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Polynomial Inequalities on Measurable Sets
and Their Applications

M. I. Ganzburg

Abstract. We study Pblya- and Remez-type inequalities for univariate and multivari-
ate polynomials and discuss their applications to Nikolskii-type inequalities and upper
estimates of trigonometric integrals.

1. Introduction

Polynomial inequalities on measurable sets, that is, Po1ya- and Remez-type inequalities,
play an important role in many areas of Analysis. In the 1920s-1930s, Polya and Remez
initiated the study of polynomial inequalities on measurable sets in R l by proving the
following results:

Theorem 1.1 (Po1ya [7], [46], [50]). For a measurable set E C Rl, 0 < IEl < oo,
and a real polynomial P (x) = Ek=o akxk :

(1.1)
	

Ianl < 1 (4/IEI)" sup Ip(x)I.
xEE

Equality in (1.1) holds if and only if E is an interval [a, a + A] and P(x) _
AT„(2(x — a)/A — 1), where a E R 1 , A E R 1 , and A > 0. Here and in the sequel

Tn(x) = I ((x -}- x2 — 1)" + (x 	 x2 — 1)")

is the Chebyshev polynomial of degree n.

Theorem 1.2 (Remez [11], [26], [40], [41], [47]). For a measurable set E C [a, b],
I El > 0, and a real polynomial P of degree n:

(1.2)	 xmax I P(x)I < Tn (2(b — a)/IEI — 1) sup IP(x)l.
xEE

Equality in (1.2) holds if and only if E = [a, a +).] and P(x) = AT„(2(x — a)/A. — 1)

Date received: November 17, 1999. Date accepted: January 12, 2000. Communicated by Peter Borwein. On
line publication: October 11, 2000.
AMS classification: 41A17, 26D05, 26D15.
Key words and phrases: Pdlya-, Remez-, and Nikolskii-type inequalities, Trigonometric integrals.

275



276	 M. I. Ganzburg

or E = [b — A, b] and P(x) = AT„(2(b — x)/A — 1), where A E R I and 0 < A <
b — a.

In the special case when E is an interval, inequalities (1.1) and (1.2) were obtained
by Chebyshev [50, pp. 67-68]. These results, their generalizations, and applications
in Analysis have received much attention since the 1970s [2]—[5], [8]—[16], [20]—[27],
[29]—[33], [35], [36], [39]—[44], [49], [51].

In this paper, we establish new Polya- and Remez-type inequalities for univariate and
multivariate polynomials and apply them to some problems of Analysis.

The paper is organized as follows: Sections 2 and 3 contain inequalities on measur-
able sets for algebraic and trigonometric polynomials of a single variable. In particular,
the main result of Section 2 is a combined version of Theorems 1.1 and 1.2. We also
present a new Remez-type inequality for even polynomials. In Section 3, we obtain
upper estimates of the constants in Remez-type inequalities for trigonometric and ex-
ponential polynomials. Note that the proofs of the main results in Sections 2 and 3 are
based on the shift method developed in [7], [15], [22], [46]. In Section 4, we establish
new Pblya- and Remez-type inequalities for multivariate polynomials. In Section 5, we
discuss applications to Nikolskii-type inequalities for polynomials and entire functions
of exponential type in rearrangement-invariant spaces. We also apply the Remez-type
inequalities, established in Sections 2 and 4, to upper estimates of some trigonometric
integrals.

1.1. Notation and Definitions

We use the following notation.
Let R' be the m-dimensional Euclidean space; C"` := R' + iR'° the m -dimensional

complex space; Z' the set of all integral lattice points in Rm; S°' := {x E R' : Ix I = 1)
the unit (m — 1)-dimensional sphere in R"'; K'" := {x ER'" :0 < x ; < 1, 1 < i < m)
the unit cube in R'"; I E I = I Elk, the k-dimensional Lebesgue measure of a k-measurable
set E E Rn, 1 < k < m; and Xs the characteristic function of E c_ R.

Fora multi-index a = (a l , ... , am ) E Zm, a, > 0, 1 < i < m, we set la I : _ ^'" a,,
x, := xr 	 x, a' := (a/ax l )^^ ...

Let ^n m be the class of all algebraic polynomials P(x) _	 ... ^^^_0 a,,x°
with real coefficients; ?^,,,m the subset of P of all algebraic polynomials P (x) =

aIs„ aax°` of degree n; and T the class of all trigonometric polynomials of a single
variable of degree n with real coefficients.

Further, let C(Q) be the real space of all real-valued continuous functions f on
cZ c Rm with the finite norm IIfIIc(a) := supxEQ If(x)I, and let Lp (S2), 0 < p <
oo, be the space of all measurable functions f on 12 c Rm such that II f II Lost)
exp(IS2Im' f a In If (x)I dx) <, IIf IIL,(0) := (fn I.f (x)IP dx)"p < oo if 0 <p <
oo, and L2) := C(0).

Throughout the paper C, C1, C2, ... denote positive constants independent of n, a,
A, x, y, I E I , b — a, I V I , P, Q, g, F. The same symbol does not necessarily denote the
same constant in different occurrences.

We shall often refer to the Remez inequalities II P 11 C(n) Ch (I Elk)  II P II c(E) as being
the inequalities of first or second type, while the order of decreasing h(I Elk) is sharp for
IElk —+ 0 or IEIk -- I 2 Ik, respectively.
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2. Po1ya- and Remez-Type Inequalities for Univariate Polynomials

2.1. Polya- and Remez-Type Inequalities

Inequalities (1.1) and (1.2) have been generalized in different directions in [2], [4], [7],
[11], [21], [22], [23], [29], [30], [31]. In particular, Bernstein [7, p. 49] extended (2.1)
to functions f satisfying the condition infxC[a,b] I f(s) (x) I > 0:

(2.1) inf If (" ) (x)I < in! (4/IEII) n IIfIIC(E)•
xE[a,bJ

Bachtin [4] independently proved (2.1) using a different method which is close to that
used in [46]. Some Po1ya-type inequalities, including a weaker form of (2.1), and their
applications in Number Theory were obtained by Arkhipov, Karatsuba, and Chubarikov
[2, pp. 12-26).

Theorem 1.2 had been little-known until the 1970s when it appeared in [26], and
its multidimensional generalizations have been established in [15], [29], [31]. This is
the reason why the theorem was proved independently by Dudley and Randol [20] and
Brudnyi and the author [15]. The various proofs of Theorem 1.2 were given in [8], [11],
[15], [20], [21], [26], [40], [41]. Apparently, the shortest proof was found by Remez [47]
(see also Bojanov [8]).

The author [29], [30], [31] noticed that (1.2) implies a more general inequality

(2.2)	 IIPIIC(E2 )	 T.(2 IE2I /IEjI — 1 )IIPIIc(E,),	 E1 C E2,	 P E

and established some local versions of Nikolskii's inequality, based on (2.2).
In the late 1980s—early 1990s, Erdelyi [11], [21], [22], [23] has proved Remez's

inequality for the generalized polynomials of the form f (x) = C fl, Ix — zi I al , ai E

R 1 , Z EC,1 <i <n.
In this section we prove Theorems 2.1 and 2.2 which are combined versions of (1.1)

and (1.2). As simple corollaries of these results, we obtain P61ya's and Remez's inequal-
ities. A version of Remez's inequality for even polynomials (Theorem 2.3) and some
corollaries are also presented.

Theorem 2.1. For a measurable set E C [a, b], I El > 0, and a polynomial P E P,,,1:

(2.3) max(IP (k) (a), IP (k) (b)I)
< (2/I EI)k T,(k) (2 (b — a)II EI — 1) II PIlc(E), k = 0, 1, ... , n.

Equality in (2.3) holds if and only if E = [a, a +).] and P(x) = AT,, (2(x —a)/X. —1) or
E = [b—A., b] and P(x) = AT„(2(b—x)/A-1), where A E (0, b—a], k+b—a—,l >0,
andA ER'.

It is easy to show by a linear substitution that Theorem 2.1 is equivalent to the following
generalized Polya inequality:

Theorem 2.2. For a measurable set E c [0, b], I El = A > 0, b > 0, and a polynomialP (x) = Fk-o akxk •	 -

(2.4)	 Iakl	 IAkIIIPIIC(E),
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where Ak, 0 < k < n, are the coefficients of the polynomial Tn (2(b - x)/,l - 1) =
Fk-0 Akxk . Equality in (2.4) holds if and only if E = [b - k, b] and P (x) =
ATn (2(b - x) /a. - 1), where .l E (0, b], k + b - ), > 0, and A E R'.

Theorem 1.1 immediately follows from Theorem 2.2 for k = n, while Remez's
inequality (1.2) is a consequence of (2.3) fork = 0, since for every x E [a, b]:

IP(x)I < min(Tn (2(x - a)/IE fl [a, xJl - 1), Tn (2(b - x)IIE (1 [x, b]I - 1 ))IIPIIc(E)
< Tn (2(b - a)/IE I - 1 )IIPIIC(E)•

The following theorem is an analogue of Theorem 2.2 for even polynomials and k = 0.

Theorem 2.3. For a measurable set E c [0, b], I El = A/2 > 0, and an even polyno-
mial P E PZn , 1 :

2

(2.5)	 IP(0)I c T. G(4b A) - 1) IIPIIC(E).

Equality in (2.5) holds if and only if E = [b - A/2, b] and

	

P(x)=AT,, 2x2-b2-(b- l 	 ERl.
bA - A2/4 	J

A new version of the Po1ya inequality and a Remez inequality of second type are
presented below.

Corollary 2.1. For a measurable set E C [a, b], I El = A > 0, and a polynomialn 	k 
P(X) = k=0 akX :

n

(2.6)	 E Iakl(b - a)k < Tn (4(b - a)/A - 1 )I1Pllc(E).
k=0

Equality in (2.6) holds if and only if E and P are the extremal elements defined in
Theorem 2.1.

Corollary 2.2. If r E [0, 1 ), then fora measurable set E C [-b, b], satisfying I E I =
(2 - £)b < A < 2b, and a polynomial P E

(2.7)	 IP(0)I < ea" (11-ZE) IIPIIC(E)•

Remark 2.1. An estimate IP(0)I < exp(An(1 - A/2b))II PII C(E), where A is an abso-
lute constant, follows from a poinwise Remez inequality of second type established by
Erdelyi [22]. Inequality (2.7) shows that A < 4 for s = 0.

Remark 2.2. Brudnyi [14] announced that for P E Pn ,I and E c [a, b], IEI > 0:

IIP (k) IIC(a,b)	 (4/IEI -2/(b-a))kT(k)(2(b-a) /IEI - 1)IIPIIC(E)•
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Taking account of (2.3), there is very good reason to believe that the following
V. A. Markov—Remez inequality is valid:

Conjecture 2.1. Fora measurable E C [a, b] and a polynomial P E Pn , l :

(2.8)	 IIP(k)Ilc(a.n)	 (2/IEI)k n(k) (2(b— a)IIEI — 1 )IIPIIc(E)•

Equality in (2.8) holds if and only if E and P are the extremal elements from Theorem 2.1.

Note that there is no a simple proof of (2.8) even for E = [a, b].

2.2. Proofs of the Theorems and Corollaries

Proof of Theorem 2.2. Let E be a subset of [a, b], I El = A > 0, and let P (x) =

Ek-0 akxk be a polynomial. Without loss of generality, we may assume that E is a
closed set, and ak ,0 0 for a fixed k, 0 < k < n. If A = b, then (2.4) was proved by V. A.
Markov [11, p. 254]. So we assume 0 < Al < b.

Let E = [b1 — A, b1] be a subinterval of [0, b]. If bi — A > 0, then using Chebyshev's
inequality [50, p. 68], we obtain

(2.9)	 lakl < ( 1 /k!)I (dk /dx k )(Tn((2x — 2b1 +A)/A))Ix ,tllPIIC(E)
< (1/k!)(2/A)kTnk)(2b1A— 1 )IIPIIC(E) = IAkIIIPIIC(E)•

If b i —), = 0, then V. A. Markov's inequality [11, p. 254] shows that (2.9) remains valid.
The equality in (2.9) holds if and only if E = [b — A, b] and P = AT,,(2(b — x)/X — 1).

Now, suppose that E is not a subinterval of [0, b]. It is known [11, p. 103] that
{1, x, ... , x"} is a Descartes system on (0, b). Thus using the necessity of Chebyshev-
Bernstein's theorem [11, p. 94], we obtain that for a fixed k, 0 < k < n, there exist
the only polynomial Pk, E E Pni with the kth cofficient ak and a set of points {uj ),+i ,
uj E E, 1 < j < n + 1, ut <u2 < ... < un+l, satisfying the relations

n	 E}
(2.10)	 IIPk.EIIC(E) = inf max akXk —	

CiXk1c;,ik xEE
i-0,i#k

IPk,E(uj)I = IIPk,EIIC(E), 	 I < j <n+1,

Pk,E(uj) = —Pk,E(uj+l),	 I <j < n.

Let us put El :_ {x E [a, b] : IPk,E(x)I	 IIPk,EIIC(E)}• Then

(2.11)	 E c E i ,	 IEI	 IEl1,	 IIPk,EIIC(E) = IIPk,EIIC(E,)•

Relations (2.11) and the sufficiency of Chebyshev—Bernstein's theorem [11, p. 94] yield
Pk,E, = Pk,E• If El is a subinterval of [a,b], then IE11 > IEI and IIPk,EIIC(E) =
11Pk,E, Ilc(E,)• Hence

(2.12)	 lad	 (l /k!)I Pk,E, (0)III Pk,EII C(E)

< ( 1 /k!)(2/I EII)
k T (k)

(2b/IE1I — 1)IIPIIc(E) < IAkIIIPIlc(E)
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If El is not a subinterval of [0, b], then the following properties of E l hold:

(a) there exists a family of intervals 4) = {[aa , bj ]}5_ 1 , 2 < r < n, such that E l =
Uj_1[a^,by],0<a1 <bI <a2 <b2 <... <a,. <br;

(b) there exist n simple zeros x1, x2 , ... ,x, of Pk,E, that lie in E1;
(c) there exist at least two intervals from 4) that contain zeros of Pk,E.

Property (b) follows from (2.10) and the definition of E l , while property (a) is evident.
To prove property (c) we assume that for some j, 1 < j < r, all x; E [as , b, ], 1 <t < n.
If a^ > 0, then I Pk, E, (ai) I = II Pk, E, II C(E,) • Without loss of generality, we may assume
that Pk,E, (as ) > 0. Then the inequality Pk E , (as) > 0 is impossible since, in this case,
either Pk,E, or Pk E, has a zero on (—oo, a^]. Thus Pk,E, is decreasing on (—oo, a^], and
(—oo, a^) fl El = 0 for a^ > 0. Similarly we prove that (b1, oo) fl EI = 0 for b^ < b.
Hence EI = [ai, bb ], and this contradicts our assumption that E l is not a subinterval of
[0, b]. Property (c) follows.

Now we construct a set E2 and a polynomial P* satisfying certain conditions. Let
us put E2 := UU_t[ai + tj, bi + ij] _ [br — IEI I, brl, where Tj = Ek—j(ak+I — bk),
1 <f <r—  1; rr = 0. Next, let x7 = xi + r , where j = j (i) is the index of an interval
[as , b] which contains x 1 , 1 < i < n. Note that xt E E2 and x^ > x, 1 < i < n, by
properties (a) and (b). Moreover, there is an integer i such that x$ > xi , by property (c).
Let us put Pl (y) = COA f t (y — x7), where A is the leading coefficient of Pk,E, and
Co = ak /ak. Here ak is the kth coefficient of (1/Co) P1 . Then PI is a polynomial of degree
n, and its kth coefficient is ak. Now applying Viete's theorem, we obtain l ak I < Iak I,
that is, ICOI < 1. Next, note that for each y E E2 there exists x E EI such that for all i,
Iy — x, 1 < Ix — x; I. Hence,

IIP111C(E2) < ICOIIIPk,E, IIC(E,) < IIPk,E, IIC(E,)-

Thus

(2.13)	 IE2I = IE1I > I ,	 IIPk,EZ IIC(EZ) < II Pk,E, IIC(E,) = II Pk,EIIC(E)•

Next using (2.13) and Chebyshev—V. A. Markov's inequality for the interval E2 and for
the polynomial Pk,E2 , we obtain

(2.14)	 IakI < ( 1 /k!)I Pk E2 (0)III Pk.E2IIC(EZ)

< (1/k!)(2/A)k7(k) (2b/.l — 1)IIPk ,EIIC(E)	 IAkIIIPIIC(E)•

Finally, we deduce from inequalities (2.9), (2.12), and (2.14) that (2.4) holds, and the
interval E = [b — A, b] is the only extremal set.	 n

Proof of Theorem 23. The proof is similar to that of Theorem 2.2 with the following
changes to yield. Note first that {x2k }k=1 is a Chebyshev system on (0, b). Next, Cheby-
shev's theorem [11, p. 94] implies (2.5) for each interval E = [a, a + A/2] c [0, b].
Then we take into account the relation Pk E, (0) = 0 to prove property (c). Further,
we replace the set E2 and the polynomial Pl in the proof of Theorem 2.2 by the set

E3 = [br — k1/2, br] and by the polynomial

n

P2 (y) = A fl(x?/x7 2)(y2 — xi2)(y2 — x; 2) ... (y2 — xn2),
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respectively, where A is the leading coefficient of Po, E , . Then P2 E Pn ,1 and I P2(0) I =
I P (0)1. Finally, it remains to prove that

(2.15)	 IIP2IIC(E3) < IIPO,EtIIC(E,)•

Indeed, let y E E3 , say y E [ak + tk, bk + tk]. Then x = y - rk E El, and putting
t;,k = min(zi (j) , zk), where j (i) is the index of an interval [a3 , bi ] which contains xi , we
obtain

n x?Iy2 —x,2 I 	n X?
PP(y)I = AI fl	 _	

I(x + tk)Z—(Xi +ti(,))21
I *z	 (x1	)2

n x? I (x + t^.k) 2 — (X, + t)2 1 	n	 z

IAI U	 (x^ + z, k)z	
< JAI f Ix —

zx,1 = IPo,E, (x)I-
j1	 t=t

This yields (2.15).	 n

Proof of Corollary 2.1. Without loss of generality, we may assume that a = 0. Then
applying Theorem 2.2 and Descartes' rule of signs, we obtain

n	 n

^ Iaklbk — , IAkIbk I Pllc(E) = Tn (4b/A - 1 )IIPIIC(E)•
k=0	 k=0

Hence (2.6) follows. 	 n

Proof of Corollary 2.2. Note first that I - En El > 2A -2b, and a polynomial Pl (x) =
2 (P (x) + P (-x)) satisfies the conditions: P1 (0) = P (0) and PI is an even polynomial
from P21v,1, where N = [n/2]. Next, setting s = 2 - X./b and using Theorem 2.3, we
obtain

2
IP(0)I	 TN ((3b-2b2 -b) 

- 1)IIPIIC(-EnE) TN
/

1 2 s2 - 1)IIPIIC(E)

< ((1-x-5)/(1 — S))N IIPIIC(E) <e2ns/(1-2e)
IIPIIC(E)•

This implies (2.7).	 n

3. Remez-Type Inequalities for Trigonometric and Exponential Polynomials

3.1. Remez-Type Inequalities

The first Remez-type inequality for exponential polynomials of the form Q(x) =

>k-o cke` kx, Ck E C 1 , 0 < k < n, and a measurable set E C (-7r, .7r], I E I > 0,
was obtained by Stechkin and Ulyanov [49]:

(3.1)	 IIQIIC(-,r,n) <(n+1)sin n (IE'I/8n)IIQIIC(E)•

A similar result was proved independently by Ash and Welland [3]. Belov [5] established
some estimates like (3.1) for generalized polynomials Q (x) = Ek_o cke` )"x, Ak E R1,
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0 < k < n, minkom IAk — Am! > 0. A general inequality of first type for Q(x) =

Fk-0 ckeµ'z , ck, µk E C', 0 < k < n, was obtained by Nazarov [44]: for a subinterval
I c (-n, jr] and a set E C 1, 1 El > 0, there exists an absolute constant A such that

(3.2)	 IIQIIc(I)exp(iii max Re(Ak) I(AIII/IEI) n IIQIIC(E)•

/In particular, for any Q E T , the following inequality of first type holds [44] :

(3.3)	 II Qllc(-s,	 (A /IEI)2"IIQllc(E),

where E c (-Jr, nr] and A < 32e < 87.
On the other hand, it is known [22], [37], [50, p. 90] that for a trigonometric polynomial

Q E 7 and an interval E = [a, b] c(-,r, ir]:

(3.4)	 II Qllc(-n,.) < 2(tan2'(IEI/8)+cot2
"(IEI/8)) IIQllc(E),

and equality in (3.4) holds if and only if

/cos(x - (a + b)/2) - cos2 ((b - a)/4)
(3.5) Q(x) = AT (	

sin2((b - a)/4)	 ) 	 A ER'.

Thus the best constant A„(IEI) in the inequality II Q ll c(-n,n)	 An II QIIC(E), Q E T.,
E C (-n, sr], satisfies the relations

(87/IED2" > A.(IEI)
2(tan (IEI/

8)+coty`(IEI/8
)) — jj'(8/IEI)2n, 	 JEl —* 0,

exp( Z n(2-,r - IEI)), IEl -* 2n.

Erdelyi [22] established a Remez inequality of second type and extended it to the
generalized trigonometric polynomials. For Q E T and E c_ (-sr, zr], I El >_ 3ir/2, his
result is

(3.6)	 IIQllc( -n,r) <eAn(2,` -IE)
IIQIIc(E),

where A is an absolute constant. Borwein and Erddlyi [ 11, pp. 230-231 ] gave the estimate
A < 4, but their proof is incomplete; the correct version of the proof (with a larger upper
bound) will be contained in the second print of book [11]  (the private communication
by T. Erdelyi).

Below we show that A < 17 in (3.3) and A < 2 in (3.6). These estimates are based
on inequalities like (3.4) for special classes of polynomials and sets.

Theorem 3.1. For a measurable set E C (-ir, sr], IEI >_ 37r/2, and a trigonometric
polynomial Q E 7;:

(3.7)	 II Q II c(-n,n)	 e2" (2--IED II Q IIc(E)

Theorem 3.2. For a measurable set E C (-sr, n], IEI > 0, and a trigonometric
polynomial Q E T:

(3.8)	 II QIIC(—n,a)	 (17/IEI)2iIIQIIc(E)•
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These theorems are based on the following results:

Theorem 3.3. For a measurable E c_ [—,r, sr], [El = .l > 0, and an even trigono-
metric polynomial Q E 2;:

(3.9)	 IQ(0)I <_ 1(tans (A/8)+cot 2"(A/8))11Q11C(E)•

Equality in (3.9) holds if and only if E = [-7r, —n +A/2] U [ir — A/2, iv] and Q(x) _
AT,, (—[cosx + cos2 ()./4)]/sin2 (A/4)), where A E (0, 2ir) and A E R 1 .

Theorem 3.4. For a measurable set E c [a, a + n], I El = .t > 0, a E R l , and a
trigonometric polynomial Q E 7,,:

(3.10)	 I Q(a)I < T2n(cot(A/4))IIQIIc(E)•

Equality in (3.10) holdsifandonlyifE = [a+ir—A,  a+ir]and Q(x) = AT,,(—[cos(x-
a + A/2) + cos2 (X/4)]/sin2 (A/4)), where). E (0, 2n), a E R 1 , and A €R'.

The following refinement of (3.1) and (3.2) for exponential polynomials of even degree
can be easily derived from (3.8).

Corollary 3.1. For a measurable set E C (—ir, iv), IEI > 0, the following statements
hold:

(a) if Q(x) = ^k=_„ ak exp(ikx) is a trigonometric polynomial with complex coef-
ficients, then

(3.11)	 IIQllc^-n,,r	 x(17/IEI) 2iIIQIIc(E),

(b) if Q(x) =	 _o ak exp(ikx) is an exponential polynomial, then (3.11) is valid.

Remark 3.1. Erdelyi [22] established the inequality I Q(0)1 < T2„(sin(A/2))II QIIc(E)
which is equivalent to (3.9). We shall give the different proof of Theorem 3.3 which is
similar to that of Theorem 3.4.

Remark 3.2. We believe that the following sharp Remez-type inequality is true:

Conjecture 3.1. For a measurable set E C_ (—iv, n], I El > 0, and Q E T,,, inequal-
ity (3.4) is valid. Equality in (3.4) holds if and only if E = [a, b] and Q is polynomial (3.5).

Remark 3.3. Stechkin and Ulyanov [49] posed the problem: What is the precise order
of decreasing the best constant B„ (IEI) in (3.1)? Conjecture 3.1 would imply that

Cicot2"(IEI/8) <_ B.(IEI) <_ C2cot2"(IEI/8).
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3.2. Proofs of the Theorems

First we prove Theorems 3.1 and 3.2.

Proof of Theorem 3.1. Without loss of generality, we may assume that I Q (0) I =

II Q II c(—n,n). Next, applying an approach used in [22], we have that Q 1(x) = 1 (Q (x) +
Q(—x)) is an even polynomial of degree n, and a set El = E fl —E satisfies the
conditions: 1E 1 1 > 21E1-22r and IIQiIIc(E,) IIQIIc(E)• Further setting r =2r—IEI,
0 < r < 7r/2, and using (3.9), we obtain

IIQ11c(-n,.) = IQ1(0)I	 cot (IEi1/8)11QiIIc(E^)
2n

< cot2n	 1 + 
	sin(r/4)

	IIQIIC(E)_	 ((^r — z)/4)IlQllc(E) =	 sin(.7r/4 — r/4)
2n

< (1+
 I r

—	 4 sin(n/8)	 IIQIIC(E) <e 1SSri, IIQIIC(E)-

This yields (3.7).	 n

Proof of Theorem 3.2. Let a E (—ir, 7r] satisfy the equality I Q(a) I = II Q II c(-3 ),
and let E* be the 27r-periodic extension of E to R', that is, XE. is 2n-periodic on
R l and E* fl (—ii, nr] = E. Applying Theorem 3.4 to El = E* fl [a —'r, a] and
E2 = E* fl [a, a + 7r], and taking account of the elementary estimates

	T (cot y) < (2 cot y)Z" < cotzi (y/2),	 y E (0, it/2],

	sin y > 0.974y,	 y E [0, n/8],

we obtain

(3.12)	 IIQIIc(—,,n) = I Q(a)I < mm TT„(cot(IEI/4))IIQIIc(e1 )

TZ„(cot(IEI/8))IIQIIc(E)
< cot2"(IEI/ 1 6)IIQIIc(E) < ( 1 6.43/IEI)2i IIQIIc(E)-

Thus (3.8) follows from (3.12).	 n

To prove Theorems 3.3 and 3.4, we need several lemmas.
First we consider the following extremal problems: find

C, 1 (E) = min IIQIIC(E),	 i = 1, 2,

where E is a closed subset of [0, 7r], IEI > 0; M,^, I _ (Q E T : Q(0) = 1, Q(x) _
Q(—X), X E [0, Jr]} ; and M ,2 = (Q E T, : Q(0) = 1}.
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Lemma 3.1. The following properties hold:

(a) fora measurable set E C [0, it] and an even polynomial Q E T,,:

(3.13)	 IQ(0)I	 (Cf, ^ (E))- ' IIQIIC(E);

(b) for a measurable set E c [0, Jr] and a polynomial Q E 2;:

(3.14)	 I Q(0)I	 (C.,2(E)) - ' II QII c(E);

(c) C, 1 (E) > 0, i = 1, 2.

Proof. Equation (3.14) trivially holds if Q(0) = 0. If Q(0) 0 0, then Q 1 (x) _
Q(x)/Q(0) E M,2. This yields C,2(E) II Qi IIC(E)• Hence (3.14) follows. Similarly
we prove (3.13). Statement (c) is an immediate consequence of (3.13), (3.14), and (3.1),
though it can be proved independently by a compactness argument. n

Let K,,,1 = {( 1— cos x) coskx }kL and let K,2 = {sin(x/2) cos(k+ 2), sin(x/2) sin

(k + )L 	the systems of trigonometric polynomials.

Lemma 3.2. Let N = N(i) = in, i = 1, 2. Then the following properties hold for
i = 1,2:

(a) KN , i is a Chebyshev system on (0, it);
(b) the error of approximation of 1 by polynomials from span KN,1 in C(E) is

(3.15)	 C; (E) =	 inf	 Ill — H II c(E);
If Espan KN, ;

(c) there exists the unique polynomial Q,,,E = Qn,E,i E Ms,, such that

(3.16)	 CC,,(E) = IIQ.,EIIC(E);

(d) a polynomial Q,E E Ma,, satisfies (3.16) if and only if there exist N + 1 distinct
points yk E E, 1 _< k < N + 1, such that 0 < y l < • • • < yn++ ^ < n,
IQn,E(Yk)I = IIQn,EIIC(E), I < k < N + 1, and Q,.E(Yk) = — Q,,,E(Yk+1),

1 <k <N;
(e) Q,,, E has N zeros that lie in (0, n).

Proof. It is easy to show that a polynomial from span KN,i that has N distinct zeros
on (0, n) is identically zero. This proves statement (a) of the lemma. Next, note that
Q E M,,,; if and only if Q(x) = 1 — H, where H E span KN,i. Hence (3.15) follows.
Statements (c) and (d) follow from (a) and (b), Lemma 3.1(c), and the approximation
properties of Chebyshev systems [11, pp. 94, 98]. Finally, statement (e) of the lemma is
an immediate consequence of (d). n

Lemma 33. If [c, d] c [0, it], then

(3.17)	 d_min/2C,1([c, d]) = (
'-2(tan (k/8) +cot(k/8))) -1,

(3.18)	 mm zCn,2([c,d]) = (T2.(cot(X/4))) -1•
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Minimum in (3.17) and (3.18) attains if and only if [c, d] = [..7r - A/2, ,r] and [c, d] _
[7r - A, 7r], respectively.

Proof. Applying the necessity of Lemma 3.2(d) for i = 1, E = [c, d] c [0, n- J, and

2cosx - cosc - cosd	 2- cos c- cos d
Qn,[c,d](X) = T	 T

n 	COS c— COs d	 n	 COS c— COS d )

we obtain

2 - cos c - cos d	/ / 	 -^
(3.19)	 min Cn Qc, d]) = mm I Tn I	 11

	d-c=A/2	 d-c=x/2 \\ \\ cos c - cos d

= 2 min (((cot(A/8) tan((c + d)/4)) n
d-c=A/2

+ (tan(./8) cot((c + d)/4))")) -1

= (2 (tan
2"(X/8) + cot(A/8)))

Thus (3.19) yields (3.17). Next, applying again the necessity of Lemma 3.2(d) for i = 2,
E = [c, d] C [0, r], and

Qn, [c,d] (x)

_ 	 - (c + d)/2) - cos2 (^ /2)

l 

	 + d)/2) - cos2 (A /2)

T

( cos(x

 sin2(A/2)

	
ITn (

cos((c

 sin2(A/2)	 / I

we have

(3.20) mm	
( 2(cos(,X/2)

C 
	- cos((c + d)/2)) + 1

II n 	n	 n 
d-c-A	 d-c=

2([c, d]) = mi 
7.
 ^T 
	1 - COS(./2)

= (Tn (2cos(A/2)/sin2 (X/4) + 1)) - ' = (T2i (cot(A/4)))- '

Thus (3.20) yields (3.18). n

Proof of Theorem 3.4. Without loss of generality, we may assume that a = 0 and E
is a closed subset of [0, R] of measure A, 0 < A < ir. Let Q E 2 be a trigonometric
polynomial. If E = [a, b] is a subinterval of [0, sr], then (3.10) follows from (3.14) and
(3.18), and the equality in (3.10) holds if and only if E and Q are the extremal elements
defined in Theorem 3.4.

Suppose E is not a subinterval of [0, sr]. Then by statements (c) and (d) of Lemma 3.2
for i = 2, there exists the only polynomial QE = Qn,E,2 satisfying the alternating
property on E. Letting El = (x E [0, ir]: I Qn,E I (x) II Qn,E IIc(E)) we obtain, from
the sufficiency of Lemma 3.2(d) for i = 2, that Qn,E, = Qn,E. If E l is a subinterval of
[0, sr], then IEi I > IEI and II Q, IIC(E,) = II Qn,E II C(E)• Thus

(3.21)	 IQ(0)I < T(cot(A/4))IlQIIc(E),

by (3.14) and (3.18).
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Suppose now that E l is not a subinterval of [0, sr]. Then the following properties of
E l hold:

(a) E1 =U-1[aj,bb],0<a1 <b 1 <... <ar <br < ,r,r> 2 ;

(b) there exist 2n simple zeros x l <x2 <	 <x,, of Qn ,E, that lie on E1;
(c) there exist at least two subintervals of El that contain zeros of Q,,,E, .

Property (a) is evident, while (b) immediately follows from Lemma 3.2(e) for i = 2.
To prove property (c) we assume that x; E [ai , ba ], 1 < i < n, for some j, 1 <_

j < r. Then I Qn,E, (aJ)I = II Qn,E, IIC(E,)• Further, the condition Q,,, E, (0) = 1 yields

Qn,E,(aa) > 0 since if Qn ,E,(aJ ) < 0, then Qn , E, has 2n + 1 zeros on [0,.,r]. Next,

Qn, E, (ai) < 0. Indeed, if Q;, E , (aJ) > 0, then there exists xo E (ai , b1 ) such that
Qn,E, (xo) > Qn,E, (aJ) = II Q, IIC(E,). Then

(3.22)	 Qn,E, (x) > II Qn,E, IIC(E,) ,	 x E (O, a).

Indeed, if Qn E (ai) = 0, then Qn ,E^ is strictly decreasing on [0, a^]. If Qn E  (ai) <0,
then Q', E, has no more than one zero on [0, ai ). Hence (3.22) follows. Thus El fl [0, aJ) _
0, by (3.22). Similarly we prove that El fl (by , 27r] = 0, that is, El = [ai, b,]. This
contradicts our assumption that Et is not an interval. Hence property (c) holds.

Now we construct a set E2 and a polynomial Q 1 satisfying certain conditions. Let

E2 = U_ ^ [aj + tj, b^ + rj] _ [br — IE11, br], where ri = _j(ak+1 — bk), 1 _<
j < r — 1, rr = 0. Next, let x = xi + rj , where j = j(i) is the index of an
interval [as , b] which contains x,, 1 < i < 2n. Note that x7 E E2 and x7 > x1 ,
1 < i <_ 2n, by properties (a) and (b). Moreover, there is an integer i such that x$ > xi , by
property (c). Let us put Q1(y) = fZ" t (sin((x; — y)/2))/(sin(x7 /2)). Then Q1 E M,2
and fl I sin(x1 /2) I < r(Z" 1 I sin(x! /2) I. Next, note that for each y E E2 there is
x E El such that Isin((xi — y)/2)I < Isin((xi — x)/2)I, 1 < i < 2n. Hence taking

account of the representation Qn ,E, (x) = f (sin((x; — x)/2))/(sin(xj /2)), we obtain

II QI IIC(E2) < II Qn,E, IIC(E,) = II Qn,EIIC(E). Thus

(3.23)	 IE'21 = IEI I ? A, 	 C,2(E2) < Cn,2(E)•

Then for any polynomial Q E T inequalities (3.14), (3.18), and (3.23) yield

(3.24)	 IQ(0)I <_ (Cn,2(E)) — 'IIQIIC(Eo) < (Cn,2(E2)) —l IIQIIC(E)
< T2i (cot(A/4)) II Q II c(E) •

Finally, inequalities (3.21) and (3.24) show that (3.10) is valid for a = 0 and any
measurable set E c [0, 7r], and equality holds if and only if E = [7r — X , .7r]. 	 n

Proof of Theorem 3.3. The proof is similar to that of Theorem 3.4 with the following
changes to yield. Without loss of generality, we may assume that E is closed and sym-
metric about the origin. If A = 27r, then (3.9) trivially holds. So we assume 0 < A < 2ir.
Note that we shall use Lemma 3.1(a), equality (3.17), and Lemmas 3.1(c) and 3.2, for
i = 1 instead of corresponding results for all polynomials. In particular, the extremal
even polynomial Qn,E, = Q,,,E,,I has n simple zeros xi, 1 <i < n, that lie on El.
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Next, we establish property (c) of E l that has a slightly different proof. Assume that
xi E [a, b], 1 < i < n, for some j, 1<] < r. Then Qn,E, (aJ) = II Q.,E, IIC(E,) and
Qn,E, (as) < 0. Moreover, if Qn E , (ai) = 0, then taking account of Q;, E , (0) = 0, we
deduce that Q' E  is identically zero. This contradicts our assumption a. < 2ir. Then
the relations Q;, EI (a') < 0 and Qn E, (0) = 0 imply that Q,,,E, is strictly decreasing
on (0, aj). Thus E l fl [0, aa ) = 0. Furthermore, assuming b^ < is and using the similar
argument, we obtain I Qn,e, (bf)I = II Qn,E, IIC(E,) and sgn(Q n ,E, Q;, E , (by )) > 0. Taking
account of Q;, E , (0) = 0, we deduce that I Qn,e, I is strictly increasing on (by , it]. Thus
E l fl (b3 , it] = 0, that is, E l = [a3 , bj], which contradicts our assumption that El is not
an interval. Hence property (c) holds.

Finally note that the polynomials Qn , E, and Q 1 can be written in the following forms:

n	 n

Qn , E,(x) = fl(cosx—cosx 1 )/(1—cosx 1 ), Q 1 (y) = fl(cosy—cosx; )/(1—cos x; ).

This completes the proof of Theorem 3.3. 	 n

4. Polya- and Remez-Type Inequalities for Multivariate Polynomials

4.1. Polya- and Remez-Type Inequalities

A multidimensional generalization of Remez's inequality was obtained by Brudnyi and
the author [15], [16]: for a convex body V C R, a measurable set E C_ V, and a
polynomial P E Pn ,,„ :

P
(4.1)	 IIPIIC(v)	 T.

G +.(IEI/IVI)
— flm(IEI/IVI) IIPIIc(E),

where

(4.2)	 1,n(t) := m 1 — t.

The classes of all extremal bodies V. sets E, and polynomials P for which the equality
in (4.1) holds, were found by the author [ 16]. A multidimensional generalization of (2.2)
and local Nikolskii-type inequalities in rearrangement-invariant spaces were obtained in
[31].

Taking account of the representation

Trt \ 1 ± '0m(t)/	 2 ((

I +

1 .2m(t)) + \1 +J62m(t))

it is easy to show that (4.1) implies the following inequalities of first and second type,
respectively,

(4.3)	 IIPIIC(v) —< (C1IVI/IEI)nIIPIIC(E),
(4.4)	 IIPIIc(v) <— exp(C2n(1— IEI/IVI)"2m) IIPIIC(E),

1-2—z'n < IEI/IVI < 1,



Polynomial Inequalities on Measurable Sets and Their Applications 	 289

where C1 < 4m and C2 < 4. It is easy to verify that (4.3) also holds for a bounded
domain V E Rm with C1 < 4m 1 V I / I VI,  where V is the convex hull of V. Note that
Nadirashvili [41] independently proved (4.3) in the case when V is a ball.

Krod and Schmidt [39] noticed that (4.4) holds for a bounded domain in R'" satisfying
the cone property, and refined (4.4) for a bounded domain V c Rm with C 2-boundary,
replacing the exponent 1/2m with 1/(m + 1). Recently A. Brudnyi [13] obtained an
analogue of (4.3) for measurable subsets of an algebraic variety.

A multidimensional version of P61ya's inequality was established in [ 15]: for a measur-
able subset E of a ball V = (x E Rm : IxI < 1) and apolynomial P(x) = ^ 	 axe:

(4.5)	 Iaal .5 (CIVI/IEI) n IIPIIC(E),	 Ial < n

where C depends only on m and IaI. It is easy to verify that (4.5) remains valid for every
convex body V.

In this section we obtain nontrivial analogues of (4.5) and (4.3) for the unit cube
in Rm and a polynomial from Pn  (Theorem 4.1 and Corollary 4.1). Several multidi-
mensional Remez-type inequalities are also presented. In particular, we establish the
spherical versions of (1.2), (4.3), and (4.4) (Theorem 4.2 and Corollary 4.2) and prove
a multidimensional analogue of Corollary 2.2 (Theorem 4.3).

Theorem 4.1. For the unit cube Km, the following statements hold:

(a) for a measurable set E C K°`, IEI = A > 0; and a polynomial P(x) _
n	 n 

a Xa E P*

(4.6)	 Ia« I < (C/X)" lnn(m-I) (e/h)IIPIIC(E),

where C < 154mm;
(b) for P(x) = (x1...Xm)" E P,*,,,n and Et = {x E Kt : IP"(x)I < t}, where

t E (0, 1] is afixed number

Inm-1) (e/ I E, I) II PP Il c(E, )(4.7)	 a(n) = IIPnIIC(K^ ) >	
((m — 1 )f IEI)"

LetT(E)={QETT : IIQIIC(E) < 1},andletA,(t)=SUp IE1, = SUPQET(E) IIQIIC(-rr,ir),
where the first upper bound is taken over all measurable E C (—it, Jr] with I Eli > t,
0 < r < 2n. In other words, A n (r) is the least constant in the inequality II Q Il c(-^.^)

AIIQIIC(E) overall Q E Tn and IEI1 >_ r.

Theorem 4.2. For a measurable set E c_ S, IEI_1 = A > 0, m > 2, and a
polynomial P E Pn.m:

(4.8)	 IIPIIC(s-)	 An(i-1(A))IIPIIC(E),

where
t/4

(4.9)	 '(t) = 2of n

 fo
cos" -2 u du.

Here a = 2 and wm = IS' -t Im-2 = 27r (m-1)/2 (r((m — 1)/2)) -1 , m > 3.
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Theorem 4.3. For a centrally symmetric (with respect to the origin) convex body V C
R'", m >_ 2; a measurable set E C V satisfying IEI = A, (1 - 2)IVI c A < IVI;
and a polynomial P E P,,, m :

(4.10)	 IP(0)I < exp(4n Z, 1 - .l/IVI)IIPIIC(E).

Remark 4.1. The problem of finding the best constant and extremal sets and polyno-
mials in the inequality II P Il c(v) $ CLIP  II C(E) is solved only when V is a bounded convex
cone [16]. Brudnyi and the author [15] conjectured that if V is-a ball, then an extremal
set E is convex.

The proofs of Theorems 4.1, 4.2, and 4.3 are based on the following idea [15], [16],
[30] : first we apply a univariate P61ya- or Remez-type inequality to linear subsets of E and
then make use of some estimates of linear measure of these subsets (Lemmas 4.1-4.3).

4.2. Geometric Lemmas

The proofs of the next two lemmas follow that of Lemma 3 in [15].
For a centrally symmetric body V C Rm we set

Ym(V, A.) =	 sup	 essinf(IV fl ll 1 /IE fl ll l ),
EcV,IEI>x	 I

where the ess inf is taken over almost all lines l passing through the origin.

Lemma 4.1. For all A E (0, I VI]:

(4.11)	 Ym(V, A) = ( 1 - flm(A/IVI)) -1 ,

where $,,, is defined by (4.2).

Proof. Let us introduce in Rm, m > 2, a coordinate system by

m-1	 m-I

(4.12)	 x1 =rflcos6j,	 x^ =rsinO_iflcoso,,	 2 < j <m,

where r E R', 16/ I < nr/2, 1 < i < m - 1, and the Jacobian is given by J1 =

me-1 H'2 cosi -1 9i [48, pp. 314-318].
Let In = F(6) = F(01, ... , 6._1) be the equation for the boundary of V. First we

consider the set E* = {(r, 6) E V : fim (A/IVI)F(B) < Irl < F(6)). Then IE*I = A,
and for every line 1 passing through the origin

(4.13)	 IVnlIl/IE*nitl = (1 - $m(A/IVI)1 1 .

Now we show that for a set E c V, I E I > A:

(4.14)	 essinf(IV 11 I1/IE flu) < ( 1 - fm(A/I V I)Y'.

Suppose there exists Eo C V such that IEoI > A and

(4.15)	 essinf(IV 11 I1/IEo n lll) > ( 1 - $m(A/I V I))-1•
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Then from (4.13) and (4.15) we have that for almost every line 1 through the origin

(4.16)	 IEof111 <IE * fllit.

Next, (4.16) implies that for almost every line l = 1(0) through the origin

f(1 VrVj j -JEo rVj j )12

IVflhIt/2
(4.17)	 /Irlm -ldr < 2rm — l dr

Eon 

fa
IVflhI^/2

	fE6 *ni
< 2rm _ I dr =	 Irini-1 dr.

V^I^-IE*NIA)/2 

Finally, integrating (4.17) with respect to 0, we conclude that I Eo I < I E* I which con-
tradicts our assumption I Eo I > X. Hence (4.14) holds. Then (4.13) and (4.14) yield
(4.11).	 n

Next we prove a spherical analogue of Lemma 4.1. Given a point xo E S' we set

I',,, (A) =	 inf	 ess sup I E n c l i ,
ECS1, IEL^-i?a	 C

where the ess sup is taken over almost all great circles c C S' passing through xo.

Lemma4.2. ForallA E (0, ISm lm_i]:

(4.18)	 Fm(A) =

where cp is defined by (4.9).

Proof. Without loss of generality, we may assume that xo = (0, ... , 0, 1). Let us
introduce a coordinate system in R'", m > 2, by (4.12), where r > 0 and I8; I < 7r/2,
1 < i < m — 2, IBm _1I < n, with the Jacobian J2 = J1. Let

E* = {x E Sm : Om-1 E [— ^P- ' (A)/4 , (P- ' (A)l4] U [—,r, —n + ^P- ' (^)l4l
U [zr — of 1 (A) /4 , n ]

be a spherical layer of height 2 sin(V -1 (A)/2) that is symmetric about the plane
{x E R"` : xm = 0). Then IE*l m _1 = A and for almost every great circle c passing
through xo:

(4.19)	 1E* n cll =(A).

Next, we prove that for a set E C Sm, Elm-1 >_ A:

(4.20)	 ess sup I E fl cl l > cp- ' (A).
C

Suppose there exists Eo c S'" such that IEOIm-i > A and

(4.21)	 esssup IEo n cll <'A.
C
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Then we deduce from (4.19) and (4.21) that for almost every great circle through xo:

(4.22)
	

IEoncll <IE* ncII.

Next, we obtain from (4.22) that for almost every c = c(91 , ..., Om-2) through xo:

(4.23)	
fE0flc 

Icosm-2 0m-1 ( dem-, f
IEoflcl i/4

< 2 	 ICOSm-2Om_1IdOm_l
IEo^Ii/4 

f
IE'ricIi/4

< 2 Icosm-2 9m_IIdgm _1
IE'flcIt/4

=	 Icosm-2 0m_l l dOm _,.
E*nc

Integrating now (4.23) with respect to 01, ... , Bm - 1 , we conclude that I E0 1m-1 < I E* I m- I
which contradicts our assumption IEolm-1 ? .. Hence (4.20) is valid. Then (4.19) and
(4.20) yield (4.18). n

To prove Theorem 4.1, we need a more sophisticated result. Let Ks = {x E R'" : 0 <
x; < 1, 1 <i < s; x; = 0, s + 1 <i < m) be the s-dimensional unit cube in Rm, and
let lx ,s be a line in Rm passing through x E Rm and parallel to the sth coordinate axis.

Lemma 43. Fora measurable set E c_ K'", I EI„, > 0, there exist sets ES c Km- ,
0 < s < m - 1 and numbers is E (0, 1], 1 < s < m - 1, such that Eo = E and for each
xEE,+ I:

(4.24)	 IE., ni ,+11i ? t,+t,	 0 < s < m - 2.

Moreover, the following estimate holds:

IEIm(4.25)	 IEm-111 ? A
m tl ...tm_^ lnm_l (e/IEIm)

where Am < 7mm2m.

To prove Lemma 4.3, we need some technical estimates.

Lemma 4.4. Let f be a nonincreasing function on [0, 1] such that for all x E (0, 1],
f (x) = f (x-), and 0 < supXE[o,I] f (x) < 1. Then there exists xo E (0, 1] such that

(4.26)	
fo

f (x) dx < xof (xo) in 
e

 xo.f (xo)

Proof. Note first that there is xo E (0, 1] such that maxx€[o,lt xf(x) = xo f (xo). Then
0 < xo f (xo) < 1 and a function

fl (x) = i 	
0<x<  xof (xo),

lxof(xo)/x, xo.f (xo) < x < 1,

satisfies the inequality f (x) < fl (x) for all x E [0, 1]. Thus fo f (x) dx < J'  fl (x) dx
= xo f (xo) In a/xo f (xo), and (4.26) follows. 	 n
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Note that the equality in (4.26) holds if xo E [e, 1] and f(x) = I on [0, s] and
f (x) = s/x on (e, 1], where s E (0, 1) is a fixed number.

Lemma 4.5. If numbers a E (0, 1] and b E (0, 1] satisfy the inequality

(4.27)	 a < b ln(e /b),

then

(4.28)	 a/ln(e/a) < cob,

where co := 1/a0 = 2.2399. .., and ao = 0.4464.. . is the only solution of the equation
1/a = exp(a/(1 — a)) fora E (0, 1).

Proof. Let a E (0, 1 — e- ') be a number. If 0 <b < exp(—a/(l — a)), then (4.27)
implies

ln(e/a) > ln(e/b) — ln(ln(e /b)) > a ln(e/b).

Hence

(4.29)	 a/ln(e/a) < (1/a)b.

Further, if exp(—a/(1 — a)) < b < 1, then

(4.30)	 a/ ln(e/a) < 1 < b exp(a/(1 —a)).

Inequalities (4.29) and (4.30) show that (4.27) implies (4.28) with

(4.31)	 co :=	 inf	 max(1/a, exp(a/(1 — a))) = 2.2399....
aE(0,1—e -1 )

Hence Lemma 4.5 follows.	 n

Lemma 4.6. If {f,. } M o and {t5 }M are sets of numbers from (0, 1] satisfying the recur-
rence inequality

(4.32)	 f3—I/ln(e/f3-1) cotsfs,	 I < s < M,

then

(4.33)	 fs > 	fo 1 < s < M,
As ti ... is In''(e/.fo)'

where co is defined by (4.31), and A, < 75 s2` are constants satisfying the recurrence
relation

(4.34)	 A0=0,	 A,, = coAs _ I (s + In AS_,),	 1 <s < M.

Proof. We shall prove (4.33) by induction. For s = 1, (4.33) follows from (4.32).
Assume that for some s, 1 < s < M — 1, (4.33) holds. Then we obtain from the
hypotheses of induction and (4.32):

f+1 ?
	 Is 	>	 fo

cots+, ln(e /fs) — co AS tl ... is+i Ins (e/fo) ln(efo A5tl ... is InS (e/fo))
Jo 	= 	Jo

	— coAs t l ... is+I lns+t (e/fo) (s + 1 + In As)	 A3+1 t1 ... i3+1 1ns+i (e/.fo)
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Thus (4.33) holds for all s, 1 < s < M. The estimate A, < (3co)ss2' < 7ss 2s can be
easily derived from (4.34) by induction.	 n

Proof of Lemma 4.3. We shall construct sets E s inductively. Let us put Eo = E C
K". Assume that for some s, 0 < s < m —2, Es is constructed. Then hs+l = Ilz,s+l fl E3 I 1
is a measurable function on Km_S_ l such that 0 < hs+l < 1. Next, the function fs+l (t) =
I{x E Km_s_ 1 : hs+l(x) > t}Im_s_1 satisfies the conditions of Lemma 4.4. Hence there
exists is+ 1 E (0, 1] such that

(4.35)	 IEs Im—s = f
K.--]

hs+1(x) dx =	 fs+l (t) dt
0

	

is+1 fs+l (ts+l) In	 e
is+1 fV+1(ts+t )

Now we define E5+1 by Es+l = {x E Km-s-1 : h5+1 (x) > is+l }. Then (4.24) holds for
all x E E.,+I and 1Es+l Im-s-1 = f,+l (t5+1). This shows that there exist sets E 5 c
0 <s < m — 1 and numbers t5 E (0, 1], 1 < s < m — 1, satisfying (4.24). To prove
(4.25), we first note that (4.35) yields the recurrence inequality

(4.36) IEI	 <	 E	 In 	es m—s t s+l i s+l lm—s-1	 0<s<m-2.
is+11 Es+l l m—s-1

Further using Lemma 4.5 for a = IE5lm_s_1 and b = t5+1IEs+l l,n-s-1, we obtain from
(4.36) and (4.28):

(4.37)	 IEslm_,s/ln(e/IEsIm_s) cots+11Es+t Ln-s- 1,	 0 <s <m — 2.

Now (4.25) follows from (4.37) and Lemma 4.6 for fs = I ES I,n_S.	 n

4.3. Proofs of the Theorems

Proof of Theorem 4.1. First we prove statement (a). For a univariate polynomial P (x) _
akxk and a set E' c [0, 1], (4.6) follows from (2.4). Indeed, we derive the estimate

(4.38)	 lakl	 (22/IE'II)"JIPIIC(E'),	 0 < k < n.

from (2.4) by the straightforward calculations.
Next, let P(x) = ^^^_o ^,^M _o ax' • xmm E P„,,,• Then

n

P(Xi,...,Xm) =	 XI Pa,(X2,...,Xm),
a,=0

n
a

Pa , (X2, ... , Xm) =	 x2
y 
Pa,a2 (X3, ... , Xm),

a2=0

n

(4.39)	 Pa,...ai (Xm) _ E aax.- ,
am ^0

where P.,...,(xs+l, ... , xm ) E P,;,m_s , 0 < s < m — 1.
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Further, we prove the inequality

22nm1IPIIC(E)
(4.40)	 laal	

(tl...tm—IIEm-111)n,

where E, 0 <s < m — 1, and t3 , 1 < s <_ m, are numbers and sets from Lemma 4.3. It
suffices to show that

(4.41)	 maxIPa^...a,(xs+l,...,x,n)I <-22n5 (tl...ts)—n I)PIIC(E),	 0s <m-1.
XEE,

Indeed, (4.40) follows from (4.41) for s = m — 1, (4.39), and (4.38) for E' = E m _ 1 .
We shall prove (4.41) by induction. It is trivial for s = 0. Assume that (4.41) holds

for some s, 0 < s < m — 2. Then using (4.38) for any line lx,s+l, x E E,s+l , and taking
account of the hypothesis of induction and (4.24), we have

n22 max1EE P,..a, (xs+l , ... , xm

max I Pa, ...a,+i (xs+2 , ... , x,n) I	 n
xEEs+inxEE,+ , Ilx,s+l n Es I1

< 22n(s+l) IIPIIC(E)

	

(t1 ... is+l )n	
.

Hence (4.41) is valid. Then (4.6) follows from (4.40) and (4.25).
Finally, statement (b) immediately follows from the relation

	m 	 I	 m-1 lns(t-1/n)

x E Km : fl xs < t 1/n = t l / n
S!

	

s=1	 s=0

Thus Theorem 4.1 is established.	 n

Proof of Theorem 4.2. Let E c Sn` be a measurable set, P E Pn,,n a polynomial of
degree n or less, and xo = (0, .

_ 
, 0, 1) E Sn`• Let us introduce a coordinate system

(4.12) in Rm, m > 2, where r > 0 and 18; I < r/2, 1 <i <m — 2, 16m _1 I < n. Then
for any great circle c passing through xo, the restriction of P to c is a trigonometric
polynomial of a single variable 6rn _1 of degree n or less. Hence

(4.42)	 IP(xo)I < An(IE n CI1)IIPIIC(E)•

Since An (r) is a decreasing function, (4.42) and Lemma 4.2 imply

(4.43)	 IP(xo)I < An(I'm(A))IIPIIC(E) = A 	 (A))I!PIIC(E)•

Finally, we note that (4.43) holds for each xo E S'n. Thus (4.8) follows. 	 n

Proof of Theorem 4.3. By Lemma 4.1, for any s E (0, z) there exists a line lE in Rm,
passing through the origin such that

(4.44)	 IEfli ll/IVf1 15 II ? 1— "' 1—A/IVI—e/2> 2 —s/2.

Further, the restriction of P to 1E is a polynomial of a single variable. Using now Corol-
lary 2.2 and relations (4.44), we obtain

IP(0)I < exp((4n'" I — X/IVI)/(1 — 28))IIPIIC(E).

This yields (4.10).	 n
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4.4. Some Corollaries

The following is the Remez inequality of first type for polynomials from Pnm -

Corollary 4.1. For a measurable set E c K"`, I EI = > 0, and a polynomial

PE^n,m:

(4.45)	 IIPIIC(K')	 (C/A) 	(e/A)II PIIC(E),

where C < 154mm2rn.

Proof. Note first that the class P, m is invariant with respect to all linear transforma-
tions. Hence Theorem 4.1 implies a more general inequality

(4.46)	 IP(vv)I < (CIni/IEI)" lnn(m-i) (elnl/A)IIPIIC(E), 	 1 <j < 2,

where C < 154mm 2i1 . Here, rl = {x E Rm : ai < xi <b;, 1 < i < m) is a rectangular
parallelepiped in R'" with vertices vj , 1 < j < 2m; E is a measurable subset of 17; and
P E

Next, for each x E Km there exist N parallelepipeds 11 1 , 1 < i < N, 1 <N < 2m,
such that x is a vertex of all ll i , 1 <i < N, and

N	 N	 N

(4.47)	 Km=Uni,	 IKmI=EInil,	 IEI=	 IIZinEl.
is	 i=1	 i=1

Applying (4.46) to each 11 ; , we obtain from (4.47):

IP(x)I	 mm (Clnil/III; n EI)n ln"(m-1)
(eln il/Ini n EI)IIPIIc(n,nE)

1 <i N

(CIKt I/IEI)" in
n(m-1) (eIKm

I/IEI)IIPIIC(E)-

This establishes (4.45). 	 n

The following are the Remez-type inequalities of first and second types for polyno-
mials on the unit sphere.

Corollary 4.2. Let E c_ Sm, let I E I = A > 0 be a measurable set, and let P E Pn,m,

m > 2, be a polynomial. Then:

(a) forall.l E (0, ISt Im-1]:

(4.48)	 II P IIC(s'") < (17()m2-(m-2)/2/1,)2"II P IIC(E);

(b) for all 1A > .lo = 2mm fo "f8 cosii-2 u du:

(4.49)	 IIPIIc(s^) 5 exp(19n(1 -1A/ISmIm-1)1/(ni-1))IIPIIC(E)-
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Proof. Inequality (4.48) follows from Theorems 3.2 and 4.2 and the estimate

t/4

(p (t) = 7--m / cosm_2 u du
0

f
t/8

	c0s m-2 U du > 2-(m-2)/ZWm t,	 t E (0, 2n].

To prove (4.49), we note first that if ), > A0, then 1 (A) > 3n/2. Further,

(tar —W- ' (A))/4

ISmIm -1 —A = 2w. j	 sinin-2udu

> 2—m+lam—mt2(m — 1) — ' Wm (2rc — cp-1(,,))m —t

Taking account of the inequalities ism l m I < Wm and (m - 1)l/ ('"- I ) < 3 1 /3 , we obtain
2,r-V- '(X) < 2.31/37r(1- .l/ISm Im_i) 1 /(m- I) •Now(4 .49) follows from Theorems 3.1
and 4.3. n

Remark 4.2. Remez-type inequalities (4.8), (4.45), and (4.48) can be applied to the
problem of finding the limit distribution of a polynomial on the unit sphere or on the unit
cube of large dimension that is useful in statistics and statistical physics.

5. Applications

Applications of P61ya- and Remez-type inequalities in various areas of Analysis have
received much attention since the 1960s [2], [3], [9]-[12], [14], [20]-[27], [31]-[33],
[35], [36], [39], [42]-[44], [49], [51].

In this section we present several applications of P61ya- and Remez-type inequalities to
some problems of Analysis. In particular, we obtain some new Nikolskii-type inequalities
in rearrangement-invariant spaces for polynomials and entire functions of exponential
type with a convex spectrum (Theorems 5.1 and 5.2). Finally, we establish some estimates
of trigonometric integrals (Theorems 5.3 and 5.4).

5.1. Rearrangement-Invariant Spaces

Here, we define rearrangements of functions and rearrangement-invariant spaces. We
consider measurable functions f defined on the k-dimensional set S2 C R, equipped
with the k-dimensional Lebesgue measure I Elk, 1 < k < m, for every measurable
E C Q. For example, k = m - 1 if 0 = Sm, and k = m if Q = Rm, or S2 is a bounded
domain in Rm.

For every f on the bounded set St C Rm, we define its increasing rearrangement
f* : [0, tS2lk] -+ [0, oo] by f*(t) := f*(t, 0) := sup(r > 0 : Et < t), where
EL := l{x ES 2:If(x)I -

Similarly, for every function f on Q c_ R' we define its decreasing rearrangement
f* by f* (t) := inf{i > 0: It < t}, where IT := lix E SZ : f (x)l > r}kk.

We say that a linear real space F(Q) of k-measurable functions defined on c2 c_ Rm
is a rearrangement-invariant space (RIS) if there is a nonnegative functional 11 11 F(n)
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on F(S2) with the properties:

(i) II f II F(o) = 0 if and only if f = 0;

(ii) Ilcf IIF(sz) = Iclii!IIF(s2) fora scalar c;
(iii) if g E F(Q) and f(t) < g(t) for all t E [0, IS21 k), then f E F(Q) and

II!IIF(S2)	 IIgIIF(a)•

Note that if 2 is the bounded set, the property (iii) is equivalent to that with the condition
f(t) < g(t) replaced by f *(t) < g*(t).

The fundamental function of F(S2) is defined by VIF (t) := II XE II F(s2), where E c S2,
I Elk = t, 0 _< t _< I 2Ik• 

Let S2 be a bounded set and w: S2 -^ [0, IQIk] a measure-preserving transformation
which is one-to-one and onto. Then every RIS F(0) generates the RIS F(0, IS2Ik)
(h = f (w.) : f E F(S2)} with IIhIIF(o,I Ik ) = IIh o W- ' IIF(0) and 'F = 1I F . It is clear

that f* E F(0, IQIk) for every f E F(S2) and

(5.1)	 IIfIIF(SZ) = Ilf*IIF(o,ls2lk)-

If F(S2) is a normed RIS (NRIS), that is, II • II F(Q) satisfies the triangle inequality, then
it has the following properties [38]:

(a) If kF is the least concave majorant of 1/IF, then 21F (t) < *F(t) < 1//F(t) for all
t>0.

(b) Let F' (Q)  be the associated space of all measurable functions g on 0 with the

finite norm IIgIIF'(o) = SUP11fIIF(n)s1fnf(x)g(x)dx. Then F 1 (0) is the NRIS
with the fundamental function *F ' = t/^lrF (t). In particular,

(5.2)	
1 12 f(x)g(x)dx1 < IIfIIF(0)IIgIIF'(o),	 f E F(Q), g E F'(S2).

It easy to see that spaces Lp (Q), 0 < p < 1, are RISs, while C(Sl), Lp (Q), 1 < p
oo, the Orlicz, Lorentz, and Marcinkiewicz spaces, are NRISs (see [19], [38]).

5.2. Nikolskii-Type Inequalities for Multivariate Polynomials

Daugavet [17], [18] obtained an algebraic analogue of the Nikolskii inequality (see [50,
p. 235]) for multivariate polynomials, by adapting the bridge method of Nikolskii:

(5.3)	 IIPIIL9(s^)	 Cn°(R) IIPIIL,(c),	 I < P	 q	 oo,

where S2 is a bounded domain in Rm, P E Pn,m, and a(S2) = 2m(1/p — 1/q) if c2
satisfies the cone properties, and a() = (m + 1)(11p — l /q) if S2 has the smooth
boundary. In the one-dimensional case (5.3) was established by Lebed, Potapov, and
Timan (see [50, p. 236]).

The first results connecting Remez- and Nikolskii-type inequalities were given in [29],
[31]. In particular, estimate (5.3) for a convex S2 and 0 < p < q < oo, was obtained in
[29], [31] as an easy corollary of (4.1). Moreover, (4.1) implies a more general inequality
[29], [31]:

(5.4)	 IIPIIC(v) : .*F(I V Im(n + 
1)-z'") IIPIIF(v),
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where V is a convex body in Rm and F(V) is an RIS with the fundamental function 1/IF.
It is easy to verify that (5.4) remains valid for a bounded domain V C Rm satisfying the
cone condition. Note also that Krob and Schmidt [39] independently proved (5.3) for
smooth domains, by using a Remez-type inequality.

Below we consider two versions of (5.3) and (5.4) with no "boundary effect," unlike
these inequalities.

Theorem 5.1.

(a) If n is large enough, then for any RIS F(S'n) and a polynomial P E 7Pn,m:

e 19

(5.5)	 IIPIIC(s-) ` *
F(ISmIm_In' -m) 

IIPIIF(S-).

(b) For a centrally symmetric (with respect to the origin) body V C Rm, any RIS
F(V), and a polynomial P E 7Pn,m, n > 1:

(5.6)	 IP(o)I `— 
1,F(IVIm(4n)-m)IIPIIF(v)-

-

Proof. We first prove (5.6). Given t E [ 1 — 2 -2i` I V I , I VI],  we consider a set

Et = {x E V : IP(x)I < P*(t)).

It is easy to see that IEt I = t and IIPIIC(E,) = P*(t). Now applying (4.10) to P and
E = E t , we obtain the estimate

(5.7)	 P*(t) > exp( -4n'"- 1 — t /IVI)IP(0)I.

Next, setting an = 1 — (4n)-'n and using (5.1) and (5.7), we have

IIPIIF(v) = IIP * IIF(O,Ivi) >— IIP * IIF(a„ivi,IVl) ? P*(anIVI).F(IVI(4n) -m)

> e- 'IP(0)I1F(IVI(4n) -m)•

This yields (5.6). Inequality (5.5) can be established similarly, if we apply (4.49) instead
of (4.10).	 n

Remark 5.1. Inequality (5.6) plays an important role in the limit theorems of approx-
imation theory [35], [36]. Another application of (5.6) to entire functions of exponential
type is presented below.

5.3. A Nikolskii-Type Inequality for Entire Functions of Exponential Type

Let V be a centrally symmetric (with respect to the origin) body in Rm, and let V*
(y E Rm : sups v I E°_ i xi y, I <_ 1) be a polar of V. We say that an entire function g
has exponential type a V, a > 0, if for every s > 0 there exists a constant AE satisfying
the inequality Ig(z)I < Ae exp((a + s) supXEV I E”` t xiz; I) for all z E C'n. We denote
by Ba v, a > 0, the class of all entire functions of exponential type a V.
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An extension of the Nikolskii inequality (see [50, p. 235]) to an NRIS was given in
[28], [29]. In particular, for g E B,,Q. n F(Rm), the following inequality is valid:

	

(5.8)	 IIgDIC(RR) -< 
,fF(( /Q)m) IIgHIF(R"),

where Qm :_ {x E Rn° : Ix; I < 1, 1 <i <m} is the cube, and C depends only on m.
A different proof of (5.8) was given by Berkolaiko and Ovchinnikov [6]. On the other
hand, Nessel and Wilmes [45] (see also Aliev [1]) obtained the Nikolskii-type inequality
for g E BQv n Lp (Rm):

	(5.9)	 IISIIL,(RM)<- ((s1(2n))ml v`Im)p -1 lgII81ILp(R,.),	 1 < p	 q	 oo,

where s := inf{k E Z' : k> p/2}.
The following theorem is a combined version of inequalities (5.8) and (5.9).

Theorem 5.2. If F(Rm) is an NRIS, then for g E BQ v n F(Rm),  o > 0:

	

(5.10)	 IISIIC(R-)	 F(IV , Ic
(47)

_m) IIglIF(RR),

where C <e is an absolute constant.

To prove the theorem we need two lemmas.

Lemma 5.1. Let F(Rm) bean NRIS. If g E BQ v n F(Rm), then g E Bogy n C(R'n).

Proof. We first show that for every s > 0 the function h8 (x) = (sineIX118Ixl)m +2

belongs to any NRIS F(Rm). Indeed, for the cubes Qk :_ {x E Rm : Ix; — k; I < 2,
1 <i <m},k=(kl,...,km ) EZm,wehave

	

(5.11)	 IIheIIF(Rm)	 IIh€IIF(QE)	 C(l) (1 + E Ikl -m -2 < 00.

keZ-	 IkI>O

Next, for a fixed x E Rn` the function g(y)h(x — y) belongs to Ba Q., where Cl

depends only on V. Hence using the Nikolskii inequality (see [50, p. 235]) and taking
account of (5.2) and (5.11), we obtain that for all x ER'", y E Rm:

Ig(y)h1(x - y)I < C f Ig(u)hl(x - u)I du -< CII$IIF(R_)IIhIIIFI(RM) = C1.
"'

Finally choosing y = x, we conclude that g E C(Rm).	 n

Lemma 5.2. Let F(Rm) be an NRIS. Then for every g E Bo v n F(Rm) there exists
a sequence of polynomials Pn E Pn , m , n = 1, 2, ... , such that the following relations
hold:

	(5.12)	 Jim  IIg — P.II C((a, /Q)V•) = 0,

	(5.13)	 Jim II g — Pn1I F((an /a)V*) = 0,

where an = n — .J.
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Proof. Lemma 5.1 shows that g E C(Rm). Let P, E Pn,,n satisfy the condition

Ilg — Pn II C((a,,/a)V*) _ if hg — P IIC((a,,/a)V.),	 n = 1, 2, ... .
PEP,,,,

Next, we shall use the following estimate proved in [35]:

(5.14)	 118 — Pn IIC((a,/Q)V•)	 C l n^' exP(—C2nf)118IIC(xm),

where Cl, C2, y and 6 > 0 are constants that depend only on m. Then (5.12) follows
from (5.14). Further, taking account of property (a) of the NRIS, we obtain from (5.14):

1 r Ilg — PnII F((a„/a)V•) :< n *F((an/o)m IV * Im)II8 — PnIIC((an /o)V') = 0•
oo

Hence (5.13) follows.	 n

Proof of Theorem 5.2. Let Pn , n = 1, 2,..., be the sequence of polynomials from
Lemma 5.2. Then using Theorem 5.1(b) and Lemma 5.2, we obtain

(5.15)
e

Ig(0)1 <_ 1rtm upI8(0) — Pn(0)1+lim sup
i/F((an

/(4nQ))mll'*Im)IIPnhIFua,,/a)V')

e

1F(IV*Im(4a) -m)
11811F(xm)+ ^F((40)e

mIV*Im) 
urn 118— PnIIF(canla>V•)

e

VF(IV*(40)-m) 
IIgliFcx^)•

Lemma 5.1 and (5.15) yield (5.10). 	 n

Remark 5.2. The following example shows that Theorem 5.2 cannot be essentially
improved. Let go(x) = (f(11/2) ,cos(F_l̂ x^y1)dy) 2 be the function from B,vnL1(Rm).
Then go belongs to any NRIS F(Rm), and

118ohIF(R'^)<_ C(m)rF(IV*I(4es)_')IIgohIc(R-)•

5.4. Upper Estimates of Trigonometric Integrals

Upper estimates of trigonometric integrals

Im ,P = 
fK. 

exp(2iriP(x))dx,

where P is a polynomial in m variables and K'n = [0, 1]m, play an important role in
some areas of Number Theory, Analysis, Probability, and Mathematical Statistics. In
1980 Vinogradov [51] came up with the idea of an estimate of II ,P which is based on a
Polya-type inequality. Arkhipov, Karatsuba, and Chubarikov [2] developed this approach
and established the following result: for P (x) = Ek_o akx k , n > 2:

\ 1/n

(5.16)	 III,FI < min 1, 32 (
I<k<n
max lakI J

	).
 /

Applying the same approach and using Corollary 2.1, it is possible to obtain a refine-
ment of (5.16).
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Theorem 5.3. For P(x) _ Xk_o akxk , n > 2:

	n 	1/rt

(5.17)	 IIi,pI < min 1, 20 Eklakl
k=1

Proof. For a fixed number t > 0 and a set Et = {x E [0, 1 ] : I P' (x) I < t }, we have

(5.18) III,pI < I fE, exp(2triP(x))dxI
+If,..I]—Et 

exp(27riP(x))dxI =I*+I**

Next, applying Corollary 2.1 to the polynomial P', to the interval [a, b] = [0, 1], and to
the set E = E, we obtain

n

Eklakl < Tn-1(4/IEtI —1)IIP'IIC(E,)	 (8/IEtI)n- ' t.
k=1

This shows that

	n 	 1 /(n—I)

(5.19)	 I* < IEtI 8 (tl >2klakl)
k=1

The inequality

(5.20)	 I** < '/(n — 1)/t

was proved in [2, p. 15]. Thus (5.18), (5.19), and (5.20) yield

n 	1 /(n-1)

Ih,pl < min(1,inf 8 (t/ 	 klak l	 + /2(n — 1)/t
—	 r >o	 k=1	 )

n 	—[jn

— min 1, 20 (	 k l ak I )
k=1

Hence (5.17).	 n

Using (5.17) and induction in m, the authors of [2] obtained the following multidi-
mensional version of (5.17):

/	 l 1/n
	 (maxlaai+2)(5.21)	 I1m,PI < ruin132I maxIaa ) I	 l n`-1 

where ate , Ia I > 0, are the coefficients of P E P,;. ,n
• 

Below we establish some new
estimates of Im , P .
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Theorem 5.4. Let P be a polynomial in m variables, m> 1:

(a) If P(x) = F_ 	 a.xa E Pn.m, then for n > 2:

/ 1/n

(5.22)	 I Im, P I min(1, c( max la-1) -

where C depends only on m and n.
(b) If P(x) — ^a ... En , _0 aaxa E Pn m , then for n > 2:

	11(n)	 \
(5.23)	 IIm.PI <min^1,20 (max laa I)	 lnm_I (maxx laa I+2

) 

.

To prove the theorem we need a multidimensional generalization of (5.20).

Lemma 5.3. For a polynomial P E Pn , m , n > 2, and a set E t ,^ = {x E K'n : 13P(x)/
8x1 <t}, 1 <j <m,t > 0, we have

(5.24)	 f	 exp(2riP(x))dx < /(n-1)/t.
'" — E,,i

Proof. Let P (x) = P. (x) be a polynomial of a single variable x^ and let Et , x. =
{x^ E [0, 1] : Id P.. (x^)/dxx I < t), where x* = (x1, ... , xj -1, xj+1 , ... , xm ) is a fixed
point of Km —I , 1 < j < m. Then applying (5.20) to Ps., we obtain

J exp(2iriP(x))xl < f,--,

exp(2.7riP.(xj))dxj dx*
  

[x,17—E, =.

< ./(n — 1)/t.

Thus (5.24).	 n

Proof of Theorem 5.4. We first prove statement (a). Let as = a(a , ...	 be a coefficient
of P E Pn ,,n such that l as I > 0, l al > 0, and a^ > 0 for some j , 1 < j < m. Then for
every t > 0 we have

(5.25) IIm ,PI < I exp(2rriP(x))dx + J exp(2rriP(x))dx = 1*+I**,

where Et,^ is defined in Lemma 5.3. Next, by Lemma 5.3:

(5.26)	 1** < /(n — 1)/t.

Further applying Pblya-type inequality (4.5) to 8P(x)/axx E Pn_l,m and to V = K'n,
we obtain

I * < I Et,i I	 C(t/Iaa l)11(n-1)
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Together with (5.25) and (5.26), this implies

lJm,PI < min (1, ^nff(V(n — 1)/t + C(t/laa l) I I(n -1) ) I < min(l, Claa l - 'In)

This yields (5.22). The proof of (5.23) is similar to that of (5.21) if we use inequality (5.17)
instead of (5.16). 	 n

Remark 5.3. Estimate (5.22) immediately implies that the special integral of Tarry's
problem [2]:	r	 2L

	B = J	 IfK-
exp(2.7riP(x))dxI dä

converges if 2L > n(N — 1). Here a = (aa )o< ^a i<m is the vector of all coefficients of
n-^m

P E Pn , m but a(o,...,0), and N = dim P,,, m =	 m ) Using a more sophisticated

approach, the authors of [2] obtained that 0 converges if 2L > (m + 1) n -}- m
m + 1)
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