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Abstract

General summation formulas have been proved to be very useful in analysis, num-
ber theory and other branches of mathematics. The Lipschitz summation formula is
one of them. In this paper, we give its application by providing a new transforma-
tion formula which generalizes that of Ramanujan. Ramanujan’s result, in turn, is a
generalization of the modular transformation of Eisenstein series Ej(z) on SL;(Z),
where z — —1/z, z € H. The proof of our result involves delicate analysis containing
Cauchy Principal Value integrals. A simpler proof of a recent result of ours with Kesar-
wani giving a non-modular transformation for ), | o2, (n)e ™" is also derived using
the Lipschitz summation formula. In the pursuit of obtaining this transformation, we
naturally encounter a new generalization of Raabe’s cosine transform whose several
properties are also demonstrated. As an application of our results, we get a general-
ization of Wright’s asymptotic estimate for the generating function of the number of
plane partitions of a positive integer 7.
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1 Introduction
Let o, 8 > 0 with @f = 2 and m € Z\{0}. Ramanujan’s famous formula for

¢(2m + 1) is given by! [45, p. 173, Ch. 14, Entry 21(i)], [44, pp. 319-320, formula
(28)], [4, pp. 275-276]

p—2m—1 p—2m—1
{(2m+1)+2 T }_( ﬁ)_”’{ ;(2m+1)+z oy

(—D¥Box Bomga—2k _
_ 22m m+1—k k’ 11
]; 2h)!2m +2 —201” A (1.1

where, as customary, ¢ (s) denotes the Riemann zeta function and B, denotes the nth
Bernoulli number defined by

B,7" z
y o = (Iz| < 2m).

! 7 _
a2 e 1

The above formula has received enormous attention from numerous mathematicians
over the years and has been rediscovered many times, for example, see [24, Theorem
9] and [35]. It is an impressive result, for it encapsulates not only the transformation
formulas of the Eisenstein series on SL(Z) and the corresponding ones for their
Eichler integrals but also the transformation property of the logarithm of the Dedekind
eta function. For a delightful historical account on it, we refer the reader to the excellent
survey [6]. There are several generalizations of (1.1) in the literature, for example, [10],
[13], [14], [16], [17], [25] and [31]. In his second notebook [45, p. 269], Ramanujan
himself provided the following generalization of (1.1).

Let « and 8 be two positive real numbers such that af = 472, Then for Re(s) > 2,

we have
T'(s)¢(s) TS\ o= n¥!
s/2 ) 2 WIS\ il ot
{ n) +C°S(2)Zena—1}

n=1

1 Ramanujan’s formula is actually valid for any complex «, B such that Re(o) > 0,Re(8) > 0 and
2
aff =m°.
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s—1

o s\ T($)(s) | o~ 7
=8 {cos(2>—(2n)s +’12:;€n/3—1

. (TS % x5l 1
— Sin (7) PV‘/O mcot (zﬁ)&') dx} s (12)

where PV denotes the Cauchy principal value integral. The above formula has been
proved in [5, p. 416]. Also see [7, Section 9] for a recent generalization of (1.2).

Unfortunately, Ramanujan’s formula (1.2) has not received as much attention as
(1.1). But it is also a noteworthy result because it not only gives the transformation
formula for the Eisenstein series on SL, (Z) in the special case s = 2m,m € Nym > 1,
but also reveals the obstruction to modularity for other values of s, which is evident
due to the appearance of the integral on its right-hand side. Note that the last term
involving the integral disappears for s = 2m.

One of the goals of this paper is to derive a generalization of (1.2):

Theorem 1.1 Let Re(«), Re(B) > 0 such that aff = 472 Let 0 < a < 1. Then, for
Re(s) > 2, the following transformation holds

P F(S){(S) 1 et e?TiA‘/Z e*?‘[is/Z
(27-[)s 5 X_: eho—2mia _ | + eho+2mia _

I'(s) cos (B +2mak) o (n—a)*~!
_ ps/2 2
=h { (2m)s kg ks t2 et=af — |

n=1
1 oo . eni5/2 efrris/2 1
s—
_ZPV/O X <82M_2m.a — 1 rxiTmia _ 1) cot (zﬂx> dx} . (13

The above theorem reduces to Ramanujan’s formula (1.2) for a = 0. Also for
s=2m,m e N,m > 1,and a = 0, it gives (1.1).
A special case of Theorem 1.1 is the new transformation given below.

Corollary 1.2 Let m € N and m > 1. For Re(a), Re(B8) > 0 such that aff = 47>, we
have

s 2m—1 1/2)2m—1 By,
am Z en + ( ﬁ) Z (n 1//2); — {Olm _ (21—2m 1)( ﬂ)m 2 .
n=1
(1.4)

Equation (1.4) is a “hybrid” analogue of the following transformation formula for the
Eisenstein series over SL (Z) in that the role of n in the first series is played by n — 1 /2
in the second.

0 2m—1 0 2m—1

m n m m m Bm
oY e — Y S = e = B

n=1 n=1
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The above formula can be obtained from (1.1) by replacing m by —m. As an application
of Corollary 1.2, we obtain the following results, which, to the best of our knowledge,
are new.

Corollary 1.3 For any odd positive integer m greater than 1,

& 2m—1 o 2m—1
" 1 n 1-2 Bzm
Z enm +1 o 22m—1 Z enT — 1 —-(1+2 m) . (1.5)
n= n=1
Moreover,
o0 00
1 1 1
5 = - 1.6
X_:Z’”’Jrl 2;e ~17 716 " 8x (10)

and hence, at least one of the two series is transcendental.

We next describe another consequence of Theorem 1.1. First, let s = 2m and
a =1/41in (1.3), thenlets = 2m and a = 3/4 in (1.3), and add the corresponding
sides of the resulting identities. This leads to the transformation between just the infinite
series which we record below in (1.7). Similarly subtracting the corresponding sides
of the two resulting identities expresses a principal value integral in terms of a Lambert
series, which is given in (1.8).

Corollary 1.4 Let Re(a), Re(B) > 0 such that aff = 472 Form e N,m > 1,

noimt | T@mEQ@m) S !
a2 { (27.[)2m +( 1) nZ:;eha—l-l

_ g !( ),n+1r(2m)g(2m)(22m—1—1) >, (4n — 1)2m-1

(271’)2’” ] e(4n7])f5/4 —1
n=
0 2m—1
(4n — 3)
+2 CGn—3p/4 _ | } ’ (1.7
n=1
and,
00 0 2m—1
PV | sech(2mx) cot 2Bx) x*"~dx = (—1)" 1412 3 X007
0 e — 1

where x (n) is a Dirichlet character modulo 4 given by

1, ifn=1 (mod 4),
x(m)=41—1, ifn=3 (mod4), (1.9)
0, ifn=0,2 (mod 4).

@ Springer



Constructive Approximation

We note that the series on the right-hand side of (1.8) cannot be treated using [10,
Theorem 1].

We now transition towards the second goal of our paper. Recently, the current
authors, along with Kesarwani [16], extensively studied a more general Lambert series

o0
Y= ZG (me™ (s € C. Re(y) > 0) (1.10)
n=

than the ones appearing in (1.1). Here oy(n) := }_,, d’ is the generalized divisor

function. Observe that the series in (1.10) is the same one that appears in Ramanujan’s
(1.2). Among other results, they obtained [ 16, Theorem 2.5] an explicit transformation
for any Re(s) > —1 and Re(y) > 0, which is given next.

% e L2\ s 1
Zox(n)e Y+ 3 <<7) cosec (7) + 1) ¢(=s) — ;C(l =)

Z Q2nrn)~—* P 1.1—s 1_s_47r4n2
vein (5) 2= )<r(1 5! 2(’7’ E’—2>

ysm 7 y
21 47%n
- — cosh , (1.11)
y y

where 1F2(a;.b, c; z).:: > #’zi:n, z€C, (a), = F;a(:f), is the generalized
hypergeometric function.

The explicit transformations of the type (1.11) are always desirable due to their
possible applications in analytic number theory, especially in the theory of zeta func-
tions. See the recent paper [2] for an application of (1.11) in the theory of {(s) by
applying the operator j \ on both sides, thereby resulting in a transformation of

log(n)
eny — 1'

the Lambert series of the logarithm, that is, Z

The authors of [16, Theorem 2.5] also analytlcally continued (1.11) to Re(s) >
—2m — 3, m € NU{0}. Then, as a special case, they not only obtained Ramanujan’s
formula (1.1) and the transformation formula of the logarithm of the Dedekind eta
function but also new transformations when s is an even integer. For example, they
established an explicit transformation [16, Theorem 2.11] for the series in (1.10) when
s =2m, m > 0. Werecorditbelow in (1.13). It comprises two special functions Shi(z)
and Chi(z), known as the hyperbolic sine and hyperbolic cosine integrals, respectively
defined by [38, p. 150, Equation (6.2.15), (6.2.16)]

Shi(r) — % sinh(r) o “ cosh(t) — 1
i(z) = ; dt, Chi(z) :=y +log(z) + — dr, (1.12)
0 0
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where y is Euler’s constant. Let m € N. Then for Re(y) > 0, we have [16, Theorem
2.11]

Bom
Zazm(n)e_”’ (zm+)1 ¢@2m+1)+ Ly

2 /2 2m+1 00 4 2
= (—l)m; <77r) Zo’zm(}’l){ sinh( "

) ,(4n2n>

Shi

- y y
472n 4m*n 42\ "

— h Chi + 2j— 1! .

o (5 e (57 + e -1 ()

(1.13)

The modular transformation for Z;’o:] 02m+1(m)e™™ transforms it into

> 2 > 472n 47%n
202m+1(n)e_4” ny = — thzmﬂ(n){ Sinh( 5 > — cosh( S ) }

n=1 n=l1

(1.14)

In view of this, it is important to note that while going from s = 2m 4+ 1 to s = 2m

in > 02 o5(n)e™, the expression sinh (4”)2") — cosh <@ in (1.14) is to be
replaced by the corresponding one on the right-hand side of (1.13). (Note that the
finite sum Y7, (2j — 1)! (477)4)_2] in the summand of the series on the right-
hand side of (1.14) is essential for its convergence; for details, see the proof of
(1.13) in Sect.4.)

Equation (1.13) readily gives the following asymptotic estimate for

Yool oom(n)e™™:
Corollary 1.5 Letm € N. As y — O in |arg(y)| < 7/2,

By,
ZUZm (n)e_ny (2m21 é‘(z + 1) - 2 my

r+

2= AT Qm +2))C@m+2)¢(2)) Y21 2r+3
j.[(zn)Zm—l = (27-[)4] +0 (}7 ) .

(1.15)

In his first letter to Hardy [9, p. 28], Ramanujan gave the special case m = 1 of the
above result. Watson [49] used the Abel-Plana summation formula to prove this result
of Ramanujan.

The case m = 1 of the series on the left-hand side of (1.13) (or (1.5)) has the fol-
lowing interesting connection with the generating function for plane partitions studied
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by MacMabhon [1, p. 184]:

> oame™ = 4 log(F (x)), (1.16)
dx

n=1

where F(x) := ]_[fjil m, with y = log(1/x), where |x| < 1. In his work on
finding the asymptotic estimate of ¢ (n), the number of plane partitions of a positive
integer n, Wright [51, Lemma 1] first found the asymptotic estimate of F(x) as x —
17. His result on F'(x) readily follows from our Corollary 1.5 and is rephrased in the
following corollary.

Corollary 1.6 As x — 17, we have

r+1
F(x) = e“(logx) /12 exp (Lg)) exp (— 35, (1ogx)2/') (1 + o0, ((1ogx)2’+4)) ,

log= x =
(1.17)

where, ¢ is a constant, and

P F'2j+2)52) +2)5(2))
I 272 j(2m)*4

Wright’s proof (see [51, pp. 180-184]) also gives a representation of the constant ¢
> ylog(y) dv = ¢ ~

The Lambert series (1.10), whose special cases were considered in (1.1) and (1.13),
has been studied by many mathematicians over the years. For a detailed survey, see
[16]. One of the earliest mathematicians to study it was Wigert, who wrote several
papers on this subject. In [50], Wigert examined the Lambert series when 0 < s < 1.
Later, Kuylenstierna [32] provided a simple proof of Wigert’s result using double zeta

in terms of an integral, namely, ¢ = 2

o
1
function & (s, 7) = Z m, Re(s) > 2, © € C\(—o0, 0]. However,
m,n=0
(m,n)#(0,0)

both of them were interested only in the asymptotics of the series in (1.10), not in
explicit transformations. In his work, Kuylenstierna essentially uses the Lipschitz
summation formula [33], namely, 0 < a < 1, Re(s) > 1 and 7 € H (the upper half
plane),

oo eZm‘r(nfu) F(S) eZm’uk
2 = Caniy = kv o (1.18)
nea ! keZ

The Lipschitz summation formula has several nice applications and generalizations, for
example, see [3, 30, 40]. Equation (1.18) is usually proved using Poisson summation
formula, for example, see [43, pp. 77-79]. For other proofs, one can look at the paper
of Vagi [48]. Another (rather simple) proof can be found in [41].
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It does not seem to be easy to get (1.13) as a special case of Ramanujan’s formula
(1.2) or our generalization (1.3), because one has to transform the Lambert series and
the principal value integral on the right-hand side of (1.2) into the series in (1.13)
involving the special functions Shi(z) and Chi(z).

In this paper, we prove Theorem 1.1 and (1.13) using the Lipschitz summation
formula (1.18). The proof of (1.13) through this approach involves a nice generalization
of the following identity [14, Theorem 2.2]

tcos(t) 1 u 1 iu iu
Z/ 2l 5{‘°g(z)—z<‘”<§)+w(‘§))}’ (1.19)

where Re(u) > 0,and ¥ (z) := I''(z)/ ' (z) is the digamma function. In [ 14, Theorem
2.4], the above identity was employed to obtain a two-parameter generalization of
(1.1). Various applications of (1.19) can be found in [15, 16].

Observe that the summand of the left-hand side of (1.19) is the Raabe cosine
transform defined for Re(w) > 0 and y > 0 by [19, p. 144]

R(y, w) = /Ooomdt

12 +w?

Before stating the generalization of (1.19), that is sought for, we first introduce a
new generalization of Raabe’s cosine transform, valid for Re(w) > 0, Re(z) > 0 or
z=0,and y > 0, by

1
+
(t — iw)2z+1 (t + l'w)Zz-H

R, (y, w) := %F(Zz + 1)/(; ( ) cos(yt) dt.

(1.20)

It is easy to see that Ro(y, w) = R(y, w). Also for w > 0, R, (y, w) satisfies a
nice identity, namely,

wZR, (y, w) = YR, (w, y), (1.21)

which is easily seen by making the change of variable t = xw/y in (1.20).
Our first result on R;(y, w) gives a closed-form evaluation of an infinite series
containing R, (y, w).

Theorem 1.7 Let ¢(z, a) be the Hurwitz zeta function. For Re(w) > 0 and Re(z) > 0,
we have
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2 o
WZ%Z(ZNH, U))
' n=1
>, [ 1 1
= 21/0 o~ fw) + R cos(2nv) dv
1
= {g(l 27, iw) + (1 + 22, —iw) — CZSSZTZZ) } (1.22)

Note that this result is not straightforward to obtain as one cannot interchange the
order of the summation and integration: doing so leads to a divergent integral. The
primary tool to prove this result is Guinand’s generalization of Poisson’s summation
formula [23, Theorem 1]; see Theorem 2.2.

The generalized Raabe cosine transform R, (y, w) itself can be evaluated in terms
of exponential integral functions and incomplete gamma functions which are not so
popular. However, the utility of Theorem 1.7 is that the infinite sum of R;(y, w) can
be evaluated in terms of the well-known functions such as the Hurwitz zeta function
£(z, a) and cos(z).

An immediate consequence of Theorem 1.7 is

Corollary 1.8 Equation (1.19) holds true.

Our next result gives an evaluation of a double integral which is imperative to prove
Theorem 1.7.

Theorem 1.9 Ler Re(w) > 0 and Re(z) > 0. Then

1 1 '
/ / < (t — zw)2Z+1 + (t + iw)2H] ) cos(2rrvr) drdv = Yy sin(rz).
(1.23)

Equivalently, in the notation of (1.20),

o
/ R, 2rv, w)dv=——-5—IQ2z+ 1)sin(rz).
0

42zt

It is effortless to see that for z € N U {0}, the above integral evaluates to zero. The
particular case z = 0 is already obtained in [14, Lemma 3.4].

We now provide a new equivalent representation for R, (1, w), where m € NU{0}.
This representation appears in the transformation of Z — 02m(n)e™ " givenin (1.13).

Theorem 1.10 Let Shi(z), Chi(z) and R;(y, w) be defined in (1.12) and (1.20) respec-
tively. Let m € N U {0} and Re(w) > 0. Then
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R (L @M [ 1 1 p
m(l, w) = 2 /é ((t—iw)zm'H + (t+iw)2m+l)cos(t) t

= (~1)" | sinh(w)Shi(w) — cosh(w)Chi(w) + Y (2j — Dlw ™/
j=1

(1.24)

The special case m = 0 of this result was derived in [16, Lemma 9.1].

As mentioned earlier, we provide a new proof of (1.13) in this paper. It is done by
employing the Lipschitz summation formula and Theorems 1.7 and 1.10. Deriving it
this way is simpler than obtaining it as a special case of (1.11). The latter was done in
[16, Section 9].

This paper is organised as follows. In Sect.2, the proofs of Theorems 1.7, 1.9
and 1.10 are given. Sections 3 and 4 are devoted to proving Theorem 1.1 and (1.13)
respectively. In Sect. 5, we give proofs of Corollaries 1.5 and 1.6.

2 The Generalized Raabe Cosine Transform 9, (y, w)

This section is devoted to obtaining the results associated with 93, (y, w) and which
are crucial to proving (1.13). The first result below gives the asymptotic expansion of
R (v, w) asy — oo.

Lemma 2.1 Let R, (y, w) be defined in (1.20). Let Re(w) > 0 and Re(z) > 0. Then
asy — 09,
cos(2) = I'(2z 4 2n)

mz(y» w) ~ (yw)zn

2z
w
n=1

Proof We use the analogue of Watson’s lemma for Laplace transform in the setting of
Fourier transforms [37], [12, Equations (1.3), (1.4)]. It states that if the form of &(¢)
near t = ( is given as a series of algebraic powers, that is,

h(t) ~ > byt"™7! (Re(h) > 0) 2.1)
n=0

ast — 07T, then under certain restrictions on & (see [37], [12, Section 2] for the same),

00 o0
/ Sh(r)dr ~ Z bpe ITIIE (g 4 s (2.2)
0 n=0

as s — oo.
Let

1 1
(t — iw)Zz—H + (t+ iw)2z+1 :

h(t) =
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Then, near t = 0, it is easy to see that

h(t) = (_iw)—(21+1) Z (2Z;:" Dy (i) T (iw)™ 2z+1) Z m <_L>

L
n=0 n=0

—ow —<2z+1)z(21+1)n . (%_m)tn.

nlw"

Therefore, it is clear that our function /(¢) satisfies (2.1) with A = 1 and

by, =

2 —(2z+1) 2 1
w Q2z+ 1), i (nn ) 23)

nl— —mz).
nlw" 2 ‘

From (2.2) and (2.3), as y — oo,

o0 1 1 ) o0 ' b
/ (<f )= (o w2 > e dt ~ 3" byl I (n 4 1)y
e

n=0
2.4)

where b, is given in (2.3). Similarly, as y — oo,

f°°< 1 : ' EOO (1) !
+ )e_’y’ dt ~ Y b e "t 4+ D(—y) "
N2zt T N2z+1
0 (t —iw)** (t+iw)** =
(2.5)

From (2.4) and (2.5), we see that as y — 0o,

e 1 1
/0 (t — iw)22+1 + (t + iw)Zz—H cos(yt) dt

_ 2z +1 (T —n-
~w (22+1)Z( - ’H)l" i+ gin (7—JTZ> (14 (=D

_ oy QeHD) Z Q2+ Den-1) uri g <ﬂ(2n - m)

2n 1 2n 2

2w % cos(z) Z '(2z + 2n)

rQRz+1) (yw)?" (&5)

n=1

Lemma 2.1 follows upon multiplying both sides of (2.6) by %F (2z+1) and then using
the definition of R (y, w) from (1.20). O

Remark 1 The special case z = 0 of Lemma 2.1 was obtained in [14, Lemma 3.3].

Our next task is to evaluate the double integral in (1.23).
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Proof of Theorem 1.9 Note that double integral in (1.23) is not absolutely convergent
which means we cannot interchange the order of integration. Securing convergence of
the integral over v near v = 0 is straightforward. Along with this, Lemma 2.1 implies
that the double integral in (1.23) is convergent.

We first evaluate a more general integral by introducing the exponential factor

2
¢~V inside the integrand and then take limit N — oo. Let N be a positive integer
and consider the integral

0 oo 2 1 1
I(w,z, N):= N
(w,z ) /0 /(; e ((t _iw)2Z+l + (t +iw)22+1)

x cos(2mvt) dtdv (Re(w) > 0, Re(z) > 0). 2.7

By invoking Fubini’s theorem we can interchange the order of integration in the above
equation to see that

o0 1 1 o2
I(w,z, N) = N 2 vt) dvdt
(w,z, N) /0 <(t—iw)21+1 +(t+iw)21+1>/0 e~ N cos(2mut) dv

VTN /Oo e—antz 1 n 1 dr
2 b t —iw)Z+tl (4 iw)Ztl ’

(2.8)

2 . . .
where we used the fact that e =*"/V is self-reciprocal (up to some factor) with respect

to the cosine kernel (See [22, p. 488, Formula 3.896.4]). Next invoke the identity [18,
p. 88, Section 2.5.5]

1=V 2 +0+/6) ™ =2,F (s, s+ %; %; és) :

with € = —w?/r> and s = z 4+ 1/2 in (2.8) to deduce that
2

[ Nx22 2 1 I w
I(w,z,N) = ”N/ e 1Tk Z+§,Z+l;§§—t—2 dt
0

N [® | 1
=55 / e Nl p (24 2 1oy —wie ) dx,  (2.9)
2 ) 2 2

where we made the change of variable t = 1/4/x. From [42, p. 319, Formula 2.21.2.6],
for Re(p) > 0,Re(a — @) > 0, Re(b — ) > 0 and | arg(w)| < 7, we have

o0
/ x¢ e Pl Fi(a, b; ¢; —wx)dx
0

— re)r@)f'ia —a)I'(b — a)

@) (b)I'(c — a)
XoF(a—a,b—o; 1l —a,c—o;wp)
+ p*T'(—a)2Fa(a, b;c,a + 1; wp).
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Letp=Nrn?, a=z+1/2, b=z+1, ¢ =1/2, « = zand ® = w? in the
above integral evaluation, use the reflection formula for the gamma function I'(1/2 +
s)I'(1/2 —s) = 7/ cos(ms) and substitute the resultant in (2.9) so that for | arg(w)| <
/2,

VTN [cos(mz) 1 1 2 2
I(w,z,N) = > { E 2P <§,1;1—z,§—z;Nn w )
11
+(N72) T (=2)1 Fy (z +3i5 Nn2w2>} . (2.10)

We now wish to take limit N — oo on both sides of the above equation. To that end,
we need to find the behavior of the functions on the right-hand side as N — oo. The
following asymptotic is given by Kim [29]: as x — o0 in —37” < arg(x) < %, for

a # ZU {0},

r r
2B (1, a5 p1, 02 x) ~ % (K22(x) + Laa(—x)),

where, withv = 1 4+ o — p; — p2,

1
K»n(x) =x"e"2 Fy (m —o, p—a;—; ;) .

and
Lor(x) = x~! Fe—D Fo(12—p2—py2—a: )
200 =¥ m oo, o b p1,2 — p2; P
T - a)

+x7¢

1
2Foy 1+Ol—/01,1+0!—102;—;—>-
I'(pr —a)l(p1 — @) < X

Weletae =1/2, py=1—2z, pp=1/2—zandx = N72w? in the above expression

3
to get, for — < arg(w) < 7,

Fll'l ! - Nw2w?
222,, Z,2 Zy NTTw

r(1/2 - —z) 2 92e Natwr o (] o
T & (Vw0 m e T E T e
+ 2 [N ST P

Nzl (—1/2 — ) (=) "\ T2 T8 2 T N2

71(—N712w2)_1/2
r(1/2— )l (-2)°

1 1
Fy <5 +z, 142z - = )} (2.11)

Nn2yw?
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as N — oo. Also, from [47, p. 189, Exercise 7.7],

o0

e x94T (¢) (c—a)(1—-a), _,
'(a) Z n! *

1Fi(a; c; x) ~
n=0
—mia,—a X

e X Z(a)n(1+a_c)n

(=)™, x — oo,

_ !
I'(c—a) = n!
where —37” < arg(x) < %. Upon lettinga =z +1/2, c=1/2and x = Nm?w? in

the above formula and using the series definition of , Fy, for —37” < arg(w) < %, we

see that

11
\F <z+—' —'Nn2w2)

2° 2’
Nr2w? V(N2 w?)? - 1 1
~e —_—_— -2, = — = —>
Tz+1/2) 20\ 2 “ 7 Nazu?
) 2,.2\—(z+1/2) 1 1
—mi(z+1/2) ﬁ(NTL’ w ) F Z1 . 2.12
+e s 2fo(\zt 5. 1+a—i—57s ) 212)

as N — oo. Substitute (2.11) and (2.12) in (2.10) and observe that the terms involving
2 Fy (—z, % —2z7;—; m cancel each other out. Alsonote that , F; (a1, - - - , ap; by,

-,by;1/N) =14+ O(1/N), as N — oo. Hence, for —% < arg(w) < %, as
N — o0,

_ Jr 2221(1 — 27) cos(nz) 1 2-2z-1 < ( 1 ))
Iw, 2, N) === { w2 Nt o2 U T2\

oG] e (o )

We next let N — oo on the both sides of the above equation. By using the dominated
convergence theorem, we can take the limit N — oo inside the integral sign in (2.7).
Thus,

/0 /(; <(l B + Ty ) cos(2mvt) dtdv

i [e_”iz - cos(nz)}

= Tkt
_ i {e—niz B iz + e~ inz }
2w2z+1 2
i einz _ e—inz
= w2t { ) } (2.13)
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which proves our theorem for —5 < arg(w) < 7. We next prove the result in the
remaining region 7 < arg(w) < 5.
To do so, observe that as z — oo, we have [38, p. 411, Formula 16.11.7].

[17_, T (o)

Fri
HZ:1 [(ae) {Hq,q(ze )+ Eq,q(Z)} ,

qu(aly"',aqébl,"',me)’\’

where E, ,(z) and Hp 4(z) are formal infinite series defined by

o)
Ep,q(z) — (Zn)(p—q)/2K—v—l/zeKzl/K ZCk(KZl/K)V_k, p < q + 1’

k=0
p
I—[ I'(ae — am — k)
G 1)k o
pg(@) = ZZ [(an + k)= g mom
m=1 k=0 [[ T(be —am — k)
=1
C#m
wherek =g —p+1Lv=a;+---+a,—b —~~—bq+%(q—p),
=
co=1, k=" Zcmekm, k>1,
m=0
with
qt! ]_[p (ag — b
_1(ae )
Ck.m = Z(l -V _ij +m)K+k—m%, bq+1 =1.
=1 ]_[(bz
Z#J

By invoking the above asymptotic twice, for 7 < arg(w) < 5, as N — oo,

L RN
2F2<§,1,1 2,2 z,an)
N F(I—Z)F(%—Z) emifz (-1 )k]"(l—}—k)l—'(%—k) (N7T2 2 —m) —k
r/2) VNmw kT (3 =2 — k)T (=2 — k)

= (-Dfr (—-—k) 22,71 ¢
7T wzzk'F( —z—kI (-5 —z-k) <N” )

2
+ (Nn2w2> TNty ck(Nn2w2)k} , (2.14)

k=0
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and

11
1F1 <z + 35 Nn2w2>

r'(1/2) { (DT (5 +z+k)

Nx2wle Tiy—G+1/2) Nlwe iy k
—F(Z-i-%) (Nm2w=e™") ,; AEG—2) (Nmew=e™™")

o0
F(Nr2w?)ieN v’ Z Ck(Nn2w2)_k} , (2.15)
k=0

where

1 k—1
Cy = _E Z Cmek,m,
m=0

with Cp = 1 and

1 1
ekm =2 —Dpgr1-m(2—z | =2zl z—z2+m .
2 2 (k+1—m)

Upon simplifying (2.10), (2.14) and (2.15), and observing that the terms containing
2.2

eNT[ w T

cancel each other out, for % <arg(w) < 5>

eni/2

I(w,z, N) = S (em'z — cos(nz)) + O <ﬁ)

as N — oo. Employing the dominated convergence theorem to take limit N — oo
inside the double integral, we deduce that

o Jo \@—iw2t + i cos(2mvt) dtdv = S sin(z).

This along with (2.13) completes the proof of the theorem for —7 < arg(w) < 7. O

As discussed in the introduction, Guinand’s generalization of Poisson’s summation
formula [23, Theorem 1] is critical to prove Theorem 1.7. We record Guinand’s result
in the following theorem.

Theorem 2.2 If f(x) is an integral, f (x) tends to zero as x — 00, and x f'(x) belongs
to LP(0, 00), for some p, 1 < p <2, then

M M M M
Jim (7’; fm) — fo f () dv) = lim_ (;g(m— /0 g(v)dv),
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where
glx) = 2/00 f(t)cosRmxt)dt.
0

Proof of Theorem 1.7 Let

f) = (Re(w) > 0,Re(z) > 0),

(v — iw)22+1 + v+ iw)Zz-H ’

gx) = 2/00 < ! + ! >cos(2nxv) dv. (2.16)
0

(v —iw)2tl (v +iw)2etl

Now employ Theorem 2.2 with f(x) and g(x) as above. It is easy to see that f satisfies
the hypotheses of Theorem 2.2. Invoking Theorem 1.9, we see that

M

00 . X 1
;g(fl) = Mll—r>noo { Z ((n — jw)2et] + (n +iw)21+1>

M 1 | ; ) .
o\ —iw)%H! + (t +iw)xt] te— WSIH(M)-

Note that series and integral on the right-hand side of the above equation exist indi-
vidually in the limit M — oo. Therefore,

;g(n) N ; ((n —jw)2et] + (n+ iw)2z+1>

o0 1 1 [
_/0 ((t —T (;+iw)2z+1> di = ——psin(ra).  (217)

It is easy to see that for Re(z) > 0,

o0

1
—— 7 = ¢ +2z, 1 Fiw). (2.18)
27+1
= (mFiw)=
Also,
° dri O (F) EwE 519
o (tFiw)2tl 2z ’ (19)
Substitute (2.18) and (2.19) in (2.17) to deduce that
> cos(mz)
> g = ¢l 42z 1+iw) +¢(1+2z, 1 —iw) — - sin(rrz)
Zwx w2etl
n=1 i
. . cos(mz)
=¢(1+2z,iw)+¢(1+2z, —iw) — i (2.20)
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which follows using the fact
C(s,a+1)=¢(s,a) —a . (2.21)

Therefore, (2.16) and (2.20) yield Theorem 1.7. O

Proof of Corollary 1.8 We wish to take limit z — 0 in (1.22). To that end, we use
expansions of the functions involved around z = 0. As s — 1, we have [22, p. 1038,
Formula 9.533.2]

{(s,a) = ; —¥(a)+ O(s = 1)).
The above equation implies that, as z — 0,
C(1+ 2z, +iw) = i — Y (Eiw) + O(|z)). (2.22)
It is easy to see that

cosma) _ 15 10g(w) + 042D, (2.23)
Z

%

as z — 0. Using (2.22) and (2.23), we deduce that

lim (;(1 27, iw) (1 + 22, —lw)—“;f)’;f)) — Y (iw) — Y(—iw)+2log(w).

(2.24)

Let z — 0 on both sides of (1.22) and use (2.24) so that
v cos(2nnv) 1 . .
22/ dv = - 2log(w) = (Y(w) + ¥ (~=iw)}. (225
Make the change of variable 2w nv = t on the left-hand side of (2.25) to arrive at

t cos(t) 1 . _
Z[ 12+ Qrw)2n? di = log(w) = 2 W (iw) + ¢ (=iw)).

n=1

Finally let w = u/(2m) in the above equation to conclude the proof of the corollary.

O
Theorem 1.10 is proved next.
Proof of Theorem 1.10 From [16, Lemma 9.1], for Re(w) > 0, we have
¢ tdt
/ TEOSTAT _ sinh(w)Shi(w) — cosh(w)Chi(w). (2.26)
0 12+ w?
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Now (1.24) follows by expanding (zZJ:—wZ) in partial fractions, that is, by writing
ﬂﬁ = % t_liw +; +1iw), and then by performing integration by parts 2m times

the left-hand side of (2.26). O

3 Proof of Our Generalization of a Formula of Ramanujan

We begin with the following result of Hardy [27, pp. 56-57]. This result helps us
justify the interchange of the order of the summation and integration having principal
values, and will be employed in the proof of Theorem 1.1.

Proposition 3.1 Let
o0
S =) u(x)
k=0

be a series whose terms are functions of x and is convergent with the possible exception
of a closed enumerable set of points for values of x in a finite interval (a, A). Let
denote one such point in this set. If

(1) the series S(x) is integrable term by term over any part of (a, A) which does not
include o,
(2) the function

o0 X
Fxy=Y_ PV/ u (1)dt
k=0 a
is a continuous function of x except at «, and
(3)

lir%{F(a—e)—F(a+e)}=O. 3.1

Then, one can interchange the order of summation and integration, namely,
A X o A
PV/ > w(tyde = ZPV/ ug ()dt.
¢ k=0 k=0 ¢

Remark 2 We note that [27, pp. 58-59, Section 7] (also see [26, p. 27]) if

ui () = 2. (3.2)

X —o

where v (x) is a function of x and has a continuous derivative for all x € [a, A], then

a+te
PV/ up(x)dx = 2evy (o + ), for some p € [—¢, €].
o

—€
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Alsoif |vy (x)| < Vi forall values x € [a, A], Vi being independent of x and )~ ) Vi
is convergent, then the condition (3.1) holds true for ux(x) given in (3.2).

In the next lemma, we justify the interchange of the order of the summation and
principal value integral.

Lemma3.2 Letk € N, 0 < a < 1 andRe(y) > 0. For Re(s) > 2, we have

o o0 )
Z sin 2w ak) PV/ x5 eV REY cot(rx)dx
k=1 0

oo [/ 0©
—PV / (Z sin (2 ak) e_4”2kx/y) =1 cot(rx)dx. (3.3)
0 \k=i

Proof Note that the presence of cot(;rx) implies infinitely many singularities of the
integrand on the left side of (3.3). To handle this integral efficiently, we use

1 & 2
7 cot(mx) = — + Z e (3.4)
n=1
so that
o0 00 )
Zsin 2mwak) PV/ x5 eV REY cot(rx)dx
k=1 0
1 & o 2
= — Zsin (27mk)/ KT TRy g x
T 0
2 — * TN |
= “sin 2mak) PV Sg=Amkx/y dx. 3.5
+n,;s1n(na) /0 x’e ’;x2_n2x (3.5

We can interchange the order of summation and integration in the first expression on
the right-hand side of (3.5) by easily employing [47, p. 30, Theorem 2.1]. The delicate
part is to show the same for the second expression on the right, which is done next.
We first show that

9] 4nkx) OO 1 0 00 xse—4n2kx/y
PV xS eTTIXY dx = PV ————dx. 3.6
/ Y=LV [ S 00

n=1

The ingenious argument given in [8, pp. 909-911] can be adapted here as well to prove
the above claim. We give the complete details though to make the paper self-contained.
Let w(t) € Cé’o be a smooth function such that 0 < w(r) < 1,V € R, w(¢) has

compact support in (—%, %), andw(@) =1, t € (—}—W JT) Note that the right-hand
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side of (3.6) can be rewritten as

—47%kx/y o 00 1— _
ZPV/ de — Z/O xse—4n2kx/y( ;U(x n))dx

2
X —n
n=1

+ZPV /0 xse*‘*ﬂzkx/y%dx. 3.7

X-—n

Again, an easy application of [47, p. 30, Theorem 2.1] allows us to interchange the

order of summation and integration in the first expression of (3.7). If m is a positive

integer such that m — % <x<m+1 5. then

= . (3.8)

Hence, using (3.8) in the second step below, we have

PV/ e —472kx/y Z w(x — n) dx
0 I’l

PV fm+l/ K —4n2kx/y Z w(x — I’l)

pqu

el m—1/2 x2 —n?
o0 m+1/2
420y WX — m)

=D PV xte R G d

1 m—1/2 X< —m

o0 9]

a2 w(x —m)
= ZPVf XTI .
0 Xc“—m

3
il

The above fact along with (3.7) gives

X3 747z kx/y

(e o)
_ —4nkx)) (1 —w(x —n)) o=tk / w(x—n)
_PV/O x'e ”"VE Wd +PV x* ”"yE

x2 _ nz
n=1

oo Sl 1
=PV xSe=4rkx/y dx.
J L

This proves the claim in (3.6). Therefore, we can write

Zsm 2mwak) PV/ xfe

k=1
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s ,—4m2kx/y

o0 o0 00 xSe
= Z sin (2 ak) ZPV / ————dx.
k=1 n=1 0 xeon

Fubini’s theorem allows us to interchange the order of the double sum on the right-hand
side of the above expression so as to obtain

oo
Z sin 2mwak) PV / xS e—4mkx/y Z

—n2
k=1 n=1 * n
oo o0 ) xse—4ﬂzkx/y
= Z Z sin (2 ak) PV / ————dx. (3.9)
n=1 k=1 o A=
Now
xxe—4n'2kx/y
Z sin (2 ak) PV/ ﬁdx
P X*—n
o0 7471 kx/y
= Z sin (2w ak) </ / ) ———dx
=1 n+1 x? —n?
1 n+1 xx—le—47r kx/y 1 n+1 xs—le—47r2kx/y
—I——/ —dx + —PV/ —dx ¢, (3.10)
2 Js x+n 2 s xX—n

where 0 < § < 1. Note that there is no need to take the principal value for the first three
integrals on the right-hand side of (3.10). Therefore, it is easy to take the summation
inside these integrals using the standard techniques, for example, [47, p. 30, theorem
2.1]. To interchange the order of summation and the last integral in (3.10), we now
show that the hypotheses of Proposition 3.1 are satisfied. Let us define

p (x) = v"fx; and vp(x) == xR gin Qraky. (3.11)

It is easy to see that the conditions (1) and (2) of Proposition 3.1 are satisfied with
ur (x) being defined in (3.11). To fulfill (3.1), we show that the equivalent condition
discussed in Remark 2 is satisfied. To that end, observe that x € [§,n + 1] and use
et < 3!/x3,x > 0, so that

22 dnka/y 4 2kx xRe@=5 3 47 2kx
x" ‘e s—1— <42 13 s — 1|+
y (47?/y) y

M 3! 4k(n + 1)
G\ T
=: Vi,

e ()] <

where we used the fact that the function xR¢®) = is continuous on the compact interval

[6, n + 1], and hence bounded by some constant M > 0 (which may depend on § and
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n). Since the series ) - | Vi converges, all conditions of Proposition 3.1 are satisfied.
Hence we can interchange the order of summation and integration even in the case of
the last integral of (3.10). This fact along with the discussion following (3.10) implies
that

—4n%kx/y

0 00 .8
3" sin (2wak) PV f e
0

2 2
X n
k=1

00 00 ) xS
— PV/O Zsin (2mak) e~ 4T kx/y ——dx. (3.12)

k=1

Using the fact sin(f) = (€' — e7%)/(2i), we find

3 sin raky ek = L5 (e | L (s5mia)s

k=1 2 k=1 2 k=1
1 1 1 (3.13)
- 21 64”},2" 2rmia 1 64” X {omia 1 '
Substitute the above value in (3.12) to arrive at
o 00 xse—47r2kx/y
Z sin (2w ak) PV/ ﬁdx
=1 0 X“—n
: PV/OO ! ! ¥y (3.14)
= — - X. .
2i 0 64”}.2" —2mia _ 4 64”),2" +amia _ 4 x% —n?
Equations (3.9) and (3.14) yield
ad o0 2 > 1
Z sin 2mwak) PV/ xSe Hmkx/y Z 5 sdx
0 X< —n
k=1 n=lI
1 & o 1 1 xS
= 2—l PV 4n2x i - 4)12)( o x2 — nzd.x.
el 0 e v wia 1 e v +ria 1

Again employing the trick that we used after (3.6) to interchange the order of the
summation and integration, one can take the sum over n inside the integral on the
right-hand side of the above equation to deduce that

e o 2 ad 1
Z sin (2w ak) PVf xS e HTkx/y Z 5 5dx
k=1 0 = X

= lPV - ! ! 3 ! Sd 3.15
_2_1' ; 5 - 1 sz_nzx x. (3.15)

ATCX _Hoi :
e v 2ma_1 e v +2ma_ el
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Substituting (3.15) in (3.5), we obtain

o0 o0 N

E sin 2w ak) PV/ xS TLe ™4 REDY cot(mrx)dx
0

k=1

1 [ ad 2
S / X572 Zsin Qrak) e /Y gy
T Jo k=1

+Lpy / h ! ! i L
— - x*dx
in 0 6%7271[(1 1 6%4»27”.& 1/ =1 x2 — n2

1 [© (& 2
= — / Z sin 2mak) e Y ) 52 dx

T Jo

k=1
2 © (& 2 1
+ ;PV/(; (Z sin 2rak) ™" kx/y) Z oo nzxsdx,
k=1 n=1

where in the ultimate step we again used (3.13). Finally employing (3.4) in the above
equation, we arrive at (3.3). O

We have now collected all ingredients to give a proof of our generalization of
Ramanujan’s formula.

Proof of Theorem 1.1 Lettingt = iyj/(27),Re(y) > 0,in (1.18), then taking summa-
tion over j > 1, and then employing the series definition of the Hurwitz zeta function
for Re(s) > 1, we obtain.2

(0.¢] _ o
3 (n—a)~t _ T() 3 2riak 3 1
way — 1 (“2ni o\
ey — 1 (“2mi) A = (k+ %)

I'(s) ZeZniakg <S, 1 — 27-;ik>

ys keZ
_ L (s)¢(s) n L)
hA b

00 . .
XZ{EZHiaké. (S,l— 27”k>+e—2niak§ (S’1+ZJle)}.
=1 y y

(3.16)

Invoking the well-known formula [38, p. 609, Formula 25.11.25]

e—ax

TNl Re@ =1 Re@ > 0)  (B17)

I'(2)¢(z,a) = /
0

2 The case a = 0 of (3.16) reduces to a result of Kuylenstierna [32, Equation (7)].
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in (3.16), we obtain

i (n—ay~! _ T(s)¢0s) N 1 i/oo (ei(znak#’fv"’) +e—i(2nak+2”yk’)> 51 »
n=1 0

~ ci—a)y _ 1 3 ys = el —1
r 2 o [® 2kt 571
= ()6 (s) + — Z/ cos (27mk + L) 7 dt
¥ Y iz Jo y /e =1
r 2 & 2kt 1571
= ($)5(s) + — Z os(27mk)/ cos il dt
yS yS = y et — 1
2 & 00 2wkt 57!
- — Z sin(Znak)/ sin (L> ; dt. (3.18)
o 0 y Je—1

Our next goal is to evaluate the integrals in (3.18). From [36, p. 42, Formula 1.5.2],
for 0 < Re(z) < 1, we have

0 1 B E
/0 cos(x)x* 'dx =T(z) cos( > ) .

Making the change of variable x = 2ZX and replacing z by s — 1 + z in the above

result, we get, for 1 — Re(s) < Re(z) < 2 —Re(s),

o0 l—s—z
/ cos <@> 7 ar = <@> I'(s — 14 z)sin (z(s + Z)) .
0 y y 2

(3.19)

Equation (3.17) witha = 1, (3.19), and an application of Parseval’s formula [39, p. 83,
Equation (3.1.14)] gives, for | — Re(s) < ¢ = Re(z) < min (0, 2 — Re(s)),

/00 2wkt 571 2k 1
cos | — dt = | — —
0 y el — 1 y 2mi

s 2k
X / I'(s —1+z2)sin (—(s +z)) 'd—-==¢d -2 (—) dz
© 2 y

= <2];—k>l_s {cos <712 ) L(y,s)+ sm( 5 ) L(y, S)} (3.20)

where

1 2 -
h(y.s) =5~ ()ms—1+z>sin(§)r<1—z);(1—z><%"> dz,
(3.21)

L(y,s) := I'(s —14z)cos (%) ra—-—z¢ -z (#) dz.

(3.22)

27” ©)
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Similarly, using the formula [36, p. 42, Formula 1.5.1]

foosin(x)xz_ldx = I'(z) sin (E) . (=1 <Re(z) < 1),
0 2

it can be seen that for —Re(s) < ¢ = Re(z) < min (0, 2 — Re(s)),

/Ooo sin <¥) :_lldt = <2%k>l_s {sin (%) Ii(y,s) — cos (%) L(y, s)} .

(3.23)

We first evaluate /1 (y, s). Apply the functional equation of the Riemann zeta function
[38, p. 603, Formula 25.4.2]

s_s—1 . s
c(s) =2°n r(1—s);(1—s)sm(7), (3.24)

in (3.21) to see that

A72k\ ¢
1]<y,s>=% (,)F(S—”Z)“Z)(ny ) dz.

We want to use the series definition of ¢(z) to further simplify the above integral.
Therefore we shift the line of integration to d = Re(z) > 1 and use residue theorem
thereby obtaining

i 4\ yTGs)
Li(y,s) =5— d)F(s—1+z)§(z)<T> dz —

2mi J 4k
00 2 -z
1 f 4r-nk yI'(s)

=) — F(s—1~|—z)< ) dz —

nz:; 2mi ) y 4k

42\ TN _atu r
:”< | ) Yot L (3.25)
y ot 4k

where in the last step, we used

1
et = 37 I'(z)x"%dz x> 0). (3.26)
*)

We now focus on representing the other integral I>(y, s) in terms of an equivalent
integral; see (3.36) below. Again an application of (3.24) in (3.22) yields

472K\ "¢
Iz(y,s>=% ()F(s—1+z>¢<z>cot(§)( ”y") dz. (3.27)
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If we shift the line of integration from Re(z) = ¢, where 1 —Re(s) < ¢ < min(0, 2 —
Re(s)), to 1 < Re(z) = d < 2, we encounter a simple pole at z = 0 of the integrand
in the integral of (3.27) due to cot(mwz/2). (Note that the pole of {(z) at z = 1 is
annihilated by the zero of cot(z/2) at z = 1.) Note that the integrals along the
horizontal segments vanish using Stirling’s formula in the vertical strip p < o < g
[11, p. 224]:

IT(s)| = V2 |t~ 2 e 271 (1 ) <i>> (3.28)

I]

as [t| — oo. Therefore, by the residue theorem and (3.27), we have

i 2

472K\ "¢
h(y,s) =T(s — 1)+l,/ T(s—1 +z)§(z)cot(ﬂ)( id k) dz. (3.29)
2wi J) y

Note that we can use the series definition of {(z) in (3.29) and then interchange the
order of the summation and integration so as to obtain

21 wz\ (4mink\ "
Iz(y,s)zl"(s—1)+nr§%/(‘d)l"(s—l+z)cot(7>( ) dz.

y
(3.30)
From [36, p. 182, Formula 2.4.4], for —1 < ¢; < 1, we have
1 2
— | tan (E) ¥z = S (x £ 1),
2mi (¢2) T xs—1
Replacing x by x/n in the above result gives
— | tan (E) niyigy = 2 (x # +n) 3.31)
2mi (c2) 2 _nxz—nz’ ' ’
For ¢ > 1 — Re(s), equation (3.26) implies that
1 Ar2k\ "¢ a2 [4r2xk !
— 's—14+2 — xtdz=e 7 . (3.32)
27 (c1) y y

We next want to invoke Parseval’s formula [39, p. 83, Equation (3.1.11)] for the
functions in (3.31) and (3.32). For that we need to justify the f0110wing3

1 z—1

o X
— PV 'is—1 ———dxd
271 Joa /(.) (s +2) 1 —n2x2 %%

3 Note that one has to justify the interchange of the order of the integrals in third step of [39, p. 83] to use
Parseval’s formula. The conditions under which it can be done are given after [39, p. 83, Equation (3.1.11)].
But one of our integrals is a principal value integral, therefore, we need to justify this interchange of the
order of the integration.
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z—1

_PVf f P =149 a dzd, (3.33)
27Tl (d)

where d > 0. Making the change of variable z = d + if, we see that

1 00 xzfl
—_— PV[ F(S —1 + Z)ﬁdxdz
() 0 1 —n°x

2mi
1 [ %0 xd+it—1
jT —

L e xd+lt 1
PV/ F(s—l—i—d—i—lt)ﬁdxdt
n<x

1
o

xd—i—zt 1
—/ / F(S—l—i—d—i—ll‘)ﬁdxdl
T JoooJle 1—n*x

Note that the inner integral in the second expression on the right-hand side is a usual
improper integral. Therefore, we can interchange the order of the integration by stan-
dard methods [47, p. 30, Theorem 2.2]. To justify the same in the first double integral
on the right, we proceed as follows. Observe that

1 L e xd+tt 1

27‘[ PV/ l"(s—l—l—d-l—lt)dedl
1 L e xd+zt 1
— PV/ F(s—1+d+lt)—dxdt
o n2x2
1 g+e xd—zt—l

+ — PV/ 's—14d—it)——=—=dxdt. (3.34)

2 0 1 —n2x2

We justify the interchange of the order of integration only for the first double integral.
That for the second one can be similarly justified. To that end, for B > 0,

B Lie yd+it=1
/ PV/ I's—14+d+it)———=dxdt
0 0 1—n2x2
lie o8 yd+ir—1
:PV/ / [(s—1+4+d+it)——55didx,
0 0 1 —n°x

using Hardy’s result [28, p. 94, Theorem 6]. Moreover,
g+€ xd-‘ril 1
lim PV/ / I's—14+d+it)———dtdx =0,
B—o0 B 1-— n2x2

which follows from Stirling’s formula (3.28). This shows that the conditions mentioned
in [28, p. 94, Section 18] are satisfied. Thus we can interchange the order of integration
in the first double integral in (3.34). This finally proves the validity of (3.33).
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Hence we can employ Parseval’s formula [39, p. 83, Equation (3.1.11)] for the
functions in (3.31) and (3.32) which, for 0 < ¢ < 2, gives

1 4r’nk\ °
— I's—1 t d
2l ©) (S +Z) o ( 2 ) < y ) <

—1
2 0 a2k (4 k
= —PV/ R b Y dx. (3.35)
T 0 y x2 —n2

Substituting the value from (3.35) in (3.30) so that

a2 (4xlxk T 2
e v 3 2dx.
y x> —n

L(y,s)=T(s—1) —{—ZPV/

n=1 0

By appealing to (3.6) we can take the sum inside the integral in the above equation.

4n2xk
Also note that I'(s — 1) = fooo e v (4”y"k) dx—x for Re(s) > 2, k > 0. Hence
0 ax2xk k(4 k s=1 1 e 2
Iz(y,S)=PVf e (nx> [—+Z% dx
0 y X =xPon

0 Fax2xk\° T _ax2u
= PV/ ( ) e v cot(mx)dx, (3.36)
0 y

which follows upon using (3.4). The existence of the principal value integral appearing
on the right-hand side of (3.36) is shown by Hardy [26, p. 31]. Substituting (3.25) and
(3.36) in (3.20) as well as in (3.23), we get

00 2kt 57!
/ cos <7T—) d
0 y

2k 4 2k - _a2i T
— (L) COS( S 7 Znsfle 3 y (S)
y 2 y 4k
[o,0]
+ sin (%)nPV/ (
0

© - oxkt\ 57!
sin T " ldt
0 _
27k \ ' 42\ & _ax?ak r
:<L) sin(ﬂ) n( i ) S nsle S RO,
y 2 y 4k

TS o/ Amxk s—1  4n2ak
— cos (7) 7 PV e cot(x)dx (3.38)
0

4712)ck
) y cot(nx)dx} (3.37)

and
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Substituting (3.37) and (3.38) in (3.18) and simplifying, we are led to

ad (n— a)s_1
Z e(n—a)y -1

n=1

_ T 4 (%T)S cos (?) S !

s
Y n=1

F(s) < ) i cos (Znak)

0 47 2nk
X Zcos Qmak)e v —

k=1 (2n)s k=1
<2n>x (7‘[S>i | i dx2nk
— =) sin(— n'~ sin Qrak)e” 7
Y 2 n=1 k=1
[(s) . /7S\ = sin (2mak)
+ ) sin <7> kz T

2xk

> 0 4
Zcos(Znak)PV [ ¥ leT Ty cot(mx)dx
0

4m2xk

2 \* TS\ o 00y _drlxk
+<—> cos(T)Zsm(znak)PV/O Ol cot(x)dx.  (3.39)

Invoking Lemma 3.2 we can interchange the summation and integration for the last
expression on the right-hand side of (3.39). Also note that one can justify the same for
the series involving cos(2ak). Hence, after simplification, (3.39) becomes

ad (n—a)!
Z e(n—a)y —1
n=1
()¢ (s) 27\’ o s —4mnk/y
= T + (7 ngzl n ,;_1 cos (7 + 27mk> e

T i cos (% + 2mak)
(@n)° &= 5

27 \° (S . /7s —4nkx/ s—1
+{— ) PV Z sin <— + Znak) e Y x5~ cot(mrx)dx.
0 \k=i 2

y

Making the change of variable x — xy/(27) in the integral and rearranging the terms
in the above expression, we get

F(S)C(S) ( )Znslzcos( +27mk> —472nk/y

yS
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_ T(s) i cos (%5 + 2mak) N > (n—a)!
(@) ks “en=a)y —

- -
— PV/ (Z sin ( + 271ak) 2’”‘") x*eot (lyx> dx
3 .

Now, using the fact cos(f) = (€? + ¢71%)/2, we find

o0
Z cos (% + 27mk> g4 nk/y
k=1

(3.40)

(3.41)

471 n__ 1 . e _ 472n :

7Tzs/2 2mia )k L —mis/2 0 +2mia )k

> (e femn s ()
k=1
1 ems/2 efnis/Z
- 2 422 _orig + 422 1 orig ’
e -1 eV -1
Similarly,
1 enis/Z e—nis/2
—2mkx __
ZSIH( + 2nak> - Z (e2nx2m'u —1 - e2nx+2nia _ 1) - (342

Substituting (3.41) and (3.42) in (3.40), we get

[(s)¢(s) N <2n>s 1 i o oTis/2 . o Tis)2
- < I by n
¥ v/ 2 64"%"—2”1'” _ n {omia _ |

n=1 1 e

r © cos (& + 2wak > —q)’!
= (s) Z ( 2 ) + Z (”7 a)
(2n) &= ks =y |

n=

1 oo | enis/2 efnis/2 1
s—
- Z_iPV/O X <6271x—27n'a -1 - e2nx+2nia _ 1> cot (ny> dx.

Finally, we arrive at (1.3) after multiplying by (277/y)~* «*/? on the both sides of the

above equation and then letting 472/y = « with aff = 47°.

m}

Proof of Corollary 1.2 Leta = 1/2 and s = 2m,m € N, m > 1 in Theorem 1.1 and
observe that the principal value integral vanishes. The result then follows upon using

Euler’s formula [47, p. 5, Equation (1.14)]

)m+1 (277) " Bom

c@m) = ()"

(3.43)

O
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Proof of Corollary 1.3 Let « = B = 2w and m be an odd positive integer in Corol-
lary 1.2 so as to get

1 & (2n— 1)l 1—2m Bom
Z e 41 p2m—1 e@n—Dr _ | =2 mm' (3:44)

n=1

Now use the fact

o 2m—1 S 2m—1 o 2m—1 S 2m—1
2n—1) n n 2m—1 n
Z e(anl)n —1 = Z ent — 1 = Z ent — 1 -2 Z eZnn _ 1’ (3'45)
n=1 r?:dld n=1 n=1
and Glaisher’s evaluation [21]
St 2m—1
B
ol =2 (modd > 1)
et — 1  4m

n=1

to arrive at (1.5).
As far as the proof of (1.6) is concerned, we let m = 1 in (3.44) and use (3.45) and
use Schlomilch’s result [46]

S n 11
Ze2nn_ ﬁ__
n=1

]
Proof of Corollary 1.4 Letting s = 2m and @ = 1/4 in Theorem 1.1 and simplifying,

we get

w | T@mE@m) o e
{ (27-[)2m +(=D nz:;ebza_'_l

~om | (EDMT@m) S cos(k/2)
=8 { (27-[)2m Z k2m

k=1

N i (n— /421 (—pm PV/OO x2m=1cot(Bx/2)
0

— dx . 3.46
e=1/H8 _ 1 2 cosh(2mx) x} ( )

n=1

Now take s = 2m and @ = 3/4 in Theorem 1.1 to obtain

w | TCmE@m) o e
{ (27-[)2m +(=D ’;ebza_'_l

o | DT @m) N (=D cos(k/2)
=p { (271’)2’” Z f2m

k=1
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i (n —3/4)2m=1  (—pm PV/OO x2m=1cot(Bx/2)
0

+ cosh(2mx)

e(n_3/4)/3 1 ) dx} . (347)

Now add (3.46) and (3.47) so that

o | Tem)c@2m) mt] n>m—1
o {2 (27-[)2m +2( 1) 262”“—{—1

_ g { (—1)"T 2m) Z (1 + (= DY) cos(k/2)

(zn)zm — k2m

Sl 2m—1 Sl 2m—1

(n—1/4) (n—3/4)

+Z en=1/9p _ 1 + Z e(n=3/98 _ 1 :
n=1 n=1

Using the fact Z;il(—l)k/km = 272m(2 — 22" (2m) in the above equation, we

arrive at (1.7).
Next, subtracting (3.47) from (3.46) yields

(=)™ 2m) < (1 — (DK cos(mk/2) < (n— 1/4)2m=1 2 (n — 3/4)2m—]
(2m)2m ]; k2m +r; c(n—1/HB _ 1 ; e(M=3/Hp _ 1
m 00 x2m=1 cot(Bx/2)
=D PV/O cosh(2m x) dx

Note that the first sum on the left-hand side of the above equation vanishes. Now
replacing B by 48 and rewriting the left-hand side in terms of the Dirichlet character
x defined in (1.9), we are led to (1.8). O

4 A Simpler Proof of the Transformation for Y . ; Gom(n)e™"

In [16], this theorem was obtained for the first time as a corollary of a more general
result, namely, (1.11). Hence the absolute convergence of the series on the right-hand
side of (1.13) resulted automatically. In what follows, we not only give a direct proof
of this result, but also prove from scratch the convergence of the series.

To that end, we first prove the identity for y > 0 and later extend it to Re(y) > 0
by analytic continuation. We begin by showing the absolute convergence of the series
on the right-hand side of (1.13). Note that for w > 0, (1.21) and Theorem 1.10 imply

sinh(w)Shi(w) — cosh(w)Chi(w) + Z(2j — l)lw_zj = (—=D"R,,. (1, w)
j=1

_ &= 1)’"

R (w, 1). 4.1
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Now employ Lemma 2.1 for R, (w, 1), and then let w = 4712n/y, where y > 0 (as
assumed at the beginning of the proof), so that as n — oo, we have

472 472 472 472
sinh( il ”)sm( il ”)—cosh< il ”)cm( il ”)
y y

y y

m 2\ —2J
. 4°n 1
+Z(2]—1)!< S ) = O,y (;12»1—+2> (4.2)
j=1

The absolute convergence of Y o2 | 02, (n)/ n?"+2 then implies that of the series on
the right-hand side of (1.13) with the help of the above estimate

We now prove (1.13). Leta = 0and s = 2m + 1 in (3.16) so that

Zam(n)e—"y = (2”:31 {;(2m +1) +Z (; (1 +2m, 1+ mk)

k=1 Y
2mwik
¢ <1+zm,1_ ))}
y

Using (2.21), we can see that form € N,

2mik 2mik
V1 +2m, 1+ —-\+¢{14+2m,1 -
y

y

2mik 2mwik
= (14 2m, +¢|1+2m, — .
y y

Now employ Theorem 1.7 with z = m and w = 2wk/y in the above equation to see

that

im(n)e—”

(2m)! cos(mm) 27\ " 1
y2m+l {g(zm""])‘i‘T(T) Z::kﬂ
1 1
* 2;;/ <(v — 2mk/y)2m+1 (v + 27nk/y)2m+l> cos(2rnv) dv}

(2m)! (="
— G {een+n+ &

—2m o0 00
(2—”) c(2m) +2(27)™" Z Z nm
y k=1 n=1

dty,
. /O <(f — 4 2ink/y)2m+l + (t+4n2ink/y)2m+l>cos(t) f}
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where in the last step we made change of variable v = ¢/(2wn). Letting nk = £, we
see that

_1\ym —2m 00
Z"Zm(”)e (gmjl{f(2m+1)+( ni) (%T) t@m) +202m)" Y ™"

=1 nle

o0 1 1
X/o ((r—4n2iz/y>2m+l * <r+4n2iz/y)2m+1)°°s(” ‘”}' “4-3)

Next, invoke Theorem 1.10 with w = 4772¢/y in (4.3) to arrive at

o0
> oam(mye™

n=1

2 n™ 2\ "
y(z,’f,?l{;(z TN (7”) c@m)

e9]

4(=D)m@2m)*m 420\ . (4720
+—(2m)! Zaz,,,(z){smh( S >Sh1<—y )

(47128) , <4N%) no <4rr2€)_2j }
— cosh Chi +Y @j-D!(— . (4.4)
j=1

y y y

Using (3.43) in (4.4) and rearranging the terms leads to (1.13) for y > 0. The result can
be extended by analytic continuation to Re(y) > 0. This is seen as follows. Clearly,
the left-hand side of (1.13) is analytic in this region. We now show that the series on the
right s also analytic. In order to prove this using Weierstrass’ theorem on analytic func-
tions, we need only show that (4.2) holds for Re(y) > 0as well. To that end, employing
(1= E)=CmD — (1 4 /E)=CmHD = 2@Qm + 1)VE 2Fy (m+ 1.m + 3 3: &),
we find that

% 1 1 202m + 1)
b Gz T et ) SO = T

% 33 12
X tcos(t)rFi\m—+1,m+ — — ) dt. 4.5)
0

2°2 T w?

The integral on the right can be evaluated in terms of the Meijer G-function

“4> employing [20, p. 81, Formula 8.17.6]. That

3
3,1 1»2
62’4(1,m+1,m+%,%

F(Zm +2])

+ 0w ™), asw — oo, Re(w) > 0
(4.6)
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can then be obtained using the asymptotic of this Meijer G-function given in [34,
p. 179, Theorem 2]. With w = 472n/y, Re(y) > 0, the first equality of (4.1) and
(4.5) finally prove (4.2). This completes the proof of (1.13) for Re(y) > 0.

O

5 Asymptotics of the Plane Partitions Generating Function

Proof of Corollary 1.5 The following estimate can be directly shown to hold as y — 0
in Re(y) > 0 as is done later. However, we first prove it separately for real y — 0T
owing to its simplicity.
Indeed, for real y — 0T, Lemma 2.1 along with (4.1) imply that
4 2 4 2 4 2 4 2 m 4 2 =2j
sinh [ ) shi [ =) — cosh [ =) chi [ =2 ) + @) — i [ =2
y y y y =
_ r+1 2r+2m+4
) D e LR oY G 5.1)
(47.[ n)2m = (47.[2 )2/ n2r+2m+4
For complex y in Re(y) > 0 such that y — 0, (5.1) is seen to hold from the first

equality of (4.1), (4.5) and (4.6).
Substituting (5.1) in (1.13), we deduce that

o
> oamme™
n=1

G )1§(2m+1)———( "= (-”) 2
2my y

y2m+ (27.[)4m
00
oo (n) ~ T 2m +2j) y 243
x Z n2m Z (4 n)2j + O( )
n=1 j=1
(2m)! Bop
== Qm+1) - 2L _(—pyr—=
y2m+1§( m+ ) my ( ) yﬂ(zn)Zm—l
r+l
'@2m+2j) 2 O2m (”) 2r 43
x Z (47-[2)2j ! Z 2m+2J (y ) :
j=1

Using the well-known identity Zflozl o,(mn™ = ¢(s)¢(s — a), where Re(s) >
1,Re(s — a) > 1, in the above expression, we arrive at (1.15). m|

We are now ready to derive Wright’s result from [51] as a special case of Corol-
lary 1.5.

@ Springer



Constructive Approximation

Proof of Corollary 1.6 Letting m = 1 and y = log(1/x), |x| < 1, in Corollary 1.5 and
using (1.16), as x — 17, we have

d 20 1
xalog Fx) = (logx)3 12log x
r+1
I'2j+2)¢(2j +2)¢(2)) 2i-1 243
Z 24 (logx)~ ™"+ 0 (—(logx) )

Now divide both sides by x and then integrate with respect to x to get

_ £(3)
log F(x) =c+ (og x)? —+— — loglogx
r+1
U227 +2)¢2j +2)5(2)) 2j 2r4+4
8 ,Z_:l 2j (2n)% (log )™ +0 ((logx) )

where c is an integrating constant. Exponentiating both sides of the above equation,
we arrive at (1.17). O

6 Concluding Remarks

For general a with 0 < a < 1, the generalized Lambert series

e (n _ a)s—l
Z Sz | (s € C,Re(z) > 0)
n=1

does not seem to have been studied before. It makes its appearance for the first time
in Theorem 1.1 of our paper. It may be interesting to undertake a further study of this
series.

In [10, Theorem 1], Bradley obtains a generalization of Ramanujan’s formula
(1.1) for periodic functions g with period m € N. When g is even, his transfor-

—2m—1
n
mation involves the series of the type E g(zﬁﬁ whereas for g odd, it involves
mn— 2m n n2m—l
E g( ) . Observe that the series in our (1.8) involves E L, where
enf— 1 e"f — 1

n=1
x (n) defined in (1.9) is an odd Dirichlet character and m € N, m > 1, and hence does
not fall under the purview of Bradley’s transformation. Thus it may be worthwhile
to see if a more general transformation encompassing our series exists. We note that
o —2m
n
another series which is not covered by Bradley’s transformation is Z T , for

n= 1
which a transformation was recently obtained in [16, Theorem 2.12].

In [16], (1.13) was derived as a special case of (1.11), whereas in the present paper,
this has been accomplished directly. One can then ask if a direct proof of Theorem 2.12
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n—2m

o0
of [16], which is a transformation for Z BT can be derived without resorting
B —

B
n=1

to (1.11).
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