € Z3, we conclude that

h2z(MT*a) = (M IAQL)*h(2ra).

Fora # 0, the Riemann—Lebesgue lemma implies that the left-hand side of this equation
tends to zero ak — oco. Since the inner product of the right-hand side of this equation
with y has an absolute value which tends to infinity unlg&dra) = yTﬁ(Zna) =0

we have proved (2.10) as well. Now letbe any smooth one-periodic function so that

its Fourier series converges absolutely. Thus

> i@ / U ()E?™** dx

aeZs 0,1]s

Y L@)UDg) (—a).

a€eZs

(2.14) / Uzg)(X)z(x)dx
[0,1]

Now h € £} impliesg € £, and

d :/ —a)|d
| lg0oldx [01152|g<x )| dx

aeZ’

1/2
(/Ol]s(;zsm(x—an) ) < o0,

which shows thag € L;(R%). Employing the Lebesgue Dominated Convergence The-
orem, one easily confirms thaiXg) («) = §(27r«). Hence we infer from (2.14) and
(2.10) that

IA

/[0  UZ900500 X = 6070

which, in turn, proves that
§(0) =uxg=uxy'h.

Thus, by the stability ofi, we conclude tha§(0) # 0. This conclusion abouf holds for
anyvectory satisfying (2.8). If there were two such vectors we could form a nontrivial
linear combination of them so as to choogesatisfying (2.8) with the additional property
thatyTﬁ(O) = 0. Hence the corresponding functigrhas the property thaj(0) = 0.
This contradicts our observation above and so establishegshtisfying (2.8) is unique
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(up to normalization). To prove (2.7) we observe from the Poisson summation formula
that forx € R®

(2.15) 9(0)

(UZG)(X) = (USY h)(X)

= D yThx=p =2 > yThx—Mp—e).

BeZs BeZs ecE
Similarly, from the refinement equation (2.2) we have forxall R®

§(0) = (UEG(X) = (UTY'SAATh))(X)

> (yT > Ah(Mx — MB —a))

BeZs a€eZs

33 Y Y Acimeh(Mx — Mg — e~ Ma)

BEZS ecE weZs

DD ALY Th(Mx — MB —e).

BeZs ecE

Replacingx by M ~1x in this equation, comparing it to (2.15), and usingthestability
of h, we conclude that

(2.16) Ae(D)Ty =y, ec E =7/ MZ°.

Since

(2.17) y = (mrA@)Ty,

in view of (2.8), we also observe that wheiis stable

(2.18) p=1

and the only eigenvalue ofi—*A (1) on the unit circlgi| = 1isp = 1. ]

Let us look at some examples of the previous result. The first one is quite special and is
univariate. It comes from the simple butimportantidea of “filling” in a function iteratively
by astationary subdivision schemia the present context we consider the possibility of
Hermite interpolation of function and derivative data. Thus we begin with a vector
(vj)jez of data where eacly = (vl-o, vjl)T, j € 7Z, is to represent the value of a function
and its derivative at the integejse Z. At the first step of the filling-in process we create
new values to be associated with our function/, j € Z, which we caliv! = (vjl)jez,
in the following way. To insure that our scheme is interpolatory werset= v? := vj,
j € Z. The remaining value\s*%jJrl are obtained by Hermite interpolation. To this end,

we choose an integedt and consider the datgl,| = j — N +1,..., j + N. These N

scalar data we interpolate by a polynomiabf degree M — 1 which is determined by
. _ 0 _

(2.19) PG +r) =v, T N+1...,N,

P/(j+r)=vrl+j, r=—N+1...,N.

Then we evaluat® and its derivative at the pointg + 1)/2 and set these values equal
tovs, 4. Thatis, we set

_ j+1 NAESANY
o= ( () (4)



Biorthogonal Wavelet Expansions 301

This scheme can be expressed in other terms. For this purpose, ¥&xgte (x),

r=—N+1,...,N, be the fundamental Hermite polynomials associated with the
interpolation scheme (2.19) whén= 0. In other words, fofj,r = —N+1, ..., N, we
demand that

Q) =85 @) =0,

&) =0, D' () =5

Thus we have
P(x) = Z (W 00X — )+ fx—]).  xeR,
r=—N+1
and so
1 1
PR N LAV
A\ @S @y G

We introduce the masR = {A;};czs of 2 x 2 matrices by setting for satisfying
—-N+1<r <N

T .
Azr = |80,r,

N I )
Ara = o1 11y ]’
€)'z €)'

and otherwise we s& = 0. Therefore, the iteration takes the form
=D _Alyv-
JEZL

Note that in this case we can take= {0, 1} as representers @f/27Z. Thus, we see that

AFD =1,

while
S N g
PIRR(UC D IR (U )
Since
N
1= ) £
r=—N+1

we infer thaty = (1, 0)" is the common eigenvector of the matrige5(1), e € {0, 1}.
In the special case whex = 1 we have

AT _ 10 AT _ % % AT o % _%
0—\o 1)’ 1=\ 8 _1v ) 1718 _1)°
2 4 2 4

Therefore
1 1.2 1, 12
+z+352 —g T 3”2
(2.20) A =2 (2 3_3 22 1 0 1 2)
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Al = (é _0;) .

2
Material which relates to this case appears in [M].
Our next example is more general in spirit. WeHdie a refinable vector and lgthe
a refinable scalar oRS. That is,

and so

h= SdAZh), A= (AOZ)OlGZS’

and

g =sabZg), b= (by)aezs-
Define

G:=h=xg,

that is,G = (G, ..., Gn)" whereG; = h; x gandh = (hy, ..., hy)T. Hence
(2.21) h(y) = m A ™ )h(MTy)
and
(2.22) 4(y) = m e ™ gMTy),
so that

G(y) =mee™ HEMTy),
wherec = (Cy)qezs andc, := m1 Zﬂezs Agb,_g. That is,G is refinable. In fact,
G =sdcxXG).

The next example extends the important notion of cube spline and is based on some
material in [CDM]. To this end, suppose th@tc RS is a bounded measurable set of
measure 1 satisfying

m

(2.23) Me= | JEe+9Q

ecEq
for some seEq of representers ¢S/ MZS. As pointed out in [GM], for a giveiM, one
can always construct a setsatisfying the self-similarity relation (2.23) by means of an
iteration. The integer translates@fform a tiling of RS if and only if 2 has measure one,
as we will assume now. Therefore the s@ts- «, o € Z° are disjoint and their union is
all of R®. Leth be a nontrivial continuous refinable manifold @n That is, there exist
N x N matricesBe, € € Egq, such that

(2.24) h(M~%(x 4 €)) = Bl h(x), X € Q,

(see [CDM]). Ford < s and a giverd x s matrix X with integer entries define the
vector-valued distributiof (-| X) by

(2.25) F(IX)f :=/ f(Xth(t) dt.
Q

We observe that if there exists another expandingd integer matrixM such that
(2.26) XMt =M"1X,
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thenF is refinable relative td/. To prove this observation, we note that
(2.27) Fy) = / F(x|X)e V> dx

Rd

- /e_iy'x‘ha)dt: A(XTy),  yeRY
Q

where it is to be understood thahas been extended to be zero outsid®enoting this
extension also bi we observe that (2.24) is equivalent to the refinement equation

(2.28) h(x) = Y Bih(Mx —e), X € RS,
ecEq

In fact, the reasoning is quite straightforward. By (2.23¥ Q implies thatMx —e ¢ Q
for all e € Eg so that (2.28) is trivially satisfied for ¢ 2. On the other hand, again by
(2.23),x € Qifand only if x € M~1(Q + €) for some unique? € Eg, which means
thatMx — € € Q holds for that particulag’ € Eg. Noting that (2.28) therefore reduces
to

h(x) = BLh(Mx — €),
which, in turn, is equivalent to (2.24) confirming (2.28). Now, from (2.28) we have
hty=m= 3 Ble™ eA(M~Tt),  teRS
ecEq

Set

m il
B() = — > Blete,

ecEq
wherem = | detM|. Then
ht) = M BMTHh(MTt).
But according to (2.27) and (2.26) we have
F(yIX) = m*B(MTXTy)h(MTXTy)
mB(XTMTy)h(X" TMTy)
= MBX"MTy)F(M~Ty|X),
which confirms the asserted refinability lef:| X).

As a simple example takd = 1, M = 2|, wherel denotes the identity oR®, and
h= X[0,1]s- Thent =1,

B(t) — 2dfs Z efit.e _ 2d75(1+ efitl) . (1+ eﬁits),
e{0,1}®

ThusF(-| X) is in this case the cube spline [CDM].

Aside from the fact that thé&d x N matrix subsymbol#Ac(z), e € E, evaluated
at 1 share the same left eigenvector for the common eigenvalue 1, stability and linear
independence imply further noteworthy propertiedathich can be expressed in terms
of A¢(2). First, the arguments given in [M1] for the case Mf = 2I carry over to
the general case of expanding scaling matrigesithout any change to establish the
following results.
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Proposition 2.2. Supposé € £} is A-refinable and stableThen the Nx mN block
matrix A%(z) which consists of mN x N blocks formed from the mN x N matrices
Ae(2), ec E,hasfullrank N forall ze TS :={zeC5 |z|=1 i=1,...,s}.

Proposition 2.3. Supposé e LY (R®) has compact supparis A-refinable and has
linearly independent integer translaté&nenA°(z) has full rank for all ze (C\{0})S.

Likewise, the arguments in [M1] show that, whene Eg“ has compact support, is
stable, and\-refinable, then the entries Af, decay exponentially d&| tends to infinity.
More can be said when the translate$afre linearly independent. To explain this, let,
forve LY (RS, we Ly (R%), 1/p+1/q =1,

(v, w) ::/ v(X)w(x)* dx,
RS

where we write for anyN x n matrixC

c*:=C..

Any functiong € £) which satisfies

(9, h(- — @) = 8ol
is calleddual to h. The following observations extend corresponding known facts for
the caseN = 1 (see, e.g., [CDP]):

Proposition 2.4. Supposg andh are dual Then the following holds

(i) if h has compact supparthen its integer translates are lineraly independent
(ii) if both g and h have compact support artdis A-refinablg then A has finite
support and
(i) if h e £Y has compact suppariinearly independent integer translatesnd is
A-refinable with finitely supported magk then there exists a finitely supported
maskD such that the vector field
(2.29) g:=sgDzxh)

is dual toh.

Proof. (i) and (ii) are obvious. As for (iii), let
Hp:=(h.h(+8).  Bpi= Y (AH. p"

WELS

Suppose that for some € (C\{0})® and somey € CN one hasBe(2)y = 0, for all

e € E. Since, by (2.2)
(h(M-—e), > 7N —a)) = MY 7> He A%y,

IV aeZs WEZLS
== m71 E Zia Be_ Mo
aeZs

= m 'Be(2),
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one would get
(h(M-=B), > Z°h(-—a)) =0,  BeZ’
a€eZs

contradicting linear independence. Thus we have proved:

Remark 2.1. The (N x mN)-matrix B%(z) whose first (block) row consists of the
blocksBe(2), e € E, has full rank for allz € (C\{0})®.

By the compact support df and since, by assumptioA, is finitely supported, all
entries ofB%(z) are Laurent polynomials. Hence the Hilbert Nullstellensatz yields the
following result, see [M2].

Remark 2.2. There exists a finitely supported maBkwhich is dual toB, i.e., the
(N x mN)-matrix D°(z) which consist of the row of block®.(2), e € E, satisfies

D%2)B%z 1T = ml.
We will prove this result for the convenience of the reader. But first we show how it
yields (iii) of Proposition 2.4.

To this end, supposghas the form (2.29). By the refinement equation (2.2hfamne
obtains

(2.30) (g.h(—a) = D" (Dsgh(M-—B), Ay_mah(M - —p))

B.nezs
=m* Y DgHp A%y =M DyBp
B,neZs BeLs
Thus
(9, h(: — ) = do.l
if and only if

ml = Z De(z"")Be(zY).

ecE

By Remark 2.2 this latter equation has a solufiarThis completes the proof of (i

The claim made in Remark 2.2 follows from the following result (see [M2, Theo-
rem 2.3]).

Proposition 2.5. LetA(z), z € (C\{0})3, be a(k x £) matrix of Laurent polynomials
such that k< ¢ and

rankA(z) = k, Vz e (C\{0})®.
Then there exists afix k matrixC(z) of Laurent polynomials such that

A(2)C(2) =1, ze (C\{0})>.
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In the above equatioh stands for thek x k) identity matrix. Before we prove
this proposition, as a means to illustrate the result, we note some special cases. The
first case to consider ik = 1. In this case, Proposition 2.5 asserts that whenever
a1(2), ..., a(2) are Laurent polynomials with no common zeros there are Laurent poly-
nomialscyi(2), ..., ¢,(2) such that

a1(2c1(2) + -+ (Da(2) = 1, z e (C\{0})®.

This is essentially Hilbert's Nullstellensatz, see [W]. As the Nullstellensatz is usually
stated for polynomials we show how to reduce the current situation to that case. For this
purpose, we write the Laurent polynoméglz) in the form

a,-(z):Zainf“-l_[zf“, z2=(z1,...,2),

aels ;>0 «j <0

for some constants, and define polynomials 062 by

bz o=>a [z []s" ji=1...,¢

aels ;>0 aj <0

so that
a(2) = bj(z.z7h), z e (C\{0p)®.
Also, set
uj(z,¢) =1-1zyg, i=1...,¢,
and notethatitz, ¢)isacommonzeroafy, ..., U, by, ..., by, thenz € (C\{0})%andz
isacommonzeroal, ...,a;andus, ..., U, by, ..., b, have nocommon zeros Gifs.

Hence by the Nullenstellensatz there are polynondalg, ¢), ..., d(z, ¢), c1(zZ, ©),
..., Ce(z,¢) such that for alk, ¢ € C®

14
1=) A-z0)dz )+ ) 6@z Hbiz Q).

I
i=1 i=1

Now, for anyz e (C\{0})S, choose: = z~* above and obtain

4
1=) a@zzhHa@
i=1

which proves Proposition 2.5 in this case.
The next case which is elementarykis= £. For this choice ok it is easy to see that
our hypothesis implies that

detA(z) = pZ*, ze (C\{0p®

for somep € C\{0} anda € Z° and so Cramer's rule proves the result.
There remains the principal case wher k < ¢. In this case, we consider for every
1<j; <--- < jk < £the Laurent polynomial

A(z)(.l""’|.(>
Ji, -5 Jk
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which is the minor of A(z) corresponding to columng,, ..., jx. According to our
hypothesis these Laurent polynomials have no common zeros. Hence by the Nullenstel-

1,...,k
Z Qis...., ik(Z)A(Z) < ) ) =1, ze ((C\{O})S
I<ji<--<jk<t J1, ooy Jk

To make use of this result, we recall that for gny r) matrix B, the matrix adB stands
for the matrixB—! detB. Hence the elements of aBjare by Cramer’s rule polynomials
in the elements oB. Next, for every 1< j; < --- < jkx < £ we introduce the x k
matrixD;, ;, defined as

.....

Jk)#vzaﬂjw ,u:l,...,@, v:l,...,k,

.....

and define thé x k matrix of Laurent polynomials
Co= >  0,.i@D. . (2ad(A@D;, . ;(2).

I<ji<o<jk=t

Then for everyz € (C\{0})®
(231) A®@C@= ( > i (DA (1k))| =1.

I<ji<ee<je=t J1 -

2.5. Multiresolution

With the prerequisites from Section 2.4 at hand, one may employ the arguments from
[M1] to establish the following fact.

Theorem 2.1. Anyh e £} which is stable and refinable admits multiresolutiag.,
()
S(h) c S*(h), keZ.
(i)
sty =L@®%, [ S = (0.

keZ keZ

Thisresult could certainly be established under weaker assumptions. But, as mentioned
before, we are mainly interested in compactly supported genetators

2.6. Discrete Biorthogonality Relations

Our main goal is to construct for a multiresolution of the above type a Riesz basis
consisting of biorthogonal wavelets of compact support.
We begin by collecting a few auxiliary facts. Recall from [DM2] that foe Z°

(2.32) Lo =M g =M
solve the systems
(2.33) M=1  M=1

respectively. LeE, E denote any set of representer@df M T Zs, ZS/ M Z3, respectively.
The following relations have been shown in [CL].
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Lemma2.1. One has
Y & =mbeo. € €E,
ecE
and, consequently
Z (&6 =Mdger, €,e e E.

ecE

This leads to the following inversion of the splitting formula (2.4). Here and in the
sequel we will always tacitly assume that Laurent series under consideration are well
defined. For instance, whanbelongs tof1(Z%) the variablez can be restricted to the
torusT* while for finitely supported the expressions make sense forzadl (C\{0})3.

Lemma 2.2. Definingsz := (2124, ..., {sZs)', one has for any & £1(Z°)
(2.34) z%e(ZM) =m™ Y 1y °c(ze2), ecE.
eckE

Proof. Substituting (2.4) into the right-hand side of (2.34), yields, in view of (2.33),

Lo (Z ze‘?”ze”cew(z“”)> =m*y (Z qe,%;”)ce/(z”).

ecE e'cE e'cE ecE

The assertion now follows from Lemma 2.1. [ |

We will make frequent use of the following relations.

Lemma 2.3. The following relations are equivaleritet a, b, ¢ € £1(Z%):
0)
Cy = Z a/3+|\/|ab,3, o eZ8.

BeZs
(i)
c(2) = Zae(z)be(z’l), ze TS
ecE
(i)

c@™) =m™) " a(ez)b(_ez ). ze TS

ecE

Proof. Multiplying both sides of (i) byzM* and summing ovex € Z3, gives

@ =" acmpra?"“ P beympz ™,

«aeZs ecE BeZs
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which proves the equivalence of (i) and (ii). Now Lemma 2.2 provides

> ae(@™be(z M) = m? Z(Z raien ea(Ce/Z)) (Z Z‘ec_;b(cgfz-l))
ecE ecE eckE o
m? ) (Z ‘e e:‘;%) (e Dbz D).

e,e’cE \ecE

By Lemma 2.1, this completes the proof. ]

In the following, letho, go € L)' beA?, BO-refinable functions, respectively. Suppose
additional functionde, ge, € € E, and matrices\®, B® are given such that

(2.35) he = SOA®Shy), eeE,
(2.36) ge = saB®Zqgo), ecE.

Proposition 2.6. Suppose the functiofg, g, € € E, defined in(2.35), (2.36)form
a biorthogonal system,e.,

(2.37) (he, G- —@)) = Seedosl, e©E€€E, aeZ

Then one has the following discrete biorthogonality relations

(2.38) Y AL@B) (T = mbe el €, e eE,
ecE

or, equivalently
(2.39) > A% (2e2)(BY ) ((ezh) = Mg el €, eE.

ecE

Proof. Asin (2.30) one obtains

(2.40)  Seedoal = (Ne. Qe —a)) =m™" > A6, 4l (BS )"
B.uezs

The assertion follows now from Lemma 2.3. [ |

Defining the(mN x m N)-matrices
(2.41) A@2) = (AY(D)eece.  B@ = BY(Z Meeck.
condition (2.38) is equivalent to
(2.42) A(2B*(2) = ml.
Proposition 2.4 suggests considering compactly supported funétieris) (R®) with

linearly independent integer translates. Such functions will be catletissible

Proposition 2.7. Lethg be admissible ané%-refinable with finitely supported mask
A°. Then there exist additional finitely supported masks e € E, := E\{0}, and
Bé, e € E, such that the discrete biorthogonality conditidi2s38)or (2.39)hold.
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Proof. By Proposition 2.3 the matriA®(z) has full rank for allz € (C\{0})S. Hence,
by the Quillen—Suslin theorem it can be extended m& x m N) matrix A(z) whose
entries are Laurent polynomials and whose determinant equals oneZar &'\ {0})".
Setting

(2.43) B(2* :=mA@,
and defining the maskg&®, e € E, by (2.41), completes the proof. ]

The collection of mask#&®, B¢ , e € E, satisfying (2.38), will be called discrete
biorthogonal systeniDBS). In particularA° andB° are also said to bdual to each
other. Some properties & carry over toB® when theA®, B® form a DBS.

Proposition 2.8. Leth be an admissibl& -refinable functionSuppose tha®, B¢, e €
E, form a DBS and ley denote again the common left eigenvector ofaiél), e € E,
with eigenvaludl (2.16).Then

(2.44) Ao(ge)Ty = Mdg ey, €c é,
and
(2.45) Be(1)y = mépeY, ecE.

Proof. By (2.4), one has

yTAGe) = ) ¢SYTAS(D) = (Z c:’) y' =mdoey’. eckE,

ecE ecE

where we have used (2.16) and Lemma 2.1. This proves (2.44). Now (2.39) and (2.44)
give

m*Soey” = DY A%Ge) (B ((e)
ecE
my" (B9)*(1),

which completes the proof. ]

It is worthwhile recording the scalar cade,= 1, of the above result.

Corollary 2.1. Let h be a 8-refinable admissible function in(RS). Suppose that the
a®, b® e € E, form a DBS Then the following relations hoid

0)
al(1) =1, ecE,
so that in particular,
a’(1) = m.
(ii)

A

a’(¢e) = Mdge, ecE.
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(iii)
b°(1) = mdoe, €€ E.

Thus, given anya®-refinable admissibldy, we can always find a DBS of masks
a® ec E,, b® e € E, satisfying certain necessary conditions to permit the existence of
an associated biorthogonal system of refinable functions. The question arises whether
for a givenhg, a° one can always find a dugs, b° such thaty, is also admissible. The
following characterization of duality, which is well known in the scalar ddse 1, will
be helpful.

Lemma2.4. hge L) are dualif and only if

(2.46) [h.d]:= Y h(+27a)d( + 2ra)* = 1.

aeZs

Proof. As in [JM1] we can show that the left-hand side of (2.46) is well defined.
Moreover, as in the scalar case, one has

(2.47) (h, g + o)) = @m1)° / h(@)3() € do
RS

= (271)_5/ [h, ] ()€ dow.
[-m,7]®

Hence
(2.48) [h. 6l (@) = Y (h, g( + a))e ',
a€ZS
whence the assertion follows. [ |

Now define for any finitely supported maskand anyg € L) (R®) the operator

(2.49) Tag:= Y _ A,g(M - —a).
a€eZs
Note that
(2.50) (Ta®) (@) = m A ™ ) g(M T w).

Moreover, sinceM is expanding there exists somes (0, 1) and some nornij - | on RS
such that

(2.51) IM~x| < plxll,  xeRS
Let
B :={xeR%: x| <r}.

Lemma 2.5. SupposeupdA) € B, andsupfgg) € Bg where

pr’
1-p

(2.52) R:=

forsomef > r. Then
(2.53) SUPATSG) € Br,  keN.
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Proof. Clearly,Mx —« € Bg fora € B, impliesx € M~Y(Bg + B;) € M~1Bg,,
so that, by (2.51),

r’ 1—po)r
Xl < p(R41) = p (2 £ EZPT) g
1-p 1-p

i.e.,X € Bgr. Thus, when sup(@) € Bg one has sup@ag) € Bg, Wwhich completes the
proof. ]

Now supposd is an admissiblé-refinable function and Ié& be a finitely supported
mask which is dual teA. Moreover, letg € LY (R®) be some compactly supported
function which is dual td. Recall that the existence of such & asserted by Proposition
2.4(iii).

Lemma 2.6. Forh, A, B, gas above one has
(2.54) [h, Tagl =1,

i.e., h and Tg'g are dual for all n € N. Moreover there exists some bounded domain
Q C R® such that

(2.55) supaTgg) € Q, neN.
Proof. By assumption and Lemma 2.4 one hﬁsﬁ“’)] = |, where we set
9" :=Tgo.

Thus by (2.47), (2.51), and (2.3), one has
th.g™ V(4 ) = (21)°° f 5 [h, §™V) () do
[-m,m]®

m-2(27)"S / ghe

[-m7]®

x Y A@EM TR RMT (o + 27a))

aEeZ’

x g(n)(MfT (a) + zna))*B(efiM’T(erZna))* dw

= m*2(2n)*5/ b
[-m.7]®
x Y AE@MT R, §VUM T (@ + 27€)B(E MV o) do.
ecE
Since forz = e "© one haB(¢e2)* = B*({_ez 1) relation (2.39) in Proposition 2.6
gives, by induction,

h, g™ (- + B)) = @)~ f 167 deo = o 1.

[-m.7]®

which proves (2.54). The rest follows from Lemma 2.5. ]
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As mentioned above, our ultimate goal is to find a converse to Proposition 2.6, i.e.,
given an admissibla-refinable functiorh, when does the associated DBS B¢, e e
E, give rise to aB-refinable admissible functiogy, which is dual tohg. A first step
would be to ask the following question: Suppose there exists some compactly supported
go which isBO-refinable: Isgy dual tohg?

Let us briefly discuss this question for the scalar ddse 1 first, in order to bring out
therelevantissues which need to be addressed. To this end, note first that, by Corollary 2.1,
b(1) = m so that Proposition 2.3 in [DM3] ensures that the products

k

(2.56) Gr(u) = [ [m~tb(e ™ 'y

j=1
converge uniformly on compact sets to some entire function which we den@e€w)y
On the other hand, sinag has compact support it also belongsLtg(R®) so that§g
is continuous andjp(0) = 1. ThereforeG = §o. Now pick any compactly supported
functiong € L,(IRS) which is dual toh. By Proposition 2.4(iii) such a function exists.
Since by dualityh(0)§(0) = 1 we conclude that als§(0) = 1. Thus, by (2.50),
g™ = (To'g)" converge uniformly on compact setsde By Lemma 2.6, there exists
for everye > 0 and anyn € N somel € N such that

1- > hu+2re)§™u+2re)| <e  forall ue[0,27]°

aeBNZs

Hencegy would be seen to be dual toif we could ensure that

> hu+2re)§™ U+ 2ra)

aeBNZs

getuniformly close I(Zaeamzs ﬁ(u+2na)go(u + 27 a) and hence th, Ool- Evidently
this requires more information about the convergence of the pro@ydts(2.56). This,
inturn, is closely related to convergence of certdationary subdivision schemeich
we will study in the following section.

3. Stationary Subdivision

As pointed out at the end of the last section the convergence of certain sequences played
a crucial role for proving the existence of dual refinable functions. These convergence
issues are closely related to the notiorst#tionary subdivision schemesn extensive
treatment of such schemes is given in [CDM], however, for the special scaling matrix
M = 2| and mainly for the scalar cabe= 1. In this section we will present some results

on stationary subdivision adapted to the present more general setting. Since we find this
subject of interest in its own right we will allow the discussion to go at times beyond the
particular needs of the present context. As befitayill be some fixed expanding scaling
matrix. In analogy to scaling by powers of two one expects the refinement equation (2.2)
to be closely related to the subdivision operaBos Sa u: Z,’}'(ZS) — EQ(ZS) defined

by

(3.1) (S\MOa == Y Al ysCs.

pezs
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Again, we will be mainly interested in finitely supported matrix-valued masksit,
unless otherwise stated, it will be assumed that the bi-infinite M@giXmg)q, gezs Maps
Z,’}‘ (Z?) into itself for p under consideration.

In this regard, we note the following proposition.

Proposition 3.1. LetA = {A,}aczs € €1 <" (Z°), then Q m: £ (Z%) — €5(Z°) is a
bounded linear operator

Proof. The proof is based on Young’s inequality (see [F, Theorem 6.18]) which states
that for anyd € £1(Z°), ¢ € £,(Z%), then the convolutiod « ¢, defined to have compo-
nents

d*C)y =Y dgCyp, @€Z’
BeZs

is in £,(Z°) and, moreover,

d * Clle,zs) < Nl Alleyzs)lIClleyzs) -

To bound the norm o8, acting onel’;' (Z°) we must extend Young’s inequality to a
vector setting. To this end, 18t = {Ay}yezs € EQ‘XN (Z®) and definA x ¢, c € ZE (Z%),
as the vectof(A % €)1, ..., (A % C)n), where(A x ¢); := Zszl Aij xCj. Then

N
1A Gl ey = DI O s
i=1

and by Minkowski's inequality, Young’s inequality, andldér’s inequality

N
(A * Cilleyzs) < 1AL} * Cilleyzs)
j=1
N
< D AL e 6 lepzs)
j=1
=

N 1/q N 1/p
.4 P
(Z ||A,,||,gl(25)) (Z g ||W)) :
=1 j=1

where ¥ p + 1/q = 1. Therefore, we get

N /N p-1y 1/p
q
I|A*C||zg(25)§<z <Z||Aq,,-||el(zs>) ) el en z) -
1 \j=1

We call the sum in the upper inequality 1 (A) which is finite wheneveh e ¢)N ().
Going back to the subdivision operator, we introduce for eaehE := Z3/MZ® the
submask

Ae.M = {AeJrMa}oteZSa
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and observe tha®, v c acts on the sublattice+ MZ® as the convolutiomgy,\,I *C. In
fact, fora € Z° one has

(S\MOerma = Y Alima_mpCs = (AL * COla.
BeZs
Moreover, we have

p T p
1S MGl ) = D IAG M * Cll -
ecE
and so

p T p p
ISAmCly ey = (Z kp.1(Agm) ) ISl e

ecE
Sincekp 1 (Al ) < kp1(AT) < 00, e € E, we see tha& v is indeed a bounded linear
operator or 3 (Z°). ]

Next, we wish to connect this form of stationary subdivision to a class of scalar
subdivision schemes that was recently studied in [BM]. Under an additional restriction
onthe dilation matrixM we will show thatthe schen®, \ in (3.1) above isisometrically
isomorphic to &nomogeneous essentially stationary subdivision schertie sense of
[BM]. To explain this, we choose arg/x s integer matrixR such thaidetR| = N and
choose representers, ..., un of the coset®5/RZ3. Therefore, every € Z° has a
unique representation as

o = ui + Ry, 1<i<N, yeZs
This fact allows us to introduce an isometry fr(ﬂgﬂ(Zs) onto £,(Z®). The isometry
Q: £)(Z°) — £p(Z°) which we have in mind is defined as

Q)i +ry = (C)y, 1<i<N, yeZ,
where
c=(Cy,...,CN)", G €€p(Z%, 1<i<N.

The inverse ofQ is given by

Q') =(dn....d\)".  ¢={Culuczs
where

(d)y ‘= Cutry: y € Z°.

Since the norm oﬂg‘(Zs) is given by

N 1/p
. P
ey zs) = (Z g ||W>) :
j=1

it is clear thatQ is an isometry since

N
IQEIE g = D Y I€),IP

i=1yeZs

N

— 1P _ p

= le 161, z2) = 1€l -
i=
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Using this isometry we consider the subdivision scheme

(3.2) S:=Q%mQ*

on¢,(Z%). We wish to point out that whevt := RM R~ is a matrix withinteger entries
(whenM is an integer multiple of the identity matrix this would be the case) thén

a homogeneous essentially stationary subdivision scheme in the terminology of [BM].
Specifically, if we represers in the form

(S0 =Y SupCs €= {Culaczs € £p(Z°),
BeZs

then:
(i) For somek € Z°

Stk gk = Sa s a, B e
(i) There is a norn| - || onRS such that

Sup=0 if Jla—VB|>1

(This notion was introduced in [BM] only for the ca¥e= 21 .)

To prove these properties, we consider the relationship between translation operators
acting one'r;‘(ZS) and(,(Z%). Everyy e Z° induces atranslation operat@y: ¢,(Z%) —
£,(Z%) given by

(£yC)a ‘= Cy+y, o€ ZS» C = {Cy}uezs.
Likewise, onEB‘(ZS), the translation operator determinedyois defined by
(EyC)oz = Ca+y7 PAS ZS7 C= (Cla R CN)T7

wherec; € £p(Z%),i =1,...,N, andc, = ((C1g, - - -, (cn)o)T. According to (3.1),
we see that foc € EQ(ZS), a € 73,y € 73, we have

(EmySumEy "0 = (SumE; Ouimy = D Aliwy msCoy

pezs
= Z Al_MﬁCﬁ = (S, MO)q-
peis
That is,
(3.3) EmySm = S\ mEy.

Moreover, there is a simple relationship between shift@ﬂ)@s) and{,(Z®). In fact, it
is straightforward to see that

(3.4) QE/Q 7' = &gy, y e Z5.
In fact, givenc € £,(Z%), we have

Qo) =(dy,...,dn)",
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whered;, € £,(Z°) are defined by(d), = ¢,+ry, 1 <i < N, y € Z° Hence for
a € Z° we have

by = ((bo)a..... (BN == (Ey(Q7 (),
= ((Aasys -+ (ONaty) T = (Cuy+Ra+y)s -+ Cuy+Raa+y) -
Therefore, for 1< j < N, y € Z5, we obtain
(Qb)y+ry = (B))) = Cu+Rp+y) = Cuyj+Ry+Ry-
That is,
QE/ Q! = &ry.
as claimed in (3.4).

Let us now confirm property (i). To this end, we solve fary in formula (3.2) and
substitute it into (3.3). This provides us the formula

(QEmyQ HS = S(QE,Q7H,
and so (3.4) yields the equation
ErmyS = SEry, yeZ®.
Invoking our hypothesis, we obtain for akye Z° such thatR~1k e Z$
(3.5) EvkS = Sé&.

Since suctk obviously exists this proves the result, since (3.5) is evidently equivalent
to (i).
To prove (ii) we introduce for each € Z°, first the sequencés € £,(Z°) given by

o3 22

and then forj,1 < j < N, the vectorg, € RN, defined by(g); = 0,i # j and
(g)i =1,ifi = j. Then it follows that

(3.6) Q(3se) =68,4+rs 1<j <N, BeZ.

Returning to the form (3.1) and using the hypothesis that #A, # 0} < oo, we
conclude that for some matrix norjn |and 1< j < N

(3.7) S m@p€)e =0 if flo—MB| >1
That is, in view of (3.6),

Q (S@u+re)e =0 i lla = MBJ > 1,
or equivalently, for 1< i, j < N,

S +R8) i +Re =0 it fle — MBIl > 1.

Thus for any&, B € Z° we chooser, § € Z°%, 1 < i, j < N, such tha; + R8 = B,
ui + Ra = @, and conclude that

S35 =805 =0,

o
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provided tha| R-1(@— i) —MR*(B—p;)|| > 1.Setp := max{|R1ui—MR ;| :
1 <i,j < N}. Then, whenevefR'a — MR™18|| > 1+ p, we get thatS, ; = 0.
Hence, in (ii) we can choose the norm

1 -1 S
IX] ;= ——||R™X]l, X e R>.
p+1

We now study various notions of convergence relative to the vector subdivision
schemes discussed so far. To this end, we first explain what we meambgrgencef
Sam. Forf e LY, (R®) let

3.8) (e = mi / F(x) dx

M- (a+[0,1]9)

and also sat{vl ) = {/Lfvl (o }aezs- The same arguments as in [JM1] yield the following
fact.

Proposition 3.2. For any ge £,(R®) satisfying

and any fe L,(R®) we have
(3.10) Jim [ f — scy (uy (HEQ|IL, s = 0.

Moreoverwhen g has compact supppovite have
(3.11) IcZgllL,®s) < «lIClle,ze)
for some constark.

Any functiong € L (R®) with compact support and stable integer translates which
satisfies (3.9) is called p-test function A consequence of this proposition is the fact
that wheneverf € Lp(RS) and lim, oo m™/P||u¥, ()L, @s) = O thenf = 0. To see
this just choose ang-test function then by (3.11) and a change of variable of integration
we have

m*P |k, () ZgllL,zs)
—k k
e P () g e

ISG4 (1 (FIZY)IIL, =s)

IA

and so
Jim sc, (uk,(f)zg) = 0.

Combining this fact with (3.10), proves that= 0, as claimed.
Also, we should keep in mind for future use the simple fact that

(3.12) M Py Ollenzs) < Iy @s),

which follows directly from Hblder’s inequality.
We say thatSy m converges irn¢, relative to some fiest function gif for every
ce Eg‘ (Z®) there exists a functiofy e LQ(RS) such that

(3.13) Jim Isy (Km0 =Q) — fell Ly zs) = O.

Here we assume also that for soohe function f. does not vanish identically.
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Proposition 3.3. The scheme Sy converges relative to some p-test function g4n
if and only if

(3.14) Jim P e — g (Fo)ll ez = O

Proof. By stability (2.6) we have

(3.15) m™PlISK e — ufy (Folleyzey < ISy (S mC — iy F) ZD Ly sy
< d(lIsdy (St MO Z) — fell Ly e + Ife — SCy (1 FIZO) Ly rs))-
By (3.13), and Proposition 3.2, both terms on the right-hand side of (3.15) tend to zero
ask tends to infinity which proves that (3.14) follows from the convergencegi .
Conversely, we have
Iscy ((SAmOZ9) — Fell Ly s
< lIsgy ((SKme — i F)DQ) lLyes) + ISy (151 F£9) — Fell Ly s, -

Again Proposition 3.2 ensures that the second term on the right-hand side tendsto zero. By
the properties of, the first term is easily estimated by a constant time¥ P | S,‘;M c—

MK,, (fc)||@g(Z5) which completes the proof. [ |

We observe next that the special choicgaf the above notion of convergence is not
relevant so that we may drop the referencg tehen talking of convergence. In fact, an
immediate consequence of Proposition 3.3 is the following fact.

Corollary 3.1. If Sa,m converges relative to some p-test function then it converges
relative to any other p-test function as well

Note that the particular choi@e= x|o,1js Shows that the convergence concept studied
in [CDM] agrees with the present one for the special ddse 1, M = |, andp = co.

Our next goal is to extend Proposition 2.1 in [CDM] to matrix subdivision schemes.
A first step can be formulated as follows.

Proposition 3.4. Suppose that in addition to the hypotheses in Proposi@chA
has finite supportThen there exists a common eigenvegtoe CN of the matrices
Ac(1)T, e e E, with eigenvaluel. In particular, the limit functionf. produced by the
scheme Sy satisfies

(3.16) Ac(D)Tf(x) = fe(x), ecE, xeR% cely(@).

Proof. Inview of (3.1), we can write

(317)  mPISK e — uy (Follmzs)

> m_k/p<2 (Z AZ—Mﬁ) s (fo)o — 1y (e

a€Zs | \BeZs

p>1/D
p
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p\ 1/p
— mk/p(z )
a€eZs p
p\ 1/p
— m_k/p (Z ) .
a€eZs p
The last sum above is bounded by
M Pl Sy mllpll St mc — mn  Fo ez
where|| S wm || p denotes the norm of the subdivision operator actin@ﬂs). According
to Proposition 3.1 and Proposition 3.3, this quantity tends to zeko-asco.
As for the next to last sum we estimate it from above in the following manner. Let

|AL_wz!p Stand for the norm of the matrix] _,,, acting onR® with £,-norm. Then this
term is bounded by

p\ 1/p
(5 (3 AT o i 0 i)

DAL wg (s — 1y (Fo)a))
BeZs

D AL s ((SUo)s — g H(Fo)p)

pezs

a€eZs \BeZs
py\ 1/p
—m kP (Z > (Z AL wlpl ey H(Fe)y—p — MKA(fc)HMHp) ) :
ecE yeZs \BeZs
Let
:={8eZ% JecE > |Al:+|v|5|p # 0}
and

6 :=max|Al|p:ael}.
Observe that necessarily the right-hand side above can be bounded by

p\ 1/p
emk/P<ZZ (Zmb‘%hée)ylp) ) ’

ecE yezs \Bel’
where
h e i=fo(—=M 1B+ ) —fc(M e+ ).
Since

p
> (Z I (hﬁ,e>y|p) < mK@#HD)P /R D PCOTLES

y€Zs \Bel' Bel’
we get that the next to the last sum is bounded by

1/p
e(#r></RSZZ|h;e<x)|sdx) ,

ecE el

which can be estimated by

om(#L)? SUP [fe(- 4 ) = Fellu .
[hl2=<dk
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where
Sk := max{|MXa|,: a € Z8, A] # 0}
Since lim_ o 3k = 0 we conclude that likewise the second to last term in the lower

bound in (3.17) tends to zero ks~ oc.
To interpret these observations made so far, we'set {y¥},<zs where fora € Z°

(Z Aat M/S) MKA (fo)e — MKA (fo)a-

BeZs
Thus, we conclude by what has been said above that
i —k/pjyk _
Jim =Y gy sy = 0.
Next, observe that for eaghe E anda € Z° we have
Yoime = As Dy ferma — iy (Ferma
= 1y (AL (Dfe—fo), + ply () —h(M e+ ).,
where we set
h = fc - Ag(l)fc.
Therefore, we obtain the inequality
m™Pllus (AL (Dfe = follovzsy < MPIY<llzs) + INC) — hM e+ )l Ly s,
and conclude that
(3.18) AL (Dfe(x) =fe(x), X €eR® ae, ec E, ce£)(Z°.

This proves the claim. ]

Now consider the sequences := {5, },czs € IINVAE where(e)), := gy, j,1 =
1,...,N,and letg; € LN(RS) denote thel,(Z%)- I|m|t of S,‘§ MdJ Moreover, letG(x)
denote the matrix- valued function whose columns are formed by the vegteis j =
1...,N.

Proposition 3.5. Under the assumptions of Propositi8rtthe functiors has compact
support and the limit functions produced by §u have the form

(3.19) fo(x) = ) G(X — a)Cy.

aeZs

Proof. The first part of the claim follows in a similar way as the claim of Lemma 2.5.
As for the rest, writing

ZZ(cﬂn ap€ = ZZ«:&), s

BeZs j=1 BeZs j=1
we see that
N .
(KmOa = Y_ > () (S md pa
BeZs j=1
whence the assertion follows. [ |
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Corollary 3.2. Suppose the hypotheses of Proposifiohare satisfiedThen for any
common eigenvectgrof the matrice#\¢(1), e € E, we have

(3.20) y = Z G(x — a)y.

a€Zs

Proof. Consider the particular sequengalefined by
— ifx € Z5 |al2 < R,
“"7 10 if|al > R

Clearlyc € ZF’\,‘ (Z®). Thus, on account of the finite support®ffor R sufficiently large
one has, by assumption gn

[y for|M~kal, < R/2,
(SimOe = {o for [M~*aj, > 2R.

Again sinceG has compact support we conclude from (3.19) thatXtr < R/2
y= > G(X-ay. IX| < R/2.
aeZs

SinceR was arbitrarily large the assertion follows. ]

We are now ready to prove a central result in this section.

Theorem 3.1. Suppose that,Su converges irf,(Z®) and thatA has finite support
Then(the matrix-valued functio (x) := G(x)" is a solution of the refinement equation
(2.2),i.e,

(3.21) H(x) = ZAO,H(MX—a), x € RS,

a€eZs

Proof. Define the mappinga by
(3.22) (TAG) = Z G(Mx —a)A].
aEeZs
One easily verifiesthatfde =1, 2, ...
(3.23) D (TG (X —a)Cy = Y G(M*X — a) (S O
a€Zs a€e”Zs

Note that, sincé& has, by Proposition 3.5, compact support, the convergen&g qf
ensures, on account of Proposition 3.3, that the right-hand side of this identity has for
the special choice = d! the same ,(Z®)-limit ask tends to infinity as the expressions

> G(M*X — o) iy (G o
aEeZs

where as abovdy = g;. Moreover, for almost everik € RS one has that
lgi (X) — nk(g)l2 — 0if [x — M~Xa|, — 0 ask — oco. Thus

Y GIM*X — @) (1l (9o — Fai (X))

aEeZs
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tends to zero ak — oo. But by Proposition 3.4, ead; (X) = g;(x) is a common
eigenvector of the matricés:(1), e € E, so that, by Corollary 3.2,

> G(M*x — a)g; (x) = g; (%). i=1,...,N.

aeZ’s

Since the left-hand side of (3.23) reducesdet d! to ('I:KG)(X), we conclude that
(3.24) klim (TXG)(x) = G(X),
which immediately gives
(TAG)(X) = G(x).
By definition ofH and T, this proves the claim. ]

So far each row 06, i.e., each column dfl is a solution to the refinement equation
(2.2). More can be said under the additional assumption of stability.

Theorem 3.2. Now suppose that forx5q as above one of the columnsidfsay h;
is stable ThenH satisfying(3.21)is a rank-one matrixMore preciselythere exists a
uniqueh € L,’;‘(RS) of compact support and a uniqyes RN of unit length such that

(3.25) H(x) = h(x)y"

and

(3.26) Y hix—a)Ty=1
ae”Zs

The vectory in (3.25) and (3.26) is the unique common eigenvector of the matrices
A1), ec E.

Proof. From Proposition 2.1 we know that if (2.2) has a stable solution, el (1)

has a unique eigenvector (of unique length) with eigenvalue one. Therefore, and on ac-
count of Proposition 3.4, the matricAg(1), e € E, have a unigue common eigenvector

y of unit length. Again by Proposition 3.4, the functiag)s= fy must have the form

gj (X) = hj(x)y,
whereh(x) = (hj(x), ..., hn(x)T has compact support. Thus
(3.27) G(x) =yh(x)T, so that H(x) = h(x)y",

which proves (3.25) as well as the assertiony drurthermore, by Corollary 3.2,

aeZs
=Y yyhx—o'y
a€els
=Y hx-a)y.
aeZs

which finishes the proof. ]
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Corollary 3.3. Under the assumptions of Theor8rthe limit functiorf. has the form

(3.28) fo(X) = fe(X)y,

where

(3.29) fe¥) = > hix—a)7c,.
IV

Proof. By Theorem 3.2 and Proposition 3f4must have the formfy.(x) = f.(x)y for
some scalar-valued functiofa. From Proposition 3.5 and (3.27) we infer

fe)y =Y yh(x —a)Tc,.
aeZs

The assertion is now an immediate consequence of the normalizatyon of |

In view of the results in [CDM] we are led to the following result.

Theorem 3.3. Suppose thah has finite support and thdt € LQ(RS) is a compactly
supportedt-stable solution of the refinement equati@g?). Then @ m converges in
Cp.

Proof. By Proposition 2.1, there exists a unique unit vegt@atisfying (2.16) and a
normalization foih such that the integer translatesgof= y" h sum to one. Clearlg has
£,-stable integer translates and for any EQ (Z®) the functionfe(x) := ",z € h(x—
«) isin L, (R®). Thus

fo— > uh(fag(M* - —ar)

aeZs

Lp(RS)

3w (fey D — (S uODhMK - —a)

aeZs

Lp(R?)
—k k
> 1e M Py (Foy) — K mclleyzs)s

by stability of h. Since, by Proposition 3.2, the left-hand side of the above inequality
tends to zero adstends to infinity the assertion follows from Proposition 3.3ffoe f.y.
[ |

4. Biorthogonal Wavelets

In this section we collect a few consequences of the above results. Throughout the
remainder we will assume thatis admissible (i.e., belongs 110,’;‘ (R®), has compact
support and linearly independent integer translates), aAerefinable.

By Proposition 2.4(ii) and (iii)A has finite support. Combining Propositions 2.3 and
2.5 ensures the existence of a finitely supported nBaslch thathA andB are dual, i.e.,

(4.) ml =) Az H(Be) (2.

ecE
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Theorem 4.1. There exists an admissibB-refinable functiorh e LqN(IRiS), 1/p+
1/g = 1, which is dual toh if and only if the stationary subdivision schemg \s
converges irt.

Proof. Suppose thdh ¢ LQ‘(RS) is an admissibld®-refinable function which is dual
to h. By Proposition 2.4h is linearly independent. By Theorem 3%, m converges in
L.

Conversely, suppose thBtsatisfies (4.1) and thas m converges irfy. LetH =
G" e LY"N(R®) and letH = GT ¢ Ly N (R®) be the functions from Theorem 3.1
associated with the schem8gwu, Ss.m, respectively. Letél), := 8o, ! and consider

(HHC —@) = (GT,G(—a)" — (564(S udD).—mxa ZOT)
+((GT —sqy (S udDZYT, (5G4 (S5 3D ma ZO)T)
+{(SG(SAMINZY)T, (564 (S5 M- maZO)T)
= 1K+ 11& + T (K).
By Theorem 3.35, m converges . Since Proposition 3.1 ensures the uniform bound-
ednessofthe operat(ﬁ’,\,I thetermd (k) andl I (k) tendtozerowhek — oo provided
thatg is a p- as well as @-test function. Here we will exploit Corollary 3.1 which allows
us to choose any suitable test function. In fact, we choose
g = Xa.
where( is a tile of measure 1 satisfying (2.28)is a p-test function forany pwhich,
in particular, satisfies
(42) <ga g( - a)) = 80,013 o € ZS'
From (4.2) we readily conclude that
—k T,k sy
11 (k) =m Z(sg,Mal)y(nga)y_Mka.
y€eZs
We claim that
(4.3) [ (K) = g4l
In fact, fork = 1, we obtain
(4.4) M (Samdh)] (SmoD, ye = Y ATBS i, = S0l
yeZs y€eZs
where we have used thatandB are dual (see (4.1)). Using induction krve get

MY (SmdDI (S M), e

y ez’

B m_k Z ( Z (Sﬁ’_&(SI);AVMﬁB;—M(Mk-1a+v)($,_l\%5l)v>

yeZs \B.veZs

— mk+t Z (SK’*’&(SU; (m—l Z AyMﬂB;Mv> (%TI\%SI)V_Mk—la

B.veZ® y ez’

= m Y (S (S5 81 ey = S0l
BeZs
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where we have used (4.4) and the induction hypothesis. This confirms (4.3) and hence
(4.5) (H,H(- — a)) = 8ol

Sinceh is, by assumption, linearly independent and hence stable Theorem 3.2 states that
H(x) = h(x)y" wherey is the unique common eigenvector of unit length of the matrices
Ac(1), e € E. Thus (4.5) becomes

/ h(x)yTG(x — ) dx = 8gql,
RS

which means that
h() =Gy
is dual toh. Since by Theorem 3.1, (3.21),
GT =sou(BxG"),
multiplication byy yields
h = sou(BZh),

i.e., his B-refinable. By Proposition 3.5 has compact support and Proposition 2.4(j)
ensures tha is linearly independent and hence stable. Thus Theorem 3.2 implies that
H is also a rank-one matrix, namely

H(x) = hx)y'

(see also Proposition 2.8 (2.45)). Since we have established all the asserted properties
of h the proof is complete. ]

We will confine the remaining discussion to the case q = 2. Given an admissible
AC-refinable functiorh, we adhere to the notation used in Section 2 and apply Propo-
sition 2.7 to conclude that there exists amN x m N)-matrix A(z) which contains the
subsymbol#\{, e € E, asiits first block row which has constant determinant©(0})®
and whose entries are Laurent polynomials.Bét) = (B )ee<e be defined by (2.43).

By construction, the masB® defined byB%(z) = }"_¢ z°B(2) is dual toA°. By Theo-

rem 4.1, we get a du-refinable functiorh if and only if Sgo.m converges irf,. If this
is the case, the maske’, B¢, e € E, := E\{0}, corresponding to the subsequent block
rows of A(z) andB(2), respectively, give rise to a biorthogonal system as described in
Proposition 2.6.

Of course, it is not clear whether the completid(r) of the first block row given by
AP gives rise to 8° such thaiSzo y converges irf,. A possible strategy for dealing with
this difficulty can be sketched as follows. One can try to employ the concept from [CDP]
to modify the mask#°®, e € E,, so as to ensure convergencesgd . It remains then to
show that ifSyo y converges irt, then the limits actually belong to some Sobolev space
H'(R®) of positive indext > 0. One can then resort to the general stability criterion
from [D] to conclude that the dilates of the corresponding biorthogonal systems from
Proposition 2.6 form Riesz bases fos(IR®). This issue will be taken up in a forthcoming
paper.
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