
Constructive Approximation (2023) 58:589–613
https://doi.org/10.1007/s00365-023-09644-2

Universal Sampling Discretization

F. Dai1 · V. Temlyakov2,3,4,5

Received: 27 July 2021 / Revised: 17 March 2023 / Accepted: 20 March 2023 /
Published online: 25 April 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Let XN be an N -dimensional subspace of L2 functions on a probability space (�,μ)

spanned by a uniformly bounded Riesz basis �N . Given an integer 1 ≤ v ≤ N and
an exponent 1 ≤ p ≤ 2, we obtain universal discretization for the integral norms
L p(�,μ) of functions from the collection of all subspaces of XN spanned by v ele-
ments of�N with the numberm of required points satisfyingm � v(log N )2(log v)2.
This last bound onm is much better than previously known boundswhich are quadratic
in v. Our proof uses a conditional theorem on universal sampling discretization, and
an inequality of entropy numbers in terms of greedy approximation with respect to
dictionaries.
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1 Introduction

A standard approach to solving a continuous problem numerically – the Galerkin
method – suggests looking for an approximate solution froma given finite-dimensional
subspace. A typical way to measure an error of approximation is an appropriate L p

norm, 1 ≤ p ≤ ∞. Thus, the problem of discretization of the L p norms of functions
from a given finite-dimensional subspace arises in a very natural way. Approximation
by elements from a linear subspace falls in the category of linear approximation.

It was understood in numerical analysis and approximation theory that in many
problems from signal/image processing it is beneficial to use an m-term approximant
with respect to a given system of elements (dictionary) DN := {gi }Ni=1. This means
that for f ∈ X we look for an approximant of the form

am( f ) :=
∑

k∈�( f )

ckgk (1.1)

where �( f ) ⊂ [1, N ] is a set of m indices which is determined by f . The complexity
of this approximant is characterized by the cardinality |�( f )| = m of�( f ). Approxi-
mation of this type is referred to as nonlinear approximation because, for a fixedm, the
approximant am( f ) comes from different linear subspaces spanned by gk , k ∈ �( f ),
which depend on f . The cardinality |�( f )| is a fundamental characteristic of am( f )
called sparsity of am( f )with respect toDN . It is now well understood that we need to
study nonlinear sparse approximation in order to significantly increase our ability to
process (compress, denoise, etc.) large data sets. Sparse approximations of a function
are not only a powerful analytic tool but they are utilized in many applications in
image/signal processing and numerical computation.

Therefore, here is an important ingredient of the discretization problem, desirable in
practical applications. Supposewe have a finite dictionaryDN := {g j }Nj=1 of functions
from L p(�,μ). Applying our strategy of sparse m-term approximation with respect
to DN we obtain a collection of all subspaces spanned by at most m elements of DN

as a possible source of approximating (representing) elements. Thus, we would like
to build a discretization scheme, which works well for all such subspaces. This kind
of discretization falls in the category of universal discretization. The paper is devoted
to the problem of universal sampling discretization.

Let � be a nonempty set equipped with a probability measure μ. For 1 ≤ p ≤ ∞,
let L p(�) := L p(�,μ) denote the real Lebesgue space L p defined with respect to
the measure μ on �, and let ‖ · ‖p be the norm of L p(�). By discretization of the
L p norm we understand a replacement of the measure μ by a discrete measure μm

with support on a set ξ = {ξ j }mj=1 ⊂ �. This means that integration with respect
to measure μ is replaced by an appropriate cubature formula. Thus, integration is
replaced by evaluation of a function f at a finite set ξ of points. This is why this way of
discretization is called sampling discretization. The problemof sampling discretization
is a classical problem. The first results in this direction were obtained in the 1930s by
Bernstein, by Marcinkiewicz, and by Marcinkiewicz and Zygmund for discretization
of the L p norms of the univariate trigonometric polynomials. Even though this problem
is very important in applications, its systematic study has begun only recently (see the
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survey paper [5]). We now give explicit formulations of the sampling discretization
problem (also known as theMarcinkiewicz discretization problem) and of the problem
of universal discretization.

The sampling discretization problem. Let (�,μ) be a probability space and let
XN ⊂ L p be an N -dimensional subspace of L p(�,μ) with 1 ≤ p ≤ ∞ (the index
N here, usually, stands for the dimension of XN ). We shall always assume that every
function in XN is defined everywhere on �, and

f ∈ XN , ‖ f ‖p = 0 �⇒ f = 0 ∈ XN .

We say that XN admits the Marcinkiewicz-type discretization with parametersm ∈ N

and p and positive constants C1 ≤ C2 if there exists a set ξ := {ξ j }mj=1 ⊂ � such
that for any f ∈ XN we have in the case of 1 ≤ p < ∞,

C1‖ f ‖p
p ≤ 1

m

m∑

j=1

| f (ξ j )|p ≤ C2‖ f ‖p
p, (1.2)

and in the case of p = ∞,

C1‖ f ‖∞ ≤ max
1≤ j≤m

| f (ξ j )| ≤ ‖ f ‖∞.

The problem of universal discretization. Let X := {X(n)}kn=1 be a collection of
finite-dimensional linear subspaces X(n) of the space L p(�) for a given 1 ≤ p ≤ ∞.
We say that a set ξ := {ξ j }mj=1 ⊂ � provides universal discretization for the collection
X if there are two positive constants Ci , i = 1, 2, such that for each n ∈ {1, . . . , k}
and any f ∈ X(n) we have

C1‖ f ‖p
p ≤ 1

m

m∑

j=1

| f (ξ j )|p ≤ C2‖ f ‖p
p

in the case of 1 ≤ p < ∞, and

C1‖ f ‖∞ ≤ max
1≤ j≤m

| f (ξ j )| ≤ ‖ f ‖∞ (1.3)

in the case of p = ∞.
Note that the problem of universal discretization for the collectionX := {X(n)}kn=1

is the sampling discretization problem for the set ∪k
n=1X(n). Also, we point out that

the concept of universality is well known in approximation theory. For instance, the
reader can find a discussion of universal cubature formulas in [28], Section 6.8.

The problem of universal discretization for some special subspaces of the trigono-
metric polynomials was studied in [5, 29]. To describe the results in [5, 29] we need
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to introduce some necessary notations. First, for a given finite subset Q of Zd we set

T (Q) :=
{
f : f =

∑

k∈Q
cke

i(k,x), ck ∈ C, k ∈ Q
}
.

For s = (s1, · · · , sd) ∈ Z
d+ we define

R(s) := {k ∈ Z
d : |k j | < 2s j , j = 1, . . . , d}.

The following result, proved in [29], solves the universal discretization problem for
the collection

C(n, d) := {T (R(s)) : s1 + · · · + sd = n}

of subspaces of trigonometric polynomials.

Theorem 1.1 [29]For every 1 ≤ p ≤ ∞ there exists a large enough constant C(d, p),
which depends only on d and p, such that for any n ∈ N there is a set ξ := {ξν}mν=1 ⊂
T
d , with m ≤ C(d, p)2n that provides universal discretization in L p for the collection

C(n, d).

Second, for n ∈ N let

�n := [−2n−1 + 1, 2n−1 − 1]d ∩ Z
d .

For a positive integer v ≤ |�n| define

S(v, n) := {Q : Q ⊂ �n, |Q| = v} .

Then it is easily seen that

|S(v, n)| =
(|�n|

v

)
< 2dnv.

The following theorem provides universal discretization of L1 and L2 norms for the
collection {T (Q) : Q ∈ S(v, n)}.
Theorem 1.2 [5, 27, Theorem 7.4] For positive integers n and 1 ≤ v ≤ |�n| let

Mp(n, v) :=
{

v2n9/2, if p = 1,

v2n, if p = 2.

Then there exist three positive constants Ci (d), i = 1, 2, 3, such that for any n, v ∈ N

with v ≤ |�n|, and for p = 1 and p = 2 there is a set ξ = {ξν}mν=1 ⊂ T
d , with
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m ≤ C1(d)Mp(n, v) such that for any f ∈ ∪Q∈S(v,n)T (Q)

C2(d)‖ f ‖p
p ≤ 1

m

m∑

ν=1

| f (ξν)|p ≤ C3(d)‖ f ‖p
p.

Let us denote by DN = {gi }Ni=1 a system of functions from L p. Denote the set of
all v-term approximants with respect to DN as

�v(DN ) :=
{
f : f =

∑

i∈G
ci gi , withG ⊂ [1, N ] such that|G| = v

}
.

Theorem 1.2 provides universal discretization for the collection {T (Q) : Q ∈
S(v, n)}, which is equivalent to the sampling discretization of the L p norm of elements
from the set �v(DN ) with N = |�n|,DN = {ei(k,x)}k∈�n . The proof of Theorem 1.2
in the case p = 2 is based on deep results on random matrices and in the case p = 1
is based on the chaining technique. We point out that in both cases p = 2 and p = 1
Theorem 1.2 provides universal discretization with the number of points growing as
v2.

On the other hand, while Theorem 1.1 provides universal discretization for the
subcollection C(n, d) of {T (Q) : Q ∈ S(v, n+1)} (rather than the whole collection
{T (Q) : Q ∈ S(v, n + 1)}) with v = 2n and

D := {ei(k,x) : k ∈ Z
d , |k j | < 2n, 1 ≤ j ≤ d

}
,

it gives a better estimate m ≤ Cv on the number of points, which is linear in v, and
applies to the full range of 1 ≤ p ≤ ∞.

In this paper we prove the following estimate (see below for definitions and nota-
tions).

Theorem 1.3 Let 1 ≤ p ≤ 2. Assume that �N is a uniformly bounded Riesz basis of
XN := span(�N ) satisfying (2.8) for some constants 0 < R1 ≤ R2. Then for a large
enough constant C = C(p, R1, R2) and any integer 1 ≤ v ≤ N there exist m points
ξ1, · · · , ξm ∈ � with

m ≤ Cv(log N )2(log(2v))2

such that for any f ∈ �v(�N ) we have

1

2
‖ f ‖p

p ≤ 1

m

m∑

j=1

| f (ξ j )|p ≤ 3

2
‖ f ‖p

p. (1.4)

In particular, Theorem 1.3 gives the order of bound

m � v(log N )2(log(2v))2,
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which is linear in v with extra logarithmic terms in N and v. This bound is much
better than previously known bounds (see Theorem 1.2), which provided quadratic in
v bounds. Note that even for each individual subspace from {T (Q) : Q ∈ S(v, n)}
we have the lower bound m ≥ v for the sampling discretization.

Finally, we point out that very recent progress related to universal discretization
has been made in our follow-up papers [8, 9]. More precisely, in [8] we prove that in
the setting of Theorem 1.3 independent random points ξ1, · · · , ξm ∈ � that are iden-
tically distributed according to a given probabilistic measure μ provide the universal
discretization (1.4) with high probability under a slightly weaker condition than the
condition in Theorem 1.3 on the number of points

m � v(log N )(log(2v))2(log(2v) + log log N ).

Also, in [8] we relaxed the condition on the Riesz basis �N . In [9] we show how
universal discretization can be applied to deduce interesting results on sparse sampling
recovery. In particular, we demonstrate that a simple greedy type algorithm based on
good points for universal discretization provides good recovery in the square norm.

The rest of this paper is organized as follows. Sections2 and 3 are devoted to
estimating the entropy numbers εk(�

p
v (�N ), L∞) of the sets

� p
v (�N ) := { f ∈ �v(�N ) : ‖ f ‖p ≤ 1}, 1 ≤ p ≤ 2,

in the L∞-norm, where�N is a uniformly bounded Riesz basis of XN := [�N ] ⊂ L2
and 1 ≤ v ≤ N is an integer. Such estimates play an important role in the proof of
Theorem 1.3. To be more precise, in Sect. 2 we prove under the additional condition
(2.9) on the space XN = span(�N ) that for p = 2,

εk(�
2
v (�N ), L∞) ≤ C(log N )

(v

k

)1/2
, k = 1, 2, . . . . (1.5)

The proof of (1.5) uses a known result from Greedy approximation in smooth Banach
spaces and its connection with entropy numbers. In Sect. 3, we show how the estimate
(1.5) can be extended to the case 1 ≤ p < 2 under condition (2.9). This extension
step is based on a general inequality for the entropy, which is given in Lemma 3.1
and appears to be of independent interest. In Sect. 4 we prove Theorem 1.3, using the
estimates on entropynumbers established in theprevious two sections and a conditional
theorem on sampling discretization. A main step in the proof is to show that the
condition (2.9) that is assumed in our estimates of entropy numbers can be dropped in
sampling discretization. The conditional Theorem2.2 used in the proof of Theorem1.3
is given in Sect. 2 without proof. In Sect. 5, we prove a refined conditional theorem for
sampling discretization of all integral norms L p of functions from a subsetW ⊂ L∞
satisfying certain conditions, which allows us to estimate the number of points required
for the sampling discretization in terms of an integral of the ε-entropy Hε(W, L∞),
ε > 0. This is an extension of the conditional result proved in [7, 27] for the unit ball
of the space XN ⊂ L p. In particular, it also allows us to prove a refined version of
Theorem 1.3, where the constants 1

2 and 3
2 in (1.4) are replaced by 1 − ε and 1 + ε
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respectively for an arbitrarily given ε ∈ (0, 1). Finally, in Sect. 6 we give a few remarks
on universal sampling discretization of L p norms for p > 2.

Throughout this paper the letter C denotes a general positive constant depending
only on the parameters indicated as arguments or subscripts. We use the notation |A|
to denote the cardinality of a finite set A.

2 Some General Entropy Bounds and the Case p = 2

It iswell known that bounds of the entropynumbers of the unit ball of an N -dimensional
subspace XN ⊂ L p

X p
N := { f ∈ XN : ‖ f ‖p ≤ 1}

play an important role in sampling discretization of the L p norm of elements of XN

(see [6, 26, 27], and [7]).
Recall the definition of entropy numbers in Banach spaces. Let X be a Banach space

and BX (g, r) denote the closed ball { f ∈ X : ‖ f − g‖ ≤ r} with center g ∈ X and
radius r > 0. Given a positive number ε, the covering number Nε(A, X) of a compact
set A ⊂ X is defined as

Nε(A, X) := min

⎧
⎨

⎩n ∈ N : ∃ g1, . . . , gn ∈ A, A ⊂
n⋃

j=1

BX (g j , ε)

⎫
⎬

⎭ .

We denote by Nε(A, X) the corresponding minimal ε-net of the set A in X ;
namely, Nε(A, X) is a finite subset of A such that A ⊂ ⋃

y∈Nε(A,X) BX (y, ε) and
Nε(A, X) = |Nε(A, X)|. The ε-entropy Hε(A, X) of the compact set A in X is
defined as log2 Nε(A, X), and the entropy numbers εk(A, X) of the set A in X are
defined as

εk(A, X) : = inf{ε > 0 : Hε(A, X) ≤ k}, k = 1, 2, . . . .

The following conditional result was proved in [27] for p = 1 and in [6] for the
full range of 1 ≤ p < ∞.

Theorem 2.1 [27], [6, Theorem 1.3] Let 1 ≤ p < ∞. Suppose that a subspace
XN ⊂ L p(�,μ) satisfies the condition

εk(X
p
N , L∞) ≤ B(N/k)1/p, 1 ≤ k ≤ N , (2.1)

where B ≥ 1. Then for a large enoughconstantC(p) there existm points ξ1, · · · , ξm ∈
� with

m ≤ C(p)N Bp(log2(2BN ))2
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such that for any f ∈ XN we have

1

2
‖ f ‖p

p ≤ 1

m

m∑

j=1

| f (ξ j )|p ≤ 3

2
‖ f ‖p

p.

As we explained above the problem of universal discretization of the collection
{X(n)}kn=1 is equivalent to the sampling discretization of the union ∪k

n=1X(n) of the
corresponding subsets. Therefore, instead of bounds of the entropy numbers of the
unit ball X p

N we are interested in the entropy bounds of the "unit ball"

� p
v (DN ) := { f ∈ �v(DN ) : ‖ f ‖p ≤ 1},

which is the union of the corresponding unit balls.
The following version of Theorem 2.1 follows directly from its proof.

Theorem 2.2 Let 1 ≤ p < ∞ and 1 ≤ v ≤ N. Suppose that a dictionary DN is such
that the set � p

v (DN ) satisfies the condition

εk(�
p
v (DN ), L∞) ≤ B1(v/k)1/p‖ f ‖p, 1 ≤ k < ∞, (2.2)

where B1 ≥ 1. Assume in addition that there exists a constant B2 ≥ 1 such that

‖ f ‖∞ ≤ B2v
1/p‖ f ‖p, ∀ f ∈ � p

v (DN ). (2.3)

Then for a large enough constant C(p) there exist m points ξ1, · · · , ξm ∈ � with

m ≤ C(p)B p
1 v(log(2B2v))2

such that for any f ∈ �v(DN ) we have

3

4
‖ f ‖p

p ≤ 1

m

m∑

j=1

| f (ξ j )|p ≤ 5

4
‖ f ‖p

p.

Theorem 2.2 also follows from a more general conditional theorem that will be
proved in Sect. 5 (see Corollary 5.1).

Remark 2.1 We point out that (2.2) implies

‖ f ‖∞ ≤ 3B1v
1/p‖ f ‖p, ∀ f ∈ � p

v (DN ). (2.4)

Therefore, assumption (2.3) can be dropped with B2 replaced by 3B1 in the bound on
m. However, in applications the constant B2 in (2.3) may be significantly smaller
than 3B1. For example, if DN is a uniformly bounded orthonormal system with
max f ∈DN ‖ f ‖∞ = 1, then we can take B2 = 1.
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Proof of (2.4). For � ⊂ [1, N ]∩N denote X(�) := span(gi )i∈� and X(�)p := { f ∈
X(�) : ‖ f ‖p ≤ 1}. Clearly, (2.2) implies the same bound for each X(�)p with
|�| = v. Thus, it is sufficient to prove (2.4) for a v-dimensional subspace Xv . With
a slightly worse constant 4B1 instead of 3B1 it was proved in [7, Remark 1.1]. We
now show how to get a better constant. Setting ε1 := ε1(X

p
v , L∞), we can find two

functions f1, f2 ∈ X p
v such that X p

v ⊂ BL∞( f1, ε1) ∪ BL∞( f2, ε1). Since 0 ∈ X p
v ,

0 is contained in one of the two balls. Without loss of generality we may assume
that 0 ∈ BL∞( f1, ε1) so that ‖ f1‖∞ ≤ ε1. Since − f2 ∈ X p

v , we have either − f2 ∈
BL∞( f1, ε1) or − f2 ∈ BL∞( f2, ε1), which implies ‖ f2‖∞ ≤ 2ε1. It then follows that
‖ f ‖∞ ≤ 3ε1 for all f ∈ X p

v . This together with (2.2) proves (2.4). ��
Theorem 2.2 motivates us to estimate the characteristics εk(�

p
v (DN ), L∞). We

now recall some known general results, which turn out to be useful for that purpose.
Let DN = {g j }Nj=1 be a system of elements of cardinality |DN | = N in a Banach
space X . Consider the best m-term approximations of f with respect to DN

σm( f ,DN )X := inf{c j };�:|�|=m
‖ f −

∑

j∈�

c j g j‖.

For a set W ⊂ X we define

σm(W ,DN )X := sup
f ∈W

σm( f ,DN )X , m = 1, 2, · · · ,

and σ0(W ,DN )X = sup f ∈W ‖ f ‖X . The following Theorem 2.3 was proved in [24]
(see also [28], p.331, Theorem 7.4.3).

Theorem 2.3 Let a compact W ⊂ X be such that there exist a system DN ⊂ X with
|DN | = N, and a number r > 0 such that

σm(W ,DN )X ≤ (m + 1)−r , m = 0, 1, · · · , N .

Then for k ≤ N

εk(W , X) ≤ C(r)

(
log(2N/k)

k

)r

. (2.5)

For a given setDN = {g j }Nj=1 of elementswe introduce the octahedron (generalized
octahedron)

A1(DN ) :=
⎧
⎨

⎩ f : f =
N∑

j=1

c j g j ,

N∑

j=1

|c j | ≤ 1

⎫
⎬

⎭ (2.6)

and the norm ‖ · ‖A on XN

‖ f ‖A := inf

⎧
⎨

⎩

N∑

j=1

|c j | : f =
N∑

j=1

c j g j

⎫
⎬

⎭ .
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We now use a known general result for a smooth Banach space. For a Banach space
X we define the modulus of smoothness

ρ(u) := ρ(X , u) := sup
‖x‖=‖y‖=1

(
1

2
(‖x + uy‖ + ‖x − uy‖) − 1

)
.

The uniformly smooth Banach space is the one with the property

lim
u→0

ρ(u)/u = 0.

In this paper we only consider uniformly smooth Banach spaces with power type
moduli of smoothness ρ(u) ≤ γ us , 1 < s ≤ 2. The following bound is a corollary of
greedy approximation results (see, for instance [28], p.455).

Theorem 2.4 Let X be s-smooth: ρ(X , u) ≤ γ us, 1 < s ≤ 2. Then for any normalized
system DN of cardinality |DN | = N we have

σm(A1(DN ), X) ≤ C(s)γ 1/sm1/s−1.

Note that it is known that in the case X = L p we have

ρ(L p, u) ≤ (p − 1)u2/2, 2 ≤ p < ∞. (2.7)

We now proceed to a special case when X = L p and DN = �N := {ϕ j }Nj=1 is a
uniformly bounded Riesz basis of XN := [�N ] := span(ϕ1, . . . , ϕN ). Namely, we
assume that ‖ϕ j‖∞ ≤ 1, 1 ≤ j ≤ N and for any (a1, · · · , aN ) ∈ R

N

R1

⎛

⎝
N∑

j=1

|a j |2
⎞

⎠
1/2

≤
∥∥∥∥∥∥

N∑

j=1

a jϕ j

∥∥∥∥∥∥
2

≤ R2

⎛

⎝
N∑

j=1

|a j |2
⎞

⎠
1/2

, (2.8)

where 0 < R1 ≤ R2 < ∞. Assume in addition that for any f ∈ XN we have

‖ f ‖∞ ≤ C0‖ f ‖log N . (2.9)

Theorem 2.5 Assume that �N is a uniformly bounded Riesz basis of XN := [�N ]
satisfying (2.9). Then we have

εk(�
2
v (�N ), L∞) ≤ C(R1,C0)(log N )

(v

k

)1/2
, k = 1, 2, . . . . (2.10)

Proof First of all, for any f = ∑
j∈G a jϕ j , |G| = v we get

‖ f ‖A ≤
∑

j∈G
|a j | ≤ v1/2

⎛

⎝
∑

j∈G
|a j |2

⎞

⎠
1/2

≤ R−1
1 v1/2‖ f ‖2. (2.11)
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Therefore,

�2
v (�N ) ⊂ R−1

1 v1/2�A
v (�N ),

where

R�A
v (�N ) := { f ∈ �v(�N ) : ‖ f ‖A ≤ R}.

By Theorem 2.4 with s = 2 and by (2.7) we have that for p ∈ [2,∞)

σm(�2
v (�N ), L p) ≤ CR−1

1 v1/2
√
pm− 1

2 , m = 1, 2, · · · , N . (2.12)

Thus, Theorem 2.3 implies that for p ∈ [2,∞)

εk(�
2
v (�N ), L p) ≤ C(R1)(p log(2N/k))1/2(v/k)1/2, k = 1, 2, . . . , N . (2.13)

Second, by (2.9) we obtain

εk(�
2
v (�N ), L∞) ≤ C0εk(�

2
v (�N ), L log N ). (2.14)

Combining (2.13) and (2.14) we get

εk(�
2
v (�N ), L∞) ≤ C(R1,C0)(log N )(v/k)1/2, k = 1, 2, . . . , N . (2.15)

Finally, for k > N we use the inequalities

εk(W , L∞) ≤ εN (W , L∞)εk−N (X∞
N , L∞)

and

εn(X
∞
N , L∞) ≤ 3(2−n/N ), 2−x ≤ 1/x, x ≥ 1,

to obtain (2.15) for all k. This completes the proof. ��

3 A Step From p = 2 to 1 ≤ p < 2

In this section we show how Theorem 2.5 proved in Sect. 2 for p = 2 can be extended
to the case 1 ≤ p < 2. This extension step is based on a general inequality for the
entropy. For convenience, we set �v(DN ) = XN := [DN ] for v > N .

Lemma 3.1 For v = 1, 2, . . . , N, 1 ≤ p < 2 < q ≤ ∞, and
θ := ( 12 − 1

q )/( 1p − 1
q ) we have for ε > 0
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Hε(�
p
v (DN ); Lq) ≤

∞∑

s=0

H2−3as−1εθ (�2
2v(DN ); Lq) + Hεθ (�2

2v(DN ); Lq), (3.1)

where a = a(θ) = 2
θ

1−θ .

Proof In the case when v = N Lemma 3.1 was proved in [7, Lemma 3.3]. A slight
modification of the proof there works equally well for a general case of 1 ≤ v ≤ N .
For completeness, we include the proof of this lemma here. First, we note that for any
ε1, ε2 > 0

Hε1ε2(�
p
v (DN ); Lq) ≤ Hε1(�

p
v (DN ); L2) + Hε2(�

2
2v(DN ); Lq). (3.2)

To see this, let x1, · · · , xN1 ∈ �
p
v (DN ) and y1, · · · , yN2 ∈ �2

2v(DN ) be such that

� p
v (DN ) ⊂

N1⋃

i=1

(
xi + ε1BL2

)
and �2

2v(DN ) ⊂
N2⋃

j=1

(y j + ε2BLq ),

where N1 = Nε1(�
p
v (DN ), L2) and N2 = Nε2(�

2
2v(DN ), Lq). Since �v(DN ) +

�v(DN ) ⊂ �2v(DN ), we have

� p
v (DN ) ⊂

N1⋃

i=1

(
xi + ε1BL2

) ∩ �v(DN ) ⊂
N1⋃

i=1

(
xi + ε1�

2
2v(DN )

)

⊂
N1⋃

i=1

N2⋃

j=1

(
xi + ε1y j + ε1ε2BLq

)
.

Inequality (3.2) then follows.
Next, setting ε1 := ε1−θ and ε2 = εθ in (3.2), we reduce the problem to showing

that

Hε1(�
p
v (DN ); L2) ≤

∞∑

s=0

H2−3as−1εθ (�2
2v(DN ); Lq). (3.3)

It will be shown that for s = 0, 1, . . . ,

H2sε1(�
p
v (DN ); L2) − H2s+1ε1

(� p
v (DN ); L2) ≤ H2−3as−1εθ (�2

2v(DN ); Lq), (3.4)

from which (3.3) will follow by taking the sum over s = 0, 1, . . .
To show (3.4), for each nonnegative integer s let Fs ⊂ �

p
v (DN ) be a maximal

2sε1-separated subset of �
p
v (DN ) in the metric L2; that is ‖ f − g‖2 ≥ 2sε1 for any

two distinct functions f , g ∈ Fs and �
p
v (DN ) ⊂ ⋃

f ∈Fs
BL2( f , 2

sε1). Then

H2sε1(�
p
v (DN ); L2) ≤ log2 |Fs | ≤ H2s−1ε1

(� p
v (DN ); L2). (3.5)
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Let fs ∈ Fs+2 be such that

∣∣∣BL2( fs, 2
s+2ε1) ∩ Fs

∣∣∣ = max
f ∈Fs+2

∣∣∣BL2( f , 2
s+2ε1) ∩ Fs

∣∣∣ .

Since

Fs =
⋃

f ∈Fs+2

(
BL2( f , 2

s+2ε1) ∩ Fs

)
⊂ � p

v (DN ),

it follows that

|Fs | ≤ |Fs+2|
∣∣∣BL2( fs, 2

s+2ε1) ∩ Fs

∣∣∣ . (3.6)

Set

As :=
{
f − fs
2s+2ε1

: f ∈ BL2( fs, 2
s+2ε1) ∩ Fs

}
⊂ �2v(DN ).

Clearly, for any g ∈ As

‖g‖2 ≤ 1, ‖g‖p ≤ (2s+1ε1)
−1. (3.7)

On the one hand, using (3.5) and (3.6), we obtain that

log2 |As | ≥ log2 |Fs | − log2 |Fs+2|
≥ H2sε1(�

p
v (DN ); L2) − H2s+1ε1

(� p
v (DN ); L2). (3.8)

On the other hand, since 1
2 = θ

p + 1−θ
q , using (3.7) and the fact thatFs is 2sε1-separated

in the L2-metric, we have that for any two distinct g′, g ∈ As

2−2 ≤ ‖g′ − g‖2 ≤ ‖g′ − g‖θ
p‖g − g′‖1−θ

q ≤
(
2s+1ε1

)−θ ‖g − g′‖1−θ
q ,

which implies that

‖g′ − g‖q ≥ 2−2(2s−1ε1)
θ

1−θ = 2−2as−1εθ .

This together with (3.7) means that As is a 2−2as−1εθ -separated subset of �2
2v(DN )

in the metric Lq . We obtain

log2 |As | ≤ H2−3as−1εθ (�2
2v(DN ); Lq). (3.9)

Thus, combining (3.9) with (3.8), we prove inequality (3.4). ��
Lemma 3.1 with 1 ≤ p < 2, q = ∞, θ = p/2 and Theorem 2.5 imply the

following bound for the entropy numbers.
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Theorem 3.1 Assume that �N is a uniformly bounded Riesz basis of XN := [�N ]
satisfying (2.9). Then for 1 ≤ p ≤ 2 we have

εk(�
p
v (�N ), L∞) ≤ C(p, R1,C0)(log N )2/p(v/k)1/p, k = 1, 2, . . . . (3.10)

4 Proof of Theorem 1.3

Theorem 3.1 provides bounds on the entropy numbers εk(�
p
v (�N ), L∞) under addi-

tional assumption (2.9). Thus, a combination of Theorem3.1with Theorem2.2 implies
the statement of Theorem 1.3 under extra assumption (2.9). However, (2.9) is not
assumed in Theorem 1.3. Below we give a proof of Theorem 1.3.

We need the following lemma proved in [7].

Lemma 4.1 [7, Lemma 4.3] Let 1 ≤ p < ∞ be a fixed number. Assume that XN is
an N-dimensional subspace of L∞(�) satisfying the following condition: For some
parameter β > 0 and constant K ≥ 2

‖ f ‖∞ ≤ (K N )
β
p ‖ f ‖p, ∀ f ∈ XN . (4.1)

Let {ξ j }∞j=1 be a sequence of independent random points distributed in accordance
with μ. Then there exists a positive constant Cβ depending only on β such that for
any 0 < ε ≤ 1

2 and any integer

m ≥ CβK
βε−2(log

2

ε
)Nβ+1 log N (4.2)

the inequality

(1 − ε)‖ f ‖p
p ≤ 1

m

m∑

j=1

| f (ξ j )|p ≤ (1 + ε)‖ f ‖p
p (4.3)

holds with probability ≥ 1 − m−N/ log K .

For a set �m := {x1, · · · , xm} ⊂ � and a function f : �m → R we define
‖ f ‖L∞(�m) := max1≤ j≤m | f (x j )| and

‖ f ‖L p(�m) :=
⎛

⎝ 1

m

m∑

j=1

| f (x j )|p
⎞

⎠

1
p

for p < ∞.

Nowwe turn to the proof of Theorem 1.3. Recall that we do not assume (2.9). First,
since the Riesz basis �N := {ϕ j }Nj=1 is uniformly bounded by 1 on �, we have by
(2.8)

‖ f ‖∞ ≤ R−1
1 N

1
2 ‖ f ‖2, ∀ f ∈ XN ,
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which in turn implies that

‖ f ‖∞ ≤ C(R1)N
1
p ‖ f ‖p, ∀ f ∈ XN , 1 ≤ p ≤ 2.

Thus, by Lemma 4.1with β = 1 there exists a discrete set�m1 := {ξ1, · · · , ξm1} ⊂ �

with

C−1N 2 log N ≤ m1 ≤ CN 2 log N

such that for all f ∈ XN

4

5
‖ f ‖p

p ≤ ‖ f ‖p
L p(�m1 ) ≤ 6

5
‖ f ‖p

p and
4

5
‖ f ‖22 ≤ ‖ f ‖2L2(�m1 ) ≤ 6

5
‖ f ‖22, (4.4)

where C > 1 is an absolute constant.
Second, we consider the discrete norm ‖ · ‖L p(�m1 ) instead of the norm ‖ · ‖L p(�).

By (4.4) �N is a uniformly bounded Riesz basis of the space (XN , ‖ · ‖L2(�m1 )) and
moreover

‖ f ‖L∞(�m1 ) ≤ C(p, R1, R2)v
1/p‖ f ‖L p(�m1 ), ∀ f ∈ �v(�N ).

Since logm1 ∼ log N , by the regular Nikolskii inequality for the norms �
m1
p , 1 ≤ p ≤

∞, we also have

‖ f ‖L∞(�m1 ) ≤ C‖ f ‖L log N (�m1 ), ∀ f ∈ XN ,

where C > 1 is an absolute constant. Thus, by Theorem 2.2 and Theorem 3.1 applied
to the discrete norm ‖ · ‖L p(�m1 ) we can find a subset �m ⊂ �m1 with

m = |�m | ≤ C(p, R1, R2)v(log N )2(log(2v))2

such that for any f ∈ �v(�N )

3

4
‖ f ‖p

L p(�m1 ) ≤ ‖ f ‖p
L p(�m ) ≤ 5

4
‖ f ‖p

L p,(�m1 ). (4.5)

Combining (4.4) with (4.5), we obtain the stated result of Theorem 1.3.

5 A Refined Version of the Conditional Theorem

Let us first recall some notations. Let (�,μ) be a probability space. For 1 ≤ p ≤ ∞
denote by L p(�) the usual Lebesgue space L p defined with respect to the measure μ

on � and by ‖ · ‖p the norm of L p(�). We also set

BL p := { f ∈ L p(�) : ‖ f ‖p ≤ 1}, 1 ≤ p ≤ ∞.
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In this section we prove a refined version of the conditional Theorem 2.2 for sam-
pling discretization of all integral norms L p of functions from a more general subset
W ⊂ L∞, which allows us to estimate the number of points needed for the sampling
discretization in terms of an integral of the ε-entropy Hε(W, L∞), ε > 0.

Theorem 5.1 Let 1 ≤ p < ∞ and let W be a set of uniformly bounded functions on
� with

1 ≤ R := sup
f ∈W

sup
x∈�

| f (x)| < ∞.

Assume that Ht (W, L∞) < ∞ for every t > 0, and

(λ · W) ∩ BL p ⊂ W ⊂ BL p , ∀λ > 0. (5.1)

Then there exist positive constants Cp, cp depending only on p such that for any
ε ∈ (0, 1) and any integer

m ≥ Cpε
−5

⎛

⎝
∫ R

10−1ε1/p
u

p
2 −1

(∫ R

u

Hcpεt (W, L∞)

t
dt

) 1
2

du

⎞

⎠
2

, (5.2)

there exist m points x1, · · · , xm ∈ � such that for all f ∈ W ,

(1 − ε)‖ f ‖p
p ≤ 1

m

m∑

j=1

| f (x j )|p ≤ (1 + ε)‖ f ‖p
p. (5.3)

In particular, Theorem 5.1 allows us to prove refined versions of Theorem 2.2 and
Theorem1.3,where the constants in theMarcinkiewicz type discretization are replaced
by 1 − ε and 1 + ε for an arbitrarily given ε ∈ (0, 1).

First, we have the following refined version of Theorem 2.2.

Corollary 5.1 Let 1 ≤ p < ∞ and 1 ≤ v ≤ N. Suppose that a dictionary DN is such
that

εk(�
p
v (DN ), L∞) ≤ B1(v/k)1/p, k = 1, 2, · · · , (5.4)

where B1 ≥ 1. Assume in addition that there exists a constant B2 ≥ 1 such that

‖ f ‖∞ ≤ B2v
1/p‖ f ‖p, ∀ f ∈ � p

v (DN ). (5.5)

Then for a large enough constant C(p) and any ε ∈ (0, 1) there exist m points
ξ1, · · · , ξm ∈ � with

m ≤ C(p)ε−5−pvB p
1 (log(B2v/ε))2
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such that for any f ∈ �v(DN )

(1 − ε)‖ f ‖p
p ≤ 1

m

m∑

j=1

| f (ξ j )|p ≤ (1 + ε)‖ f ‖p
p.

Proof of Corollary 5.1 We apply Theorem 5.1 to W := �
p
v (DN ) and R = B2v

1/p. It
is clear thatW satisfies (5.1). Furthermore, (5.4) implies that (see by [7, Lemma 2.1])

Ht (W, L∞) ≤ C(p)v · (B1/t)
p, t > 0. (5.6)

Finally, a straightforward calculation using (5.6) then shows that

ε−5

⎛

⎝
∫ B2v1/p

10−1ε1/p
u

p
2 −1

(∫ B2v1/p

u

Hcpεt (W, L∞)

t
dt

) 1
2

du

⎞

⎠
2

≤ C(p)ε−5−p B p
1 v(log(B2v/ε))2.

Corollary 5.1 then follows from Theorem 5.1. ��

Using Corollary 5.1 and following the proof in Sect. 4, we can also obtain the
ε-version of Theorem 1.3.

Corollary 5.2 Let �N be a uniformly bounded Riesz basis of XN := span(�N ) ⊂
L2(�) satisfying (2.8) for some constants 0 < R1 ≤ R2. Let 1 ≤ p ≤ 2 and let
1 ≤ v ≤ N be an integer. Then for a large enough constant C = C(p, R1, R2) and
any ε ∈ (0, 1) there exist m points ξ1, · · · , ξm ∈ � with

m ≤ Cε−p−5v(log N )2(log(2vε−1))2

such that for any f ∈ �v(�N ) we have

(1 − ε)‖ f ‖p
p ≤ 1

m

m∑

j=1

| f (ξ j )|p ≤ (1 + ε)‖ f ‖p
p.

The rest of this section is devoted to the proof of Theorem 5.1, which is close to
the proof of Theorem 1.3 of [6]. We need the following lemma:

Lemma 5.1 [6, Lemma 2.4] Let {F j } j∈G be a collection of finite sets of bounded
functions from L1(�,μ). Assume that for each j ∈ G and all f ∈ F j we have

‖ f ‖1 ≤ 1, ‖ f ‖∞ := sup
x∈�

| f (x)| ≤ Mj .
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Suppose that positive numbersη j ∈ (0, 1)andanatural numberm satisfy the condition

2
∑

j∈G
|F j | exp

(
−mη2j

8Mj

)
< 1.

Then there exists a set ξ = {ξν}mν=1 ⊂ � such that for each j ∈ G and for all f ∈ F j

we have

∣∣∣∣∣‖ f ‖1 − 1

m

m∑

ν=1

| f (ξν)|
∣∣∣∣∣ ≤ η j .

Proof of Theorem 5.1 Let

W1 := { f /‖ f ‖p : f ∈ W \ {0}}.

Clearly,W1 ⊂ W , and it suffices to prove (5.3) for all f ∈ W1. Let c∗ = c∗
p ∈ (0, 1

2 )

be a sufficiently small constant depending only on p. Let a := c∗ε. Let J , j0 be two
integers such that j0 < 0 ≤ J ,

(1 + a)J−1 ≤ R < (1 + a)J and (1 + a) j0 p ≤ 1

5
ε ≤ (1 + a)( j0+1)p. (5.7)

For j ∈ Z, let

A j := N2a(1+a) j (W1, L∞) ⊂ W1

denote the minimal 2a(1+ a) j -net ofW1 in the norm of L∞. For j ∈ Z and f ∈ W1
we define A j ( f ) to be the function in A j that is closest to f in the L∞ norm. Thus,
‖A j ( f ) − f ‖∞ ≤ 2a(1 + a) j for all f ∈ W1 and j ∈ Z.

Next, for f ∈ W1 and j > j0 define

Uj ( f ) := {x ∈ � : |A j ( f )(x)| ≥ (1 + a) j−1},

and

Dj ( f ) := Uj ( f ) \
⋃

k≥ j+1

Uk( f ).

We also set

Dj0( f ) := � \
⋃

k> j0

Uk( f ).
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Note that by (5.7) Uj ( f ) = ∅ for j > J . Thus, {Dj ( f ) : j = j0, · · · , J } forms a
partition of the domain �. Define

h( f , x) :=
J∑

j= j0+1

(1 + a) jχDj ( f )(x), (5.8)

where χE (x) is a characteristic function of a set E .
For x ∈ Dj0( f ) we have

| f (x)| ≤ |A j0+1 f (x)| + 2a(1 + a) j0+1 ≤ (1 + a) j0 + 2a(1 + a) j0+1

≤ (1 + a) j0(1 + 4a),

which in turn implies that

| f (x)|p ≤ (1 + a) j0 p(1 + 4a)p ≤ (1 + a) j0 p(1 + Cpa) ≤ ε

10
(1 + Cpa).

On the other hand, for x ∈ Dj ( f ) and j0 < j ≤ J we have

| f (x)| ≥ |A j f (x)| − 2a(1 + a) j ≥ (1 + a) j (1 − 3a) and

| f (x)| ≤ |A j+1 f (x)| + 2a(1 + a) j+1 ≤ (1 + a) j (1 + 3a),

which implies

(1 + 3a)−p| f (x)|p ≤ |h( f , x)|p ≤ (1 − 3a)−p| f (x)|p.

Therefore, choosing c∗ = c∗
p small enough, we have

(
1 − ε

8

)
| f (x)|p ≤ |h( f , x)|p ≤

(
1 + ε

8

)
| f (x)|p, ∀x ∈

⋃

j0< j≤J

D j ( f ), (5.9)

and
| f (x)|p ≤ ε

8
, ∀x ∈ Dj0( f ).

In particular, this implies that for any probability measure ν on � and any f ∈ W ′
p

∣∣∣‖h( f )‖p
L p(ν) − ‖ f ‖p

L p(ν)

∣∣∣ ≤ ε

8
‖ f ‖p

L p(ν) + ε

8
. (5.10)

For j0 + 1 ≤ j ≤ J let

F p
j :=

{
(1 + a)pjχDj ( f ) : f ∈ W1

}
.

Our aim is to find m points ξ1, · · · , ξm ∈ � for each m satisfying (5.2)
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so that the following inequality holds for all f ∈ F p
j and j0 < j ≤ J :

∣∣∣
1

m

m∑

k=1

f (ξ k) −
∫

�

f (x) dμ(x)
∣∣∣ ≤ ε j , (5.11)

where {ε j }Jj= j0+1 ⊂ (0, 1) satisfies
∑J

j= j0+1 ε j ≤ ε/4. Once (5.11) is proved, we
obtain by (5.8) that

∣∣∣
1

m

m∑

j=1

|h( f , ξ j )|p − ‖h( f )‖p
p

∣∣∣ ≤ ε

4
, (5.12)

which, applying (5.10), will prove the desired inequality (5.3).
To see this, we apply Lemma 5.1 for the collection of the above sets F p

j and notice
that for j0 < j ≤ J

‖(1 + a)pjχDj ( f )‖1 ≤ ‖h( f )‖p
p ≤ ‖ f ‖p

p + ε

4
≤ 2

and

‖(1 + a)pjχDj ( f )‖∞ ≤ (1 + a)pj =: Mj .

Thus, by Lemma 5.1 it suffices to show that for each integer m satisfying (5.2) one
can find a sequence {ε j } j0< j≤J ⊂ (0, 1) such that

∑

j0< j≤J

ε j ≤ ε

4
(5.13)

J∑

j= j0+1

|F p
j | exp

(
−mε2j

8Mj

)
<

1

2
. (5.14)

To this end we need to estimate the cardinalities of the sets F p
j . By definition, for

each j0 < j ≤ J , the set Dj ( f ) is uniquely determined by the functions Ak( f ) ∈ Ak ,
j ≤ k ≤ J . As a result, we have

|F p
j | ≤ |A j | × · · · × |AJ | =: L j ,

and

log L j ≤
J∑

k= j

log |Ak | ≤
J∑

k= j

Ha(1+a)k (W, L∞)

≤ 1

log(1 + a)

J∑

k= j

∫ a(1+a)k

a(1+a)k−1
Ht (W, L∞)

dt

t
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≤ Cε−1
∫ R

(1+a) j−1
Hat (W, L∞)

dt

t
. (5.15)

For each j0 < j ≤ J we choose ε j > 0 so that

log(λL j ) = mε2j

16Mj
, that is ε j := 4

√
Mj

√
log(λL j )m

− 1
2 , (5.16)

where λ > 1 is a large absolute constant to be specified later. Then

J∑

j= j0+1

ε j = 4m−1/2
J∑

j= j0+1

(Mj log(λL j ))
1
2

≤ 4m−1/2
√
log λ

J∑

j= j0+1

(Mj log(L j ))
1
2

and hence (5.13) is ensured once

m ≥ ε−2
(√

log λ

J∑

j= j0+1

(Mj log(L j ))
1
2

)2
. (5.17)

However, using (5.15), we have

J∑

j= j0+1

(Mj log L j )
1
2 ≤ Cε− 1

2

J∑

j= j0+1

(1 + a)pj/2
(∫ R

(1+a) j−1
Hat (W, L∞)

dt

t

) 1
2

≤ Cpε
− 3

2

J∑

j= j0+1

∫ (1+a) j−1

(1+a) j−2
u

p
2 −1

(∫ R

u
Hat (W, L∞)

dt

t

) 1
2
du

≤ Cpε
− 3

2

∫ R

10−1ε1/p
u

p
2 −1

(∫ R

u
Hcpεt (W, L∞)

dt

t

) 1
2
du.

This combined with (5.17) implies that (5.13) is ensured by (5.2).
Finally, we prove (5.14). Indeed, using (5.16), we have

J∑

j= j0+1

|F p
j | exp

(
−mε2j

8Mj

)
≤ λ

J∑

j= j0+1

L j exp
(
−mε2j

8Mj

)

=
J∑

j= j0+1

exp
(
log(λL j ) − mε2j

8Mj

)
=

J∑

j= j0+1

exp
(
− log(λL j )

)
= 1

λ

J∑

j= j0+1

1

L j

≤ 1

λ

J∑

j= j0+1

1

Na(1+a) j (W, L∞)
,
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where the last step uses the fact that

L j ≥ |A j | = Na(1+a) j (W, L∞).

We claim that

Ht (W, L∞) ≥ log
R

4t
, ∀0 < t < R. (5.18)

To see this, let f ∗ ∈ W be such that ‖ f ∗‖∞ = R. Let k = [ Rt ]. Define f j = 2 j t
R f ∗

for 0 ≤ j ≤ k/2. Then { f j }0≤ j≤ k
2

⊂ W is 2t-separated in L∞-norm. It follows that

Nt (W, L∞) ≥ k

2
≥ 1

4

R

t
,

which shows (5.18).
Now using (5.18), we obtain

1

λ

J∑

j= j0+1

1

Na(1+a) j (W, L∞)
≤ CR−1λ−1

J∑

j= j0+1

(1 + a) j ≤ Cλ−1 < 1,

provided that λ > 1 is large enough. This proves (5.14). ��

6 Concluding Remarks on Sampling Discretization of Lp norms for
2 < p < ∞

In this section, we give a few remarks on sampling discretization of L p norms for
2 < p < ∞.

1. The following Nikolskii type inequality plays an important role in the proof of
Theorem 1.3:

‖ f ‖∞ ≤ Cv
1
p ‖ f ‖p, ∀ f ∈ �v(�N ), (6.1)

where the constant C is independent of f , v and N . This inequality holds for
1 ≤ p ≤ 2 whenever �N is a uniformly bounded Riesz basis of XN . However,
this is no longer true for p > 2. For example, take N = 2v and consider the
system

�N = {e2π i j x }Nj=1

on the interval [0, 1] equipped with the usual Lebesgue measure. By the
Littlewood-Paley inequality we have that for f (x) = ∑v

j=1 e
2π i2 j x ∈ �v(�N )

and 2 < p < ∞,

‖ f ‖∞ = v > Cv
1
p ‖ f ‖p � v

1
2+ 1

p .
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2. Let �N be a uniformly bounded Riesz basis of XN ⊂ L2 satisfying (2.9). By
monotonicity of the L p norms, we have that for any integer 1 ≤ v ≤ N ,

� p
v (�N ) ⊂ �2

v (�N ), p > 2,

which in particular implies that

sup
f ∈�

p
v (�N )

‖ f ‖∞ ≤ sup
f ∈�2

v (�N )

‖ f ‖∞ ≤ Cv1/2.

Moreover, using Theorem 2.5, we have that for p > 2 and all integer k ≥ 1,

εk(�
p
v (�N ), L∞) ≤ εk(�

2
v (�N ), L∞) ≤ C · (log N )

(v

k

)1/2
, (6.2)

which also yields

Ht (�
p
v (�N ), L∞) ≤ C(p)v ·

( log N
t

)2
, ∀t > 0. (6.3)

On the other hand, a straightforward calculation shows that for any ε ∈ (0, 1) and
p > 2,

ε−5

(∫ Cv1/2

10−1ε1/p
u

p
2 −1

(∫ Cv1/2

u

Hcpεt (�
p
v (�N ), L∞)

t
dt
) 1

2
du

)2

≤ C(p)ε−7v p/2(log N )2.

Thus, an application of Theorem 5.1 leads to

Theorem 6.1 Assume that�N is a uniformly boundedRiesz basis of XN := span(�N )

satisfying (2.8) for some constants 0 < R1 ≤ R2. Let 2 < p < ∞ and let 1 ≤ v ≤ N
be an integer. Then for a large enough constant C = C(p, R1, R2) and any ε ∈ (0, 1)
there exist m points ξ1, · · · , ξm ∈ � with

m ≤ Cε−7v p/2(log N )2

such that for any f ∈ �v(�N )

(1 − ε)‖ f ‖p
p ≤ 1

m

m∑

j=1

| f (ξ j )|p ≤ (1 + ε)‖ f ‖p
p.
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