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Polynomial Inequalities on Measurable Sets
and Their Applications

M. 1. Ganzburg

Abstract. We study Pé6lya- and Remez-type inequalities for univariate and multivari-
ate polynomials and discuss their applications to Nikolskii-type inequalities and upper
estimates of trigonometric integrals.

1. Introduction

Polynomial inequalities on measurable sets, that is, P6lya- and Remez-type inequalities,
play an important role in many areas of Analysis. In the 1920s—1930s, P6lya and Remez
initiated the study of polynomial inequalities on measurable sets in R! by proving the
following results:

Theorem 1.1 (Pélya [7], [46], [50]). For a measurable set E C R}, 0 < |E| < oo,
and a real polynomial P(x) = ,_, axxk:

(1.1 la.] < 34/|ED" SulglP(x)l-

Equality in (1.1) holds if and only if E is an interval [a,a + A] and P(x) =
AT,(2(x —a)/r — 1), wherea € R}, A € R', and A > 0. Here and in the sequel

T(x) = 3G +Ve2 - + @ - Va2 - 1)
is the Chebyshev polynomial of degree n.

Theorem 1.2 (Remez [11], [26], [40], {411, [47]). For a measurable set E < {a,b],
|E| > 0, and a real polynomial P of degree n:

(1.2) max |P(x)| < T,(2(b — a)/|E| — 1) sup | P(x)].
x€(a,b] x€E

Equality in (1.2) holds if and only if E = [a,a + A] and P(x) = AT,2(x —a)/» — 1)
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276 M. 1. Ganzburg

or E = [b— A,b)l and P(x) = AT,(2(b — x)/A — 1), where A € R' and 0 < A <
b —a.

In the special case when E is an interval, inequalities (1.1) and (1.2) were obtained
by Chebyshev [50, pp. 67-68]. These results, their generalizations, and applications
in Analysis have received much attention since the 1970s [2)-[5], {8]-[16], [20]-{27],
[291-{331, [35], [36], [391-{44], [49], [51].

In this paper, we establish new Pélya- and Remez-type inequalities for univariate and
multivariate polynomials and apply them to some problems of Analysis.

The paper is organized as follows: Sections 2 and 3 contain inequalities on measur-
able sets for algebraic and trigonometric polynomials of a single variable. In particular,
the main result of Section 2 is a combined version of Theorems 1.1 and 1.2. We also
present a new Remez-type inequality for even polynomials. In Section 3, we obtain
upper estimates of the constants in Remez-type inequalities for trigonometric and ex-
ponential polynomials. Note that the proofs of the main results in Sections 2 and 3 are
based on the shift method developed in {7], [15], [22], [46]. In Section 4, we establish
new Polya- and Remez-type inequalities for multivariate polynomials. In Section 5, we
discuss applications to Nikolskii-type inequalities for polynomials and entire functions
of exponential type in rearrangement-invariant spaces. We also apply the Remez-type
inequalities, established in Sections 2 and 4, to upper estimates of some trigonometric
integrals.

1.1. Notation and Definitions

‘We use the following notation.

Let R™ be the m-dimensional Euclidean space; C™ := R™ + {R™ the m-dimensional
complex space; Z™ the set of all integral lattice points in R™; §” := {x € R™ : |x| = 1}
the unit (m — 1)-dimensional sphere n R™; K™ ;== {x e R® :0<x; <1, 1 <i <m}
the unit cube in R™”; | E| = | E|;, the k-dimensional Lebesgue measure of a k-measurable
set E € R™, 1 < k < m; and xg the characteristic function of E C R™.

Foramulti-indexa = (&3, ...,an) € Z",a; > 0,1 <i <m,weset|a]:= >, i,
x® i=xp - x2m, 3% 1= (3/0x1)™ - - (8/3x,)m.
Let Py, be the class of all algebraic polynomials P(x) = Zl 0" o 0 GaX”

with real coefficients; P, the subset of P, of all algebraic polynomials P(x) =
2_iai<n 9ax® of degree n; and 7, the class of all trigonometric polynomials of a single
variable of degree n with real coefficients.

Further, let C(2) be the real space of all real-valued continuous functions f on
Q2 C R™ with the finite norm || filcie) = sup,eq |f(x)], and let L,(2), 0 < p <
00, be the space of all measurable functions f on Q@ € R™ such that || |l @ ==
exp(I€2l;! foIn 1f (1)1 dx) < 00, IfliL,@ = (ol fGIPdD)P < 00'if 0 < p <
00, and L (R2) := C(52).

Throughout the paper C, C;, Ca, ... denote positive constants independent of », o,
A x,y, |El,b—a,lV], P, Q, g F. The same symbol does not necessarily denote the
same constant in different occurrences.

We shall often refer to the Remez inequalities || Pllcqy < CA(IE) Pllc(x) as being
the inequalities of first or second type, while the order of decreasing h(| E|;) is sharp for
|E|x — Oor |E|y — ||, respectively.
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2. Polya- and Remez-Type Inequalities for Univariate Polynomials

2.1. Pélya- and Remez-Type Inequalities

Inequalities (1.1) and (1.2) have been generalized in different directions in [2], [4], [7],
[11], [21], [22], [23], [29], [301, [31]. In particular, Bernstein [7, p. 49] extended (2.1)
to functions f satisfying the condition infrefa 57 | £ ™ (x)| > O:

.1 Xeiafb] | £ P )l < 30! G/IEL I fllc.-

Bachtin [4] independently proved (2.1) using a different method which is close to that
used in {46]. Some Pélya-type inequalities, including a weaker form of (2.1), and their
applications in Number Theory were obtained by Arkhipov, Karatsuba, and Chubarikov
[2, pp. 12-26}.

Theorem 1.2 had been littie-known until the 1970s when it appeared in [26], and
its multidimensional generalizations have been established in [15], [29], (31]. This is
the reason why the theorem was proved independently by Dudley and Randol [20] and
Brudnyi and the author [15]. The various proofs of Theorem 1.2 were given in [8], {11],
[15], (201, [21], [26], [40], [41]. Apparently, the shortest proof was found by Remez [47]
(see also Bojanov [8]).

The author [29], [30], [31] noticed that (1.2) implies a more general inequality

2.2) N Pllcy = ThIE2A/|Er] — DIPllcez), E\C E;, PePn,,

and established some local versions of Nikolskii’s inequality, based on (2.2).

In the late 1980s—early 1990s, Erdélyi {11], [21], [22], [23] has proved Remez’s
inequality for the generalized polynomials of the form f(x) = C [, Ix — z:|*, o; €
Rl.zzeC, 1<i<n.

In this section we prove Theorems 2.1 and 2.2 which are combined versions of (1.1)
and (1.2). As simple corollaries of these results, we obtain P6lya’s and Remez’s inequal-
ities. A version of Remez’s inequality for éven polynomials (Theorem 2.3) and some
corollaries are also presented.

Theorem 2.1. For a measurable set E C [a, b], |E| > 0, and a polynomial P € Py :

2.3) max(jP®(a), |POB)))
< Q/IEN'TOQ® ~ a)/|E| = DIPlicey,  k=0,1,...,n.

Equality in (2.3) holds ifand only if E = [a,a+A) and P(x) = AT,(2(x —a)/»—1) or
E =[b—X,bland P(x) = AT, (2(b—x)/A—1),where A € (0,b—a)l, k+b—a—i > 0,
and A € R,

It is easy to show by a linear substitution that Theorem 2.1 is equivalent to the following
generalized PSlya inequality:

Theorem 2.2. Forameasurableset E C [0, b],|Ej = A > 0, b > 0, and a polynomial
P(x) = Y p_oax®:
24 lae] < A Plicery.
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where Ay, 0 < k < n, are the coefficients of the polynomial T,(2(b — x)/» — 1) =
S i_o Axx®. Equality in (2.4) holds if and only if E = [b — A,b] and P(x) =
AT,2(b —x)/* — 1), where h € (0,b], k+b— A > 0,and A € R,

Theorem 1.1 immediately follows from Theorem 2.2 for £k = n, while Remez’s
inequality (1.2) is a consequence of (2.3) for k = 0, since for every x € [a, b]:

[P0 = min(T,2(x —a)/IE Na, x]| - D, T,(2(b — x)/|1E N [x, b]l — I Pllc
< T2 — a)/|E| — DIIPlicE)-
The following theorem is an analogue of Theorem 2.2 for even polynomials and k = 0.

Theorem 2.3. For a measurable set E C [0, b], |E| = A/2 > 0, and an even polyno-
mial P € Py, 1t

@.5) PO < T, i——l) 1Pl
. =" \a@e - c®:
Equality in (2.5) holds if and only if E = [b — 1 /2, bl and

2x% —b? — (b — 1/2)2>

R.
bh —2%/4 Ae

P(x) =AT,,(

A new version of the P6lya inequality and a Remez inequality of second type are
presented below.

Corollary 2.1. For a measurable set E C [a,b], |E| = A > 0, and a polynomial
P(x) =) parxt:

(2.6) D lal® — a)* < T4 — a)/A — DIIPlices.

k=0
Equality in (2.6) holds if and only if E and P are the extremal elements defined in
Theorem 2.1,

Corollary 2.2. Ife € [0, %), then for a measurable set E C [—b, b], satisfying |E| =
A, (% — &)b < A < 2b, and a polynomial P € P, :

2.7 |PO)| < e =202 P |0k,
Remark 2.1. An estimate |P(0)| < exp(An(1 — A /2b))|| Plic(k), where A is an abso-
lute constant, follows from a poinwise Remez inequality of second type established by

Erdélyi [22]. Inequality (2.7) shows that A < 4 fore = 0.

Remark 2.2. Brudnyi [14] announced that for P € P, and E C [a, b}, |E| > O:

I1P®lices < G/I1El =2/ — a) TP Q20 - a)/|E| — DIPlcw)-
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Taking account of (2.3), there is very good reason to believe that the following
V. A. Markov-Remez inequality is valid:

Conjecture 2.1. For a measurable E C {a, b] and a polynomial P € P, :

2.8) 1PPlicas < @/ENTOQ0 ~ a)/IE| - DIPlce)-

Equality in (2.8) holds if and only if E and P are the extremal elements from Theorem2.1.
Note that there is no a simple proof of (2.8) even for £ = [a, b].

2.2. Proofs of the Theorems and Corollaries

Proof of Theorem 2.2. Let E be a subset of [a,d], |[E| = A > 0, and let P(x) =
Y i-oarx® be a polynomial. Without loss of generality, we may assume that E is a
closed set, and a; # Oforafixedk,0 <k <n.If X = b, then (2.4) was proved by V. A,
Markov [11, p. 254]. Sowe assume 0 < A < b.

Let E = [b; — A, b;] be a subinterval of [0, b]. If b} — A > 0, then using Chebyshev’s
inequality [SO, p. 68], we obtain
(2.9 lal < (1/kD](@ /dx*)(T,((2x = 2b; + 1) /M) |z=0ll Pllccr)

=
< (1I/kDE/M TP @b/A — DIIPlici = 1Aelll Plices)-

If by —A = 0, then V. A. Markov’s inequality [11, p. 254] shows that (2.9) remains valid.
The equality in (2.9) holds if and only if E = {b— A, b] and P = AT,(2(b —x)/1 —1).
Now, suppose that E is not a subinterval of [0, b]. It is known [11, p. 103] that

{1,x,...,x"}is a Descartes system on (0, b). Thus using the necessity of Chebyshev—
Bernstein’s theorem [11, p. 94], we obtain that for a fixed k, 0 < k < n, there exist
n+1

the only polynomial P, g € P, with the kth cofficient a, and a set of points {u;} it
uj e E,1<j<n+1,u <uz <--- < upy, satisfying the relations

2 = i k _ K
2.10) IPeelice = inf maxlax — 37 x|,
1=0,l%k
| Pr,e(u;)l = I Prellce, 1<j=<n+41,
Pep(u;) = —Pp(ujp), 1=j=<n.

Letusput £y := {x € {a, b] : | Pr.e(x)] < | Pr.ellcry}- Then
(2.11) E CE,, |E| < |Eq), N Prelicey = 1 Pr.ellcEn-

Relations (2.11) and the sufficiency of Chebyshev—Bernstein’s theorem [11, p. 94} yield
Prp, = Py g. If E; is a subinterval of [a, b], then |E| > |E| and | Pr.ellcry =
It P, llc(E,)- Hence

212) &l <= (1/kDI P, g, O Pr.Ellc ey
< (1/KDQ/EN TR @2b/|Eil — DIPlic < 1A Plice).-
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If E, is not a subinterval of [0, ], then the following properties of E; hold:

(a) there exists a family of intervals ¢ = {[a;, bj]}J’-___l, 2 <r < n,such that E; =
Uj’.zl[aj,bj],Osal <bi<ay<by<---<a <b;

(b) there exist n simple zeros xj, x3, ..., x, of Py g, thatlie in E;;

(c) there exist at least two intervals from & that contain zeros of Py g, .

Property (b) follows from (2.10) and the definition of E;, while property (a) is evident.
To prove property (c) we assume that for some j,1 < j <r,allx; € [a;, b;],1 <i <~n.
If a; > O, then | Py, g,(a;)| = l| P, llc(e,)- Without loss of generality, we may assume
that Py g, (a;) > 0. Then the inequality P,g' E, (a;) > 0 is impossible since, in this case,
either Py g, or P, g has azero on (—00, g;]. Thus P, g, is decreasing on (—00, g;], and
(—00,a;) N E| = { for a; > 0. Similarly we prove that (b;, 0c0) N E; = @ for b; < b.
Hence E; = [a;, b;], and this contradicts our assumption that E) is not a subinterval of
[0, b]. Property (c) follows.

Now we construct a set £, and a polynomial P* satisfying certain conditions. Let
us put E; := J}_[a; + 7, b; + ;] = [b, — |E1l, b,], where 7; = 3 ;") (@xs1 — bi),
1 <j=<r-1;7 =0 Next,letx} = x; + tj, where j = j(i) is the index of an interval
[a;, bj] which contains x;, 1 <i < n. Note that x} € Ezand x} > x;, 1 <i < n, by
properties (a) and (b). Moreover, there is an integer i such that x}* > x;, by property (c).
Let us put Pi(y) = CpA ['L’.'=l(y — x;'), where A is the leading coefficient of P g, and
Co = ai /o Here oy is the kth coefficient of (1/ Cp) P;. Then P, is a polynomial of degree
n, and its kth coefficient is a;. Now applying Viete’s theorem, we obtain |ax| < oy,
that is, |Cg| < 1. Next, note that for each y € F; there exists x € E such that for all i,
ly — xf| < |x — x;|. Hence,

WPillcey = 1Colll Pre,e ey < U Px.E llcy-
Thus
(2.13)  |Eal =|E(| = A, | Pe,g, llcEyy < I PrElccey = 1 Peellc-
Next using (2.13) and Chebyshev—V. A. Markov’s inequality for the interval E, and for
the polynomial P g,, we obtain
@14 lad < A/EDIPE O P llcce
< (/kD@/ATEQb/A — DI P elle < 1Akl Plic)-

Finally, we deduce from inequalities (2.9), (2.12), and (2.14) that (2.4) holds, and the
interval E = [b — A, b] is the only extremal set. |

Proof of Theorem 2.3. The proof is similar to that of Theorem 2.2 with the following
changes to yield. Note first that {x2}?_, is a Chebyshev system on (0, b). Next, Cheby-
shev’s theorem [11, p. 94] implies (2.5) for each interval £ = [a,a + A/2] < [0, b].
Then we take into account the relation P g (0) = O to prove property (c). Further,
we replace the set E, and the polynomial P; in the proof of Theorem 2.2 by the set
E; = [b, — 11/2, b,] and by the polynomial

Po) = A [GH/xH0? - P = 5D - 7 — 22,

i=l1
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respectively, where A is the leading coefficient of Py g,. Then P, € P, ; and |P,(0)| =
| P(0)|. Finally, it remains to prove that

(2.15) I Paliccesy < 1 PoEccEy-

Indeed, let y € E3,say y € [ax + t, bx + 7). Then x = y — 1, € E|, and putting
Tk = min(j), %), where j (i) is the index of an interval [a;, b;] which contains x;, we
obtain

Lo xy?r = xR O+ ) — (a + Tiw)
IP2(y)] = |A] : — = : s
Y ,13 x? .Un (xi + 5»)?
2 x| x 4 ma)® — ( + Ta)? <
<A : - — <A x2 — x2| = | Py, (x)].
! [[ e | |g| 1= 1P, (x)]
This yields (2.15). ]

Proof of Corollary 2.1. Without loss of generality, we may assume that g = 0. Then
applying Theorem 2.2 and Descartes’ rule of signs, we obtain

n n
> lalt* < Y 1A I Plice) = Tu(4b/A — DI Plice).-
k=0 k=0

Hence (2.6) follows. ]
Proof of Corollary 2.2. Notefirstthat|—ENE| > 2A—2b, and a polynomial P, (x) =

%(P(x) + P(—x)) satisfies the conditions: P,(0) = P(0) and P; is an even polynomial
from P,y 1, where N = [n/2]. Next, setting s = 2 — A/b and using Theorem 2.3, we

obtain
IP0)| < TN(——Z—I’E—-— - 1) 1P cEnE) < TN( 2 __ 1) I Pllcce
@Bb—-A—-b) 152
< (A +5)/A = sHVIPler < /2 Pllce.
This implies (2.7). [

3. Remez-Type Inequalities for Trigonometric and Exponential Polynomials

3.1. Remez-Type Inequalities

The first Remez-type inequality for exponential polynomials of the form Q(x) =
Y iocke™, cx € CL, 0 < k < n, and a measurable set E C (—x, ], |E| > 0,
was obtained by Stechkin and Ulyanov [49]:

@G.1) IQlcnm < (n+ Dsin " (EI/8m) | Qllc(w-

A similar result was proved independently by Ash and Welland [3]. Belov [5] established
some estimates like (3.1) for generalized polynomials Q(x) = ) ;_, cke'™*, A € R},
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0 < k = n, mingzm |Ax — An| > 0. A general inequality of first type for Q(x) =
ZZ _o Cke™”, ci, Wk € C!,0 < k < n, was obtained by Nazarov [44]: for a subinterval
I C(—n,wrlandaset E C I, |E| > 0, there exists an absolute constant A such that

(3.2 IQllcuy < exp (III Joax Re(uk)) (AIV/IED™ 1 Qe

In particular, for any Q € 7,, the following inequality of first type holds [44]:
(3.3) 1Qllcr.m) < (A/IED*IQllccey

where E C (—m, 7] and A < 32¢ < 87.
On the other hand, itis known [22], [37], [50, p. 90] that for a trigonormetric polynomial
0 € 7, and an interval E = [a, b] C (—m, ]:

(34 1Qllc(-rm < 5(tan™(|E|/8) + cot (IE|/8)) | Qlic(s).»
and equality in (3.4) holds if and only if

cos(x — (a + b)/2) — cos*((b — a)/4)) AcR!
sin?((b — a)/4) ’ )

Thus the best constant A, (] E|) in the inequality | Qllc(—x.») < AxllClicr), Q € T,
E C (—n, ], satisfies the relations

(3.3 Q) =AT, (

®7/|EN™ = An(E])
1
> L(tan™(|E|/8) + cot™ (E|/8)) ~ { 2B/EDT, e

exp(3n(27 — |E])), |E|— 2.

Erdélyi [22] established a Remez inequality of second type and extended it to the
generalized trigonometric polynomials. For Q € 7, and E € (—m, ], |E| = 37/2, his
result is

(3.6) 1@l (e < ™ @ EDV Ol ceky,

where A is an absolute constant. Borwein and Erdélyi [11, pp. 230-231] gave the estimate
A < 4, but their proof is incomplete; the correct version of the proof (with a larger upper
bound) will be contained in the second print of book [11] (the private communication
by T. Erdélyi).

Below we show that A < 17 in (3.3) and A < 2 in (3.6). These estimates are based
on inequalities like (3.4) for special classes of polynomials and sets.

Theorem 3.1. For a measurable set E C (—r,x], |E| = 37 /2, and a trigonometric
polynomial Q € T,:

3.7 1 Qlic(-r,zy < eFEV| Q| c(x).

Theorem 3.2. For a measurable set E € (—m, ], |E| > 0, and a trigonometric
polynomial Q € T,:

(3.8) 1QMler.m < AT/NED* 1 Qlic ().



Polynomial Inequalities on Measurable Sets and Their Applications 283

These theorems are based on the following results:

Theorem 3.3. For a measurable E C [—m, 7], |E| = A > 0, and an even trigono-
metric polynomial Q € T,:

(3.9 |Q©0)] < §(tan™(1/8) + cot” (W/8NI Qlic(s).-

Equality in (3.9) holds ifand only if E = [—m, —w +A/2)]U[r —A/2, ] and Q(x) =
AT, (—[cos x + cos?()/4)]/sin*(1/4)), where A € (0,27) and A € R!.

Theorem 3.4. For a measurable set E C [a,a+ ], [E| =i > 0,a € R, and a
trigonometric polynomial Q € T,:

(3.10) 1Q(a)| = Tanfcot( /4NN Qllcce)-

Equality in (3.10) holdsifand only if E = [a+m—X,a+n}and Q(x) = AT,(—[cos(x—
a + 1/2) + cos?(r/4))/sin®(A/4)), where ). € (0,2n),a € R!,and A € R}.

The following refinement of (3.1) and (3.2) for exponential polynomials of even degree
can be easily derived from (3.8).

Corollary 3.1. For a measurable set E C (—n, ], |E| > 0, the following statements
hold:

@) if Q(x) = Y ;__, axexp(ikx) is a trigonometric polynomial with complex coef-
ficients, then

(3.1 1Qllcrm < V2(7/IEN™|Qlice.

) if O(x) = Zi'l:o ay explikx) is an exponential polynomial, then (3.11) is valid.

Remark 3.1. Erdélyi [22] established the inequality | Q(0)] < To, (sin(A/2DH Cllccr)
which is equivalent to (3.9). We shall give the different proof of Theorem 3.3 which is
similar to that of Theorem 3.4.

Remark 3.2. We believe that the following sharp Remez-type inequality is true:

Conjecture 3.1. For a measurable set E C (—m, ]}, |E| > 0, and Q € T, inequal-
ity (3.4) isvalid. Equality in (3.4) holds ifand only if E = [a, b] and Q is polynomial (3.5).

Remark 3.3. Stechkin and Ulyanov [49] posed the problem: What is the precise order
of decreasing the best constant B, (] E|) in (3.1)? Conjecture 3.1 would imply that

C1 cot?™(|E|/8) < B.(IE|) < Crcot™(|E|/8).
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3.2. Proofs of the Theorems

First we prove Theorems 3.1 and 3.2.

Proof of Theorem 3.1. Without loss of generality, we may assume that |Q(0)| =
1 @ll¢(-x,m)- Next, applying an approach used in [22], we have that Q;(x) = %(Q(x) +
Q(—x)) is an even polynomial of degree n, and a set £y = E N —FE satisfies the
conditions: | Ey| > 2|E|—2m and || Q1 lice,) < | Qllc(g). Further setting T = 2w — | E|,
0 < t < /2, and using (3.9), we obtain

1Qlcrm = 1C1(0)] < cot” (IEil/3)Q1llceey

/2 sin(z/4)

2n
m) 12l

< cot™((m — 1)/ Qlicey = (1 +
vz \" .

(1 + m> 1Qllc < e ™1 Qlce.

This yields (3.7). [ ]

Proof of Theorem 3.2. Let a € (—m, ] satisfy the equality |Q(a)| = [ Qllc(—x.x)
and let E* be the 2m-periodic extension of E to RE, that is, Xg+ 18 2m-periodic on
R! and E* N (—n, 7] = E. Applying Theorem 3.4 to E; = E* N [a — m,a] and
E;, = E* N[a, a + 7}, and taking account of the elementary estimates

Ta,(coty) < (2coty)®™ <cot®(y/2), y e (0,7/2],
>

siny > 0.974y, y € [0, /8],

we obtain

G12)  NQlcerm = Q@) = min Ton(cot(|EI/ANN Lllccz)

Ton(cot(|E|/8N N Qll ey
cot™ (|E|/16) ]| Qliccey < (16.43/1ED*|| Qllck)-

IA 1A

Thus (3.8) follows from (3.12). |

To prove Theorems 3.3 and 3.4, we need several lemmas.
First we consider the following extremal problems: find

Cri(E) = Jun I1Qlic). i=12,

where E is a closed subset of [0, 7], |[E] > O; M, ={Q €T,: 00) =1, 0x) =
Q(—x),x €[0,n]};and M, » ={Q € 7, : Q(0) = 1}.
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Lemma 3.1. The following properties hold:
(a) for a measurable set E C [0, ] and an even polynomial Q € T,:

(3.13) 1Q0)] < (Cat(EN'IQllceey:
(b) for a measurable set E C [0, ]| and a poiynomial Q € T,:
(3.14) 1Q0)] < (Ca2(EN'NQllceey

(€) Cri(E)>0,i=1,2.

Proof. Equation (3.14) trivially holds if Q(0) = 0. If Q(0) # O, then Q;(x) =
Q(x)/Q(0) € M, ,. This yields C, 2(E) < ||Q1llcg)- Hence (3.14) follows. Similarly
we prove (3.13). Statement (c) is an immediate consequence of (3.13), (3.14), and (3.1),
though it can be proved independently by a compactness argument. u

Let K, = {(1 —cosx)cos kx};";", and let K, ; = {sin(x/2) cos(k + %), sin(x /2) sin
*k+ %)}Z;(l, be the systems of trigonometric polynomials.

Lemma3.2. Let N = N(i) = in,i = 1, 2. Then the following properties hold for
i=1,2:

(a) Kn,; is a Chebyshev system on (0, 7);

(b) the error of approximation of 1 by polynomials from span Ky ; in C(E) is

(3.15) C.i(E) = HES,‘,‘.‘,.fx,,,,. 1~ Hlicz;

(c) there exists the unique polynomial Q, g = Qng,i € My, such that

(3.16) Cni(E) = | On elic;

(d) a polynomial Q. g € M, ; satisfies (3.16) if and only if there exist N + 1 distinct
points y, € E,1 <k < N+ 1,suchthat0 < y; < -+ < yyy < m,
1Qn eVl = §QnellcE), 1 <k < N+ 1,and Qne(yk) = —Qne(Vis1)s
1<k <N;

(e) QOn.g has N zeros that lie in (0, 7).

Proof. It is easy to show that a polynomial from span Ky ; that has N distinct zeros
on (0, r) is identically zero. This proves statement (a) of the lemma. Next, note that
Q € M, ; if and only if Q(x) = 1 ~ H, where H € span Ky ;. Hence (3.15) follows.
Statements (c) and (d) follow from (a) and (b), Lemma 3.1(c), and the approximation
properties of Chebyshev systems [11, pp. 94, 98]. Finally, statement (e) of the lemma is
an immediate consequence of (d). ]

Lemma 3.3. If{c,d] € [0, n], then
(3.17) S0 Crie,d]) = (J(an™(A/8) +cot™ A/8)) ™",

(3.18) Jin, Cy5(le,d]) = (Tan(cot(/4))™".
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Minimum in (3.17) and (3.18) attains if and only if[c,d} =[x — A/2,n] and (¢, d] =
[r — A, ], respectively.

Proof. Applying the necessity of Lemma 3.2(d) fori = 1, E = [¢,d] C [0, ], and

2cosx —cosc —cosd 2 —cosc —cosd
Onicaix) =T, ( ) /Tn ( ) ,

cosc —cosd cosc — cosd

we obtain

. . 2 —cosc—cosd\\ !
(3.19)  min . Cui(lc,d]) =  min ) (Tn ( e — ))
= 2d_cngr;/ (((cot(h/8) tan((c + d)/4))"
+ (tan(1/8) cot((c + d)/4))")) ™"
= (§(tan™ (A/8) + cot® (1/8))) .

Thus (3.19) yields (3.17). Next, applying again the necessity of Lemma 3.2(d) fori = 2,
E =[c,d] € [0, 7], and

Qn,[c,d](x)
_T (cos(x —(c+d)/2) - cosz(l/Z)) /T (cos((c +d)/2) ~ cos?(L/2) )
- sin?(A/2) " sin?(A/2) ’
we have

, o 2(cos(1/2) — cos((c + d)/2)) -
(3:20) min Cp((c,d]) = min (Tn ( e + 1))
= (T,(2cos(r/2)/ sin®(A/4) + 1))™" = (Tau(cot(A/4)) .

Thus (3.20) yields (3.18). |

Proof of Theorem 3.4. Without loss of generality, we may assume thata = 0 and E
is a closed subset of [0, 7] of measure A, 0 < A < 7. Let @ € 7, be a trigonometric
polynomial. If E = [a, b] is a subinterval of [0, ], then (3.10) follows from (3.14) and
(3.18), and the equality in (3.10) holds if and only if E and Q are the extremal elements
defined in Theorem 3.4.

Suppose E is not a subinterval of {0, 7 ]. Then by statements (c) and (d) of Lemma 3.2
for i = 2, there exists the only polynomial Q, ¢ = Qg g 2 satisfying the alternating
property on E. Letting E; = {x € [0,7n]: |Qn e|(x) < |On.ellc(zy} We obtain, from
the sufficiency of Lemma 3.2(d) fori = 2, that Q, g, = Q, . If E; is a subinterval of
[0, ], then |E,| > |E| and || Qn £ llcg)) = I Qn.£llcz)- Thus

(3.21) 1QO)] < Tan(cot(A /A Qllc(E),

by (3.14) and (3.18).
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Suppose now that E, is not a subinterval of [0, 7]. Then the following properties of
E 1 hold:

@ Er=Ujlg.5,0<a<by < <a <b <m,r=2;

(b) there exist 2n simple zeros x; < x2 < --- < X2, Oof Op g, thatlie on Ey;

(c) there exist at least two subintervals of E that contain zeros of Q, k, .

Property (a) is evident, while (b) immediately follows from Lemma 3.2(e) fori = 2.

To prove property (c) we assume that x; € [g;,b;], 1 < i < n, forsome j, 1 <
Jj < r. Then |Qn kg (a;)| = Q@ k llcz,). Further, the condition Q, g (0) = 1 yields
On.g,(a;j) > O since if Q, g (a;) < O, then O, g, has 2n + 1 zeros on [0, m]. Next,
Q. £(a;) < 0. Indeed, if Q; . (a;) > O, then there exists xo € (a;, b;) such that
O, (x0) > Qn g, (a;) = || @n.E llcz)- Then

(3.22) On.,(x) > |On,e £ x € (0, q)).

Indeed, if Q;,El (aj) = 0, then Q, g, is strictly decreasing on [0, a;]. If Q,, £ (a;) <0,
then Q::. g, hasnomore than one zero on [0, a;). Hence (3.22) follows. Thus E,N[0, a;) =
@, by (3.22). Similarly we prove that Ey N (b;, 2n] = @, that is, E; = [a;, b;]. This
contradicts our assumption that E; is not an interval. Hence property (c) holds.

Now we construct a set E, and a polynomial Q) satisfying certain conditions. Let
Ey = U_\laj + 7, b + 5] = [b, — |Eil, by), where 1; = Y ;" (aks1 — be), 1 <
J <r—1r71 = 0. Next, let x; = x; + 1;, where j = j(i) is the index of an
interval [a;, b;] which contains x;, 1 < i < 2n. Note that x} € E; and x] > x;,
1 <i < 2n,by properties (a) and (b). Moreover, there is an integer i such that x} > x;, by
property (c). Let us put 0, (y) = Hfil(sin((x;* —¥)/2))/(sin(x}/2)). Then Q; € M,,»
and I_Lz;l |sin(x; /2)| < H,zil Isin(x;/2)|. Next, note that for each y € E; there is
x € Ej such that {sin((x] — y)/2)| < [sin((x; — x)/2)|, 1 < i < 2n. Hence taking
account of the representation Q, g, (x) = I—[,z_f_, (sin((x; —x)/2))/(sin(x; /2)), we obtain
1QillcEn < 1Qn.E licE) = 1| Qn,ellcr)- Thus

(3.23) {E2| = |E1| = A, Cn2(E2) < Cpa(E).
Then for any polynomial Q € 7, inequalities (3.14), (3.18), and (3.23) yield

(3.24) Q) < (Ca2ENIQllczsy < (Cr2(E2)" Qe
< Toa(cotM /MU QliccE)-

Finally, inequalities (3.21) and (3.24) show that (3.10) is valid for a = 0 and any
measurable set E C [0, 7], and equality holds if and only if E = [ — A, 7]. [

Proof of Theorem 3.3. The proof is similar to that of Theorem 3.4 with the following
changes to yield. Without loss of generality, we may assume that E is closed and sym-
metric about the origin. If A = 2z, then (3.9) trivially holds. So we assume 0 < A < 27r.
Note that we shall use Lemma 3.1(a), equality (3.17), and Lemmas 3.1(c) and 3.2, for
i = 1 instead of corresponding results for all polynomials. In particular, the extremal
even polynomial Q, g, = Q. g,,1 has n simple zeros x;, 1 <i < n, thatlieon E,.
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Next, we establish property (c) of E; that has a slightly different proof. Assume that
x; € laj,b;]1,1 <i < n,forsome j,1 < j < r.Then Qn g,(a;) = ||Qnk llcE, and

n.,(@j) < 0. Moreover, if @, g, (a;) = 0, then taking account of @, 5 (0) = 0, we
deduce that Q, p, is identically zero. This contradicts our assumption A < 2. Then
the relations Q;, 5, (a;) < 0 and @, p (0) = O imply that Q, g, is strictly decreasing
on (0, a;). Thus E N [0, a;) = @. Furthermore, assuming b; < 7 and using the similar
argument, we obtain | O £, (5;) = I @n., llcz) and sgn(Qy £, @, 5, (8)) > 0. Taking
account of Q;' E, (0) = 0, we deduce that |Q, g, | is strictly increasing on (b;, x]. Thus
E; N (bj, ] = @, that is, Ey = [a;, b;], which contradicts our assumption that E; is not
an interval. Hence property (c) holds.

Finally note that the polynomials Q, g, and Q; can be written in the following forms:

Qg (x) = l—[(cosx-—cosx,-)/(l——cosx,-), o:1y) = ]_[(cos y—cosx;")/(1—cos x]).
i=1 i=l1

This completes the proof of Theorem 3.3. ]

4. Poélya- and Remez-Type Inequalities for Multivariate Polynomials

4.1. Pélya- and Remez-Type Inequalities

A multidimensional generalization of Remez’s inequality was obtained by Brudnyi and
the author [15], {16]: for a convex body V C R™, a measurable set E C V, and a
polynomial P € Py, n:

14+ Bn(E/IV])
4.1) IPlicvy = T (m) I Pllce).,
where
“.2) Bm(t) == V1 —1t.

The classes of all extremal bodies V, sets E, and polynomials P for which the equality
in (4.1) holds, were found by the author [16]. A multidimensional generalization of (2.2)
and local Nikolskii-type inequalities in rearrangement-invariant spaces were obtained in
{31].

Taking account of the representation

- (1 +ﬂm(t)) _1 ((1 +ﬂz,..(t))" + (1 —ﬂzm(t))">
"\1—-Ba() 2 \\1-Bam(®) 1+ Bam (1) '
it is easy to show that (4.1) implies the following inequalities of first and second type,
respectively,

4.3) IPlcwvy < (CIIVI/IEDN Pl ccEy»
“4.4) IPlicvy < exp(Can(l — [EI/IVY*™) | Pllcy,
1-272" < |E|/IV| <1,
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where C; < 4m and C; < 4. It is easy to verify that (4.3) also holds for a bounded
domain V e R™ with C; < 4m|V|/{V|, where V is the convex hull of V. Note that
Nadirashvili {41] independently proved (4.3) in the case when V is a ball.

Kro6 and Schmidt [39] noticed that (4.4) holds for a bounded domain in R™ satisfying
the cone property, and refined (4.4) for a bounded domain V C R™ with C%-boundary,
replacing the exponent 1/2m with 1/(m + 1). Recently A. Brudnyi [13] obtained an
analogue of (4.3) for measurable subsets of an algebraic variety.

A multidimensional version of Pélya’s inequality was established in [15]: for a measur-
able subset E of aball V = {x € R™ : |x| < 1} and apolynomial P(x) = } 4 <p GaX":

(4.5) lag| < (CIVI/IEN*IPllcc), le} < m,

where C depends only on m and ja). It is easy to verify that (4.5) remains valid for every
convex body V.

In this section we obtain nontrivial analogues of (4.5) and (4.3) for the unit cube
in R™ and a polynomial from P, ,, (Theorem 4.1 and Corollary 4.1). Several multidi-
mensional Remez-type inequalities are also presented. In particular, we establish the
spherical versions of (1.2), (4.3), and (4.4) (Theorem 4.2 and Corollary 4.2) and prove
a multidimensional analogue of Corollary 2.2 (Theorem 4.3).

Theorem 4.1.  For the unit cube K™, the following statements hold:
(a) for a measurable set E < K™, |E| = ). > 0; and a polynomial P(x) =
ZZ.=1 -~~ZZ,,,=1 a,x* € Py
(4.6) lae] < (/A WD/ Plcy,

where C < 154™m?m;
(b) for Po(x) = (xy...xn)" € Py, and E; = {x € K™ : |Py(x)] £ t}, where
t € (0, 1] is a fixed number

"=V (e /N E D Pallcce,
(m — DYE D"

4.7) ap,..my = | Pallccxmy =

LetZ,(E)={Q€T, : | Qllcey < 1} andlet A, (v) =supjg)>. SUPger gy I Qllc(-n.m)s
where the first upper bound is taken over all measurable E C (—x, x] with |E|; = T,
0 < t < 2n.In other words, A, (7) is the least constant in the inequality || Qllc(—n.nr) <
A"Q“C(E) overall Q € 7, and |E}|; > t.

Theorem 4.2. For a measurable set E C S™, |Elpm-y = A > 0, m > 2, and a
polynomial P € Py m:
(4.8) IPllcsm = Anle™ (I Plice,
where
t/4
4.9) o) = 20m f cos™ % udu.
0

Here w; = 2 and wm = |8™ Yz = 20 ™ D2(D((m — 1)/2))"}, m > 3.
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Theorem 4.3. For a centrally symmetric (with respect to the origin) convex body V C
R™, m > 2; a measurable set E C V satisfying |E| = A, (1 —=272")|V| < A < |V|;
and a polynomial P € P, ,:

(4.10) IP0)| < exp(4n /1 = A/IVDIPlc-

Remark 4.1. The problem of finding the best constant and extremal sets and polyno-
mials in the inequality || Pll¢(v)y < C|| Pllc(g) is solved only when V is a bounded convex
cone [16]. Brudnyi and the author [15] conjectured that if V is-a ball, then an extremal

set E is convex.

The proofs of Theorems 4.1, 4.2, and 4.3 are based on the following idea [15], [16],
[30]: first we apply a univariate Pélya- or Remez-type inequality to linear subsets of E and
then make use of some estimates of linear measure of these subsets (Lemmas 4.1-4.3).

4.2. Geometric Lemmas

The proofs of the next two lemmas follow that of Lemma 3 in [15].
For a centrally symmetric body V C R™ we set

¥m(V,2) = sup essinf(|V NI|;/{ENI|),
ECV,|E|= !

where the essinf is taken over almost all lines / passing through the origin.

Lemmad.l. Forallr € (0,{V]]:
(4.11) Ym(Vo 1) = (1 = Ba(A/IVID7Y,
where B, is defined by (4.2).

Proof. Let us introduce in R”, m > 2, a coordinate system by

m—1 m—1
4.12) X1 =r1—[c050,~, Xj =rsin9j_|l_[cose,-, 2<j<m,

i=1 i=j
where r € R, 16;] < n/2,1 < i < m — 1, and the Jacobian is given by J; =
rm 1 [1i, cos'~1 6; [48, pp. 314-318].

Let |r| = F(@) = F(f,, ..., 6n-1) be the equation for the boundary of V. First we

consider the set E* = {(r,0) € V : B, (A/|V])F(0) < |r} < F(6)}. Then |E*| = A,
and for every line [ passing through the origin

4.13) IVNIL/IE* NIl =1 = BaA/IVID™.
Now we show thatforaset EC V, |E| > A:
4.14) essinf((V NIli/IENLH) = (1 —BaA/IVI).

Suppose there exists Eg S V such that | Eg|] > A and
(4.15) essirllf(IV N /IEeNih) > (1 — Bu(A/IV) ™
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Then from (4.13) and (4.15) we have that for almost every line ! through the origin
4.16) |Eo NIy < |E* N1y

Next, (4.16) implies that for almost every line | = 1(8) through the origin

v, /2
@.17) f r™tdr < 2/ r*ldr
Eord (vnlj; —|Eonity)/2
ol /2
< 2/ rmldr = |r|™=t dr.
vl —E*nily)/2 E*nl

Finally, integrating (4.17) with respect to 8, we conclude that |Ey| < |E*| which con-
tradicts our assumption |Eg| > A. Hence (4.14) holds. Then (4.13) and (4.14) yield
(4.11). ]

Next we prove a spherical analogue of Lemma 4.1. Given a point xg € S™ we set

Q) = Egs'»,lll}sﬁ,,._.zx ess sx:p |ENcly,

where the ess sup is taken over almost all great circles ¢ € S§™ passing through xp.
Lemma 4.2. Forall A € (0, |S"|m-1]):
(4.18) Fm@®) =¢~' (),

where @ is defined by (4.9).

Proof. Without loss of generality, we may assume that x; = (0,...,0, 1). Let us
introduce a coordinate system in R™, m > 2, by (4.12), where r > 0 and |6;| < 7/2,
1<i<m-—2,16,-1| <, with the Jacobian J, = J;. Let

E* = {x € S™: Oy € [—07'(W)/4, 07 W)/A U [—7, -7 + 07 (1) /4]
U [r — @ '(A)/4, 7]

be a spherical layer of height 2sin(¢~!(1)/2) that is symmetric about the plane
{x € R™ : x,, = 0}. Then |E*|,,—; = A and for almost every great circle ¢ passing
through xq:

(4.19) |E*Nch =@ ().

Next, we prove that for aset E C S™, |E|n—y = A:

(4.20) esssup|E Ncl; > o' (A).

Suppose there exists Eg € S™ such that |Ep|n-1 = A and

4.21) esssup |Eg Ncli < ¢ (V).
c
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Then we deduce from (4.19) and (4.21) that for almost every great circle through xg:
4.22) |[EoNcly < |E* Ncl;.
Next, we obtain from (4.22) that for almost every ¢ = ¢(6;, . .., 8,,_2) through x,:

1EoNcti /4
(4.23) / |cos™ 2 0p_1| dbn_y < 2 f |c0s™ 2 Gy | dOn—1
EoNe -

|EoNc} i /4
|E*Ne]1 /4
<2 f |cos™ 2 On—1| dBr-1
—lE*Ncli /4
= / |cos""2 Om—1 | dBp_,.
E*nc
Integrating now (4.23) withrespectto8,, ..., 6,1, we conclude that | Eg},—1 < |E*|m—1
which contradicts our assumption | Ep|,,—; > A. Hence (4.20) is valid. Then (4.19) and
(4.20) yield (4.18). |

To prove Theorem 4.1, we need a more sophisticated result. Let K* ={x e R : 0 <
xi<1,1<i<s;x;=0,5+1 <i < m)} be the s-dimensional unit cube in R™, and
let I, ; be aline in R™ passing through x € R™ and parallel to the sth coordinate axis.

Lemma 4.3. For a measurable set E C K™, |E|, > 0, there exist sets E; € K™,
0<s<m-—1andnumberst; € (0,11, 1 <s <m — 1, such that Eq = E and for each
x € Egqq:
(4.24) [Es Nl g1l = tsq1, 0<s<m-2.
Moreover, the following estimate holds:

|E|m
Amtl R . In —l(e/lElm) ’

4.25) [Em-th =

where A < T"m?¥".
To prove Lemma 4.3, we need some technical estimates.

Lemma4.4. Let f be a nonincreasing function on [0, 1] such that for all x € (0, 1],
f(x) = f(x—), and 0 < sup, (g1 f(x) < 1. Then there exists xo € (0, 1] such that

e

xo.f (x0)”

1
(4.26) / f(x)dx < xof(x0)In
(]

Proof. Note first that there is xo € (0, 1] such that max,qo,1) xf (x) = xp f (x0). Then
0 < x9f(x0) < 1 and a function

1, 0 < x < xof(x0),

fitx) = {xof(xo)/x, xof(r) <x < 1,

satisfies the inequality f(x) < fi(x) forall x € [0, 1]. Thus fj f(x)dx < [ fi(x)dx
= xg f (x0) In e/x¢ f (xp), and (4.26) follows. m
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Note that the equality in (4.26) holds if xo € [¢,1] and f(x) = 1 on [0, €] and
f{x) = €/x on (g, 1], where £ € (0, 1) is a fixed number.

Lemma 4.5. Ifnumbers a € (0, 1] and b € (0, 1] satisfy the inequality

4.27) a < bln(e/b),
then
(4.28) a/In(e/a) < cob,

where co = 1/ag = 2.2399.. ., and g = 0.4464 . . . is the only solution of the equation
1/a = exp(a/(1 - a)) fora € (0, 1).

Proof. Leta € (0,1 —e™!) be a number. If 0 < b < exp(—a/(1 — o)), then (4.27)
implies
In(e/a) > In(e/b) — In(In(e/b)) > a In(e/b).

Hence

(4.29) a/ln(e/a) < (1/a)b.

Further, if exp(—~a/(1 —a)) < b < 1, then

(4.30) a/ln(e/a) <1 < bexp(a/(1 — a)).

Inequalities (4.29) and (4.30) show that (4.27) implies (4.28) with

(4.31) cg = ae(oi'linfe_l)max(l/a, exp(a/(1 —a))) =2.2399....

Hence Lemma 4.5 follows. ]

Lemma 4.6. If{f,}M and {t,}", are sets of numbers from (0, 1] satisfying the recur-
rence inequality

(4.32) fs—1/In(e/fs_1) < cots fs, l<s<M,
then
4.33) fi = fo l1<s<M,

= Ah ... 510 (e/fo)’
where cq is defined by (4.31), and A; < T°s® are constants satisfying the recurrence
relation

(4.34) Ap =0, Ag =coA; (s +1n A;y), 1<s<M.

Proof. We shall prove (4.33) by induction. For s = 1, (4.33) follows from (4.32).
Assume that for some s, 1 < s < M — 1, (4.33) holds. Then we obtain from the
hypotheses of induction and (4.32):

fs > fO
Cols+1 ln(e/f:f) - CoAst ... Lyl In* (e/fO) ln(efo—lA:tl Y lns(e/fO))
fo _ Jo
CoAstr - - L1 I (e/fo)(s + 1+ A Aty .-t 0" (e/fo)

fia1 =

v
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Thus (4.33) holds for all 5, 1 < s < M. The estimate A; < (3¢g)’s%¥ < 7°s* can be
easily derived from (4.34) by induction. n

Proof of Lemma 4.3. 'We shall construct sets E; inductively. Let us put £y = E <
K™, Assumethatforsomes,0 < s < m—2, E;isconstructed. Then A4y = [l 51 NE;|y
is a measurable functionon K™~ such that0 < h,,; < 1.Next, the function f,,;(t) =
l{x € K™~ : hgy1(x) > t}|m—s—1 satisfies the conditions of Lemma 4.4. Hence there
exists £;+; € (0, 1] such that

1
(435) Ees = [ hendx= [ fua@ar

< tsp1 fsr1 () It ———r.
Lot fs+1(ts41)

Now we define E | by Egy1 = {x € K™ 7! : hyy1(x) > t,41}. Then (4.24) holds for
allx € E;yy and |Esy1lm~s—1 = fs+1{+1). This shows that there exist sets E;, € K™,
0<s <m-—1and numbers ¢, € (0,1],1 <5 < m — 1, satisfying (4.24). To prove
(4.25), we first note that (4.35) yields the recurrence inequality

e

(4.36) |Eslm—s < tst1lEss1lm—-s—11n , O0<s<m-2.

ts+1lEs+1 lm—s—l

Further using Lemma 4.5 fora = |Es|p—5—) and b = t,1|Es 41| m—s—1, We obtain from
(4.36) and (4.28):

4.37) |Eslm—s/In(e/1 Eslm—s) < cotsy1lEsstlm—s~1, 0<s=<m-2.
Now (4.25) follows from (4.37) and Lemma 4.6 for f; = |E;|n—s. |

4.3. Proofs of the Theorems

Proof of Theorem 4.1. First we prove statement (a). For a univariate polynomial P(x) =
ZZ:O arx* and a set E’ C [0, 1], (4.6) follows from (2.4). Indeed, we derive the estimate

(4.38) laxl < 22/1E"1))" | Pliccen. O0<k=x<n.
from (2.4) by the straightforward calculations.
Next, let P(x) = 3 n o+ * Yom _o@ax] ---x2n € Pt . Then

n
P(xl,...,x,,,) = folpdl(x21---1xm)y
a1=0

n
Pl!| (x27 .. 1xm) = zxzazpulaz(x31 A y-xm)s

d2=0
) n
4.39) Pa,...a,._l xXm) = Z at!x:m’
=0

where Py, o, (Xs41: -2 %m) €Pp 0 <s<m—1.



Polynomial Inequalities on Measurable Sets and Their Applications 295

Further, we prove the inequality

22| Pllcr)
(4.40) lag < R
=ttt Bt )
where E,,0 <s <m —1,and ¢, 1 <s < m, are numbers and sets from Lemma 4.3. It
suffices to show that

4.41) max |Pay.ay Fst1s - o X)) S 22% (1. 1) " | Pllcsy, 0<s<m-1.

Indeed, (4.40) follows from (4.41) for s = m — 1, (4.39), and (4.38) for E' = E,,_;.

We shall prove (4.41) by induction. It is trivial for s = 0. Assume that (4.41) holds
for some s, 0 < s < m — 2. Then using (4.38) for any line /, ., x € E;4, and taking
account of the hypothesis of induction and (4.24), we have

22" maxyeg, | Poy..a, (Xs+1s - - -5 Xm)|
max |Pu|...as+| (X542, . X)) < x 5 @ T " il
x€Es mineeg,,, lxs+1 N Esl}
< 22"C*D | Pl
T e t)”

Hence (4.41) is valid. Then (4.6) follows from (4.40) and (4.25).
Finally, statement (b) immediately follows from the relation

m m—1 -
In® t 1/n
xe K™ [[x <tV =11y ( ' )
S
s=1 s=0

Thus Theorem 4.1 is established. [ |

Proof of Theorem 4.2. Let £ C S™ be a measurable set, P € P, ,, a polynomial of
degree n or less, and xg = (0,...,0,1) € S™. Let us introduce a coordinate system
(4.12)inR™*, m > 2, wherer > 0and |6;| < 7n/2,1 <i <m—2,10,,-1]| < m. Then
for any great circle ¢ passing through xp, the restriction of P to ¢ is a trigonometric
polynomial of a single variable 8, of degree n or less. Hence

(4.42) [P(xo)| < Az(IE N el Plic-

Since A,(7) is a decreasing function, (4.42) and Lemma 4.2 imply

(4.43) |Px0)l < An(TmONIPlleE = An(@™ QNP

Finally, we note that (4.43) holds for each x¢ € S™. Thus (4.8) follows. ]

Proof of Theorem 4.3. By Lemma 4.1, for any € € (0, %) there exists a line I, in R™,
passing through the origin such that

(4.44) EQLLW/IVNLELh 21— Y1=X/[VI—¢/2= 3 —¢/2.

Further, the restriction of P to /. is a polynomial of a single variable. Using now Corol-
lary 2.2 and relations (4.44), we obtain

[PO)| <exp((4n Y1 —A/IVD/(1 — 2| Plic-
This yields (4.10). =
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4.4. Some Corollaries

The following is the Remez inequality of first type for polynomials from 7 ..

Corollary 4.1. For a measurable set E € K™, |E| = A > 0, and a polynomial
PeP,,:

(4.45) [Pllcimy < (C/AY* ™™= (e/M)| PlicEy.

where C < 154" m*™.

Proof. Note first that the class P, , is invariant with respect to all linear transforma-
tions. Hence Theorem 4.1 implies a more general inequality

(4.46) |P(p| < (CIOI/IED" "™ V(e|TTl/M) I PlcE)y, 1=<j=<2",

where C < 154™"m?™ Here, 1 = {x e R™ : a; < x; < b;, 1 <i < m)is arectangular
parallelepiped in R™ with vertices vj, 1 < j < 2™; E is a measurable subset of IT; and
PeP;,.

Next, for each x € K™ there exist N parallelepipeds I1;, 1 <i < N,1 < N < 2™,
such that x isa vertex ofall IT;, 1 <i < N, and

N N N
@47y K"=|Jm, K™ =)_IWl,  |E|=) |TNE|.
i=1 i=1 i=1
Applying (4.46) to each IT;, we obtain from (4.47):
|P@)| < min (CITL|/|TT; 0 EN" "™~V (e|I;|/|T1; N EDPllcqune

(CIK™|/1ED)" ™™D (el K™ |/IEDIPliccs-

IA

This establishes (4.45). ]

The following are the Remez-type inequalities of first and second types for polyno-
mials on the unit sphere.

Corollary 4.2. Let E C 5™, let |E| = A > 0 be a measurable set, and let P € Py p,
m > 2, be a polynomial. Then:

(@) forall ) € (0, |S"|m-1]:
(4.48) IPlicsmy < (1 Twm2™ ™22 /2) | Plicy;
() forall & > Ao = 20, f27"® cos™ 2 udu:

(4.49) IPlicism < exp(19n(1 = A/IS™ |m1) /™ D)|| Plic(g).
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Proof. Inequality (4.48) follows from Theorems 3.2 and 4.2 and the estimate

t/4
@) = 2(»,,,/ cos™ 2 udu
0

v

t/8
2w,,,f cos™ 2udu > 2""m"D1%, ¢ t € (0,2r].
0
To prove (4.49), we note first that if A > Aq, then ¢! (A) > 37/2. Further,

Qr—g ' (A)/4
Smlmet — A = 200m / Sin™ 1 du
4]

> 2—-m+ln—m+2(m . 1)_160,"(277-' — (p—l(k))m—l.

Taking account of the inequalities |$™|,_; < wn and (m — 1)//™=D < 31/3 we obtain
2m - (V) <2-3137(1 = A /|5™|m-1)/"=D . Now (4.49) follows from Theorems 3.1
and 4.3. m

Remark 4.2. Remez-type inequalities (4.8), (4.45), and (4.48) can be applied to the
problem of finding the limit distribution of a polynomial on the unit sphere or on the unit
cube of large dimension that is useful in statistics and statistical physics.

5. Applications

Applications of Pélya- and Remez-type inequalities in various areas of Analysis have
received much attention since the 1960s [2], [3], [91-[12], [14], [20]-[27], [31]-(33],
[35], (361, [39], [42]-{44], [49]. [51].

In this section we present several applications of P6lya- and Remez-type inequalities to
some problems of Analysis. In particular, we obtain some new Nikolskii-type inequalities
in rearrangement-invariant spaces for polynomials and entire functions of exponential
type with a convex spectrum (Theorems 5.1 and 5.2). Finally, we establish some estimates
of trigonometric integrals (Theorems 5.3 and 5.4).

5.1. Rearrangement-Invariant Spaces

Here, we define rearrangements of functions and rearrangement-invariant spaces. We
consider measurable functions f defined on the k-dimensional set 2 C R™, equipped
with the k-dimensional Lebesgue measure |Ex, 1 < k < m, for every measurable
E C 2. For example, k =m — 1if Q@ = $™,and k = m if Q = R™, or Q is a bounded
domain in R™.

For every f on the bounded set 2 C R™, we define its increasing rearrangement
f*:10,i25] = [0,00] by f*(t) := f*(¢,R) = supfr > 0 : E, < t}, where
Er=l{xeQ:1fx)] <t}

Similarly, for every function f on Q € R™ we define its decreasing rearrangement
fiby fu@®) :=inf{t > 0: I, <t},where I; :={{x € Q: [ f(x)| > T}k-

We say that a linear real space F(2) of k-measurable functions defined on 2 € R™
is a rearrangement-invariant space (RIS) if there is a nonnegative functional || - {|r()
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on F(2) with the properties:

@) I fllre = 0if and only if f = 0;
(1) Hefllre = lelll fllr) for a scalar c;
(iii) if g € F(Q) and fu(f) < g.(¢) for all + € [0, |Qy), then f € F(Q) and
I fllrey < lgllre-

Note that if §2 is the bounded set, the property (iii) is equivalent to that with the condition
J«(#) < g.(t) replaced by f*(t) < g*(z).

The fundamental function of F(2) is defined by ¥¢(¢) := || xgll r(s), Where E C ,
|El =1,0 <t < |Ql.

Let 2 be a bounded set and w : 2 — [0, |2|,] a measure-preserving transformation
which is one-to-one and onto. Then every RIS F(£2) generates the RIS F(0, |2[¢) =
{h = f(w) : f € F()} with "h"F(O.IQIk) = |th 0o @™ p(g) and Y5 = Yr. Itis clear
that f* € F(0, |Q2i) for every f € F(2) and

5.1 I lr = 1" F .0

If F(R) is a normed RIS (NRIS), that is, || - || r(q) satisfies the triangle inequality, then
it has the following properties [38]:

(a) If §r is the least concave majorant of Yz, then %ll}p(t) < Yr(t) < ¥r () for all
t>0.

(b) Let F!(S2) be the associated space of all measurable functions g on  with the
finite norm Jigllrq = SUD| £ reay <1 fsz f(x)g(x)dx. Then F!(Q) is the NRIS
with the fundamental function Y¥rp1 = t /¢ (¢). In particular,

= I flirelglr . fEeFQ), geF'(.

52) ) fﬂ FOg(x) dx

It easy to see that spaces L,(£2), 0 < p < 1, are RISs, while C(R2), L,(Q2),1 < p <
00, the Orlicz, Lorentz, and Marcinkiewicz spaces, are NRISs (see [19], {38]).

5.2. Nikolskii-Type Inequalities for Multivariate Polynomials

Daugavet [17], [18] obtained an algebraic analogue of the Nikolskii inequality (see {50,
p- 235]) for multivariate polynomials, by adapting the bridge method of Nikolskii:

(5.3) IPlL,@ < Cn°@|P|lL @), l<p=<g=oo

where 2 is a bounded domain in R™, P € P, ,», and 0(2) = 2m(1/p — 1/q) if Q
satisfies the cone properties, and o(2) = (m + 1)(1/p — 1/¢) if Q has the smooth
boundary. In the one-dimensional case (5.3) was established by Lebed, Potapov, and
Timan (see [50, p. 236]).

The first results connecting Remez- and Nikolskii-type inequalities were given in [29],
[31]. In particular, estimate (5.3) for a convex 2 and 0 < p < g < 00, was obtained in
[29], [31] as an easy corollary of (4.1). Moreover, (4.1) implies a more general inequality
[29], [31}:

8
. P < P ,
4 HPlicevy = wF(IVlm(n+l)"2’”)" trevy
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where V is a convex body in R™ and F (V) is an RIS with the fundamental function ¥r.
It is easy to verify that (5.4) remains valid for a bounded domain V C R™ satisfying the
cone condition. Note also that Kro6 and Schmidt [39] independently proved (5.3) for
smooth domains, by using a Remez-type inequality.

Below we consider two versions of (5.3) and (5.4) with no “boundary effect,” unlike
these inequalities.

Theorem 5.1.
(a) If n is large enough, then for any RIS F(S™) and a polynomial P € Py m:

19

IPllcem <
€6 = Yr(18™ | inom)

(5.5) NPl Fsm)-

(b) For a centrally symmetric (with respect to the origin) body V C R™, any RIS
F(V), and a polynomial P € Pypm,n > 1:

(5.6) | PllFvy-

(4
PO _—
IPON = Vi@

Proof. We first prove (5.6). Given ¢t € [1 — 272™|V|, |V|], we consider a set
E,={xeV:|P(x)<P@®)}

It is easy to see that |E;| = ¢ and || Pllc(g,y = P*(t). Now applying (4.10) to P and
E = E,, we obtain the estimate

5.7 P*(t) = exp(—4n /1 — t /IV])| P(0)|.
Next, setting a, = 1 — (4n)™™ and using (5.1) and (5.7), we have

"P"F(V) = "P*"ﬁ(koD = "P*"F-'(anIVI,IVI) 2 P*(an|V|)1/fF(IV|(4n)_m)
> e POIYF(VIEn™).

v

This yields (5.6). Inequality (5.5) can be established similarly, if we apply (4.49) instead
of (4.10). n

Remark 5.1. Inequality (5.6) plays an important role in the limit theorems of approx-
imation theory [35], [36]. Another application of (5.6) to entire functions of exponential
type is presented below.

5.3. A Nikolskii-Type Inequality for Entire Functions of Exponential Type

Let V be a centrally symmetric (with respect to the origin) body in R™, and let V* :=
{y e R™ :sup, .y | > /o, x:yil <1} be apolar of V. We say that an entire function g
has exponential type oV, o > 0, if for every £ > O there exists a constant A, satisfying
the inequality |g(z)| < Acexp((0 + €) sup,oy | D 1oy Xizi|) for all z € C™. We denote
by B,v, o > 0, the class of all entire functions of exponential type o' V.
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An extension of the Nikolskii inequality (see [50, p. 235]) to an NRIS was given in
[28], [29]. In particular, for g € B, o= N F(R™), the following inequality is valid:
C
5.8 y < — my,
(5.3 lglicom) Ir /o gl Farem

where Q™ := {x € R™ : |x;| < 1,1 < i < m} is the cube, and C depends only on m.
A different proof of (5.8) was given by Berkolaiko and Ovchinnikov [6]. On the other
hand, Nessel and Wilmes [45] (see also Aliev [1]) obtained the Nikolskii-type inequality
for g € By N L,(R™):
(59 lgl,®s < (s/Qm)™ V) P79l gll L, ey, l<p=<g=o,
where s := inf(k € Z! : k > p/2}.

The following theorem is a combined version of inequalities (5.8) and (5.9).

Theorem 5.2. If F(R™) is an NRIS, then for g € B,y N F(R™), o > 0:

(5.10) Hgll F ),

lellewn = Veint@or™

where C < e is an absolute constant.
To prove the theorem we need two lemmas.

Lemma 5.1. Let F(R™) bean NRIS. If g € B,y N F(R™), then g € B,y N C(R™).

Proof. We first show that for every ¢ > O the function h.(x) = (sine|x|/e|x[)™+?
belongs to any NRIS F(R™). Indeed, for the cubes OF := {x € R™ : |x; — k;| < %,
1<i<mhk=1(y,... kn) €Z™, wehave

G lhellrgm < Z kel Fiopy < C¥r(1) (1 + Z Ikl‘m—z) < 00.

keZ" (k]>0

Next, for a fixed x € R™ the function g(y)h(x — y) belongs to B, o=, where o)
depends only on V. Hence using the Nikolskii inequality (see [S0, p. 235]) and taking
account of (5.2) and (5.11), we obtain that for all x € R™, y € R™:

lg(Mh(x —y) < C/l; lg@)hi(x — w)|du < Cligllrem bl /1@y = C1.

Finally choosing y = x, we conclude that g € C(R™). |
Lemma 5.2. Let F(R™) be an NRIS. Then for every g € B,y N F(R™) there exists
a sequence of polynomials P, € Ppm,n = 1,2, ..., such that the following relations
hold:
(5.12) Jlim |lg — Pullcia,/oyvey =0,
(5.13) lim |lg — PuliF(@,/o)vy =0,

n-—=>0o

where a, = n — \/n.
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Proof. Lemma 5.1 shows that g € C(R™). Let P, € P, , satisfy the condition
Ig — Pallcanjoyve) = ng{n g — Pllca,/orveys n=12,....
Next, we shail use the following estimate proved in {35]:

(5.149) g — Pullc(@/oyvy < Cin? exp(—CanP)ligllcammy,

where C|, C;, y and 8 > 0 are constants that depend only on m. Then (5.12) follows
from (5.14). Further, taking account of property (a) of the NRIS, we obtain from (5.14):

nl_lf{.lo g — PallFa,joyvey < nll>n<;lo Yr((@n/0)" IV n)llg — Pellcia,/oyv = O-

Hence (5.13) follows. |

Proof of Theorem 5.2. Let P,,n = 1,2,..., be the sequence of polynomials from
Lemma 5.2. Then using Theorem 5.1(b) and Lemma 5.2, we obtain

(5.15)
g < li’ﬂgplg(O)— Pn(O)l+li,I,'r_1)S£p Ilfp((an/(4:G))"'|V*lm) P ll F(an /02 V)
S Sty IR + s B g — Pallranov
e
= Wﬂg"ﬂkﬂ-
Lemma 5.1 and (5.15) yield (5.10). n

Remark 5.2. The following example shows that Theorem 5.2 cannot be essentially
improved. Let go(x) = ( f(d v cos(3T, xjyi)d y)? be the function from B,y NL; (R™).
Then go belongs to any NRIS F(R™), and

”&)“F(R"‘) < Cm)Yr(V*do) ™ ligollcwrm-

5.4. Upper Estimates of Trigonometric Integrals

Upper estimates of trigonometric integrals
Inp = / exp(2rniP(x))dx,

where P is a polynomial in m variables and K™ = [0, 1]™, play an important role in
some areas of Number Theory, Analysis, Probability, and Mathematical Statistics. In
1980 Vinogradov [51] came up with the idea of an estimate of I, p which is based on a
Pélya-type inequality. Arkhipov, Karatsuba, and Chubarikov [2] developed this approach
and established the following result: for P(x) = ZLO arxt, n > 2:

-1/n
(5.16) \I;.p| < min (1,32(max Iak|> )
I<k<n

Applying the same approach and using Corollary 2.1, it is possible to obtain a refine-
ment of (5.16).
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Theorem 5.3. For P(x) =) ;_oax*, n > 2:

n —1/n
(.17) |I,p| < min (1, 20 (Zklakl) ) :

k=1
Proof. For a fixed number ¢ > O and a set E; = {x € [0, 1] : | P'(x)| < t}, we have

+ — I* +I**.

(5.18) |hpl = |/ exp(2riP(x))dx / exp(2riP(x))dx
E, [0,1)-E,

Next, applying Corollary 2.1 to the polynomial P’, to the interval [a, b} = [0, 1], and to
the set E = E,, we obtain

D klarl < Tha(4/1E| — DIP ey < B/IEN™ .
k=1

This shows that
n 1/(n=1)
(5.19) I"<|E|<8 (t/Zkiakn) :
k=1
The inequality
(5.20) ™ <V2(n— 1)/t

was proved in [2, p. 15]. Thus (5.18), (5.19), and (5.20) yield

n 1/(n—1)
min (l,ing (8 (t/Zklakl) +2(n — 1)/t))
1> =1
n -1/n
< min (1, 20 (Z k[ak|> ) .
k=1

Hence (5.17). n

1, pl

1A

Using (5.17) and induction in m, the authors of [2] obtained the following multidi-
mensional version of (5.17):

-1/n
(521)  lmpl < min (1, 32 (f".a’é laal) 1! (1“*‘6‘ laal + 2)) :

where a,, || > 0, are the coefficients of P € P;, . Below we establish some new
estimates of I, p.
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Theorem 5.4. Let P be a polynomial in m variables, m > 1:

(@ IfP(x) = Zlalsn Ay x® € Pu.m, then forn > 2:

—1/n
(5.22) {Im,p| < min (l, C ( max Iaa[) ) ,

1<|a|<n

where C depends only onm and n.
®) IfP(x) = Z;|=0 ... Z:,.=o ayx* € P, thenforn > 2:

—1/()
(5.23) [l p| < min (1, 20 (max laa|> In™"! (max laq| + 2)) .
| >0 la>0

To prove the theorem we need a multidimensional generalization of (5.20).

Lemma 5.3. For a polynomial P € Ppm,n > 2,andaset E, j = {x € K™ : [dP(x)/
axjl <t},1 < j<m,t>0,wehave

(5.24) <2(n— 1)/t

/ exp(2mi P(x))dx
m_E,

Proof. Let P(x) = P:«(x;) be a polynomial of a single variable x; and let E, ,« =
{xj € [0,1] : |d P~ (x;)/dx;]| < t}, where x* = (x1, ..., Xj—1, Xj4+1,-.-, Xm) iS @ fixed
point of K™~!, 1 < j < m. Then applying (5.20) to P,., we obtain

</

< V2(n— 1)/t

/ exp(mi P(x))x / exp(2mi P (x;)) dxj| dx*
Km—E,; 0,11~ E; o+

Thus (5.24). [ |

Proof of Theorem 5.4. We firstprove statement (a). Leta, = ag,,, .. qo,,) be acoefficient
of P € P, such that la,| > 0, la} > 0, and @; > Ofor some j, 1 < j < m. Then for
every t > 0 we have

(525 i-’m,plsf exp(2ri P(x))dx|+
E,

J

/ expRriP(x))dx|=I"+1*,
K”’—E,,i

where E, ; is defined in Lemma 5.3. Next, by Lemma 5.3:
(5.26) I* <v2(n = 1)/t.

Further applying Pdlya-type inequality (4.5) to dP(x)/3x; € Ppoymandto V = K7,
we obtain

I* < lEt,j| < C(t/laal)l/(n—l).
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Together with (5.25) and (5.26), this implies
|7, p| < min (1, inf(+/2(n — 1)/ + C(t/laal)”"'"’)) < min(1, Cla,|™"/).

This yields (5.22). The proof of (5.23) is similar to that of (5.21) if we use inequality (5.17)
instead of (5.16). [

Remark 5.3. Estimate (5.22) immediately implies that the special integral of Tarry’s

problem [2]:
o=
RN-1

converges if 2L > n(N — 1). Here @ = (ay)o<ja|<m 1S the vector of all coefficients of

P € Ppmbutag,. 0, and N =dim?P,, = (n +m). Using a more sophisticated
m

2L
da

/ exp(2mi P{(x))dx
Km

approach, the authors of [2] obtained that  converges if 2L > (m + 1) (n —:—n;)
m
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