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Abstract
Polynomials with coefficients in {−1, 1} are called Littlewood polynomials. Using
special properties of the Rudin–Shapiro polynomials and classical results in approx-
imation theory such as Jackson’s Theorem, de la Vallée Poussin sums, Bernstein’s
inequality, Riesz’s Lemma, and divided differences, we give a significantly simplified
proof of a recent breakthrough result by Balister, Bollobás, Morris, Sahasrabudhe, and
Tiba stating that there exist absolute constants η2 > η1 > 0 and a sequence (Pn) of
Littlewood polynomials Pn of degree n such that

η1
√
n ≤ |Pn(z)| ≤ η2

√
n, z ∈ C, |z| = 1,

confirming a conjecture of Littlewood from 1966. Moreover, the existence of a
sequence (Pn) of Littlewood polynomials Pn is shown in a way that in addition to
the above flatness properties a certain symmetry is satisfied by the coefficients of Pn
making the Littlewood polynomials Pn close to skew-reciprocal.
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1 The Theorem

Polynomials with coefficients in {−1, 1} are called Littlewood polynomials.
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Theorem 1.1 There exist absolute constants η2 > η1 > 0 and a sequence (Pn) of
Littlewood polynomials Pn of degree n such that

η1
√
n ≤ |Pn(z)| ≤ η2

√
n, z ∈ C, |z| = 1. (1.1)

Note thatBeck [4] showed the existence offlat unimodular polynomials Pn of degree
n satisfying (1.1) with coefficients in the set of kth roots of unity and gave the value
k = 400, but correcting aminor error inBeck’s paperBelshaw [1] showed that the value
of k in [4] should have been 851. Repeating Spencer’s calculation Belshaw improved
the value 851 to 492 in Beck’s result, and an improvement of Spencer’s method, due to
Kai-Uwe Schmidt, allowed him to lower the value of k to 345. The recent breakthrough
result byBalister,Bollobás,Morris, Sahasrabudhe, andTiba [2] formulated inTheorem
1.1 confirms a conjecture of Littlewood from 1966. Using special properties of the
Rudin–Shapiro polynomials and classical results in approximation theory such as
Jackson’s Theorem, de la Vallée Poussin sums, Bernstein’s inequality, Riesz’s Lemma,
and divided differences, in this paper we give a significantly simplified proof of this
beautiful and deep theorem. Moreover, the existence of a sequence (Pn) of Littlewood
polynomials Pn is shown so that in addition to (1.1) a certain symmetry is satisfied by
the coefficients of Pn .

Theorem 1.2 There exist absolute constants 0 < η1 < η2, η > 0, and a sequence
(P2n) of Littlewood polynomials P2n of the form

P2n(z) =
2n∑

j=0

a j,nz
j , a j,n ∈ {−1, 1}, j = 0, 1, . . . , 2n, n = 1, 2, . . . ,

such that in addition to (1.1) with n replaced by 4n the coefficients of P2n satisfy

a j,n = −a2n− j,n, 0 ≤ j < n − mn,

and

a j,n = (−1)n− j a2n− j,n, n − mn ≤ j ≤ n,

with some integers 0 ≤ ηn ≤ mn ≤ n.

The theorem above may be viewed as a result in an effort to answer the following
question.

Problem 1.3 Are there absolute constants 0 < η1 < η2 and a sequence (P4n) of
skew-reciprocal Littlewood polynomials P4n of the form

P4n(z) =
4n∑

j=0

a j,nz
j , a j,n ∈ {−1, 1}, j = 0, 1, . . . , 4n, n = 1, 2, . . . ,
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such that in addition to (1.1) with n replaced by 4n the coefficients of P4n satisfy

a j,n = (−1)− j a4n− j,n, j = 0, 1, . . . , 4n ?

This problem remains open.We remark that it is easy to see that every self-reciprocal
Littlewood polynomial of the form

Pn(z) =
n∑

j=0

a j,nz
j , a j,n ∈ {−1, 1}, j = 0, 1, . . . , n,

satisfying

a j,n = an− j,n, j = 0, 1, . . . , n,

has at least one zero on the unit circle, see Theorem 2.8 in [8], or Corollary 6 in [16],
for example. Hence, there are no absolute constant η1 > 0 and a sequence (Pn) of
self-reciprocal Littlewood polynomials Pn of degree n such that

η1
√
n ≤ |Pn(z)|, z ∈ C, |z| = 1, n = 1, 2, . . . .

2 Rudin–Shapiro Polynomials

Section 4 of [5] is devoted to the study of Rudin–Shapiro polynomials. A sequence of
Littlewood polynomials that satisfy just the upper bound of Theorem 1.1 is given by
the Rudin–Shapiro polynomials. The Rudin–Shapiro polynomials appear in Harold
Shapiro’s 1951 thesis [17] at MIT and are sometimes called just Shapiro polynomials.
They also arise independently in Golay’s paper [13]. The Rudin–Shapiro polynomials
are remarkably simple to construct. They are defined recursively as follows:

P0(z) := 1, Q0(z) := 1,

Pm+1(z) := Pm(z) + z2
m
Qm(z),

Qm+1(z) := Pm(z) − z2
m
Qm(z),

for m = 0, 1, 2, . . . . Note that both Pm and Qm are polynomials of degree M − 1
with M := 2m having each of their coefficients in {−1, 1}. It is well known and easy
to check by using the parallelogram law that

|Pm+1(e
it )|2 + |Qm+1(e

it )|2 = 2(|Pm(eit )|2 + |Qm(eit )|2), t ∈ R.

Hence,

|Pm(eit )|2 + |Qm(eit )|2 = 2m+1 = 2M, t ∈ R. (2.1)
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Observing that the first 2m terms of Pm+1 are the same as the 2m terms of Pm , we can
define the polynomial P<n of degree n − 1 so that its terms are the first n terms of
all Pm for all m for which 2m ≥ n. The following bound, which is a straightforward
consequence of (2.1), was proved by Shapiro [17].

Lemma 2.1 We have

|P<n(e
it )| ≤ 5

√
n, t ∈ R.

It is also well known that

Pm(1) = ‖Pm(eit )‖ := max
t∈R |Pm(eit )| = 2(m+1)/2

for every odd m and Pm(1) = 2m/2 for every even m.
Our next lemma is stated as Lemma 3.5 in [9], where its proof may also be found.

It plays a key role in [10–12] as well.

Lemma 2.2 If Pm and Qm are the m-th Rudin–Shapiro polynomials of degree M − 1
with M := 2m, δ := sin2(π/8), and

z j := eit j , t j := 2π j

M
, j ∈ Z,

then

max{|Pm(z j )|2, |Pm(z j+1)|2} ≥ δ2m+1 = 2δM .

Lemma 2.3 Using the notation of Lemma 2.2, we have

|Pm(eit )|2 ≥ δM, t ∈
[
t j − δ

2M
, t j + δ

2M

]
,

for every j ∈ Z such that

|Pm(z j )|2 ≥ δ2m+1 = 2δM .

Proof The proof is a simple combination of the mean value theorem and Bern-
stein’s inequality (Lemma 3.4) applied to the (real) trigonometric polynomial of
degree M − 1 defined by S(t) := Pm(eit )Pm(e−i t ). Recall that (2.1) implies
0 ≤ S(t) = |Pm(eit )|2 ≤ 2M for every t ∈ R. ��

Let, as before, M := 2m with an odd m. We define

T (t) := Re((1 + eiMt + e2iMt + · · · + e8iMt )Pm(eit ))

= Re

(
e9iMt − 1

eiMt − 1
Pm(eit )

)
. (2.2)
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Observe that T is a real trigonometric polynomial of degree μ − 1 := 9M − 1. For
every sufficiently large natural number n, there is an odd integer m such that

2−75 ≤ γ := μ

n
= 9 · 2m

n
< 2−73. (2.3)

Observe that

‖T ‖ := max
t∈R |T (t)| = |T (0)| = 9|Pm(1)| = 9 · 2(m+1)/2

= 9(2M)1/2 = 3
√
2γ n. (2.4)

Lemma 2.4 In the notation of Lemmas 2.2 and 2.3, for every j ∈ Z satisfying

|Pm(z j )|2 ≥ δ2m+1 = 2δM

there are

a j ∈
[
t j − 3π

32M
, t j − π

32M

]
and b j ∈

[
t j + π

32M
, t j + 3π

32M

]

such that

|T (a j )| ≥ (0.005)‖T ‖ = (0.015)
√
2γ n and

|T (b j )| ≥ (0.005)‖T ‖ = (0.01)
√
2γ n.

Proof We prove the statement about the existence of b j as the proof of the statement
about the existence of a j is essentially the same. Let

Pm(eit ) = R(t)eiα(t), R(t) = |Pm(eit )|,

where the function α could be chosen so that it is differentiable on any interval where
Pm(eit ) does not vanish. Then

ieit P ′
m(eit ) = R′(t)eiα(t) + R(t)eiα(t)(iα′(t)),

hence

α′(t) = Re

(
eit P ′

m(eit )

Pm(eit )

)

on any interval where Pm(eit ) does not vanish. Combining Bernstein’s inequality
(Lemma 3.4), Lemma 2.3, and ‖Pm‖ ≤ (2M)1/2, we obtain

|α′(t)| ≤ M(2M)1/2

(δM)1/2
=

(
2

δ

)1/2

M ≤ (3.7)M, t ∈
[
t j , t j + δ

2M

]
. (2.5)
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Now let

e9iMt − 1

eiMt − 1
=

∣∣∣∣
e9iMt − 1

eiMt − 1

∣∣∣∣ e
4Mt , t ∈

(
t j − 2π

9M
, t j + 2π

9M

)
. (2.6)

By writing

(1 + eiMt + e2iMt + · · · + e8iMt )Pm(eit ) =
∣∣∣∣
e9iMt − 1

eiMt − 1
Pm(eit )

∣∣∣∣ e
i(α(t)+4Mt),

we see by (2.5) and (2.6) that β(t) := α(t) + 4Mt satisfies

(0.3)M = 4M − (3.7)M ≤ 4M − |α′(t)| ≤ |β ′(t)|, t ∈
[
t j , t j + δ

M

]
. (2.7)

It is also simple to see that

∣∣∣∣
e9iMt − 1

eiMt − 1

∣∣∣∣ ≥
∣∣∣∣
eiMπ − 1

eiMπ/9 − 1

∣∣∣∣

= 2

2 sin(π/18)
≥ 18

π
, t ∈

[
t j − π

9M
, t j + π

9M

]
. (2.8)

Observe that (2.7) and (2.8) imply that there are

b j ∈
[
t j + π

32M
, t j + 3π

32M

]

for which

∣∣∣∣
e9iMb j − 1

eiMb j − 1

∣∣∣∣ ≥ 18

π
(2.9)

and

cos(β(b j )) ≥ cos

(
π

2
− (0.15)π

16

)
≥ 0.0294. (2.10)

Combining (2.9), (2.10), Lemma 2.3, and (2.4), we obtain

|T (b j )| =
∣∣∣∣Re

(
e9iMb j − 1

eiMb j − 1
Pm(eib j )

)∣∣∣∣ =
∣∣∣∣
e9iMb j − 1

eiMb j − 1

∣∣∣∣
∣∣∣Pm(eib j )

∣∣∣ | cos(β(b j )|

≥ 18

π
(δM)1/2(0.0294) ≥ (0.5292) sin(π/8)

9
√
2π

9(2M)1/2 ≥ (0.005)9(2M)1/2

≥ (0.005)‖T ‖. ��
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3 Tools from Approximation Theory

Let Tν denote the set of all real trigonometric polynomials of degree at most ν. Let
‖T ‖ denote the maximum modulus of a trigonometric polynomial T on R.

Definition 3.1 Let n > 0 be an integer divisible by 10. Let I be a collection of disjoint
closed intervals (with nonempty interiors) inR/2πZ. We call the collection I suitable
if

(a) the endpoints of each interval in I are in (10π/n)Z;
(b) I is invariant under the maps θ → π ± θ ;
(c) |I| = 4N for some N ≤ γ n.

We call a suitable collection I of disjoint closed intervals (with nonempty interiors)
in R/(2πR) well-separated if

(d) |I | ≤ 3990π/n for each I ∈ I;
(e) d(I , J ) ≥ 10π/n for each I , J ∈ I with I �= J ;
(f) the sets

⋃
I∈I I and (π/2)Z + (−5π/n, 5π/n) are disjoint;

where in (e) d(I , J ) denotes the distance between the intervals I and J .
We will denote the intervals in a suitable and well-separated collection I by

I j , j = 1, 2, . . . , 4N ,

where I1, I2, . . . , IN ⊂ (0, π/2). Associated with an interval [a, b] ⊂ [−π +
5π/n, π − 5π/n], we define


[a,b](t) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if t ∈ [a, b],
0, if t ∈ [−π, a − 5π/n] ∪ [b + 5π/n, π ],
(n/(5π))(t − (a − 5π/n)), if t ∈ [a − 5π/n, a],
(n/(5π))((b + 5π/n) − t), if t ∈ [b, b + 5π/n].

We call the coloring α : I → {−1, 1} symmetric if α(I ) = α(π − I ) and α(I ) =
−α(π + I ). Associated with a symmetric I :→ {−1, 1}, let

gα :=
4N∑

j=1

α(I j )
I j and Gα := K
√
n gα.

Let So := {1, 3, . . . , 2n − 1} be the set of odd numbers between 1 and 2n − 1. Let
C2π denote the set of all continuous 2π periodic functions defined on R. Associated
with f ∈ C2π , we define the nth partial sums

Sn( f , t) := a0 +
n∑

k=1

(ak cos(kt) + bk sin(kt))
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of the Fourier series expansion of f , where

a0 = a0( f ) := 1

2π

∫ π

−π

f (t) dt,

ak = ak( f ) := 1

π

∫ π

−π

f (t) cos(kt) dt, k = 1, 2, . . . ,

and

bk = bk( f ) := 1

π

∫ π

−π

f (t) sin(kt) dt, k = 1, 2, . . . .

Observe that if α : I → {−1, 1} is symmetric, then

S2n(Gα, t) = S2n−1(Gα, t) =
n∑

k=1

b2k−1(Gα) sin((2k − 1)t).

Associated with f ∈ C2π , we also define

En( f ) := min
Q∈Tn

‖ f − Q‖

and

ω( f , δ) := max
t∈R | f (t + δ) − f (t)|.

In the proof of Theorem 6.1, we will use D. Jackson’s theorem on best uniform
approximation of continuous periodic functions with exact constant. The result below
is due to Korneichuk [14].

Lemma 3.2 If f ∈ C2π then

En( f ) ≤ ω

(
f ,

π

n + 1

)
.

In the proof of Theorem 6.1, we will also use the following result of De La Vallée
Poussin, the proof of which may be found on pages 273–274 in [7].

Lemma 3.3 Associated with f ∈ C2π let

Vn( f , t) := 1

n

2n−1∑

j=n

S j ( f , t).

We have

max
t∈R |Vn( f , t) − f (t)| ≤ 4En( f ).
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The following inequality is known as Bernstein’s inequality and plays an important
role in the proof of Lemma 3.5.

Lemma 3.4 We have

‖U (k)‖ ≤ νk‖U‖, U ∈ Tν, ν = 1, 2, . . . , k = 1, 2, . . . .

Lemma 3.5 Suppose U ∈ Tν , τ ∈ [0, 2π/ν], A ≥ 0.005, and |U (τ )| ≥ A‖U‖. Let

I j,ν :=
[
jη

ν
,
( j + 1)η

ν

]
⊂

[
τ, τ + 18π

ν

]
, j = u, u + 1, . . . , k. (3.1)

We have

min
t∈I j,ν

|U (t)| ≥ A

400

( η

18π

)200 ‖U‖

for at least one j ∈ {v, v + 1, . . . , v + 399} for every v ∈ {u, u + 1, . . . , k − 399}.
Proof Suppose the statement of the lemma is false, and there are v ∈ {u, u+1, . . . , k−
399} and

x j ∈ I j,ν :=
[
jη

ν
,
( j + 1)η

ν

]
⊂

[
τ, τ + 18π

ν

]
(3.2)

such that

|U (x j )| <
A

400

( η

2π

)200 ‖U‖, j ∈ {v, v + 1, . . . , v + 399}.

Let y j := xv+2 j−1 for j ∈ {1, 2, . . . , 200}. Then, the points y j satisfy

y1 − τ ≥ η

ν
and y j+1 − y j ≥ η

ν
, j ∈ {1, 2, . . . , 200}.

By the well-known formula for divided differences, we have

U (τ )

200∏

h=1

(τ − yh)
−1 +

200∑

j=1

U (y j )(τ − y j )
−1

200∏

h=1
h �= j

(yh − y j )
−1 = 1

200!U
(200)(ξ),

and combining this with |U (τ )| ≥ A‖U‖, (3.1), and (3.2), we get

A‖U‖
(
18π

ν

)−200

≤ 200
A

400

( η

18π

)200 ‖U‖
(η

ν

)−200 + 1

200! |U
(200)(ξ)|,

123



546 Constructive Approximation (2022) 56:537–554

with some ξ ∈ [τ, τ + 18π/ν]. Therefore, Bernstein’s inequality (Lemma 3.4) yields
that

A‖U‖
(
18π

ν

)−200

≤ 200
A

400

( η

18π

)200 ‖U‖
(η

ν

)−200 + 1

200!ν
200‖U‖,

that is,

A ≤ 2(18π)200

200! ≤ 2

(
18πe

200

)200

< 0.005,

which contradicts our assumption A ≥ 0.005. ��
The following lemma ascribed to M. Riesz is well known and can easily be proved

by a simple zero counting argument (see [6], for instance).

Lemma 3.6 If T ∈ Tν , t0 ∈ R, and |T (t0)| = ‖T ‖, then

|T (t)| ≥ |T (t0)| cos(ν(t − t0)), t ∈ R, |t − t0| ≤ π

2ν
.

We will also need the following simple corollary of the above lemma.

Lemma 3.7 If L = 32n,

tr := (2r − 1)π

4L
, r = 1, 2, . . . , 4L,

and T ∈ T2n, then

max
t∈R |T (t)| ≤ (cos(π/64))−1 max

1≤r≤4L
|T (tr )| ≤ (1.0013) max

1≤r≤4L
|T (tr )|.

4 Minimizing Discrepancy

Associated with a vector x = 〈x1, x2, . . . , xv〉 ∈ R
v , let

‖x‖∞ := max{|x1|, |x2|, . . . , |xv|}.

A crucial ingredient in [2] is the main “partial coloring” lemma of Spencer [18] based
on a technique of Beck [3]. In section 4 of [2], a simple consequence of a variant of
this due to Lovett and Meka [15, Theorem 4] is observed, and it plays an important
part in the proof of Theorem 6.1. This can be stated as follows.

Lemma 4.1 Let y1, y2, . . . , yu ∈ R
v and x0 ∈ [−1, 1]v . If c1, c2, . . . , cu ≥ 0 are such

that

u∑

r=1

exp(−(cr/14)
2) ≤ v

16
, (4.1)
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then there exists an x ∈ {−1, 1}v such that

|〈x − x0, yr 〉| ≤ (cr + 30)
√
u ‖yr‖∞, r = 1, 2, . . . , u.

5 The Cosine Polynomial

Theorem 5.1 Let n > 0 be a sufficiently large integer divisible by 10. Let μ = γ n
defined by (2.3). There exists a cosine polynomial

c(t) =
μ∑

k=0

εk cos(2kt), ε0 = 1, εk ∈ {−1, 1}, k = 1, 2, . . . , μ, (5.1)

and a suitable and well-separated collection I of disjoint closed intervals (with
nonempty interiors) in R/(2πZ) such that

c(t) ≥ η1
√
n, t /∈

⋃

I∈I
I ,

and

c(t) ≤ √
n, t ∈ R,

where η1 > 0 is an absolute constant.

Proof Let c(t) := U (t) := T (2t), where T ∈ Tμ−1 with μ := 9M is defined by (2.2)
andU ∈ Tν−2 with ν := 2μ. Observe that c is of the form (5.1). It follows from (2.1),
(2.3), and (2.4) that

|c(t)| ≤ 9
√
2M ≤ 3

√
2μ ≤ √

n.

Set

η := 20πγ = 20πμ/n = 10πν/n and η1 := 0.005

400

( η

18π

)200
.

We partition R/(2πZ) into n/5 intervals

I j :=
[
10π j

n
,
10π( j + 1)

n

]
, j = 0, 1, . . . , n/5 − 1,

and say that an interval I j is good if

min
t∈I j

|U (t)| ≥ 0.005

400

( η

18π

)200 ‖U‖.
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Let J be the collection of maximal unions of consecutive good intervals I j , and let I
be the collection of the remaining intervals (that is, the maximal unions of consecutive
bad intervals). We claim that I is the required suitable and well-separated collection.

First, to see that I is suitable, note that the endpoints of each of the intervals I j are
in 10πZ. The set I is invariant under the maps θ → π ± θ by the symmetries of the
functions cos(2kt), k = 0, 1, . . . , μ. To see that 4N = |I| ≤ 4γ n, note that a real
trigonometric polynomial of degree at most ν has at most 2ν real zeros in a period,
and hence there are at most 4ν values of t in a period for which

U (t) = ±0.005

400

( η

18π

)200 ‖U‖.

Since each I ∈ I must contain at least two such points (counted with multiplicities),
we have 4N := |I| ≤ 2ν = 4μ = 4γ n. Thus, I has each of the properties (a), (b),
and (c) in the definition of a suitable collection.

We now show that I is well separated. By Lemmas 2.2, 3.4, and 3.5, any 400
consecutive intervals I j must contain a good interval, and hence |I | ≤ 3990π/n for
each I ∈ I. Thus, I has property (d) in the definition of a well-separated collection.
The fact that I has property (e) in the definition of a suitable collection is obvious by
the construction. Finally observe that for an odd m we have |Pm(1)| = 2(m+1)/2 =
‖Pm(eit )‖, from which

|T (0)| = |T (π)| = ‖T ‖

follows. Hence, property (f) in the definition of a well-separated collection
follows from the Riesz’s Lemma stated as Lemma 3.6 (recall that ν = 2μ = 2γ n <

2−72n). ��

6 The Sine Polynomials

Theorem 6.1 Let n > 0 be an integer divisible by 10. Let I be a suitable and well-
separated collection of disjoint closed intervals (with nonempty interiors) inR/(2πZ).
There exists a sine polynomial

so(t) =
n∑

k=1

ε(2k − 1) sin((2k − 1)t), ε(2k − 1) ∈ {−1, 1},

such that

|so(t)| ≥ 36
√
n, t ∈

⋃

I∈I
I , and |so(t)| ≤ 1090

√
n, t ∈ R.

To prove Theorem 6.1, we need some lemmas.
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Lemma 6.2 Let I be a suitable and well-separated collection of disjoint closed
intervals (with nonempty interiors) in R/(2πR). There exists a symmetric coloring
α : I → {−1, 1} such that

ak(Gα) = 0, k = 0, 1, . . . , 2n,

b2k(Gα) = 0 and |b2k−1(Gα)| ≤ 1, k = 1, 2, . . . , n.

Proof As before, we denote the intervals in a suitable and well-separated collection
I by I j , j = 1, 2, . . . , 4N , where I1, I2, . . . , IN ⊂ (0, π/2). As we have already
observed before, we have ak(Gα) = 0, k = 0, 1, . . . , 2n, and b2k(Gα) = 0, k =
1, 2, . . . , n, for every symmetric coloring α : I → {−1, 1}, so we have to show only
that there exists a symmetric coloring α : I → {−1, 1} such that |b2k−1(Gα)| ≤
1, k = 1, 2, . . . , n. To this end, let

yk := 〈yk,1, yk,2, . . . , yk,N 〉, k = 1, 2, . . . , n,

with

yk, j := 4K
√
n

π

∫ π

−π


I j (t) sin((2k − 1)t) dt, k = 1, 2, . . . , n, j = 1, 2, . . . , N .

If α : I → {−1, 1} is a symmetric coloring, then by the symmetry conditions on I
we have

b2k−1(Gα) := 1

π

∫ π

−π

Gα(t) sin((2k − 1)t)) dt =
N∑

j=1

α(I j )yk, j , k = 1, 2, . . . , n.

We apply Lemma 4.1 with u := n, v := N , x0 := 0 ∈ [−1, 1]N , and

c1 = c2 = · · · = cn := 14
√
log(16n/N ).

Observe that

u∑

r=1

exp(−c2r /14
2) = n

N

16n
= N

16
,

so (4.1) is satisfied. It follows from Lemma 4.1 that there exists an

〈α(I1), α(I2), . . . , α(IN )〉 = x ∈ {−1, 1}N

such that

|〈x, yk〉| ≤ (ck + 30)
√
N ‖yk‖∞, k = 1, 2, . . . , n.
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As I is well separated, by part (d) of the definition we have

|yk, j | ≤ 4K
√
n

π
(|I j | + 10π/n) ≤ 4K

√
n

π

4000π

n
= 16000K√

n

for every k = 1, 2, . . . , n and j = 1, 2, . . . , N . It follows that

|b2k−1(Gα)| = |〈x, yk〉|
≤ (14

√
log(16n/N ) + 30)

√
N/n · 16000K , k = 1, 2, . . . , n.

As the right-hand side above is an increasing function of N for N/n ≤ γ < 1, we
have

|b2k−1(Gα)| = |〈x, yk〉|
≤ (14

√
log(16/γ ) + 30)

√
γ · 16000K ≤ 1, k = 1, 2, . . . , n,

where the last inequality follows from K := 29 and the inequality 2−75 ≤ γ < 2−73.
Hence, the desired symmetric coloring is given by setting

〈α(I1), α(I2), . . . , α(IN )〉 := x.

��
From now on let α : I → {−1, 1} denote the symmetric coloring guaranteed by

Lemma 6.2. Then, we have

Vn(Gα, t) =
n∑

k=0

ε̃(2k − 1) sin((2k − 1)t), |̃ε(2k − 1)| ≤ 1.

Lemma 6.3 There is a coloring ε : So → {−1, 1} such that with the notation

so(t) =
n∑

k=1

ε(2k − 1) sin((2k − 1)t)

we have

|so(t) − Vn(Gα, t)| ≤ 66
√
n, t ∈ R.

Proof Let L := 32n,

tr := (2r − 1)π

4L
, r = 1, 2, . . . , 4L,

yr ,k := sin((2k − 1)tr ), r = 1, 2, . . . , L, k = 1, 2, . . . , n,

yr := 〈yr ,1, yr ,2, . . . , yr ,n〉, r = 1, 2, . . . , L.
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Observe that

so(tr ) − Vn(Gα, tr ) =
n∑

k=1

(ε(2k − 1) − ε̃(2k − 1))yr ,k = 〈e − ẽ, yr 〉, (6.1)

where

e := 〈ε(1), ε(3), . . . , ε(2n − 1)〉 and ẽ := 〈̃ε(1), ε̃(3), . . . , ε̃(2n − 1)〉.

We apply Lemma 4.1 with u := L , v := n, x0 := ẽ, and

c1 = c2 = · · · = cn := 42
√
log 2.

Observe that

u∑

r=1

exp(−c2r /14
2) = L2−9 = n

16
,

so (4.1) is satisfied. It follows from Lemma 4.1 that there exists an e ∈ {−1, 1}n such
that

|〈e − ẽ, yr 〉| ≤ (cr + 30)
√
n‖yr‖∞

≤ (cr + 30)
√
n ≤ 65

√
n, r = 1, 2, . . . , L. (6.2)

Combining (6.1) and (6.2), we obtain

|so(tr ) − Vn(Gα, tr )| ≤ 65
√
n, r = 1, 2, . . . , L.

Note that by the special form of the trigonometric polynomials so and Vn(Gα, ·), we
have

max
1≤r≤L

|so(tr ) − Vn(Gα, tr )| = max
1≤r≤4L

|so(tr ) − Vn(Gα, tr )|,

hence

|so(tr ) − Vn(Gα, tr )| ≤ 65
√
n, r = 1, 2, . . . , 4L.

This, together with Lemma 3.7 gives the lemma. ��
Lemma 6.4 We have

|Vn(Gα, t)| ≥ K
√
n

5
, t ∈

⋃

I∈I
I , and |Vn(Gα, t)| ≤ 2K

√
n, t ∈ R.

123



552 Constructive Approximation (2022) 56:537–554

Proof Combining Lemmas 3.3 and 3.2 we have

max
t∈R |Vn(Gα, t) − Gα(t)| ≤ 4En(Gα) ≤ 4ω(Gα, π/n) ≤ 4K

√
n

5
,

and the lemma follows. ��
Let μ = 9M = 9 · 2m be the same as in Sect. 2, and let

se(t) := Im(P<(n+1)(e
2i t )) − Im(P<μ(e2i t )).

Lemma 6.5 We have

‖se‖ ≤ 6
√
n.

Proof This is an obvious consequence of Lemma 2.1. Recall that μ = γ n < 2−73n.
��

Proof of Theorem 6.1 Let I be a suitable and well-separated collection of disjoint
closed intervals (with nonempty interiors) in R/(2πZ). By Lemma 6.3, there is a
coloring ε : So → {−1, 1} such that if α : I → {−1, 1} is the symmetric coloring
given by Lemma 6.2, then

|so(t) − Vn(Gα, t)| ≤ 66
√
n, t ∈ R.

Hence by Lemma 6.4 and K := 29, we have

|so(t)| ≥ |Vn(Gα, t)| − |so(t) − Vn(Gα, t)|
≥ 102

√
n − 66

√
n ≥ 36

√
n, t ∈

⋃

I∈I
I ,

and

|so(t)| ≤ |Vn(Gα, t)| + |so(t) − Vn(Gα, t)| ≤ 210
√
n + 66

√
n

≤ 1090
√
n, t ∈ R.

��

7 Proof of Theorems 1.1 and 1.2

Proof of Theorems 1.2 It is sufficient to prove the theorem with 2n replaced by 4n, and
without loss of generality we may assume that n > 0 is an integer divisible by 10.
Since the Littlewood polynomial P4n(z) := 1 − z − z2 − · · · − z4n does not vanish
on the unit circle, we may assume also that n is sufficiently large. By Theorems 5.1
and 6.1 the Littlewood polynomial P4n of degree 4n defined by
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P4n(e
it )e−2int = (−1 + 2c(t)) + 2i(so(t) + se(t))

has the properties required by the theorem. It is obvious from the construction that the
coefficients of P4n satisfy the requirements. To see that the required inequalities are
satisfied let I be a suitable and well-separated collection of disjoint closed intervals
(with nonempty interiors) inR/(2πZ) on which (5.1) holds. Then, Theorem 5.1 gives
that

|P4n(eit )| ≥ | − 1 + 2c(t)| ≥ η1
√
n, t /∈

⋃

I∈I
I ,

while Theorem 6.1 gives that

|P4n(eit )| ≥ |2(so(t) + se(t))| ≥ |2so(t)|
−|2se(t)| ≥ 72

√
n − 12

√
n = 60

√
n, t ∈

⋃

I∈I
I .

Combining the two inequalities above gives the lower bound of the theorem. The upper
bounds of the theorem follow from combining the upper bounds of Theorems 5.1 and
6.1 by

|P4n(eit )| ≤ | − 1 + 2c(t)| + |2(so(t) + se(t))| ≤ 1 + 2
√
n + 2180

√
n + 12

√
n

≤ 1 + 2194
√
n, t ∈ R.

For the value mn in the theorem, we have mn = 2μ = 2γ n, so η = 2γ > 0 can be
chosen. ��
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