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Abstract
We study the characteristic polynomial pn(x) = ∏n

j=1(|z j | − x) where the z j are
drawn from the Mittag–Leffler ensemble, i.e. a two-dimensional determinantal point
process which generalizes the Ginibre point process.We obtain precise large n asymp-
totics for the moment generating function E[e u

π
Im ln pn(r)ea Re ln pn(r)], in the case

where r is in the bulk, u ∈ R and a ∈ N. This expectation involves an n × n deter-
minant whose weight is supported on the whole complex plane, is rotation-invariant,
and has both jump- and root-type singularities along the circle centered at 0 of radius
r . This “circular" root-type singularity differs from earlier works on Fisher–Hartwig
singularities, and surprisingly yields a new kind of ingredient in the asymptotics, the
so-called associated Hermite polynomials.
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Constructive Approximation

1 Introduction and Statement of Results

The Mittag–Leffler ensemble with parameters b > 0 and α > −1 is the joint
probability distribution

1

n!Zn

∏

1≤ j<k≤n

|zk − z j |2
n∏

j=1

|z j |2αe−n|z j |2bd2z j , z1, . . . , zn ∈ C, (1.1)

where Zn is the normalization constant. This determinantal point process can be real-
ized as the eigenvalues of a random normal matrix M with distribution proportional to
| det(M)|2αe−n tr((MM∗)b)dM [54]. The special case (b, α) = (1, 0) also corresponds
to the eigenvalue distribution of a Ginibre matrix [15, 43], i.e. an n × n matrix with
independent complex Gaussian entries with mean 0 and variance 1

n .
Consider the characteristic polynomial pn(x) =∏n

j=1(|z j | − x) of the process of
the moduli {|z j |}nj=1. The main result of this work is a precise asymptotic formula as
n → +∞ for

E

[
e

u
π
Im ln pn(r)ea Re ln pn(r)

]
, (1.2)

where u ∈ R, a ∈ N := {0, 1, . . .}, r ∈ (0, b− 1
2b ) are fixed, and ln pn(r) :=

ln |pn(r)| + π i #{z j : |z j | < r}. The macroscopic large n behavior of the |z j |
is described by the probability measure dμ(y) = 2b2y2b−1dy, whose support is

[0, b− 1
2b ] [57]; thus the condition that r ∈ (0, b− 1

2b ) is fixed means that we focus on
“the bulk regime”. By definition, the expectation (1.2) is equal to Dn/Zn , where

Dn := 1

n!
∫

C

. . .

∫

C

∏

1≤ j<k≤n

|zk − z j |2
n∏

j=1

w(z j )d
2z j = det

(∫

C

z j zkw(z)d2z

)n−1

j,k=0

and the weight w is given by

w(z) := |z|2αe−n|z|2bω(|z|), ω(x) := |x − r |a
{
eu, if x < r ,

1, if x ≥ r .

Hence our results can also be seen as large n asymptotics for n × n determinants
whose weight is supported on C, rotation-invariant, has both jump- and root-type
singularities along the circle centered at 0 of radius r (which we will call “circular"
jump- and root-type singularities), and a “pointwise" root-type singularity at 0.

Since w is rotation-invariant,
∫
C
z j zkw(z)d2z = 0 for j �= k, and therefore

Dn =
n−1∏

j=0

∫

C

|z|2 jw(z)d2z = (2π)n
n∏

j=1

∫ +∞

0
v2 j−1w(v)dv. (1.3)

Over the past 50 years or so a lot ofworks have been done on structured determinants
with singularities, andwe briefly pause here to review the literature. In their pioneering
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work [38], Fisher and Hartwig made a conjecture for the asymptotics of large Toeplitz
determinants when the weight is supported on the unit circle and has root- and jump-
type singularities—such singularities are now called Fisher–Hartwig singularities.
Many authors have contributed in proving this conjecture for certain parameter ranges,
among which Lenard [53], Widom [65], Basor [7], Böttcher and Silbermann [13], and
Ehrhardt [33].A counterexample to the Fisher–Hartwig conjecturewas found byBasor
and Tracy in [10], and the corrected conjecture was solved for general values of the
parameters by Deift, Its and Krasovsky [31]. The study of these singular determinants
was motivated mainly from questions arising in the Ising model and impenetrable
bosons, see [9, 32] for more historical background. In recent years, these determinants
have also attracted considerable attention in the randommatrix community.One reason
for that is the well-knownwork [45] of Keating and Snaith, where numerical evidences
were found of links between the characteristic polynomials of unitary and Hermitian
random matrices and the zeros of the Riemann zeta function on the critical line.
Expectations of powers of the absolute value of the characteristic polynomial of the
Gaussian Unitary Ensemble, which are Hankel determinants with a Gaussian weight
on R and root-type singularities, were investigated in [14] and their asymptotics were
obtained by Garoni [42] for integer values of the parameters and by Krasovsky [46]
for the general case. This result was then generalized by Berestycki, Webb and Wong
[11] for one-cut regular ensembles. In a different direction, Its and Krasovsky in
[44] obtained asymptotics of Hankel determinants with a jump-type singularity and a
Gaussian weight. Such determinants provide information about the imaginary part of
the log-characteristic polynomial of the Gaussian Unitary Ensemble. The results [11,
44] have been generalized in [19] for general Fisher–Hartwig singularities and one-cut
regular ensembles. The case of one-cut regular ensembles with hard edges was then
treated in [23], and the multi-cut case in [24]. Strong results on Toeplitz determinants
with merging Fisher–Hartwig singularities are also available in the literature [27,
35]; these results have been useful to prove a conjecture of [41] on “the moments
of the moments" of the characteristic polynomial of random unitary matrices, and
[27] has also been used by Webb in [63] to establish a connection between random
matrix theory and Gaussian multiplicative chaos. There exists also a vast literature on
other structured determinants with Fisher–Hartwig singularities, see e.g. [28, 29] for
Fredholm determinants, [8, 26, 39] for Toeplitz+Hankel determinants, and [22] for a
biorthogonal generalization of Hankel determinants.

The literature on determinants associated with a singular weight supported on C is
more limited. For a = 0, (1.2) is the moment generating function of the disk counting
function

E

[
e

u
π
Im ln pn(r)

]
= E

[
eu #{z j :|z j |<r}], (1.4)

and in this case w is discontinuous along a circle but has no circular root-type singu-
larity. Counting statistics of two-dimensional point processes have attracted a lot of
interest in recent years [1, 18, 20, 25, 34, 37, 47–49, 59, 60]. The first two terms in
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the large n asymptotics of (1.4) were derived in [18, 48]1. More precise asymptotics,
including the third term of order 1, were obtained in [37] for the Ginibre ensemble (i.e.

(b, α) = (1, 0)),2 and the asymptotics of (1.4) including the fourth term of order n− 1
2

were then obtained in [20] for general b > 0 and α > −1. Several works on determi-
nants with pointwise root-type singularities in dimension two are also available in the
literature. In [5, 6, 12, 17, 50–52], the orthogonal polynomials for the planar Gaussian
weight perturbed with a finite number of pointwise root-type singularities have been
studied, see also [3] where microscopic properties of the associated point process have
been analyzed. Building on [5, 50], Webb andWong in [64] obtained a precise asymp-
totic formula for E[ea Re ln qn(r)] where a ∈ C is fixed, Rea > −2, r < 1 and qn is
the characteristic polynomial of a Ginibre matrix, i.e. qn(x) =∏n

j=1(z j − x) and the
z j are drawn from (1.1) with (b, α) = (1, 0). This expectation involves a determinant
with a single pointwise root-type singularity in the bulk. The case where r is close to
1, which corresponds to the edge regime, was then investigated by Deaño and Simm
in [30]. Determinants with two merging planar pointwise root-type singularities were
also considered in [30], and the asymptotics were found to involve some Painlevé
transcendents. The regime where a is proportional to n reveals a topological phase
transition and was studied in [17]. (We also mention that determinants with regular
weights supported on C have recently been studied in [2, 16].)

Determinants with circular root-type singularities have not been considered before
to our knowledge. Amain difficulty in the analysis of pointwise root-type singularities
in dimension two stems from the fact that they break the rotation-invariance of the
weight (unless of course if they are located at 0). The circular root-type singularities
preserve the rotation-invariance of the weight, which makes them simpler to analyze
in this respect, but they also pose a series of new challenges, which we discuss at the
end of this section, and which we have been able to overcome only for integer values
of a. Interestingly, these circular root-type singularities also produce some associated
Hermite polynomials (see below for the definition) in the asymptotics. This came as
a surprise to us and appears to be completely new. There are of course many exact
formulas in random matrix theory which involve the Hermite polynomials, but we
are not aware of an earlier work where these polynomials show up explicitly in the
asymptotics of large determinants, let alone the associated Hermite polynomials (see
however [36]where Legendre polynomials appear in the asymptotics of the sine-kernel
determinant in a transition regime). For comparison, pointwise root-type singularities
typically produce other kinds of ingredients in the asymptotics, such as Barnes’ G-
function (as was discovered by Basor [7] in dimension one and by Webb and Wong
[64] in dimension two), and circular jump-type singularities involve the error function.
We alsomention that ensembles with circular root-type singularities have been studied
in [58, 67], and ensembles with “elliptic” root-type singularities in [55]. In [55, 58,
67], the singularities are located at the hard edge and the focus was on the leading

1 [18] considers counting statistics on more general domains (not only centered disks) for a class of
determinantal processes on a Kähler manifold (which includes Ginibre), and [48] considers general “one-
cut" rotation-invariant potentials (including Mittag–Leffler).
2 Some generalizations of the Ginibre point process (different from theMittag–Leffler ensemble) and some
hyperbolic models have also been considered in [37].
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order behavior of the kernel; in particular, the (associated) Hermite polynomials do
not show up in these works.

The ν-th associated Hermite polynomials {He(ν)
k : k = 0, 1, . . . } are defined

recursively by

{
He(ν)

k+1(x) = x He(ν)
k (x) − (k + ν)He(ν)

k−1(x), k ≥ 1,

He(ν)
0 (x) = 1, He(ν)

1 (x) = x,
(1.5)

and satisfy the orthogonality relations [4]

∫ +∞

−∞
He(ν)

k (x)He(ν)
� (x)

dx

|D−ν(i x)|2 = √
2π (k + ν)! δk�, k, � = 0, 1, . . .

where D−ν is the parabolic cylinder function (see e.g. [56, Chapter 12]). These
polynomials are explicitly given by

He(ν)
k (x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

k!

k/2�∑

�=0

(−1)�

�!(k − 2�)!
xk−2�

2�
=
[ d

dt

]k[
ext−

t2
2

]∣
∣
∣
t=0

, if ν = 0,


k/2�∑

�=0

(−1)�

(k − 2�)!
( �∑

j=0

(k − j)!(ν − 1 + j)!
j !(� − j)!(ν − 1)!2�− j

)

xk−2�, if ν ≥ 1,

(1.6)

see [66, eq. (4.12)]. For ν = 0, they reduce to the standard Hermite polynomials3,
i.e. He(0)

k (x) = Hek(x) for all k ∈ N. We refer to [62] for basic properties of general
associated polynomials, and to [66] for a focus on the Hermite case.

Only the polynomials {Hek,He(1)
k : k = 0, 1, . . .}, corresponding to ν = 0 and

ν = 1, will appear in our asymptotic formula. Our results can be presented in a unified
way if we formally define Hek , He

(1)
k for the first few negative k as follows:

He−1(x) := 0, He−2(x) := 1, He−3(x) := − x

2
,

He(1)
−1(x) := 0,

[
kHe(1)

k−2(x)
]
k=0 := −1,

[
kHe(1)

k−3(x)
]
k=0 := x,

[
kHe(1)

k−4(x)
]
k=0 := − x2 + 1

2
. (1.7)

These definitions are consistent with the recurrence (1.5). For general a ∈ N, we
define

p0,a(x) := 1

ia
Hea(i x) =


a/2�∑

s=0

a!
s!(a − 2s)!

xa−2s

2s
, (1.8)

3 There are two commonly used Hermite polynomials in the literature, denoted Hek and Hk , and which
are related by Hk (x) = 2

k
2 Hen(

√
2 x). For us it is more convenient to work with Hek .
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q0,a(x) := 1

ia−1 He
(1)
a−1(i x) =


(a−1)/2�∑

s=0

( s∑

j=0

(a − 1 − j)! 2 j

(s − j)!
)

1

(a − 1 − 2s)!
xa−1−2s

2s
, (1.9)

p1,a(x) := −a

2
p0,a+1(x) − ab

(
p0,a+1(x) − (3a − 1) p0,a−1(x)

+ 5

3
(a − 1)(a − 2) p0,a−3(x)

)
, (1.10)

q1,a(x) := −a

2
q0,a+1(x) − b

(
aq0,a+1(x) − (3a − 1)[a q0,a−1(x)]

+ 5

3
[a(a − 1)(a − 2) q0,a−3(x)]

)
, (1.11)

where the brackets in (1.11) emphasize that for the first values of a, one needs to use
(1.7), namely

[aq0,a−1(x)] :=
{
1, if a = 0,

aq0,a−1(x), if a ≥ 1,

[a(a − 1)(a − 2)q0,a−3(x)] :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x2 − 1, if a = 0,

−x, if a = 1,

2, if a = 2,

a(a − 1)(a − 2)q0,a−3(x), if a ≥ 3.

(1.12)

To be concrete, the first polynomials are given by

(
p0,a(x)

)4
a=0 = (p0,0(x), p0,1(x), p0,2(x), p0,3(x), p0,4(x)

)

=
(
1, x, x2 + 1, x3 + 3x, x4 + 6x2 + 3

)
,

(
q0,a(x)

)4
a=0 =

(
0, 1, x, x2 + 2, x3 + 5x

)
,

(
p1,a(x)

)4
a=0 = −(a

2
p0,a+1(x)

)4
a=0

+ b
(
0,−x2 + 1,−2x3 + 4x,−3x4+6x2+5,−4x5+4x3+32x

)
,

(
q1,a(x)

)4
a=0 = −(a

2
q0,a+1(x)

)4
a=0 + b

(
− 5

3
x2 + 2

3
,
2

3
x,−2x2 + 8

3
,

− 3x3 + 9x,−4x4 + 8x2 + 16
)
.

The large n asymptotics of E
[
e

u
π
Im ln pn(r)ea Re ln pn(r)

]
are naturally described in

terms of the two functions

G0(y; u, a) :=p0,a(−
√
2y)

(

(−1)a + eu − (−1)a

2
erfc(y)

)

+ q0,a(−
√
2y)(eu − (−1)a)

e−y2

√
2π

, (1.13)
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G1(y; u, a) :=p1,a(−
√
2y)

(

(−1)a + eu − (−1)a

2
erfc(y)

)

+ q1,a(−
√
2y)(eu − (−1)a)

e−y2

√
2π

, (1.14)

where y ∈ R, u ∈ R, a ∈ N, and erfc is the complementary error function

erfc(y) = 2√
π

∫ ∞

y
e−x2dx . (1.15)

In the statement of our theorem, G0 appears inside a logarithm and in a denominator.
It turns out that G0(y; u, a) > 0 for all y ∈ R, u ∈ R and a ∈ N. This fact is not
obvious so we defer the proof to Sect. 4, see Lemma 4.9.

Theorem 1.1 Let b > 0,α > −1, r ∈ (0, b− 1
2b ), u ∈ Randa ∈ Nbefixedparameters.

As n → +∞,

E

[
e

u
π
Im ln pn(r)ea Re ln pn(r)

]
= exp

(

C1n+C2
√
n + C3+O

(
n− 1

2b + (ln n)
5
8 n− 1

8

))

,

(1.16)

where

C1 =
∫ r

0

(
u + a ln(r − y)

)
dμ(y) +

∫ b− 1
2b

r
a ln(y − r) dμ(y),

C2 = √
2 brb

∫ +∞

−∞

(
ln G0(y; u, a) − a ln(

√
2|y|) − uχ(−∞,0)(y)

)
dy,

C3 = −
(
1

2
+ α

)

u + a(1 − a)

4(1 − (br2b)
1
2b )

+ a

4
(2 + a − 2b + 4α) ln

(
(br2b)−

1
2b − 1

)

+
∫ +∞

−∞

{
1√
2

G1(y; u, a)

G0(y; u, a)
+ 4by

(
ln(G0(y; u, a)) − uχ(−∞,0)(y)

)

− a

2
y
(
1 + 2b + 8b ln(

√
2|y|)

)
+ (2ab − a2)y

4(1 + y2)

}

dy,

dμ(y) = 2b2y2b−1dy, and χ(−∞,0)(y) = 0 for y ≥ 0 and χ(−∞,0)(y) = 1 for y < 0.

Remark 1.2 For a = 0, the next term in (1.16) is of order n− 1
2 and was obtained

explicitly in [20]. For a ≥ 1, numerical simulations suggest that the O-term is in fact

of order n− 1
2 + n− 1

2b . This also suggests that our estimate in (1.16) for the O-term is
optimal for b > 4 and a ≥ 1.
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Outline of the proof of Theorem 1.1

Let En := E
[
e

u
π
Im ln pn(r)ea Re ln pn(r)

]
. Our starting point is the following exact

formula

ln En =
n∑

j=1

ln

( a∑

k=0

(
a

k

)
(−r)a−k

n
k
2b

	(
2 j+2α+k

2b )

	(
2 j+2α
2b )

[

1 + ((−1)aeu − 1)
γ (

2 j+2α+k
2b , nr2b)

	(
2 j+2α+k

2b )

])

, (1.17)

where γ (ã, z) is the incomplete gamma function

γ (ã, z) =
∫ z

0
t ã−1e−t dt .

Formula (1.17) can be derived using the facts that (1.1) is determinantal and that w is
rotation-invariant, see Lemma 2.1 below. For fixed j and a ≥ 1, it is easy to see that

the summand in (1.17) contains a term proportional to n− 1
2b in its large n asymptotics.

This already explains why our estimate for the error term in (1.16) contains n− 1
2b .

To obtain precise asymptotics for En , up to and including the termC3 of order 1, we
must take into account each of the n terms in the sum (1.17) (they all contribute). As can
be seen from (1.17), this means that we need precise uniform asymptotics for γ (ã, z)
as both z → +∞ and ã → +∞ at various different relative speeds. Fortunately, these
asymptotics are available in the literature [61]. Following the approach of [40] (which
was further developed in [20, 21]), we will split the sum (1.17) in several parts,

ln En = S0 + S1 + S2 + S3,

where S�, � = 0, 1, 2, 3 are given in (2.5–(2.8). There is a critical transition in the
large ã asymptotics of γ (ã, z) when z → +∞ is such that λ = z

ã ≈ 1. The sum S2 is
the hardest one and precisely corresponds to this critical transition; it requires a “local
analysis” involving the j-terms in (1.17) for which bnr2b

j ≈ 1.
We found that, quite surprisingly, circular root-type singularities are significantly

more involved to analyze than circular jump-type singularities. Let us highlight some
of the reasons for that:

• The “global analysis” needed for S0, S1 and S3 requires some precise Riemann sum
approximations for functions with singularities. For comparison, the analogue of
S0, S1 and S3 in [20] in the case of pure circular jump-type singularities are straight-
forward to analyze, because the corresponding Riemann sum approximations only
involve constant functions.

• Huge cancellations occur in the “local analysis” of S2. In fact, to obtain C3, we
need to expand up to the (a + 2)-th order the summand of the k-sum in (1.17).
This is because, curiously, the first a terms in the expansion cancel perfectly after
summing over k. To treat the general case a ∈ N, this means that we need to
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expand various quantities to all orders. An important technical obstacle is that
the coefficients in these various expansions are not always readily available in an
explicit form; sometimes they can only be found recursively and involve heavy
combinatorics, see e.g. Lemma 4.5 and the all-order expansion of γ in LemmaA.2.
The analysis of S2 is in fact the only part in the proof where solving the problem
for general a ∈ N is clearly harder than solving the problem for a finite number of
values of a, say a ∈ {0, 1, 2, 3, 4}. This is also the only place in the proof where
the (associated) Hermite polynomials arise, see Lemmas 4.6 and 4.7.

Remark 1.3 For non-integer values of a, formula (1.17) does not hold and the con-
nection with the incomplete gamma function is lost (and therefore the strong results
from [61] cannot be used anymore). This is the main reason as to why we decided
to restrict ourselves to a ∈ N in this work. For a /∈ N, the exact expression for En
involves hypergeometric functions that generalize the incomplete gamma function.

Also, because of the well-known relation Dk(z) = e− z2
4 Hek(z), k ∈ N (see [56, eq

12.7.2]), it is tempting to conjecture that for the general case a ∈ (−1,+∞) the large n
asymptotics of En involve the parabolic cylinder function. It would be very interesting
to figure that out in detail.

Outline of the paper. In Sect. 2, we prove (1.17), define the sums S j , j = 0, 1, 2, 3,
and establish many useful lemmas. In Sect. 3, we obtain the large n asymptotics of S0,
S3 and S1. The large n asymptotics of S2 are then obtained in Sect. 4. We finish the
proof of Theorem 1.1 in Sect. 5.

2 Preliminaries

This section contains the proof of (1.17) and the definitions of S0, . . . , S3. We also
establish here various preliminary lemmas that will be used in Sects. 3 and 4.

Lemma 2.1 Formula (1.17) holds for all n ∈ N>0 := {1, 2, . . .}.
Proof The partition function Zn of the Mittag–Leffler ensemble is known to be

Zn = n− n2
2b n− 1+2α

2b n πn

bn

n∏

j=1

	(
j+α
b ), (2.1)

see e.g. [20, eq. (1.23)]. Since En = Dn/Zn , it only remains to find a simplified exact
expression for Dn . Since a ∈ N,

w(v) = v2αe−nv2b

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

eu
a∑

k=0

(
a

k

)

(−1)kvkra−k, if v < r ,

a∑

k=0

(
a

k

)

(−1)a−kvkra−k, ifv ≥ r ,
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and thus, by (1.3),

Dn = n− n2
2b n− 1+2α

2b n πn

bn

n∏

j=1

a∑

k=0

(
a

k

)
(−r)a−k

n
k
2b

(

	(
2 j+2α+k

2b ) + ((−1)aeu − 1)

γ (
2 j+2α+k

2b , nr2b)

)

. (2.2)

The claim now follows directly from (2.1), (2.2) and En = Dn/Zn . 
�

Throughout the paper, c and C denote positive constants which may change within
a computation, and ln always denotes the principal branch of the logarithm.

LetM ′ be a large integer independent of n, let ε > 0 be a small constant independent

of n, and let M := n
1
8 (ln n)− 1

8 . Define

j− := � bnr2b
1+ε

− α�, j+ := 
 bnr2b
1−ε

− α�. (2.3)

We choose ε small enough so that

br2b

1 − ε
<

1

1 + ε
.

Using (1.17), we divide ln En into 4 parts

ln En = S0 + S1 + S2 + S3, (2.4)

with

S0 =
M ′
∑

j=1

ln

( a∑

k=0

(
a

k

)
(−r)a−k

n
k
2b

	(
2 j+2α+k

2b )

	(
2 j+2α
2b )

[

1 + ((−1)aeu − 1)
γ (

2 j+2α+k
2b , nr2b)

	(
2 j+2α+k

2b )

])

, (2.5)

S1 =
j−−1∑

j=M ′+1

ln

( a∑

k=0

(
a

k

)
(−r)a−k

n
k
2b

	(
2 j+2α+k

2b )

	(
2 j+2α
2b )

[

1 + ((−1)aeu − 1)
γ (

2 j+2α+k
2b , nr2b)

	(
2 j+2α+k

2b )

])

, (2.6)

S2 =
j+∑

j= j−
ln

( a∑

k=0

(
a

k

)
(−r)a−k

n
k
2b

	(
2 j+2α+k

2b )

	(
2 j+2α
2b )

[

1 + ((−1)aeu − 1)
γ (

2 j+2α+k
2b , nr2b)

	(
2 j+2α+k

2b )

])

, (2.7)

S3 =
n∑

j= j++1

ln

( a∑

k=0

(
a

k

)
(−r)a−k

n
k
2b

	(
2 j+2α+k

2b )

	(
2 j+2α
2b )

[

1 + ((−1)aeu − 1)
γ (

2 j+2α+k
2b , nr2b)

	(
2 j+2α+k

2b )

])

. (2.8)

In Sects. 3 and 4, we will analyze these sums in order of increasing difficulty: first
S0, then S3, then S1, and finally S2. The sum S0 is straightforward to analyze, but S1,
S2 and S3 are more involved and require some preparation. This preparation is carried
out in the next subsection.
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2.1 Useful Lemmas

For � ∈ N := {0, 1, . . .}, let

g�(x) :=
a∑

k=0

(
a

k

)

xkk�. (2.9)

If k = � = 0 in (2.9), then k� := 1 so that g0(x) = (1 + x)a .

Remark 2.2 The sequence {g�}+∞
�=0 satisfies g�+1(x) = xg′

�(x), � ∈ N. Solving this
recurrence relation using the initial value g0(x) = (1 + x)a yields

g�(x) =
[ d

dt

]�[
(1 + et )a

]∣
∣
∣
t=ln x

,

which is an interesting alternative representation of g�.

The next lemma establishes yet another representation of g�.

Lemma 2.3 For � ∈ N>0, we have

g�(x) = x(x + 1)a−min(�,a)

min(�,a)∑

j=1

S(�, j)
a!

(a − j)! x
j−1(x + 1)min(�,a)− j , (2.10)

where S(�, j) is the Stirling number of the second kind, i.e. the number of partitions
of {1, . . . , �} into exactly j nonempty subsets. Furthermore,

g�(x) = O(x), as x → 0, � ∈ N>0, (2.11)

g�(x) = O(min{1, |x + 1|a−�}), as x → −1, � ∈ N. (2.12)

Remark 2.4 Since g0(x) = (1 + x)a , (2.10) and (2.11) do not hold for � = 0.

Proof Let � ∈ N>0 be fixed. By [56, eq. 26.8.10], we have

k� =
�∑

j=1

(k) j S(�, j), for all k ∈ C, (2.13)

where (k) j := k(k−1)(k−2) . . . (k− j +1) is the descending factorial. Substituting
(2.13) in (2.9), we obtain

g�(x) =
a∑

k=0

min(�,k)∑

j=1

a!S(�, j)xk

(a − k)!(k − j)! =
min(�,a)∑

j=1

a∑

k= j

a!S(�, j)xk

(a − k)!(k − j)!

=
min(�,a)∑

j=1

S(�, j)
a!

(a − j)!
a∑

k= j

(
a − j

k − j

)

xk
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Constructive Approximation

=
min(�,a)∑

j=1

S(�, j)
a!

(a − j)! x
j (x + 1)a− j ,

which is (2.10). The expansions (2.11) and (2.12) for � ≥ 1 directly follows from
(2.10), and (2.12) for � = 0 follows from g0(x) = (1 + x)a . 
�
The sums S1, S2 and S3 naturally involve the functions

γ�(x) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a∑

k=0

(
a

k

)

(−r)a−k
(
x

b

) k
2b

k�, x > br2b,

a∑

k=0

(
a

k

)

(−1)kra−k
(
x

b

) k
2b

k�, x ∈ (0, br2b).

(2.14)

The next lemma collects some properties of γ�.

Lemma 2.5 Let � ∈ N. The function γ� can be written as

γ�(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∣
∣
∣r −

( x

b

) 1
2b
∣
∣
∣
a
, if � = 0,

( x

b

) 1
2b
∣
∣
∣r −

( x

b

) 1
2b
∣
∣
∣
a
min(�,a)∑

j=1

a!S(�, j)

(a − j)!
( x

b

) j−1
2b
(( x

b

) 1
2b − r

)− j
, if � ≥ 1.

(2.15)

In particular,

γ�(x) = O(x
1
2b ), as x → 0, � ∈ N>0, (2.16)

γ�(x) = O(min{1, |x − br2b|a−�}), as x → br2b, � ∈ N. (2.17)

Proof It is easily checked that

γ�(x) =

⎧
⎪⎨

⎪⎩

(−r)ag�

(
−
( x

br2b

) 1
2b
)
, x > br2b,

rag�

(
−
( x

br2b

) 1
2b
)
, x ∈ (0, br2b).

The claim is now a straightforward consequence of Lemma 2.3. 
�
Lemma 2.6 Let k ∈ N be fixed. As j → +∞,

	(
2 j+2α+k

2b )

	(
2 j+2α
2b )

∼
(
j

b

) k
2b
(

1 +
+∞∑

�=1

p2�(k)

j�

)

, (2.18)
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where

p2�(k) := b�

( k
2b
�

)

B
(1+ k

2b )

�

(2α + k

2b

)
=:

2�∑

m=1

p2�,m km, (2.19)

( k
2b
�

) := k
2b ( k

2b−1)...( k
2b−�+1)

�! , and B(k)
� (x) is the generalized Bernoulli4 polynomial of

degree � defined through the generating function

( t

et − 1

)k
ext =

+∞∑

�=0

B(k)
� (x)

tn

n! , |t | < 2π. (2.20)

Remark 2.7 The degree 2� polynomial p2� satisfies p2�(0) = 0. This is consistent with
the fact that for k = 0 the left-hand side of (2.18) is 1.

Remark 2.8 The notation “∼" in (2.18) means that for any N ∈ N, N ≥ 1, we have

	(
2 j+2α+k

2b )

	(
2 j+2α
2b )

=
(
j

b

) k
2b
(

1 +
N∑

�=1

p2�(k)

j�
+ O( j−N−1)

)

, as j → +∞.

We will use this notation repetitively in the paper.

Proof The claim directly follows from [56, eq. 5.11.13]

	(v + p2 + p1)

	(v + p2)
∼ v p1

+∞∑

�=0

(
p1
�

)
B(p1+1)

� (p1 + p2)

v�
as v → +∞, p1, p2 fixed.


�
Lemma 2.9 As n → +∞,

a∑

k=0

(
a

k

)
(−r)a−k

n
k
2b

	(
2 j+2α+k

2b )

	(
2 j+2α
2b )

∼ γ0( j/n) +
+∞∑

�=1

1

n�

∑2�
m=1 p2�,mγm( j/n)

( j/n)�
,

(2.21)

uniformly for j ∈ { j+ + 1, . . . , n}. Furthermore, M ′ can be chosen sufficiently large
(but fixed) such that the following holds: there exists C > 0 such that

∣
∣
∣
∣

a∑

k=0

(
a

k

)
ra−k(−1)k

n
k
2b

	(
2 j+2α+k

2b )

	(
2 j+2α
2b )

−
{

γ0( j/n)+ γ2( j/n)+ (4α − 2b)γ1( j/n)

8bj

}∣
∣
∣
∣

≤ C
( j/n)

1
2b−2

n2
, (2.22)

4 B(1)
�

(x) is the classical Bernoulli polynomial of degree �, and B(0)
�

(x) = x�.
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for all sufficiently large n and all j ∈ {M ′ + 1, . . . , j− − 1}.
Proof Since a is fixed, Lemma 2.6 implies that

a∑

k=0

(
a

k

)
(−r)a−k

n
k
2b

	(
2 j+2α+k

2b )

	(
2 j+2α
2b )

∼
a∑

k=0

(
a

k

)

(−r)a−k
(
j/n

b

) k
2b
(

1 +
+∞∑

�=1

p2�(k)

j�

)

,

(2.23)

as j → +∞. Since j/n ∈ (br2b, 1] for all j ∈ { j+ + 1, . . . , n}, the expansion (2.21)
directly follows from (2.23) and the definition (2.14) of γ�. In the same way, but using
now the definition (2.14) of γ�(x) for x ∈ (0, br2b), we infer that

a∑

k=0

(
a

k

)
ra−k(−1)k

n
k
2b

	(
2 j+2α+k

2b )

	(
2 j+2α
2b )

∼ γ0( j/n) +
+∞∑

�=1

∑2�
m=1 p2�,mγm( j/n)

j�
,

(2.24)

as j → +∞ uniformly for n such that j/n ∈ (0, br2b). The estimate (2.22) then
follows from (2.24) and the behavior (2.16). 
�

For the large n analysis of S3, S1, S2, we will need to approximate various large
sums of the form

∑
j f ( j

n ) involving some functions f with singularities and some

j’s for which j
n is close to these singularities; for this wewill also rely on the following

lemma from [21].

Lemma 2.10 ([21, Lemma 3.4]) Let A, a0, B, b0 be bounded function of n ∈
{1, 2, . . .}, such that

an := An + a0 and bn := Bn + b0

are integers. Assume also that B − A is positive and remains bounded away from 0.
Let f be a function independent of n, and which is C4([min{ ann , A},max{ bnn , B}]) for
all n ∈ {1, 2, . . .}. Then as n → +∞, we have

bn∑

j=an

f ( j
n ) = n

∫ B

A
f (x)dx + (1 − 2a0) f (A) + (1 + 2b0) f (B)

2

+ (−1 + 6a0 − 6a20) f
′(A) + (1 + 6b0 + 6b20) f

′(B)

12n

+ (−a0 + 3a20 − 2a30) f
′′(A) + (b0 + 3b20 + 2b30) f

′′(B)

12n2

+ O
(
mA( f ′′′) + mB( f ′′′)

n3
+

bn−1∑

j=an

m j,n( f ′′′′)
n4

)

,
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where, for a given function g continuous on [min{ ann , A},max{ bnn , B}],

mA(g) := max
x∈[min{ ann ,A},max{ ann ,A}]

|g(x)|, mB(g) := max
x∈[min{ bnn ,B},max{ bnn ,B}]

|g(x)|,

and for j ∈ {an, . . . , bn − 1}, m j,n(g) := maxx∈[ j
n ,

j+1
n ] |g(x)|.

3 Global Analysis: Large n Asymptotics of S0, S3 and S1

As mentioned earlier, we will analyze the sums (2.5) –(2.8) in order of increasing
difficulty: first S0, then S3, then S1, and finally S2. In this section we focus on S0, S3
and S1. We defer the analysis of S2 to the next section.

Lemma 3.1 As n → +∞,

S0 = M ′ ln(raeu) + O(n− 1
2b ).

Proof Using (2.5) and Lemma A.1, we obtain

S0 =
M ′
∑

j=1

ln

( a∑

k=0

(
a

k

)
(−r)a−k

n
k
2b

	(
2 j+2α+k

2b )

	(
2 j+2α
2b )

[

1 + ((−1)aeu − 1)[1 + O(e−cn)]
])

,

=
M ′
∑

j=1

ln

( a∑

k=0

(
a

k

)
(−1)kra−keu

n
k
2b

	(
2 j+2α+k

2b )

	(
2 j+2α
2b )

)

+ O(e−cn), as n → +∞.

SinceM ′ is fixed, only the (k = 0)-terms contribute to order 1 in the largen asymptotics

of S0; the other terms are O(n− 1
2b ). 
�

Recall that S1, S3 are given by (2.6) and (2.8). Following the approach of [20, 21], we
define

θ
(n,ε)
+ =

(
bnr2b

1 − ε
− α

)

−
⌊
bnr2b

1 − ε
− α

⌋

, θ
(n,ε)
− =

⌈
bnr2b

1 + ε
− α

⌉

−
(
bnr2b

1 + ε
− α

)

,

and for j = 1, . . . , n and k = 0, 1, . . . , a, we also define

a j := j + α

b
, λ j := bnr2b

j + α
, η j := (λ j − 1)

√
2(λ j − 1 − ln λ j )

(λ j − 1)2
, (3.1)

a j,k := 2 j + 2α + k

2b
, λ j,k := bnr2b

j + α + k
2

,

123



Constructive Approximation

η j,k := (λ j,k − 1)

√
2(λ j,k − 1 − ln λ j,k)

(λ j,k − 1)2
. (3.2)

Lemma 3.2 As n → +∞,

S3 = n
∫ 1

br2b
1−ε

a ln

((
x

b

) 1
2b − r

)

dx

+ a
(2α + 2θ(n,ε)

+ − 1) ln(r(1 − ε)− 1
2b − r) + ln(b− 1

2b − r)

2

+ a

4

(
1 − a

(br2b)− 1
2b − 1

− 1 − a

(1 − ε)− 1
2b − 1

+ (a − 2b + 4α) ln

(
(br2b)− 1

2b − 1

(1 − ε)− 1
2b − 1

))

+ O(n−1).

Proof Using (2.8) and Lemma A.2 (ii) with a and λ replaced by a j,k and λ j,k

respectively, where j ∈ { j+ + 1, . . . , n} and k ∈ {0, . . . , a}, we obtain

S3=
n∑

j= j++1

ln

( a∑

k=0

(
a

k

)
(−r)a−k

n
k
2b

	(
2 j+2α+k

2b )

	(
2 j+2α
2b )

[

1 + ((−1)aeu − 1)O(e− a j,kη2j,k
2 )

])

,

as n → +∞. It is easy to check from (3.2) that c1n ≤ a j,k ≤ c′
1n, c2 ≤ |λ j,k−1| ≤ c′

2
and c3 ≤ η2j,k ≤ c′

3 hold for some positive constants {c j , c′
j }3j=1, for all n sufficiently

large, for all j ∈ { j+ + 1, . . . , n} and for all k ∈ {0, . . . , a}. Thus

S3 =
n∑

j= j++1

ln

( a∑

k=0

(
a

k

)
(−r)a−k

n
k
2b

	(
2 j+2α+k

2b )

	(
2 j+2α
2b )

)

+ O(e−cn), as n → +∞.

(3.3)

To complete the proof of this lemma, we need the following weaker version of (2.21):

a∑

k=0

(
a

k

)
(−r)a−k

n
k
2b

	(
2 j+2α+k

2b )

	(
2 j+2α
2b )

= γ0( j/n) + 1

n

γ2( j/n) + (4α − 2b)γ1( j/n)

8bj/n

+ O(n−2),

as n → +∞ and simultaneously j ∈ { j+ + 1, . . . , n}. Note from (2.3) that j/n lies
in (br2b, 1] and remains bounded away from br2b as n → +∞ and simultaneously
j ∈ { j+ + 1, . . . , n}; in particular γ0( j/n) remains bounded away from 0. Hence, by
substituting the above expansion in (3.3) and using (2.15) with � = 0, 1, 2, we obtain
after a computation that

S3 = �0 + 1

n
�1 + O(n−1), �� :=

n∑

j= j++1

f�( j/n), � = 0, 1,

123



Constructive Approximation

f0(x) := ln γ0(x) = a ln

((
x

b

) 1
2b − r

)

,

f1(x) := γ2(x) + (4α − 2b)γ1(x)

8bx γ0(x)
= a( xb )

1
2b

8bx(( xb )
1
2b − r)2

(

(a + 4α − 2b)

(
x

b

) 1
2b

− (1 + 4α − 2b)r

)

, (3.4)

where we have also used that ln(1 + x) = x + O(x2) as x → 0. From Lemma 2.10
(with A = br2b

1−ε
, a0 = 1 − α − θ

(n,ε)
+ , B = 1 and b0 = 0), we infer that

��=n
∫ 1

br2b
1−ε

f�(x)dx+
(2α + 2θ(n,ε)

+ − 1) f�( br
2b

1−ε
) + f�(1)

2
+ O(n−1), � = 0, 1,

as n → +∞. We then obtain the claim for S3 after a computation using the
simplification

∫ 1

br2b
1−ε

f1(x)dx = a

4

(
1 − a

(br2b)− 1
2b − 1

− 1 − a

(1 − ε)− 1
2b − 1

+ (a − 2b + 4α)

ln

(
(br2b)− 1

2b − 1

(1 − ε)− 1
2b − 1

))

.


�
The large n asymptotics of S1 are harder to obtain than those of S3. The main

reason for it is that S1 involves small j’s, and for such j’s the quantities γ�( j/n) have
a singular behavior, see (2.16). This is also the reason why the error term in Lemma 3.3
is more complicated than in Lemma 3.2.

Lemma 3.3 As n → +∞,

S1 = n
∫ br2b

1+ε

0

(

u + a ln

(

r −
(
x

b

) 1
2b
)

dx − M ′ ln(raeu)

+ −(u + a ln r) + (2θ(n,ε)
− − 1 − 2α)

(
u + a ln(r − r(1 + ε)− 1

2b )

2

+ a

4

(
a − 1

(1 + ε)
1
2b − 1

+ (a − 2b + 4α) ln
(
1 − (1 + ε)−

1
2b
)
)

+ O(n− 1
2b + n−1).

Proof Lemma A.2 (i) implies that for any ε′ > 0 there exist A = A(ε′),C = C(ε′) >

0 such that | γ (a,z)
	(a)

− 1| ≤ Ce− aη2

2 for all a ≥ A, for all λ = z
a ∈ [1 + ε′,+∞],

and where η is given by (A.1). Let us take ε′ = ε
2 and choose M ′ so large that
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a j = j+α
b ≥ A( ε

2 ) for all j ∈ {M ′ + 1, . . . , j1,− − 1}. Thus

S1 =
j−−1∑

j=M ′+1

ln

( a∑

k=0

(
a

k

)
(−r)a−k

n
k
2b

	(
2 j+2α+k

2b )

	(
2 j+2α
2b )

[

1 + ((−1)aeu − 1)(1 + O(e− a j,kη2j,k
2 ))

])

,

as n → +∞. From a direct analysis of (3.2), we infer that a j,kη
2
j,k decreases as j

increases from M ′ + 1 to j− − 1, and a j,kη
2
j,k decreases also as k increases from 0 to

a. Therefore

a j,kη
2
j,k

2
≥ a j−−1η

2
j−−1

2
≥ cn, for all j ∈ {M ′ + 1, . . . , j− − 1},

for a small enough c > 0. Thus

S1 =
j−−1∑

j=M ′+1

ln

( a∑

k=0

(
a

k

)
ra−k(−1)keu

n
k
2b

	(
2 j+2α+k

2b )

	(
2 j+2α
2b )

)

+ O(e−cn), as n → +∞. (3.5)

Substituting (2.22) in (3.5) and using (2.15) with � = 0, 1, 2, we obtain

S1 = �̃0 + 1

n
�̃1 + O

(

n−2
j−−1∑

j=M ′+1

( j/n)
1
2b −2

)

= �̃0 + 1

n
�̃1 + O(n− 1

2b + n−1),

�̃0 :=
j−−1∑

j=M ′+1

f̃0( j/n), �̃1 :=
j−−1∑

j=M ′+1

f1( j/n), f̃0(x) := u + a ln

(

r −
(
x

b

) 1
2b
)

, (3.6)

as n → +∞, where f1 is given by (3.4). Note that f1(x) ∼ cx
1
2b−1 as x → 0; thus

f1 blows up at 0 if b > 1
2 . Using now Lemma 2.10 (with A = M ′

n , a0 = 1, B = br2b
1+ε

and b0 = θ
(n,ε)
− − 1 − α), we get

�̃0 = n
∫ br2b

1+ε

M ′
n

f̃0(x)dx + − f̃0(
M ′
n ) + (2θ(n,ε)

− − 1 − 2α) f̃0(
br2b
1+ε

)

2
+ O(n− 1

2b + n−1),

1

n
�̃1 =

∫ br2b
1+ε

M ′
n

f1(x)dx + O(n− 1
2b + n−1).

as n → +∞. Furthermore, by a direct analysis of f̃0 and f1,

f̃0

(
M ′

n

)

= u + a ln r + O(n− 1
2b
)
,
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∫ br2b
1+ε

M ′
n

f1(x) dx = a

4

(
a − 1

(1 + ε)
1
2b − 1

+ (a − 2b + 4α) ln
(
1 − (1 + ε)−

1
2b

))

+ O(n− 1
2b
)
,

n
∫ br2b

1+ε

M ′
n

f̃0(x) dx = n
∫ br2b

1+ε

0
f̃0(x) dx − (u + a ln r)M ′ + O(n− 1

2b
)
,

as n → +∞. The claim follows after substituting the above expansions in (3.6). 
�

4 Large n Asymptotics of S2

It remains to obtain the large n asymptotics of S2, which was defined in (2.7). For this,
let us split S2 in three pieces,

S2 = S(1)
2 + S(2)

2 + S(3)
2 ,

where

S(v)
2 :=∑ j :λ j∈Iv ln

(
∑a

k=0

(a
k

)
(−r)a−k

n
k
2b

	(
2 j+2α+k

2b )

	(
2 j+2α
2b )

[

1 + ((−1)aeu − 1)
γ (

2 j+2α+k
2b ,nr2b)

	(
2 j+2α+k

2b )

])

(4.1)

for v = 1, 2, 3, λ j is given by (3.1), and

I1 := [1 − ε, 1 − M√
n
), I2 := [1 − M√

n
, 1 + M√

n
], I3 := (1 + M√

n
, 1 + ε].

Equivalently, the above sums can be rewritten using

∑

j :λ j∈I3
=

g−−1∑

j= j−
,

∑

j :λ j∈I2
=

g+∑

j=g−
,

∑

j :λ j∈I1
=

j+∑

j=g++1

, (4.2)

where g− := � bnr2b

1+ M√
n

−α�, g+ := 
 bnr2b

1− M√
n

−α�. We also define θ
(n,M)
− , θ

(n,M)
+ ∈ [0, 1)

by

θ
(n,M)
− := g− −

(
bnr2b

1 + M√
n

− α

)

=
⌈

bnr2b

1 + M√
n

− α

⌉

−
(

bnr2b

1 + M√
n

− α

)

,

θ
(n,M)
+ :=

(
bnr2b

1 − M√
n

− α

)

− g+ =
(

bnr2b

1 − M√
n

− α

)

−
⌊

bnr2b

1 − M√
n

− α

⌋

.
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Note that the sums S(1)
2 and S(3)

2 each contain a number of elements proportional to n,

while S(2)
2 contains roughly M

√
n elements.

4.1 Global Analysis: Large n Asymptotics of S(1)2 and S(3)2

We first treat S(1)
2 , S(3)

2 . These sums are delicate to analyze because they involve the
asymptotics of γ (a, z) in the regime a → +∞, z → +∞, when λ = z

a is close to 1
but not very close (more precisely, λ ∈ [1 − ε, 1 − M√

n
) ∪ (1 + M√

n
, 1 + ε]).

Lemma 4.1 As n → +∞,

S(1)
2 = n

∫ br2b
1−ε

br2b
a ln

((
x

b

) 1
2b − r

)

dx +
{

abr2bM

(

ln

(
2b

√
n

rM

)

+ 1

)

+ a(a − 1)b

2M

− ab(3 − 5a + 2a2)

12r2bM3

}√
n +

(

− abr2bM2 + a
2α + 2θ(n,M)

+ − 1

2

− a

4
(a − 2b + 4α)

)

ln

(
M√
n

)

+ ar2b(2b − 1 + 8b ln( 2br ))

8
M2 + 2α + 2θ(n,M)

+ − 1

2
a ln

(
r

2b

)

+ 1 − 2α − 2θ(n,ε)
+

2
a ln

(

r(1 − ε)−
1
2b − r

)

+ a

4

{
(1 − a)(1 + 2b)

2
+ (a − 2b + 4α) ln(2b)

+ 1 − a

(1 − ε)− 1
2b − 1

+ (a − 2b + 4α) ln

(

(1 − ε)−
1
2b − 1

)}

+ O
(√

n

M5
+ M3 ln n√

n

)

.

Remark 4.2 Since M = n
1
8 (ln n)− 1

8 , the O-term above is small as n → +∞.

Remark 4.3 The above asymptotics are of the form

S(1)
2 = E (ε)

1 n + Ẽ (M)
2

√
n ln n + E (M)

2

√
n + Ẽ (n,M)

3 ln n + E (n,ε,M)
3 + o(1).

This may seem a bit counter intuitive as the asymptotics of Theorem 1.1 only contain
terms proportional to n,

√
n and 1. In fact, remarkable cancellations will occur in the

asymptotics of S(1)
2 + S(2)

2 + S(3)
2 ; in particular Ẽ (M)

2 and Ẽ (n,M)
3 will get perfectly

canceled by other terms in the large n asymptotics of S(2)
2 and S(3)

2 , and we will show

in Lemma 4.12 below that the large n asymptotics of S2 = S(1)
2 + S(2)

2 + S(3)
2 are of

the form S2 = Ĉ (ε)
1 n + Ĉ2

√
n + Ĉ (n,ε)

3 + o(1).

Proof By (4.1) and Lemma A.2, S(1)
2 admits the following exact formula

S(1)
2 =

∑

j :λ j∈I1
ln

( a∑

k=0

(
a

k

)
(−r)a−k

n
k
2b

	(
2 j+2α+k

2b )

	(
2 j+2α
2b )
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×
[

1 + ((−1)aeu − 1)

(
1

2
erfc
(
−η j,k

√
a j,k
2

)

× −Ra j,k (η j,k)

)])

,

where η j,k and a j,k are given by (3.2). Since I1 = [1 − ε, 1 − M√
n
),

η j,k = λ j,k − 1 + O((λ j,k − 1)2) ≤ − M√
n

+ O(M
2

n ), as n → +∞,

− η j,k
√
a j,k/2 = −η j,k

√
nr2b
2λ j,k

≥ Mrb√
2

+ O(M
2√
n
), as n → +∞,

uniformly for j ∈ { j : λ j ∈ I1} and k ∈ {0, 1, . . . , a}. Also, M = n
1
8 (ln n)− 1

8 , and
thus, by (A.2),

Ra j,k (η j,k) = O(e− r2bM2
4 ) = O(e−nc ),

1

2
erfc
(
−η j,k

√
a j,k
2

)
= O(e−nc ),

as n → +∞ uniformly for j ∈ { j : λ j ∈ I1} and k ∈ {0, 1, . . . , a}, and (using also
(4.2))

S(1)
2 =

j+∑

j=g++1

ln

( a∑

k=0

(
a

k

)
(−r)a−k

n
k
2b

	(
2 j+2α+k

2b )

	(
2 j+2α
2b )

)

+ O(e−nc ), as n → +∞.

(4.3)

In the same way as for (2.21), we obtain

a∑

k=0

(
a

k

)
(−r)a−k

n
k
2b

	(
2 j+2α+k

2b )

	(
2 j+2α
2b )

∼ γ0( j/n) +
+∞∑

�=1

∑2�
m=1 p2�,mγm( j/n)

j�
(4.4)

as n → +∞ uniformly for j ∈ {g+ + 1, . . . , j+}. However, unlike for S3, the first
subleading term (corresponding to � = 1) is not sufficient for our purpose; we also
need the coefficients of p4 which are given by (see (2.19))

p4(k) = k(k − 2b)

8
B

(1+ k
2b )

2

(2α + k

2b

)

= k(k − 2b)(8b2 + 3(k + 4α)2 − 2b(7k + 24α))

384b2
. (4.5)

The reason as to why we need p4 can be seen as follows. The sum on the left-hand
side of (4.4) appears inside ln in (4.3). Since ln(γ0 + B) = ln γ0 + ln(1+ B/γ0), what
is relevant is to estimate the asymptotics series of (4.4) divided by γ0( j/n). Lemma
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2.5 implies

γ�(x)

γ0(x)
= O(min{|x − br2b|−a, |x − br2b|−�}) = O(|x − br2b|−min{a,�}),

as x → br2b. (4.6)

Using the definitions of j+ and g+ (see 2.3 and (4.2)), we see that for j ∈ {g+ +
1, . . . , j+}, j/n lies in (br2b, 1] and g+/n − br2b is of order M√

n
as n → +∞.

Therefore, for � = 1, 2, . . .,

j+∑

j=g++1

∑2�
m=1 p2�,mγm( j/n)

j�γ0( j/n)
= O

( j+∑

j=g++1

| j/n − br2b|−min{a,2�}

n�

)

= O
( √

n

M2�

)

,

(4.7)

as n → +∞ uniformly for j ∈ {g+ + 1, . . . , j+}. Since M = n
1
8 (ln n)− 1

8 , only the
terms corresponding to � ≥ 3 in (4.4) (i.e. the terms associated with p6, p8, . . .) will
give an error in the asymptotics of S(1)

2 . Substituting (4.4)–(4.5) in (4.3) and using
(2.15) (with � = 0, 1, 2, 3, 4), (2.17) and (4.7), we obtain

S(1)
2 = �

(1)
0 + 1

n
�

(1)
1 + 1

n2
�

(1)
2 + O

(√
n

M5

)

(4.8)

as n → +∞, where

�
(1)
� :=

j+∑

j=g++1

f�( j/n), � = 0, 1, 2,

f0 and f1 are as in (3.4), and f2 is defined by

f2(x) := 1

384b2x2

{

− 16b(b2 − 6bα + 6α2)
a
( x
b

) 1
2b

( xb

) 1
2b − r

+ 12(3b2 − 8bα + 4α2)

a
( x
b

) 1
2b
(
a
( x
b

) 1
2b − r

)

(
a
( x
b

) 1
2b − r

)2

+ 4(6α − 5b)
a
( x
b

) 1
2b
(
a2
( x
b

) 1
b + (1 − 3a)r

( x
b

) 1
2b + r2

)

(
a
( x
b

) 1
2b − r

)3

+ 3a
( x
b

) 1
2b
[
a3
( x
b

) 3
2b + (4a − 6a2 − 1)r

( x
b

) 1
b + (7a − 4)r2

( x
b

) 1
2b − r3

]

(
a
( x
b

) 1
2b − r

)4

}

− f1(x)2

2
. (4.9)
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Using Lemma 2.10 (with A = br2b

1− M√
n

, a0 = 1 − α − θ
(n,M)
+ , B = br2b

1−ε
and b0 =

−α − θ
(n,ε)
+ ), we get

�
(1)
0 = n

∫ br2b
1−ε

br2b

1− M√
n

f0(x)dx +
(2α + 2θ(n,M)

+ − 1) f0( br2b

1− M√
n

) + (1 − 2α − 2θ(n,ε)
+ ) f0(

br2b
1−ε

)

2

+ O
(

1

M
√
n

)

,

1

n
�

(1)
1 =

∫ br2b
1−ε

br2b

1− M√
n

f1(x)dx + O
(

1

M2

)

,
1

n2
�

(1)
2 = 1

n

∫ br2b
1−ε

br2b

1− M√
n

f2(x)dx + O
(

1

M4

)

, (4.10)

as n → +∞. To obtain the above error terms, we also used (4.6), (2.15), and in
particular that

f ′
0

(
br2b

1 − M√
n

)

= O
(√

n

M

)

, f1

(
br2b

1 − M√
n

)

= O
(

n

M2

)

, f2

(
br2b

1 − M√
n

)

= O
(

n2

M4

)

as n → +∞. Using the asymptotics of f0, f1 and f2 near x = br2b with x > br2b,
namely

f0(x) = a log(x − br2b) + a log( r
1−2b

2b2
) + a

(1 − 2b)(x − br2b)

4b2r2b
+ O((x − br2b)2

)
,

f1(x) = (a − 1)ab2r2b

2(x − br2b)2
+ a(a − 2b + 4α)

4(x − br2b)
+ O(1),

f2(x) = −a(3 − 5a + 2a2)b4r4b

4(x − br2b)4
+ O((x − br2b)−3),

we obtain

f0

(
br2b

1 − M√
n

)

= a ln

(
Mr

2b
√
n

)

+ O
(

M√
n

)

, (4.11)

n
∫ br2b

1−ε

br2b

1− M√
n

f0(x)dx = n
∫ br2b

1−ε

br2b
f0(x)dx + √

n abr2bM

(

1 + ln

(
2b

√
n

rM

))

+ abr2bM2 ln

(√
n

M

)

+ ar2bM2(−1 + 2b + 8b ln( 2br ))

8
+ O

(
M3 ln n√

n

)

, (4.12)
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∫ br2b
1−ε

br2b

1− M√
n

f1(x)dx = a(a − 1)b
√
n

2M
+ a

4

{
(1 − a)(1 + 2b)

2
+ 1 − a

( 1
1−ε

)
1
2b − 1

− (a − 2b + 4α) ln

(
M

2b
√
n

)

+ (a − 2b + 4α) ln

(

(1 − ε)−
1
2b − 1

)}

+ O
(

M√
n

)

, (4.13)

1

n

∫ br2b
1−ε

br2b

1− M√
n

f2(x)dx = −ab(3 − 5a + 2a2)
√
n

12r2bM3 + O
(

1

M2

)

, (4.14)

as n → +∞. Substituting (4.11)–(4.14) in (4.10) and then in (4.8), we obtain the
claim after another long but direct computation. 
�

Lemma 4.4 As n → +∞,

S(3)
2 = n

∫ br2b

br2b
1+ε

[

u + a ln

(

r −
(
x

b

) 1
2b
)]

dx +
{

br2bM

(

a ln

(
2b

√
n

rM

)

+ a − u

)

+ a(a − 1)b

2M
− ab(3 − 5a + 2a2)

12r2bM3

}√
n +

(

abr2bM2 + a
2θ(n,M)

− − 1 − 2α

2

+ a

4
(a − 2b + 4α)

)

ln

(
M√
n

)

+ r2b(a − 2ab + 8bu + 8ab ln( r
2b ))

8
M2

+ 2θ(n,M)
− − 1 − 2α

2

(

u + a ln

(
r

2b

))

+ 1 + 2α − 2θ(n,ε)
−

2

(

u + a ln

(

r − r(1 + ε)−
1
2b

))

+ a

4

{
(a − 1)(1 + 2b)

2
− (a − 2b + 4α) ln(2b)

+ 1 − a

1 − (1 + ε)− 1
2b

− (a − 2b + 4α) ln

(

1 − (1 + ε)−
1
2b

)}

+ O
(√

n

M5
+ M3 ln n√

n

)

.

Proof By (4.1) and Lemma A.2,

S(3)
2 =

∑

j :λ j∈I3
ln

( a∑

k=0

(
a

k

)
(−r)a−k

n
k
2b

	(
2 j+2α+k

2b )

	(
2 j+2α
2b )

×
[

1 + ((−1)aeu − 1)

(
1

2
erfc
(
−η j,k

√
a j,k
2

)
− Ra j,k (η j,k)

)])

.

Because I3 = (1 + M√
n
, 1 + ε], we have
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η j,k =λ j,k − 1 + O((λ j,k − 1)2) ≥ M√
n

+ O(M
2

n ), as n → ∞,

− η j,k
√
a j,k/2 ≤ −Mrb√

2
+ O(M

2√
n
), as n → ∞,

uniformly for j ∈ { j : λ j ∈ I3} and k ∈ {1, . . . , a}. Since M = n
1
8 (ln n)− 1

8 , we get

Ra j,k (η j,k) = O(e− r2bM2
4 ) = O(e−nc ),

1

2
erfc
(
−η j,k

√
a j,k
2

)
= 1 − O(e− r2bM2

4 )

= 1 − O(e−nc ),

as n → +∞ uniformly for j ∈ { j : λ j ∈ I3} and k ∈ {1, . . . , a}, and thus

S(3)
2 =

g−−1∑

j= j−
ln

( a∑

k=0

(
a

k

)
ra−k(−1)keu

n
k
2b

	(
2 j+2α+k

2b )

	(
2 j+2α
2b )

)

+ O(e−nc ), (4.15)

where we have also used (4.2). By (2.24),

a∑

k=0

(
a

k

)
ra−k(−1)keu

n
k
2b

	(
2 j+2α+k

2b )

	(
2 j+2α
2b )

∼ eu
{

γ0( j/n) +
+∞∑

�=1

∑2�
m=1 p2�,mγm( j/n)

j�

}

,

(4.16)

as n → +∞ uniformly for j ∈ { j−, . . . , g− − 1}. Using Lemma 2.5, (4.6) and the
definitions (2.3), (4.2) of j− and g−, we infer that (4.7) holds also as n → +∞
uniformly for j ∈ { j−, . . . , g− − 1}. Hence, substituting (4.16) in (4.15) and using
(2.15) (with � = 0, 1, 2, 3, 4), (2.17) and (4.7), we get

S(3)
2 = �

(3)
0 + 1

n
�

(3)
1 + 1

n2
�

(3)
2 + O

(√
n

M5

)

(4.17)

as n → +∞, where

�
(3)
0 :=

g−−1∑

j= j−
f̃0( j/n), �

(3)
� :=

g−−1∑

j= j−
f�( j/n), � = 1, 2,

f̃0 is given by (3.6), f1 is given by (3.4), and f2 is given by (4.9).

Using Lemma 2.10 (with A = br2b
1+ε

, a0 = θ
(n,ε)
− − α, B = br2b

1+ M√
n

and b0 =
θ

(n,M)
− − 1 − α), we get

�
(3)
0 =n

∫ br2b

1+ M√
n

br2b
1+ε

f̃0(x)dx +
(1 + 2α − 2θ(n,ε)

− ) f̃0(
br2b
1+ε

) + (2θ(n,M)
− − 1 − 2α) f̃0(

br2b

1+ M√
n

)

2

+ O
(

1

M
√
n

)

,
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1

n
�

(3)
1 =

∫ br2b

1+ M√
n

br2b
1+ε

f1(x)dx + O
(

1

M2

)

,
1

n2
�

(3)
2 = 1

n

∫ br2b

1+ M√
n

br2b
1+ε

f2(x)dx + O
(

1

M4

)

,

(4.18)

as n → +∞. Furthermore, a long but straightforward analysis of f̃0, f1 and f2 shows
that

f̃0

(
br2b

1 + M√
n

)

= u + a ln

(
Mr

2b
√
n

)

+ O
(

M√
n

)

, (4.19)

n
∫ br2b

1+ M√
n

br2b
1+ε

f̃0(x)dx = n
∫ br2b

br2b
1+ε

f̃0(x)dx + √
n br2b

M

(

a − u + a ln

(
2b

√
n

rM

))

+ abr2bM2 ln

(
M√
n

)

+ r2bM2(a − 2ab + 8bu + 8ab ln( r
2b ))

8
+ O

(
M3 ln n√

n

)

,

(4.20)

∫ br2b

1+ M√
n

br2b
1+ε

f1(x)dx = a(a − 1)b
√
n

2M
+ a

4

{
(a − 1)(1 + 2b)

2
+ 1 − a

1 − ( 1
1+ε

)
1
2b

+ (a − 2b + 4α) ln

(
M

2b
√
n

)

− (a − 2b + 4α) ln

(

1 − (1 + ε)−
1
2b

)}

+ O
(

M√
n

)

,

(4.21)

1

n

∫ br2b

1+ M√
n

br2b
1+ε

f2(x)dx = −ab(3 − 5a + 2a2)
√
n

12r2bM3 + O
(

1

M2

)

. (4.22)

Substituting (4.19)–(4.22) in (4.18) and then in (4.17),we obtain the claimafter another
long but direct computation. 
�

4.2 Local Analysis: Large n Asymptotics of S(2)2

Our next goal is to obtain the large n asymptotics of S(2)
2 . This is themost technical part

of the proof of Theorem 1.1. As mentioned in the introduction, a major obstacle in the
asymptotic analysis of S(2)

2 is that, in order to treat the general case a ∈ N, we need to
expand various quantities to all orders. Lemma 4.5 below provides a general scheme
to compute the coefficients appearing in these expansions in a recursive way. These
coefficients are not all readily available in explicit forms, however only a few of those
will really matter for us. Lemmas 4.6 and 4.7 establish some non-trivial identities
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between those relevant coefficients and the (associated) Hermite polynomials. The
large n asymptotics of S(2)

2 are then obtained in Lemma 4.11.
Let us define

Mj,k := √
n(λ j,k − 1), k ∈ {1, . . . ,m}, j ∈ { j : λ j ∈ I2} = {g−, . . . , g+},

(4.23)

Mj := √
n(λ j − 1), j ∈ { j : λ j ∈ I2} = {g−, . . . , g+}. (4.24)

Since I2 = [1− M√
n
, 1+ M√

n
] and λ j is decreasing in j , we have −M ≤ Mg+ < · · · <

Mg− ≤ M . Note from (3.1)–(3.2) that λ j,k is close to λ j for large n, and from (4.23)–
(4.24) that Mj,k is close to Mj for large n. For convenience, for j ∈ {g−, . . . , g+},
we also define

� j,k := Mjrb√
2

−
√
a j,k√
2

η j,k, (4.25)

where a j,k and η j,k are given in (3.2). Also, by (4.1) and Lemma A.2, we have

S(2)
2 =

∑

j :λ j∈I2
ln

( a∑

k=0

(
a

k

)
(−r)a−k

n
k
2b

	(
2 j+2α+k

2b )

	(
2 j+2α
2b )

×
[

1 + ((−1)aeu − 1)

(

erfc
(
−η j,k

√
a j,k
2

)
− Ra j,k (η j,k)

)])

. (4.26)

The next lemma provides the asymptotics of � j,k and of the summand of the k-sum
in (4.26) as n → +∞ uniformly for j ∈ { j : λ j ∈ I2} = {g−, . . . , g+}.
Lemma 4.5 Let k ∈ {0, 1, . . . , a} be fixed. As n → +∞ and uniformly for j ∈
{g−, . . . , g+}, we have

1

n
k
2b

	(
2 j+2α+k

2b )

	(
2 j+2α
2b )

∼ rk
+∞∑

�=0

∑�
m=0

∑�
p=0 q

(1)
�,m,pk

mM p
j

n
�
2

, (4.27)

� j,k ∼ �formal
j,k :=

+∞∑

�=1

∑
(�+1)/2�
m=0 d�,m kmM�+1−2m

j

n�/2 , (4.28)

1

2
erfc
(
−η j,k

√
a j,k
2

)
∼ 1

2
erfc
(
− Mjrb√

2

)

− e− M2
j r
2b

2√
2π

+∞∑

�=1

∑�
m=0

∑3�−1−2m
p=0 q

(2)
�,m,pk

mM p
j

n
�
2

, (4.29)

Ra j,k (η j,k) ∼ − e− M2
j r
2b

2

3
√
2π rb

√
n

+∞∑

�=0

∑�
m=0

∑3�−2m
p=0 q

(3)
�,m,pk

mM p
j

n
�
2

, (4.30)
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1

n
k
2b

	(
2 j+2α+k

2b )

	(
2 j+2α
2b )

[

1 + ((−1)aeu − 1)

(
1

2
erfc
(
−η j,k

√
a j,k
2

)
− Ra j,k (η j,k)

)]

∼ rk
+∞∑

�=0

A�(Mj ; k)√
n�

, (4.31)

for some q(1)
�,m,p, q

(2)
�,m,p, q

(3)
�,m,p, q

(4)
�,m,p, d�,m ∈ C, q

(1)
0,0,0 := 1, q(3)

0,0,0 := 1, where a j,k ,
η j,k are given in (3.2), and the A�’s are defined by

A0(x; k) = 1 + (−1)aeu − 1

2
erfc

(

− rbx√
2

)

, (4.32)

A�(x; k) =
(

1 + (−1)aeu − 1

2
erfc

(

− rbx√
2

)) �∑

m=1

�∑

p=0

q
(1)
�,m,pk

mx p

+ ((−1)aeu − 1)
e− r2bx2

2√
2π

�∑

m=0

3�−1−2m∑

p=0

q
(4)
�,m,pk

mx p, � ≥ 1. (4.33)

For � ≥ 1, m = 0 and p = 0, . . . , �, q(1)
�,m,p := 0. The other coefficients {q(1)

�,m,p} are
given by

�∑

m=1

�∑

p=0

q
(1)
�,m,pk

mx p =

�/2�∑

s=0

1

(r2b)s

( k
2b
s

)

B
(1+ k

2b )
s

( k

2b

)(s − k
2b

� − 2s

)

x�−2s, (4.34)

and the coefficients {q( j)
�,m,p}4j=2 can be found by equaling the terms of the same order

in n in the following formal power series

+∞∑

�=1

∑�
m=0

∑3�−1−2m
p=0 q

(2)
�,m,pk

mM p
j

n
�
2

=
+∞∑

�=1

2�/2

�! He�−1(Mjr
b)(�formal

j,k )�, (4.35)

+∞∑

�=0

∑�
m=0

∑3�−2m
p=0 q

(3)
�,m,pk

mM p
j

n
�
2

= −3rb
√
n

( +∞∑

�=0

2�/2

�! He�(Mjr
b)(�formal

j,k )�
)( +∞∑

�=0

c�(η j,k)

a
�+ 1

2
j,k

)

, (4.36)

+∞∑

�=1

1

n
�
2

�∑

m=0

3�−1−2m∑

p=0

q
(4)
�,m,pk

mM p
j = −

(

1 +
+∞∑

�=1

∑�
m=1

∑�
p=0 q

(1)
�,m,pk

mM p
j

n
�
2

)

×
{ +∞∑

�=1

∑�
m=0

∑3�−1−2m
p=0 q

(2)
�,m,pk

mM p
j

n
�
2
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− 1

3rb
√
n

+∞∑

�=0

∑�
m=0

∑3�−2m
p=0 q

(3)
�,m,pk

mM p
j

n
�
2

}

, (4.37)

where the c�’s are defined recursively as in (A.3).

Proof By (3.1) and (4.24), we have j + α = bnr2b

1+ M j√
n

. We conclude that the left-hand

side of (4.27) is independent of α, and thus the coefficients q(1)
�,m,p do not depend on

α. For α = 0, using (2.18), we get

1

n
k
2b

	(
2 j+k
2b )

	(
2 j
2b )

∼ rk
+∞∑

�=0

1

(r2b)�

( k
2b
�

)

B
(1+ k

2b )

�

( k

2b

) 1

n�

(

1 + Mj√
n

)�− k
2b

= rk
+∞∑

�=0

1

(r2b)�

( k
2b
�

)

B
(1+ k

2b )

�

( k

2b

) 1

n�

+∞∑

s=0

(
� − k

2b
s

)Ms
j

n
s
2

= rk
+∞∑

�=0

[ 
�/2�∑

s=0

1

(r2b)s

( k
2b
s

)

B
(1+ k

2b )
s

( k

2b

)(s − k
2b

� − 2s

)

M�−2s
j

]
1

n
�
2

,

and (4.27), (4.34) follow. By (4.25),

� j,k − Mjrb√
2

= −
√
nr2b(λ j,k − 1)

√
λ j,k − 1 − ln λ j,k

λ j,k(λ j,k − 1)2

∼ −
√
nr2b

+∞∑

s=1

a(1)
s (λ j,k − 1)s

as n → +∞ uniformly for j ∈ {g−, . . . , g+}, for some {a(1)
s }+∞

s=1 ⊂ C that are
independent of j and k. The all-order expansion (4.28) now follows from

λ j,k =
(
1 + Mj√

n

)(

1 + k

2bnr2b

(
1 + Mj√

n

))−1

∼
+∞∑

�=0

( −k

2bnr2b

)�(
1 + Mj√

n

)�+1

=
+∞∑

�=0

[λ j,k]�
n�/2 ,

where [λ j,k]� is given by

[λ j,k]� =

�/2�∑

s=�(�−1)/3�

( −1

2br2b

)s
(
s + 1

� − 2s

)

ksM�−2s
j .
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Using that

1

2

d�

dz�
erfc(z) = − 1√

π

d�−1

dz�−1 e
−z2 = (−1)�√

2π
2

�
2 He�−1(

√
2z) e−z2 , � ∈ N, (4.38)

and He�(z) = (−1)�He�(−z), we infer that

1

2
erfc
(

− Mjrb√
2

+ � j,k

)
∼ 1

2
erfc
(

− Mjrb√
2

)
− e− M2

j r
2b

2√
2π

+∞∑

�=1

2�/2

�! He�−1(Mjr
b)��

j,k

as n → +∞ uniformly for j ∈ {g−, . . . , g+}. To verify (4.29), it is thus enough to
show (4.35). For this purpose, note that by (4.28), we have

(�formal
j,k )� =

( +∞∑

s=1

∑
(s+1)/2�
m=0 ds,m kmMs+1−2m

j

ns/2

)�

=
+∞∑

s=�

∑
(s+�)/2�
m=0 d(�)

s,m kmMs+�−2m
j

ns/2
(4.39)

for some coefficients {d(�)
s,m} ⊂ C. Inserting this expansion and (1.6) in the right-hand

side of (4.35), we obtain

+∞∑

�=1

2�/2

�! He�−1(Mjr
b)(�formal

j,k )� ∼
+∞∑

�=1

+∞∑

s=�

2�/2

�! He�−1(Mjr
b)

∑
(s+�)/2�
m=0 d(�)

s,m kmMs+�−2m
j

ns/2

∼
+∞∑

�=1

+∞∑

s=�

2�/2

�!
(

(� − 1)!

(�−1)/2�∑

q=0

(−1)q

q!(� − 1 − 2q)!
(Mjrb)�−1−2q

2q

)

∑
(s+�)/2�
m=0 d(�)

s,m kmMs+�−2m
j

ns/2
.

Rearranging the summations in the right-hand side of this equation, we obtain (4.35).
We now turn to the proof of (4.30) and (4.36). By (A.2), we have

Ra j,k (η j,k) ∼ e− 1
2 a j,kη

2
j,k

√
2πa j,k

+∞∑

�=0

c�(η j,k)

a�
j,k

, as n → +∞,

uniformly for j ∈ {g−, . . . , g+}. Using again (4.38), we get

e− 1
2 a j,kη

2
j,k ∼ e− M2

j r
2b

2

+∞∑

�=0

2�/2 He�(Mjr
b)

��
j,k

�! .
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Combining these expansions yields

Ra j,k (η j,k) ∼ 1√
2π

e− M2
j r
2b

2

( +∞∑

�=0

2�/2

�! He�(Mjr
b)��

j,k

)( +∞∑

�=0

c�(η j,k)

a
�+ 1

2
j,k

)

.

Therefore, by (4.28), to prove (4.30) it is enough to show (4.36). The first term (inside
the left parenthesis) on the right-hand side of (4.36) can be expanded in a similar
way as (4.35). On the other hand, the second term (inside the right parenthesis) can
be expanded using that the c�’s (which are defined below (A.2)) are smooth, and the
expansions

a j,k = nr2b

1 + Mj√
n

+ k

2b
∼ k

2b
+ nr2b

+∞∑

�=0

(−1)�M�
j

n�/2 , (4.40)

η j,k ∼
+∞∑

s=1

bs(λ j,k − 1)s =
+∞∑

s=1

bs

( +∞∑

�=1

[λ j,k]�
n�/2

)s
, (4.41)

where the coefficients {bs}+∞
s=1 ⊂ C are independent of j and k. Combining all of the

above, we obtain the desired asymptotic expansion (4.36).
Finally, (4.31), (4.32), (4.33) and (4.37) are direct consequences of (4.27)–(4.30).


�
Lemma 4.6 The following relations hold

(2b)arab(−1)aa!
a∑

p=0

q(1)
a,a,p

( x

rb

)p = p0,a(x), (4.42)

(2b)a+1r (a+1)b(−1)aa!
a+1∑

p=0

q
(1)
a+1,a,p

( x

rb

)p

= −ab
(
p0,a+1(x) + (1 − 3a)p0,a−1(x)

+ 5

3
(a − 1)(a − 2)p0,a−3(x)

)
, (4.43)

where p0,a(x) is given by (1.8).

Proof It follows from (4.34) that

(2b)arab(−1)aa!
a∑

p=0

q(1)
a,a,p

( x

rb

)p

= (2b)a(−1)a

a/2�∑

s=0

[ d

dk

]a
[

B
(1+ k

2b )
s

( k

2b

)( k
2b
s

)(
s − k

2b
a − 2s

)]∣
∣
∣
∣
k=0

xa−2s .
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For each s ∈ {0, . . . , 
 a
2 �}, the polynomial k �→ B

(1+ k
2b )

s ( k
2b )
( k
2b
s

)(s− k
2b

a−2 s

)
is of the form

∑a
�=0 c̃�(k/b)a , where c̃0, . . . , c̃a ∈ C are independent of b. Thanks to the prefactor

(2b)a , the above expression is thus independent of b. Replacing b by 1
2 yields

(2b)arab(−1)aa!
a∑

p=0

q(1)
a,a,p

( x

rb

)p = (−1)a

a/2�∑

s=0

[ d

dk

]a
[

B(1+k)
s (k)

(
k

s

)(
s − k

a − 2s

)]∣
∣
∣
∣
k=0

xa−2s .

(4.44)

By (2.20),

B(1+k)
s (k) =

( d

dt

)s[( t

et − 1

)k+1
ekt
]∣
∣
∣
t=0

= 1

2s

(
ks − s(s + 5)

6
ks−1 + · · ·

)

(4.45)

is a polynomial in k of degree s, and

(
k

s

)(
s − k

a − 2s

)

= (−1)a

s!(a − 2s)!
(
ka−s + 7s2 − (6a − 3)s + a2 − a

2
ka−1−s + · · ·

)

(4.46)

is a polynomial in k of degree a − s. Combining (4.45) and (4.46), we obtain

[ d

dk

]a
[

B(1+k)
s (k)

(
k

s

)(
s − k

a − 2s

)]∣
∣
∣
∣
k=0

= (−1)aa!
s!(a − 2s)!2s ,

and now (4.42) follows directly from the right-most expression of p0,a in (1.8). Now
we turn to the proof of (4.43). In a similar way as (4.44), using (4.34),

(2b)a+1r (a+1)b(−1)aa!
a+1∑

p=0

q
(1)
a+1,a,p

( x

rb

)p

= 2b (−1)a

(a+1)/2�∑

s=0

[ d

dk

]a
[

B(1+k)
s (k)

(
k

s

)(
s − k

a + 1 − 2s

)]∣
∣
∣
∣
k=0

xa+1−2s .

From (4.45) and (4.46) with a replaced by a + 1, we get

[ d

dk

]a
[

B(1+k)
s (k)

(
k

s

)(
s − k

a + 1 − 2s

)]∣
∣
∣
∣
k=0

= (−1)a+1a!
s!(a + 1 − 2s)!2s

20s2 − 2(9a + 7)s + 3a(a + 1)

6
,
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and thus

(2b)a+1r (a+1)b(−1)aa!
a+1∑

p=0

q
(1)
a+1,a,p

( x

rb

)p

= −b

3


(a+1)/2�∑

s=0

a! (20s2 − 2(9a + 7)s + 3a(a + 1))

s!(a + 1 − 2s)!
xa+1−2s

2s
.

Finally, the expression (4.43) follows from the manipulation


(a+1)/2�∑

s=0

a! (20s2 − 2(9a + 7)s + 3a(a + 1))

s!(a + 1 − 2s)!
xa+1−2s

2s

= 3a p0,a+1(x) + a!

(a−1)/2�∑

s=0

10s + 3(1 − 3a)

s!(a − 1 − 2s)!
xa−1−2s

2s

= 3a p0,a+1(x) + 3a(1 − 3a) p0,a−1(x)

+ a!

(a−1)/2�∑

s=1

10

(s − 1)!(a − 1 − 2s)!
xa−1−2s

2s

= 3a p0,a+1(x) + 3a(1 − 3a) p0,a−1(x) + 5a(a − 1)(a − 2) p0,a−3(x).


�
Lemma 4.7 The following relations hold

(2brb)a+1(−1)a+1(a + 1)!
a∑

p=0

q
(4)
a+1,a+1,p

( x

rb

)p = q0,a+1(x), (4.47)

(2brb)a+1(−1)aa!
a+2∑

p=0

q
(4)
a+1,a,p

( x

rb

)p

= −b
(
a q0,a+1(x) + (1 − 3a)[aq0,a−1(x)]

+ 5

3
[a(a − 1)(a − 2)q0,a−3(x)]

)
, (4.48)

where q0,a(x), [aq0,a−1(x)] and [a(a − 1)(a − 2)q0,a−3(x)] are given by (1.9) and
(1.12).

Remark 4.8 The degree of the polynomial in the right-hand side of (4.48) is given by

{
2 if a = 0,

a if a ≥ 1.

In particular, q(4)
a+1,a,a+1 = q

(4)
a+1,a,a+2 = 0.
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Proof Let us first rewrite the sums on the left-hand sides of (4.47) and (4.48) in terms
of the coefficients {q(1)

�,m,p, q
(2)
�,m,p, q

(3)
�,m,p}. By (4.37),

a+1∑

m=0

3a+2−2m∑

p=0

q
(4)
a+1,m,pk

mx p = −
a∑

s=0

{ s∑

m=0

s∑

p=0

q(1)
s,m,pk

mx p

×
{ a+1−s∑

m=0

3(a+1−s)−1−2m∑

p=0

q
(2)
a+1−s,m,pk

mx p − 1

3rb

a−s∑

m=0

3(a−s)−2m∑

p=0

q
(3)
a−s,m,pk

mx p
}}

.

Equaling the coefficients of ka+1 and of ka gives the identities

a∑

p=0

q
(4)
a+1,a+1,px

p = −
a∑

s=0

{ s∑

p=0

q(1)
s,s,px

p ×
{ a−s∑

p=0

q
(2)
a+1−s,a+1−s,px

p
}}

(4.49)

and

a+2∑

p=0

q
(4)
a+1,a,px

p =−
a∑

s=1

{ s∑

p=0

q
(1)
s,s−1,px

p×
{a−s∑

p=0

q
(2)
a+1−s,a+1−s,px

p
}}

−
a∑

s=0

{ s∑

p=0

q(1)
s,s,px

p ×
{ a−s+2∑

p=0

q
(2)
a+1−s,a−s,px

p − 1

3rb

a−s∑

p=0

q
(3)
a−s,a−s,px

p
}}

.

(4.50)

It remains to simplify the right-hand sides of (4.49) and (4.50). Sums of the form
∑s

p=0 q
(1)
s,s,px p and

∑s
p=0 q

(1)
s,s−1,px

p were already simplified in (4.42) and (4.43).
Also, by (4.35),

�−1∑

p=0

q
(2)
�,�,p

( x

rb

)p =
�∑

s=1

2s/2

s! Hes−1(x)
1

�!
[ d

dk

]�[[(�formal
j,k )s]�

]∣
∣
∣
k=0,Mj→ x

rb

(4.51)

where [(�formal
j,k )s]� is the coefficient of the term of order n− �

2 in the asymptotic series

(�formal
j,k )s . Using (4.28), we infer that

1

�!
[ d

dk

]�[[(�formal
j,k )s]�

]∣
∣
∣
k=0

= δs,�d
�
1,1, s = 1, . . . , �. (4.52)

Also, a direct computation using (4.25) shows that

� j,k = 1

2
√
2brb

√
n

{

k + 5(rbM j )
2

3
b + 1√

n

(
kM j

3
− 53

36
bM3

j r
2b
)

+ O(n−1)

}

(4.53)
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as n → +∞ uniformly for j ∈ {g−, . . . , g+}. In particular, d1,1 = 1
2
√
2brb

and thus,

by (4.51)-(4.52),

�−1∑

p=0

q
(2)
�,�,p

( x

rb

)p = 1

(2brb)�
1

�!He�−1(x), � ≥ 1. (4.54)

Combining (4.49) with (1.8), (4.42) and (4.54) yields

(2brb)a+1(−1)a+1(a + 1)!
a∑

p=0

q
(4)
a+1,a+1,p

( x

rb

)p = (−1)a
a∑

s=0

(
a + 1

s

)

i s

Hes(i x)Hea−s(x).

Using the functional equation (see e.g. [66, eq.(9.6)])

a∑

s=0

(
a + 1

s

)

i sHes(i x)Hea−s(x) = ia He(1)
a (i x), a ∈ N, (4.55)

we obtain the desired identity (4.47). It remains to simplify the right-hand side of
(4.50) (with x replaced by x

rb
) and to prove (4.48). In view of (4.42), (4.43) and (4.54),

it only remains to evaluate explicitly sums of the forms

�+2∑

p=0

q
(2)
�+1,�,p

( x

rb

)p
and

1

3rb

�∑

p=0

q
(3)
�,�,p

( x

rb

)p
, � ≥ 0. (4.56)

For the first sum, we use (4.35) to get

�+2∑

p=0

q
(2)
�+1,�,p

( x

rb

)p =
�+1∑

s=1

2s/2

s! Hes−1(x)
1

�!
[ d

dk

]�[[(�formal
j,k )s]�+1

]∣
∣
∣
k=0,Mj→ x

rb

,

� ≥ 0. (4.57)

A direct computation using (4.28) shows that

1

�!
[ d

dk

]�[[(�formal
j,k )s]�+1

]∣
∣
∣
k=0

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if 1 ≤ s ≤ � − 2,

(� − 1)d�−2
1,1 d3,2, if s = � − 1,

� x
rb
d�−1
1,1 d2,1, if s = �,

(� + 1) x2

r2b
d�
1,1d1,0, if s = � + 1,

and by (4.25) and (4.53),

d1,1 = 1

2
√
2brb

, d1,0 = 5rb

6
√
2
, d2,1 = 1

6
√
2brb

, d3,2 = −1

24
√
2b2r3b

.
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Substituting the above in (4.57), for � ≥ 0 we get

�+2∑

p=0

q
(2)
�+1,�,p

( x

rb

)p = 1

(2b)�rb(�+1)

1

�!
(5

6
x2 He�(x) + �

3
x He�−1(x) − �(� − 1)

6
He�−2(x)

)
,

= 1

(2b)�rb(�+1)

1

�!
[5x2 + 2�

6
He�(x) + �(� − 1)

6
He�−2(x)

]
, (4.58)

where He−2(x) ≡ He−1(x) ≡ 0, and for the second line we have used the three-
term recurrence relation (1.5) of He�.

Now we turn to the problem of simplifying the second sum in (4.56). Let us write

√
n

( +∞∑

�=0

c�(η j,k)

a
�+ 1

2
j,k

)

∼
+∞∑

�=0

e�

n
�
2

, as n → +∞

for some {e�}+∞
�=0 ⊂ C. By (4.36),

1

3rb

�∑

p=0

q
(3)
�,�,p = − 1

�!
[ d

dk

]�
{

e� +
�∑

s=1

e�−s

s∑

m=1

2m/2

m! Hem(x)
[
[(�formal

j,k )m ]s
]}∣
∣
∣
k=0,Mj→ x

rb

= − 1

�!
{[ d

dk

]�
e� +

�∑

s=1

s∑

m=1

2m/2

m! Hem(x)
�∑

q=0

(
�

q

)

[ d

dk

]q
e�−s

[ d

dk

]�−q[[(�formal
j,k )m ]s

]}∣
∣
∣
k=0,Mj→ x

rb

. (4.59)

Long but direct calculations using (4.39), (4.40) and (4.41) show that

[ d

dk

]q
e�−s

∣
∣
∣
k=0

= 0, for � ≥ 0, 0 ≤ s ≤ �, q ≥ 1 +
⌊� − s

2

⌋
,

[ d

dk

]�−q[[(�formal
j,k )m]s

]∣
∣
∣
k=0

= 0, for � ≥ 1, 1 ≤ s ≤ �, 1 ≤ m ≤ s, q

≤
⌊
� − s + m + 1

2

⌋
.

This means that for � ≥ 1, the only term that contributes in (4.59) corresponds to
m = s = � and q = 0. Thus, for any � ≥ 0, we have

1

3rb

�∑

p=0

q
(3)
�,�,p = −

{

e0
2�/2

�! He�(x)
1

�!
[ d

dk

]�[[(�formal
j,k )�]�

]}∣
∣
∣
k=0,Mj→ x

rb

.

A direct computation shows that e0 = − 1
3rb

. Using also (4.52), we get

1

3rb

�∑

p=0

q
(3)
�,�,p

( x

rb

)p = 1

3

1

(2b)�rb(�+1)

1

�!He�(x), � ≥ 0. (4.60)
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Using (4.58) and (4.60), for � ≥ 0 we obtain

�+2∑

p=0

q
(2)
�+1,�,p

( x

rb

)p − 1

3rb

�∑

p=0

q
(3)
�,�,p

( x

rb

)p

= 1

(2b)�rb(�+1)

1

�!
[5x2 + 2(� − 1)

6
He�(x) + �(� − 1)

6
He�−2(x)

]
. (4.61)

Combining (4.50) with (4.42), (4.43) and (4.61), we obtain after some calculations
that

(2brb)a+1(−1)aa!
a+2∑

p=0

q
(4)
a+1,a,p

( x

rb

)p

= −b

3

{ a∑

s=1

(−1)a−s
(

a

s − 1

)

p̂0,s(x)Hea−s(x) + sa(x)

}

, (4.62)

where

p̂0,a+1(x) := 3a p0,a+1(x) + 3a(1 − 3a) p0,a−1(x) + 5a(a − 1)(a − 2) p0,a−3(x),

(4.63)

sa(x) := (−1)a
a∑

s=0

(
a

s

)

i sHes(i x)
[
(5x2 + 2(a − s − 1))Hea−s(x)

+ (a − s)(a − s − 1)Hea−s−2(x)
]
. (4.64)

The polynomial sa can actually be considerably simplified. Indeed, since

Hes(x) =
[ d

dt

]s[
ext−

t2
2

]∣
∣
∣
t=0

, i sHes(i x) =
[ d

dt

]s[
e−xt+ t2

2

]∣
∣
∣
t=0

,

we have

a∑

s=0

(
a

s

)

i sHes(i x)Hea−s(x) =
[ d

dt

]a[
1
]∣
∣
∣
t=0

=
{
1 if a = 0,

0 if a ≥ 1.
(4.65)

Hence,

a∑

s=0

(
a

s

)

(a − s)(a − s − 1)i sHes(i x)Hea−s−2(x)

= a(a − 1)
a−2∑

s=0

(
a − 2

s

)

i sHes(i x)Hea−s−2(x) =
{
2 if a = 2,

0 if a �= 2,
(4.66)
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and using also the recurrence relation (1.5) we get

a∑

s=0

(
a

s

)

(a − s)i sHes(i x)Hea−s(x)

= a
a−1∑

s=0

i s
(
a − 1

s

)

Hes(i x)
(
xHea−s−1(x) − (a − s − 1)Hea−s−2(x)

)

=

⎧
⎪⎨

⎪⎩

x if a = 1,

−2 if a = 2,

0 otherwise.

(4.67)

Using (4.65), (4.66) and (4.67) to simplify sa , we finally obtain

sa(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

5x2 − 2 if a = 0,

−2x if a = 1,

−2 if a = 2,

0 if a ≥ 3.

Let us now simplify the sum in (4.62). First, substituting the definitions (4.63) and
(1.8), we rewrite it as

a∑

s=1

(−1)a−s
(

a

s − 1

)

p̂0,s(x)Hea−s(x) = A1 + A2 + A3, (4.68)

where

A1 := 3(−1)a
a∑

s=2

(
a

s − 1

)

(s − 1)i sHes(i x)Hea−s(x),

A2 := −3(−1)a
a∑

s=2

(
a

s − 1

)

(s − 1)
(
3(s − 2) + 2

)
i s−2Hes−2(i x)Hea−s(x),

A3 := 5(−1)a
a∑

s=4

(
a

s − 1

)

(s − 1)(s − 2)(s − 3)i sHes−4(i x)Hea−s(x).

To simplify A1, we first establish two formulas. Using (4.65) and
(a+1

s

) = (as
)+ ( a

s−1

)

in (4.55), we infer that

a∑

s=1

(
a

s − 1

)

i sHes(i x)Hea−s(x) =
{
ia He(1)

a (i x), if a ≥ 1,

0, if a = 0.
(4.69)
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Also, using the recurrence (1.5) together with (4.65),

a
a∑

s=1

(
a − 1

s − 1

)

i sHes(i x)Hea−s(x)

= a
a∑

s=1

(
a − 1

s − 1

)

i s
(
i xHes−1(i x) − (s − 1)Hes−2(i x)

)
Hea−s(x)

=

⎧
⎪⎨

⎪⎩

−x, if a = 1,

2, if a = 2,

0, otherwise.

(4.70)

For A1, we use
(a−1
s−2

) = ( a
s−1

)− (a−1
s−1

)
together with (4.69) and (4.70), and find

A1 = 3(−1)aa
a∑

s=2

(
a − 1

s − 2

)

i sHes(i x)Hea−s(x) = 3a q0,a+1(x) +

⎧
⎪⎨

⎪⎩

−3x if a = 1,

−6 if a = 2,

0 otherwise.
(4.71)

Similarly, by (4.55) and (4.69),

A2 = 3(−1)a
a∑

s=2

[
3a(a − 1)

(
a − 2

s − 3

)

+ 2a

(
a − 1

s − 2

)]
i s−2Hes−2(i x)Hea−s(x)

= 3(1 − 3a) [aq0,a−1(x)] +

⎧
⎪⎨

⎪⎩

−3 if a = 0,

18 if a = 2,

0 otherwise.

(4.72)

Simplifying A3 is a simpler task as it only relies on (4.55), namely

A3 = 5(−1)aa(a − 1)(a − 2)
a−4∑

s=0

(
a − 3

s

)

i sHes(i x)Hea−4−s(x)

=
{
0, if a ∈ {0, 1, 2}
5a(a − 1)(a − 2)q0,a−3(x), if a ≥ 3

= 5[a(a − 1)(a − 2)q0,a−3(x)] +

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

5(1 − x2), if a = 0,

5x, if a = 1,

−10, if a = 2,

0, otherwise.

(4.73)
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Therefore, by (4.68), (4.71), (4.72) and (4.73), we have

a∑

s=1

(−1)a−s
(

a

s − 1

)

p̂0,s(x)Hea−s(x)

= 3a q0,a+1(x) + 3(1 − 3a)[a q0,a−1(x)] + 5[a(a − 1)(a − 2) q0,a−3(x)] − sa(x).
(4.74)

Now (4.48) directly follows from (4.62) and (4.74), which completes the proof. 
�
In the large n asymptotics of S(2)

2 , which are obtained in Lemma 4.11 below, the
function G0(y; u, a), defined in (1.13), will appear inside a logarithm and in a denom-
inator. The next lemma ensures that this function is positive for relevant values of the
parameters.

Lemma 4.9 The function G0(y; u, a) given in (1.13) is positive for all y ∈ R, u ∈ R,
and a ∈ N.

Proof Let us write

G0,0(y, a) := (−1)a
[

p0,a(−
√
2y)

2 − erfc(y)

2
− q0,a(−

√
2y)

e−y2

√
2π

]

,

G0,1(y, a) := p0,a(−
√
2y)erfc(y) + 2 q0,a(−

√
2y)

e−y2

√
2π

.

Then by (1.13), we have

G0(y; u, a) = G0,0(y, a) + eu

2
G0,1(y, a). (4.75)

Using the definitions (1.8), (1.9), we obtain

p′
0,a+1(x) = (a + 1)p0,a(x), q ′

0,a+1(x) = (a + 1)q0,a(x) + xq0,a+1(x)

−p0,a+1(x). (4.76)

The first identity in (4.76) is well-known and easy to prove. The second one fol-
lows from two known identities, namely the differentiation rule (He(ν)

k )′(x) =
(k+ν)He(ν)

k−1(x)−νHe(ν+1)
k−1 (x) and the recurrence relationHe(ν−1)

k+1 (x) = xHe(ν)
k (x)−

νHe(ν+1)
k−1 (x), see e.g. [66, eqs (6.3) and (6.6)]. It follows from (4.76) that

d

dy
G0,0(y, a + 1) = √

2(a + 1)G0,0(y, a),
d

dy
G0,1(y, a + 1)

= −√
2(a + 1)G0,1(y, a). (4.77)

Let us now show that
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G0,1(y, a) > 0, y ∈ R, (4.78)

G0,1(y, a) =
√

2

π
e−y2 a!

(
√
2y)a+1

(
1 + O(y−2)

)
, as y → +∞. (4.79)

We shall prove (4.78) and (4.79) by induction on a. For a = 0, we have G0,1(y, 0) =
erfc(y) and (4.78), (4.79) follow. Assume now that (4.78) and (4.79) hold for a given
a. By combining (4.77) with (4.79), we infer that (4.79) also holds with a replaced by
a + 1; in particular G0,1(y, a + 1) > 0 for all sufficiently large y > 0. Also, by (4.77)
and (4.78), the functionG0,1(y, a+1) is decreasing for y ∈ R. SinceG0,1(y, a+1) > 0
for all sufficiently large y > 0, we conclude that G0,1(y, a + 1) > 0 for all y ∈ R.

The proof that G0,0(y, a) > 0 for all y ∈ R is similar, so we omit it.
The statement of the lemma now readily follows from (4.75). 
�
Recall from (3.1) and (4.24) that Mj = √

n(λ j − 1) with λ j := bnr2b/( j + α).
To obtain the large n asymptotics of S(2)

2 , we need the following lemma from [21]
to approximate sums of the form

∑
j h(Mj ) (by contrast, Lemma 2.10 approximates

sums of the form
∑

j f ( j/n)).

Lemma 4.10 ([21, Lemma 3.11]) Let h ∈ C3(R). As n → +∞, we have

g+∑

j=g−
h(Mj ) = br2b

∫ M

−M
h(t)dt

√
n − 2br2b

∫ M

−M
th(t)dt

+
(
1

2
− θ

(n,M)
−

)

h(M) +
(
1

2
− θ

(n,M)
+

)

h(−M)

+ 1√
n

[

3br2b
∫ M

−M
t2h(t)dt +

(
1

12
+ θ

(n,M)
− (θ

(n,M)
− − 1)

2

)
h′(M)

br2b

−
(

1

12
+ θ

(n,M)
+ (θ

(n,M)
+ − 1)

2

)
h′(−M)

br2b

]

+ O
(

1

n3/2

g+∑

j=g−+1

(

(1 + |Mj |3)m̃ j,n(h) + (1 + M2
j )m̃ j,n(h

′)

+ (1 + |Mj |)m̃ j,n(h
′′) + m̃ j,n(h

′′′)
))

,

where, for h̃ ∈ C(R) and j ∈ {g− + 1, . . . , g+}, m̃ j,n(h̃) := maxx∈[Mj ,Mj−1] |h̃(x)|.
Lemma 4.11 As n → +∞, we have

S(2)
2 = −abr2bM

√
n ln n + br2b

√
n
∫ M

−M
h0(t)dt + a

θ
(n,M)
− + θ

(n,M)
+ − 1

2
ln n

+ br2b
∫ M

−M

(
h1(t) − 2th0(t)

)
dt +

(
1

2
− θ

(n,M)
−

)

h0(M) +
(
1

2
− θ

(n,M)
+

)
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h0(−M) + O
(
M3

√
n
ln n

)

,

where

H0(x) := ra−ab

(2b)a
G0
(
− rbx√

2
; u, a

)
, (4.80)

h0(x) := ln
(H0(x)

)
, (4.81)

h1(x) := ra−(1+a)b

(2b)a+1

1

H0(x)
G1
(
− rbx√

2
; u, a

)
, (4.82)

and the functions G0 and G1 are given by (1.13) and (1.14).

Proof Recall the formula (4.26) for S(2)
2 , namely

S(2)
2 =

∑

j :λ j∈I2
ln

( a∑

k=0

(
a

k

)
(−r)a−k

n
k
2b

	(
2 j+2α+k

2b )

	(
2 j+2α
2b )

×
[

1 + ((−1)aeu − 1)

(

erfc
(
−η j,k

√
a j,k
2

)
− Ra j,k (η j,k)

)])

. (4.83)

Recall also that for all j ∈ { j : λ j ∈ I2}, we have 1 − M√
n

≤ λ j = bnr2b
j+α

≤ 1 + M√
n
,

and −M ≤ Mj ≤ M .
The expansion (4.31) implies that

a∑

k=0

(
a

k

)
(−r)a−k

n
k
2b

	(
2 j+2α+k

2b )

	(
2 j+2α
2b )

[

1 + ((−1)aeu − 1)

(
1

2
erfc
(
−η j,k

√
a j,k
2

)

− Ra j,k (η j,k)

)]

∼
+∞∑

�=0

B�(Mj ; a)√
n�

, (4.84)

where

B�(x; a) :=
a∑

k=0

(
a

k

)

(−1)a−kraA�(x; k). (4.85)

It turns out that the first a terms in the expansion (4.84) are 0, i.e.

B0(·; a) ≡ B1(·; a) ≡ · · · ≡ Ba−1(·; a) ≡ 0. (4.86)

To prove this, we use [56, eq 26.8.6], i.e.

a∑

k=0

(
a

k

)

(−1)a−kk� = a! S(�, a), �, a ∈ N,
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where we recall that S(�, a) is the Stirling number of the second kind. In particular,

a∑

k=0

(
a

k

)

(−1)a−kk� =

⎧
⎪⎨

⎪⎩

0 if � < a,

a! if � = a,

(a + 1)! a/2 if � = a + 1.

(4.87)

Since k �→ A�(x; k) is a polynomial of degree � by (4.33), the identities (4.86) directly
follow from (4.85).

Let us now compute Ba(x; a) and Ba+1(x; a). By (4.33), (4.85) and (4.87), we
have

Ba(x; a) = ra
(

(−1)a + eu − (−1)a

2
erfc

(

− rbx√
2

))

(−1)aa!
a∑

p=0

q(1)
a,a,px

p

+ ra(eu − (−1)a)
e− r2bx2

2√
2π

(−1)aa!
a−1∑

p=0

q(4)
a,a,px

p (4.88)

and

Ba+1(x; a) = ra
(

(−1)a + eu − (−1)a

2
erfc

(

− rbx√
2

))

(−1)aa!
a+1∑

p=0

(
q
(1)
a+1,a,p + a(a + 1)

2
q
(1)
a+1,a+1,p

)
x p

+ ra(eu − (−1)a)
e− r2bx2

2√
2π

(−1)aa!
( a+2∑

p=0

q
(4)
a+1,a,px

p + a(a + 1)

2

a∑

p=0

q
(4)
a+1,a+1,px

p
)

. (4.89)

More generally, for � ≥ 1, we have

Ba+�(x; a) = ra
(

(−1)a + eu − (−1)a

2
erfc

(

− rbx√
2

))

(−1)aa!
a+�∑

m=max(a,1)

a+�∑

p=0

q
(1)
a+�,m,pS(m, a)x p

+ ra(eu − (−1)a)
e− r2bx2

2√
2π

(−1)aa!
a+�∑

m=a

3(a+�)−1−2m∑

p=0

q
(4)
a+�,m,pS(m, a)x p.

(4.90)
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Let us define

H0(x) := Ba(x; a), h0(x) := ln(H0(x)), h1(x) := Ba+1(x; a)

Ba(x; a)
.

By combining (4.88) and (4.89) with Lemmas 4.6 and 4.7, we obtain after sim-
plifications that the functions H0(x) and h1(x) can be written as in (4.80) and
(4.82).

Since the case a = 0 was already done in [19], from here on we focus on the more
complicated case a ≥ 1. We note the following important facts:

(1) By Lemma 4.9, H0(x) > 0 for all x ∈ R.
(2) By (4.80) and (4.81), h0(x) grows logarithmically at ±∞.
(3) By (4.80) and (4.82), h1(x) grows linearly at ±∞.
(4) By (4.90) and (4.88), Ba+�(x;a)

Ba(x;a)
= O(x�) as x → ±∞.

(Another reason as to why the case a = 0 is significantly simpler than the case
a ≥ 1 stems from the fact that for a = 0, the function h0(x) remains bounded, and
furthermore h1(x) becomes exponentially small as x → ±∞.)

After substituting (4.84) in (4.83), we obtain

S(2)
2 = −a

2
ln n

g+∑

j=g−
1 + �

(2)
0 + 1√

n
�

(2)
1 + O

(
1

n

gk,+∑

j=gk,−
M2

j

)

, (4.91)

where

�
(2)
0 :=

g+∑

j=g−
h0(Mj ), �

(2)
1 :=

g+∑

j=g−
h1(Mj ).

The O-term in (4.91) is O(M
3√
n
). Also, by Lemma 4.10,

− a

2
ln n

g+∑

j=g−
1 = −abr2bM

√
n ln n + a

θ
(n,M)
− + θ

(n,M)
+ − 1

2
ln n + O

(
M3

√
n
ln n

)

,

�
(2)
0 = br2b

√
n
∫ M

−M
h0(t) dt − 2br2b

∫ M

−M
t h0(t) dt

+
(
1

2
− θ

(n,M)
−

)

h0(M) +
(
1

2
− θ

(n,M)
+

)

h0(−M) + O
(
M3 ln n√

n

)

,

1√
n
�

(2)
1 = br2b

∫ M

−M
h1(t)dt + O

(
M3

√
n

)

,
1

n

gk,+∑

j=gk,−
M2

j = O
(
M3

√
n

)

,

as n → +∞. We now obtain the claim after a computation. 
�
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4.3 Asymptotics of S2

We are now in a position to compute the large n asymptotics of S2.

Lemma 4.12 As n → +∞,

S2 = Ĉ (ε)
1 n + Ĉ2

√
n + Ĉ (n,ε)

3 + O
(
M3

√
n
ln n +

√
n

M5

)

,

where

Ĉ (ε)
1 =

∫ br2b

br2b
1+ε

(

u + a ln

(

r −
(
x

b

) 1
2b
))

dx +
∫ br2b

1−ε

br2b
a ln

((
x

b

) 1
2b − r

)

dx, (4.92)

Ĉ2 = br2b
∫ +∞

−∞
ĥ0(t) dt,

Ĉ (n,ε)
3 = −αu + 1 + 2α − 2θ(n,ε)

−
2

(

u + a ln
(
r − r(1 + ε)−

1
2b

))

+ 1 − 2α − 2θ(n,ε)
+

2
a ln

(
r(1 − ε)−

1
2b − r

)

+ a

4

{
1 − a

1 − (1 + ε)− 1
2b

+ 1 − a

(1 − ε)− 1
2b − 1

+ (a − 2b + 4α) ln

(
(1 − ε)− 1

2b − 1

1 − (1 + ε)− 1
2b

)}

+ br2b
∫ +∞

−∞

{

h1(t) − 2 th0(t) + a

4b

(

1 + 2b + 8b ln

(
r |t |
2b

))

t + 2utχ(0,∞)(t)

− (2ab − a2)t

4br2b(1 + t2)

}

dt . (4.93)

Here

ĥ0(x) = h0(x) − a ln

(
r |x |
2b

)

− u χ(0,∞)(x)

and h0, h1 are given in the statement of Lemma 4.11.

Proof Combining Lemmas 4.1, 4.4 and 4.11 yields

S2 = Ĉ (ε)
1 + Ĉ ′(M)

2

√
n ln n + Ĉ (M)

2

√
n + Ĉ ′(n,M)

3 ln n + Ĉ (n,ε,M)
3

+ O
(
M3

√
n
ln n +

√
n

M5

)

, (4.94)

as n → +∞, where Ĉ (ε)
1 is given by (4.92). After short (but remarkable)

simplifications, we obtain Ĉ ′(M)
2 = Ĉ ′(ε,M)

3 = 0. The quantity Ĉ (M)
2 is given by
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Ĉ (M)
2 = br2bM

(

2a ln

(
2b

rM

)

+ 2a − u

)

+ a(a − 1)b

M
− ab(a − 1)(2a − 3)

6r2bM3

+ br2b
∫ M

−M
h0(t)dt .

Using the definition (4.81) of h0, we verify that

h0(t) = a ln
(r |t |
2b

)
+ uχ(0,∞)(t) + a(a − 1)

2r2bt2
− a(a − 1)(2a − 3)

4r4bt4
+ O(t−6),

as t → ±∞, (4.95)

from which we conclude

Ĉ (M)
2

√
n = Ĉ2

√
n + O

(√
n

M5

)

, as n → +∞,

where Ĉ2 is given by (4.93). The quantity Ĉ (n,ε,M)
3 in (4.94) is given by

Ĉ (n,ε,M)
3 =

(
1

2
− θ

(n,M)
−

)

Ĉ (M)
3,1 +

(
1

2
− θ

(n,M)
+

)

Ĉ (M)
3,2 + Ĉ (n,ε)

3,3 + Ĉ (M)
3,4 ,

where

Ĉ (M)
3,1 := h0(M) − u − a ln

(
rM

2b

)

, Ĉ (M)
3,2 := h0(−M) − a ln

(
rM

2b

)

,

Ĉ (n,ε)
3,3 := 1 + 2α − 2θ(n,ε)

−
2

(

u + a ln
(
r − r(1 + ε)−

1
2b

))

+ 1 − 2α − 2θ(n,ε)
+

2
a ln

(
r(1 − ε)−

1
2b − r

)

− αu + a

4

{
1 − a

1 − (1 + ε)− 1
2b

+ 1 − a

(1 − ε)− 1
2b − 1

+ (a − 2b + 4α) ln

(
(1 − ε)− 1

2b − 1

1 − (1 + ε)− 1
2b

)}

,

Ĉ (M)
3,4 = br2b

{

uM2 +
∫ M

−M
(h1(t) − 2th0(t))dt

}

.

It readily follows from (4.95) that

Ĉ (M)
3,1 = O

(
1

M2

)

, Ĉ (M)
3,2 = O

(
1

M2

)

, as n → +∞.
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We also verify from (4.81), (4.82), (4.95), and

p1,a(x)

p0,a(x)
= −a

2
(1 + 2b)x − a

2

a + 2b(1 − 2a)

x
+ O(x−3), as x → ±∞

that

h1(t) − 2th0(t) = − a

4b

(

1 + 2b + 8b ln

(
r |t |
2b

))

t − 2utχ(0,∞)(t) + 2ab − a2

4br2bt

+ O(t−3)

as t → ±∞. We conclude that

Ĉ (M)
3,4 =br2b

∫ +∞

−∞

{

h1(t) − 2 th0(t)+ a

4b

(

1 + 2b + 8b ln

(
r |t |
2b

))

t+2utχ(0,∞)(t)

− (2ab − a2)t

4br2b(1 + t2)

}

dt + O(M−2), as n → +∞,

and the claim follows. 
�

5 Proof of Theorem 1.1

By combining (2.4) with Lemmas 3.1, 3.2, 3.3 and 4.12, we obtain

ln En = S0 + S1 + S2 + S3 = C1n + C2
√
n + C3 + O

(
M3

√
n
ln n +

√
n

M5
+ n− 1

2b

)

,

as n → +∞. Here we obtain the constants C1, C2 and C3 of
(1.16) after a long computation using (1.13)–(1.14), a change of vari-

ables, and simplifying. Since M = n
1
8 (ln n)− 1

8 , the error term is

O
(
n− 1

2b + (ln n)
5
8 n− 1

8

)
, which finishes the proof of Theorem 1.1.

Appendix: Uniform Asymptotics of the Incomplete Gamma Function

In this section, we collect some known asymptotic formulas for γ (ã, z) that are useful
for us.

Lemma A.1 (Taken from [56, formula 8.11.2]). Let ã > 0 be fixed. As z → +∞,

γ (ã, z) = 	(ã) + O(e− z
2 ).
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Lemma A.2 (Taken from [61, Section 11.2.4]). For ã > 0 and z > 0, we have

γ (ã, z)

	(ã)
= 1

2
erfc(−η

√
ã/2) − Rã(η), Rã(η) = e− 1

2 ãη2

2π i

∫ ∞

−∞
e− 1

2 ãu
2
g(u)du,

where erfc is defined in (1.15), g(u) = dt
du

1
λ−t + 1

u+iη ,

λ = z

ã
, η = (λ − 1)

√
2(λ − 1 − ln λ)

(λ − 1)2
, u = −i(t − 1)

√
2(t − 1 − ln t)

(t − 1)2
, (A.1)

where sign(η) = sign(λ − 1), and sign(u) = sign(Im t) with t ∈ L := { θ
sin θ

eiθ :
−π < θ < π} and u ∈ R (in particular u = −i(t − 1) + O((t − 1)2) as t → 1).
Furthermore,

Rã(η) ∼ e− 1
2 ãη2

√
2π ã

+∞∑

j=0

c j (η)

ã j
as ã → +∞ (A.2)

uniformly for z ∈ [0,∞), where all coefficients c j (η) are bounded functions of η ∈ R

(i.e. bounded for λ ∈ [0,∞)) and given by

c0 = 1

λ − 1
− 1

η
, c j = 1

η

d

dη
c j−1(η) + γ j

λ − 1
, j ≥ 1, (A.3)

where the γ j are the Stirling coefficients

γ j = (−1) j

2 j j !
[
d2 j

dx2 j

(
1

2

x2

x − ln(1 + x)

) j+ 1
2
]

x=0
.

The first few c j are c0(η) = 1
λ−1 − 1

η
and

c1(η) = 1

η3
− 1

(λ − 1)3
− 1

(λ − 1)2
− 1

12(λ − 1)
,

c2(η) = − 3

η5
+ 3

(λ − 1)5
+ 5

(λ − 1)4
+ 25

12(λ − 1)3
+ 1

12(λ − 1)2
+ 1

288(λ − 1)
,

c3(η) = 15

η7
− 15

(λ − 1)7
− 35

(λ − 1)6
− 105

4(λ − 1)5
− 77

12(λ − 1)4
− 49

288(λ − 1)3
−

1

288(λ − 1)2
+ 139

51840(λ − 1)
.

In particular, the following hold:
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(i) Let δ > 0 be fixed, and let z = λã. As ã → +∞, uniformly for λ ≥ 1 + δ,

γ (ã, z) = 	(ã)
(
1 + O(e− ãη2

2 )
)
.

(ii) Let z = λã. As ã → +∞, uniformly for λ in compact subsets of (0, 1),

γ (ã, z) = 	(ã)O(e− ãη2

2 ).
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