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Abstract
We consider the problem of reconstructing an unknown function u ∈ L2(D, μ) from
its evaluations at given sampling points x1, . . . , xm ∈ D, where D ⊂ R

d is a gen-
eral domain and μ a probability measure. The approximation is picked from a linear
space Vn of interest where n = dim(Vn). Recent results (Cohen and Migliorati in
SMAI J Comput Math 3:181–203, 2017, Doostan and Hampton in Comput Methods
Appl Mech Eng 290:73–97, 2015, Jakeman et al. in Math Comput 86:1913–1947,
2017) have revealed that certain weighted least-squares methods achieve near best (or
instance optimal) approximation with a sampling budgetm that is proportional to n, up
to a logarithmic factor ln(2n/ε), where ε > 0 is a probability of failure. The sampling
points should be picked at random according to a well-chosen probability measure σ

whose density is given by the inverse Christoffel function that depends both on Vn
and μ. While this approach is greatly facilitated when D and μ have tensor product
structure, it becomes problematic for domains D with arbitrary geometry since the
optimal measure depends on an orthonormal basis of Vn in L2(D, μ) which is not
explicitly given, even for simple polynomial spaces. Therefore, sampling according to
this measure is not practically feasible. One computational solution recently proposed
in Adcock and Huybrechs (Approximating smooth, multivariate functions on irregu-
lar domains, forum of mathematics, sigma, Cambridge University Press, Cambridge,
2020) relies on using the restrictions of an orthonormal basis of Vn defined on a simpler
bounding domain and sampling according to the original probability measure μ, in
turn giving up on the optimal sampling budget m ∼ n. In this paper, we discuss prac-
tical sampling strategies, which amounts to using a perturbed measure σ̃ that can be
computed in an offline stage, not involving themeasurement of u, as recently proposed
in Adcock and Cardenas (SIAM J Math Data Sci 2:607–630, 2020) and Migliorati
(IMA J Numer Anal, 2020. https://doi.org/10.1093/imanum/draa023). We show that
near best approximation is attained by the resulting weighted least-squares method at
near-optimal sampling budget andwe discussmultilevel approaches that preserve opti-
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mality of the cumulated sampling budget when the spaces Vn are iteratively enriched.
These strategies rely on the knowledge of a-priori upper bounds B(n) on the inverse
Christoffel function for the space Vn and the domain D. We establish bounds of the
formO(nr ) for spaces Vn of multivariate algebraic polynomials of given total degree,
and for general domains D. The exact growth rate r depends on the regularity of the
domain, in particular r = 2 for domains with Lipschitz boundaries and r = d+1

d for
smooth domains.

Keywords Least-squares approximation · Optimal recovery · Random sampling ·
Christoffel functions · Multivariate polynomials

Mathematics Subject Classification 41A10 · 65D15 · 41A81 · 41A65 · 62E17

1 Introduction

1.1 Reconstruction from Point Samples

The process of reconstructing an unknown function u defined on a domain D ⊂ R
d

from its sampled values

ui = u(xi )

at a set of point x1, . . . , xm ∈ D is ubiquitous in data science and engineering.
The sampled values may be affected by noise, making critical the stability properties
of the reconstruction process. Let us mention three very different settings for such
reconstruction problems that correspond to different areas of applications:

(i) Statistical learning and regression: we observe m independent realizations
(xi , yi ) of a random variable z = (x, y) distributed according to an unknown
measure, where x ∈ D and y ∈ R, and we want to recover a function x �→ v(x)
that makes |y − v(x)| as small as possible in some given sense. If we use the
quadratic loss E(|y − v(x)|2), the minimizer is given by the regression function

u(x) = E(y|x).

and the observed yi may be thought of as the observation of u(xi ) affected by
noise.

(ii) State estimation frommeasurements: the function u represents the distribution of
a physical quantity (temperature, quantity of a contaminant, acoustic pressure)
in a given spatial domain D that one is allowed to measure by sensors placed at
m locations x1, . . . , xm . These measurements can be affected by noise reflecting
the lack of accuracy of the sensors.

(iii) Design of physical/computer experiments: u is a quantity of interest that depends
on the solution f to a parametrized physical problem. For example, f = f (x)
could be the solution to a PDE that depends on a vector x = (x1, . . . , xd) ∈ D of
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d physical parameters, and u could be the result of a linear form � applied to f ,
that is, u(x) = �( f (x)). We use a numerical solver for this PDE as a black box
to evaluate f , and therefore u, at m chosen parameter vectors x1, . . . , xm ∈ D,
and we nowwant to approximate u on the whole domain D from these computed
values u(xi ). Here, the discretization error of the solver may be considered as a
noise affecting the true value.

Contrary to statistical learning, in the last two applications (ii) and (iii) the positions
of the sample points xi are not realizations of an unknown probability distribution.
They can be selected by the user, which brings out the problem of choosing them in
the best possible way. Indeed, measuring u at the sample points may be costly: in (ii)
we need a new sensor for each new point, and in (iii) a new physical experiment or
run of a numerical solver. Moreover, in certain applications, one may be interested in
reconstructing many different instances of functions u. Understanding how to sample
in order to achieve the best possible trade-off between the sampling budget and the
reconstruction performance is one main motivation of this work. We first make our
objective more precise by introducing some benchmarks for the performance of the
reconstruction process and sampling budget.

1.2 Optimality Benchmarks

We are interested in controlling the distance

d(u, ũ) := ‖u − ũ‖,

between u and its reconstruction ũ = ũ(u1, . . . , um), measured in some given norm
‖ · ‖ = ‖ · ‖V , where V is a Banach function space that contains u.

For a given numerical method, the derivation of an error bound is always tied to
some prior information on u. Onemost commonway to express such a prior is in terms
of membership of u to a restricted class of functions, for example a smoothness class.
One alternate way is to express the prior in terms of approximability of u by particular
finite dimensional spaces. It iswell known that the twopriors are sometimes equivalent:
many classical smoothness classes can be characterized in terms of approximability in
some given norm by classical approximation spaces such as algebraic or trigonometric
polynomials, splines, or wavelets [10].

In this paper, we adopt the second point of view, describing u by its closeness to a
given subspace Vn ⊂ V of dimension n: defining the best approximation error

en(u) := min
v∈Vn

‖u − v‖,

our prior is that en(u) ≤ εn for some εn > 0. One of our motivations is the rapidly
expanding field of reduced order modeling in which one searches for approxima-
tion spaces Vn which are optimally designed to approximate families of solutions
to parametrized PDEs. Such spaces differ significantly from the above-mentioned
classical examples. For example in the reduced basis method, they are generated by
particular instances of solutions to the PDE for well-chosen parameter values. We
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refer to [7] for a survey on such reduced modeling techniques and their approximation
capability.

In this context, one first natural objective is to build a reconstruction map

(u1, . . . , um) �→ ũn ∈ Vn,

that performs almost as good as the best approximation error. We say that a recon-
struction map taking its value in Vn is instance optimal with constant C0 ≥ 1 if and
only if

‖u − ũn‖ ≤ C0 en(u), (1.1)

for any u ∈ V .
Obviously, instance optimality implies that if u ∈ Vn , the reconstructionmap should

return the exact solution ũn = u. For this reason, instance optimality can only be hoped
for if the sampling budget m exceeds the dimension n. This leads us to introduce a
second notion of optimality: we say that the sample is budget optimal with constant
C1 ≥ 1 if

m ≤ C1 n. (1.2)

Let us stress that in many relevant settings, we do not work with a single space Vn
but a sequence of nested spaces

V1 ⊂ V2 ⊂ · · · ⊂ Vn ⊂ . . .

so that en(u) decreases as n grows. Such a hierarchy could either be fixed in advance
(for example, when using polynomials of degree n), or adaptively chosen as we collect
more samples (for example when using locally refined piecewise polynomials or finite
element spaces). Ideally, we may wish that the constants C0 and C1 are independent
of n. As it will be seen, a more accessible goal is that only one of the two constants is
independent of n, while the other grows at most logarithmically in n.

Another way of relaxing instance optimality is to request the weaker property of
rate optimality, which requires that for any s > 0 and u ∈ V ,

sup
n≥1

ns ‖u − ũn‖V ≤ C sup
n≥1

ns en(u),

where C ≥ 1 is a fixed constant. In other words, the approximant produced by the
reconstructionmethod should converge at the same polynomial rate as the best approx-
imation.

In the context where the spaces Vn are successively refined, even if the reconstruc-
tionmethod is instance and budget optimal for each value of n, the cumulated sampling
budget until the n-th refinement step is in principle of the order

m(n) ∼ 1 + 2 + · · · + n ∼ n2,
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if samples are picked independently at each step. A natural question is whether the
samples used until stage k can be, at least partially, recycled for the computation of
ũk+1, in such a way that the cumulated sampling budget m(n) remains of the optimal
order O(n). This property will be ensured for example if for each n, the samples are
picked at points {x1, . . . , xm(n)} that are the sections of a unique infinite sequence
{xm}m≥1, with m(n) ∼ n, which means that all previous samples are recycled. We
refer to this property as hierarchical sampling. It is also referred to as online machine
learning in the particular above-mentioned application area (i).

1.3 Objectives and Layout

The design of sampling and reconstruction strategies that combine budget and instance
(or rate) optimality, together with the above progressivity prescription, turns out to be
a difficult task, even for very classical approximation spaces Vn such as polynomials.

In Sect. 2, we illustrate this difficulty by first discussing the example of reconstruc-
tion by interpolation for which the sampling budget is optimal but instance optimality
with error measured in the L∞ norm generally fails by a large amount. We then recall
recent results [4, 9, 11, 14] revealing that one can get much closer to these optimality
objectives byweighted least-squares reconstructionmethods. In this case, we estimate
the approximation error in V = L2(D, μ)whereμ is an arbitrary but fixed probability
measure. The sampling points are picked at random according to a different probability
measure σ ∗ that depends on Vn and μ:

dσ ∗(x) = kn(x)

n
dμ(x).

Here kn is the inverse Christoffel function defined by

kn(x) =
n
∑

j=1

|L j (x)|2,

where (L1, . . . , Ln) is any L2(D, μ)-orthonormal basis of Vn . By Cauchy–Schwarz
inequality, it is readily seen that this function is characterized by the extremality
property

kn(x) = max
v∈Vn

|v(x)|2
‖v‖2 ,

where ‖v‖ := ‖v‖V = ‖v‖L2(D,μ) (for notational simplicity, throughout the paper, we
omit the obvious restriction v �= 0 needed when optimizing quotients with numerators
and denominators that are null when v = 0). Then, instance optimality is achieved
in a probabilistic sense with a sampling budget m that is proportional to n, up to a
logarithmic factor (ln(2nε)), where ε > 0 is a probability of failure which comes as
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an additional term in the instance optimality estimate

E(‖u − ũn‖2) ≤ C0 en(u)2 + O(ε).

It is important to notice that σ ∗ differs from μ and that the standard least-squares
method using a sample drawn according to μ is generally not budget optimal in the
sense that instance optimality requires m to be larger than the quantity

Kn := ‖kn‖L∞ = sup
x∈D

|kn(x)| = max
v∈Vn

‖v‖2L∞

‖v‖2
L2

,

which may be much larger than n, for instance O(n2) or worse, see [8] as well as
Sect. 5.

While these results are in principle attractive since they apply to arbitrary spaces
Vn , measures μ and domains D, the proposed sampling strategy is highly facilitated
when D is a tensor-product domain and μ is the tensor-product of a simple univariate
measure, so that an L2(D, μ)-orthonormal basis of Vn can be explicitly provided. This
is the case for example when using multivariate algebraic or trigonometric polynomial
spaces with μ being the uniform probability measure on [−1, 1]d or [−π, π ]d . For
a general domain D with arbitrary—possibly irregular—geometry, the orthonormal
basis cannot be explicitly computed, even for simple polynomial spaces. Therefore,
sampling according to the optimal measure σ ∗ is not feasible.

Non-tensor product domains D come out naturally in all the above mentioned
settings (i)-(ii)-(iii). For example, in design of physical/computer experiments, this
reflects the fact that, while the individual parameters x j could range in intervals I j
for j = 1, . . . , d, not all values x in the rectangle R = I1 × · · · × Id are physically
admissible. Therefore, the function u is only accessible and searched for in a limited
domain D ⊂ R. Here we assume that the domain D is known to us, in the sense that
membership in D of a point x ∈ R

d can be assessed at low numerical cost.
One practical solution proposed in [3] consists in sampling according to themeasure

μ and solving the least-squares problem using the restriction of an orthonormal basis
of Vn defined on a simpler tensor product bounding domain, which generally gives rise
to a frame. This approach is feasible for example when μ is the uniform probability
measure.Due to the use of restricted bases, the resultingGramianmatrixwhich appears
in the normal equations is ill-conditioned or even singular, which is fixed by applying a
pseudo-inverse after thresholding the smallest singular values at some prescribed level.
Budget optimality is generally lost in this approach since one uses μ as a sampling
measure.

In this paper, we also work under the assumption that we are able to sample accord-
ing to μ, but we take a different path, which is exposed in Sect. 3. In an offline stage,
we compute an approximation˜kn to the inverse Christoffel function, which leads to
a measure σ̃ that may be thought of as a perturbation of the optimal measure σ ∗.
We may then use σ̃ to define the sampling points {x1, . . . , xm} and weights. In the
online stage, we perform the weighted least-squares reconstruction strategy based on
the measurement of u at these points. Our first result is that if˜kn is equivalent to kn , we
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recover the stability and instance optimality results from [9] at near-optimal sampling
budget m ∼ n ln(2n/ε).

One approach for computing˜kn , recently proposed in [2, 18], consists in drawing
a first sample {z1, . . . , zM } according to μ and defining˜kn as the inverse Christoffel
function with respect to the discrete measure associated to these points. In order to
ensure an equivalence between kn and˜kn with high probability, the value ofM needs to
be chosen larger than Kn , which is unknown to us. This can be ensured by asking that
M is larger than a known upper bound B(n) for Kn . The derivation of such bounds for
general domains is one of the objectives of this paper. We also propose an empirical
strategy for choosing M that does not require the knowledge of an upper bound and
appears to be effective in our numerical tests. In all cases, the size M of the offline
sample could be of order substantially larger thanO(n). However, this first set of points
is only used in the offline stage to perform computations that produce the perturbed
measure σ̃ , and not to evaluate the function u which, as previously explained, is the
costly aspect in the targeted applications and could also occur for many instances of
u. These more costly evaluations of u only take place in the online stage at the xi ,
therefore at near-optimal sampling budget.

In the case where Kn , or its available bound B(n), grows very fast with n, the
complexity of the offline stage in this approach becomes itself prohibitive. In order to
mitigate this defect, we introduce in Sect. 4 a multilevel approach where the approxi-
mation˜kn of kn is produced by successive space refinements

Vn1 ⊂ · · · ⊂ Vnq , nq = n,

which leads to substantial computational savings under mild assumptions. This setting
also allows us to produce nested sequences of evaluation points {x1, . . . , xmp } where
mp grows similar to n p up to a logarithmic factor, therefore complying with the
previously invoked prescription of hierarchical sampling. The analysis of this approach
faces the difficulty that the xi are not anymore identically distributed, and this is solved
by using techniques first proposed in [17].

In Sect. 5 we turn to the study of the inverse Christoffel function kn in the case
of algebraic polynomial spaces of given total degree on general multivariate domains
D ⊂ R

d .We establish pointwise and global upper and lower bounds for kn that depend
on the smoothness of the boundary of D. We follow an approach adopted in [19] for
a particular class of domains with piecewise smooth boundary, namely comparing
D with simpler reference domains for which the inverse Christoffel function can be
estimated. We obtain bounds with growth rate O(nr ) where the value r = 2 for
Lipschitz domains and r = d+1

d for smooth domains is proved to be sharp. We finally
give a systematic approach that also describes the sharp growth rate for domains with
cusp singularities.

We close the paper in Sect. 6 with various numerical experiments that confirm our
theoretical investigations. In the particular case of multivariate algebraic polynomials,
the sampling points tend to concentrate near to the exiting corner or cusp singularities
of the domain, while they do not at the re-entrant singularities, as predicted by the
previous analysis of the inverse Christoffel function.
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2 Meeting the Optimality Benchmarks

2.1 Interpolation

One most commonly used strategy to reconstruct functions from point values is
interpolation. Here we work in the space V = C(D) of continuous and bounded
functions equipped with the L∞ norm. For the given space Vn , and n distinct points
x1, . . . , xn ∈ D picked in such way that the map v �→ (v(x1), . . . , v(xn)) is an
isomorphism from Vn to R

n , we define the corresponding interpolation operator
In : C(D) → Vn by the interpolation condition

Inu(xi ) = u(xi ), i = 1, . . . , n.

The interpolation operator is also expressed as

Inu =
n
∑

i=1

u(xi ) �i ,

where {�1, . . . , �n} is the Lagrange basis of Vn defined by the conditions �i (x j ) = δi, j .
Interpolation is obviously budget optimal since it uses m = n points, that is, C1 = 1
in (1.2). On the other hand, it does not guarantee instance optimality: the constant C0
in (1.1) is governed by the Lebesgue constant

�n = ‖In‖L∞→L∞ = max
x∈D

n
∑

i=1

|�i (x)|.

Indeed, since ‖u −Inu‖L∞ ≤ ‖u − v‖L∞ +‖Inu −Inv‖L∞ for any v ∈ Vn , one has

‖u − Inu‖L∞ ≤ (1 + �n)en(u).

The choice of the points xi is critical to control the growth of�n with n. For example in
the elementary case of univariate algebraic polynomials where D = [−1, 1] and Vn =
Pn−1, it is well known that uniformly spaced xi results in �n growing exponentially,
at least like 2n , while the slow (and optimal) growth �n ∼ ln(n) is ensured when
using the Chebychev points xi = cos

( 2i−1
2n π

)

for i = 1, . . . n. Unfortunately, there
is no general guideline to ensure such a slow growth for more general hierarchies
of spaces (Vn)n≥1 defined on multivariate domains D ⊂ R

d . As an example, in the
simple case of the bivariate algebraic polynomials Vn = Pp where n = (p+1)(p+2)

2
and a general polygonal domain D, the existence of a choice of points that would
ensure a logarithmic growth of the Lebesgue constant is to our knowledge an open
problem.

There exists a general point selection strategy that ensures linear behavior of the
Lebesgue constant for any space Vn spanned by n functions {ϕ1, . . . , ϕn}. It consists
in choosing (x1, . . . , xn)which maximizes over Dn the determinant of the collocation
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matrix

M(x1, . . . , xn) = (φi (x
j ))i, j=1,...,n .

Since the j-th element of the Lagrange basis is given by

� j (x) = det(M(x1, . . . , x j−1, x, x j+1, . . . , xn))

det(M(x1, . . . , xn))
,

themaximizing property gives that‖� j‖L∞ ≤ 1 and therefore�n ≤ n. In the particular
case of the univariate polynomials where D = [−1, 1] and Vn = Pn−1, this choice
corresponds to the Fekete points, which maximize the product

∏

i �= j (x
i − x j ).

While the above strategy guarantees theO(n) behavior of�n , its main defect is that
it is computationally unfeasible if n or d is large, since it requires solving a non-convex
optimization problem in dimension d n. In addition to this, for a given hierarchy of
spaces (Vn)n≥1, the sampling points Sn = {x1, . . . , xn} generated by this strategy do
not satisfy the nestedness property Sn ⊂ Sn+1.

A natural alternate strategy that ensures nestedness consists in selecting the points
by a stepwise greedy optimization process: given Sn−1, define the next point xn by
maximizing over D the function x �→ det(M(x1, . . . , xn−1, x)). This approach was
proposed in [16] in the context of reduced basis approximation and termed as magic
points. It amounts to solving at each step a non-convex optimization problem in the
moremoderate dimension d, independent of n. However, there exists no general bound
on�n other than exponential inn. In the univariate polynomial case, this strategy yields
the so-called Leja points for which it is only known that the Lebesgue constant grows
sub-exponentially although numerical investigation indicates that it could behave lin-
early. In this very simple setting, the bound �n ≤ n2 could be established in [5],
however, using a variant where the points are obtained by projections of the complex
Leja points from the unit circle to the interval [−1, 1].

In summary, while interpolation uses the optimal sampling budget m = n, it fails
by a large amount in achieving instance optimality, especially when asking in addition
for the nestedness of the sampling points, even for simple polynomial spaces.

2.2 Weighted Least-Squares

In order to improve the instance optimality bound, we allow ourselves to collect more
data on the function u by increasing the number m of sample points, compared to
the critical case m = n studied before, and construct an approximation ũn by a least-
squares fitting procedure. This relaxation of the problem gives more flexibility on the
choice of the sample points: for instance, placing two of them too close will only
waste one evaluation of u, whereas this situation would have caused ill-conditioning
and high values of �n in interpolation. It also leads to more favorable results in terms
of instance optimality as we next recall.

Here, and in the rest of this paper, we assess the error in the L2 norm

‖v‖ = ‖v‖L2(D,μ),
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where μ is a fixed probability measure, which can be arbitrarily chosen by the user
depending on the targeted application. For example, if the error has the same signifi-
cance at all points of D, one is naturally led to use the uniform probability measure

dμ := |D|−1dx .

In other applications such as uncertainty quantification,where the x variable represents
randomparameters that follow amore general probability lawμ, the use of this specific
measure is relevant since the reconstruction error may then be interpreted as the mean-
square risk

‖u − ũn‖2L2(D,μ)
= Ex (|u(x) − ũn(x)|2).

Once the evaluations of u(xi ) are performed, the weighted least-squares methods
defines ũn as the solution of the minimization problem

min
v∈Vn

m
∑

i=1

w(xi ) |u(xi ) − v(xi )|2, (2.1)

where w(x1), . . . , w(xm) > 0 are position-dependent weights. The solution to this
problem is unique under the assumption that no function of Vn \ {0} vanishes at all
the xi . Notice that in the limit m = n, the minimum in (2.1) is zero and attained by
the interpolant at the points x1, . . . , xn , which as previously discussed suffers from a
severe lack of instance optimality.

The results from [9] provide with a general strategy to select the points xi and the
weight function w in order to reach instance and budget optimality, in a sense that we
shall make precise. In this approach, the points xi are drawn at random according to a
probability measure σ on D, that generally differs from μ, but with respect to which
μ is absolutely continuous. One then takes for w the inverse of the corresponding
Radon-Nikodym derivative, so that

w(x) dσ(x) = dμ(x).

This compatibility condition ensures that we recover a minimization in the continuous
norm ‖ · ‖ as m tends to infinity:

1

m

m
∑

i=1

w(xi ) |u(xi ) − v(xi )|2 a.s.−→
m→∞

∫

D
w |u − v|2 dσ =

∫

D
|u − v|2 dμ = ‖u − v‖2.

Here we may work under the sole assumption that u belongs to the space V =
L2(D, μ), since pointwise evaluations of u and w will be almost surely well-defined.
In return, since ũn is now stochastic, the L2 estimation error will only be assessed in
a probabilistic sense, for example by considering the mean-square error

E(‖u − ũn‖2) = E⊗mσ (‖u − ũn‖2).
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Theweighted least-squares approximationmay be viewed as the orthogonal projection
ũn = Pm

n u onto Vn for the discrete �2 norm

‖v‖2m := 1

m

m
∑

i=1

w(xi ) |v(xi )|2, (2.2)

in the same way that the optimal approximation

un := argmin
v∈Vn

‖u − v‖ = Pnu

is the orthogonal projection for the continuous L2(D, μ) norm. A helpful object for
comparing these two norms on Vn is the Gramian matrix

G := (〈L j , Lk〉m) j,k=1,...,n, (2.3)

where (L1, . . . , Ln) is any L2(D, μ)-orthonormal basis of Vn and 〈·, ·〉m is the inner
product associated with the ‖ · ‖m norm. Indeed, for all δ > 0,

‖G − I‖2 ≤ δ ⇐⇒ (1 − δ)‖v‖2 ≤ ‖v‖2m ≤ (1 + δ)‖v‖2, v ∈ Vn,

where ‖M‖2 denotes the spectral norm of an n × n matrix M . As noted in [8] in the
case of standard least-squares, and in [9] for the weighted case, G can be seen as a
mean of m independent and identically distributed matrices

Xi := (w(xi ) L j (x
i ) Lk(x

i )) j,k=1,...,n

satisfying E(Xi ) = I , so G concentrates toward the identity as m grows to infinity.
This concentration can be estimated by a matrix Chernoff bound, such as Theorem 1.1
in the survey paper [20]. As observed in [9], for the particular value δ = 1

2 , this
inequality can be rewritten as follows, in our case of interest.

Lemma 2.1 For any ε > 0, under the sampling budget condition

m ≥ γ ‖w kn‖L∞ ln(2n/ε),

where γ := (3/2 ln(3/2) − 1/2)−1 ≈ 9.242, one has Pr(‖G − I‖2 ≤ 1/2) ≥ 1 − ε.

An estimate comparing the estimator ‖u − ũn‖ with en(u) can be obtained when
imposing that ‖G − I‖2 ≤ 1/2, as expressed in the following, which is proved in [9].

Lemma 2.2 One has

E

(

‖u − ũn‖2χ‖G−I‖2≤1/2

)

≤
(

1 + 4

m
‖w kn‖L∞

)

en(u)2.
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On the other hand, the estimator ũn obtained by solving (2.1) is not reliable in the
event where G becomes singular, which leads to modify its definition in various ways:

1. If one is able to compute ‖G − I‖2, one may condition the estimator to the event
‖G − I‖2 ≤ 1

2 by defining

ũCn := ũn χ‖G−I‖2≤1/2,

that is, we take ũCn = 0 if ‖G − I‖2 > 1
2 .

2. If a uniform bound ‖u‖L∞(D) ≤ τ is known, one may introduce a truncated
estimator

ũTn := Tτ ◦ ũn, (2.4)

where Tτ (y) := min{τ, |y|} sgn(y).
The main results from [9], that we slightly reformulate below, show that these

estimators are instance optimal in a probabilistic sense. Throughout the rest of the
paper, γ denotes the same constant as in Lemma 2.1.

Theorem 2.3 Under the sampling budget condition

m ≥ γ ‖w kn‖L∞ ln(2n/ε), (2.5)

the weighted least-squares estimator satisfies

E (‖u − ũn‖2χ‖G−I‖2≤1/2) ≤ (1 + η(m)) en(u)2. (2.6)

The conditioned and truncated estimators satisfy the convergence bounds

E (‖u − ũCn ‖2) ≤ (1 + η(m)) en(u)2 + ‖u‖2 ε, (2.7)

and

E (‖u − ũTn ‖2) ≤ (1 + η(m)) en(u)2 + 4 τ 2 ε, (2.8)

where η(m) = 4
m ‖w kn‖L∞ ≤ 4

γ ln(2n/ε)
→ 0, as n → ∞ or ε → 0.

Proof The bound (2.6) follows directly from Lemma 2.2 and the assumption on m. In
the event ‖G − I‖2 > 1

2 , of probability less than ε by Lemma 2.1, one can use the
bounds

‖u − ũCn ‖2 = ‖u‖2 and ‖u − ũTn ‖2 ≤ 4τ 2.

Otherwise, one has

‖u − ũCn ‖2 ≤ ‖u − ũn‖2 and ‖u − ũTn ‖2 ≤ ‖u − ũn‖2.

This leads to (2.7) and (2.8). ��
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Remark 2.4 The above result shows that the estimators ũCn and ũTn achieve instance
optimality in expectation up to additional error terms of orderO(ε), accounting for the
event {‖G − I‖2 > 1/2}. Note that ε only influences the constraint on the sampling
budget logarithmically. In particular, if en(u) decreases like n−r for some r > 0, these
estimators are rate optimal by taking ε less than n−2r , which thus affects the constraint
on sampling budget by a factorO(ln(n)). Note, however, that for exponential rates of
the form exp(−cnγ )—that occur for example when approximating analytic functions
by polynomials—imposing ε to be of this order results in a sampling budget m of
sub-optimal order n1+γ up to a logarithmic factor.

Remark 2.5 One way to achieve instance optimality in expectation without an addi-
tional error term consists in redrawing the points {x1, . . . , xm} until one observes that
‖G − I‖2 ≤ 1

2 , as proposed in [13]. We denote by u∗
n the weighted least-squares

estimator corresponding to this conditioned draw. In other words u∗
n is the weighted

least-squares estimator ũn conditioned to the event {‖G − I‖2 ≤ 1
2 }. Since, by Bayes

rule,

Pr
{

‖G − I‖2 ≤ 1

2

}

E

(

‖u − ũn‖2
∣

∣

∣ ‖G − I‖2 ≤ 1

2

)

= E

(

‖u − ũn‖2χ‖G−I‖2≤ 1
2

)

,

we find that under the sampling budget (2.5), one has

E(‖u − u∗
n‖2) = E

(

‖u − ũn‖2
∣

∣

∣ ‖G − I‖2 ≤ 1

2

)

≤ 1

1 − ε
E

(

‖u − ũn‖2χ‖G−I‖2≤ 1
2

)

,

and thus

E(‖u − u∗
n‖2) ≤ 1

1 − ε
(1 + η(m))en(u)2.

The sampling budget condition also ensures a probabilistic control on the number of
required redraws, since the probability that the event {‖G − I‖2 ≤ 1

2 } did not occur
after k redraws is less than εk .

Now the natural objective is to find a weight functionw that makes ‖w kn‖L∞ small
in order to minimize the sampling budget. Since

‖w kn‖L∞ ≥
∫

D
w kn dσ =

∫

D
kn dμ = n,

with equality attained for the weight function

w∗ := n

kn
= n
∑n

j=1 |L j |2 ,

this theorem shows that the choice of sampling measure

dσ ∗ = 1

w∗ dμ = kn
n

dμ
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is optimal, in the sense that the above instance optimality results are achieved with a
near-optimal sampling budget m ∼ n up to logarithmic factors.

As already explained in the introduction, when working on a general domain D, we
face the difficulty that the orthonormal basis (L1, . . . , Ln) cannot be exactly computed,
and therefore, the optimal w∗ and σ ∗ are out of reach. The next section discusses
computable alternatives w̃ and σ̃ that still yield similar instance optimality results at
near-optimal sampling budget.

3 Near-Optimal Sampling Strategies on General Domains

3.1 Two Steps Sampling Strategies

The sampling and reconstruction strategies that we discuss proceed in two steps:

1. In an offline stage we search for an approximation to the Christoffel function kn .
For this purpose, we sample z1, . . . , zM ∈ D according to μ, use these sampling
points to compute an orthonormal basis (˜L1, . . . ,˜Ln) with respect to the induced
discrete inner product. The approximation to the Christoffel function is then˜kn =
∑n

j=1 |˜L j |2. As we explain further, one objective is to guarantee that˜kn and kn are
pointwise equivalent. We define the sampling measure σ̃ as proportional to˜kn μ

and draw the points x1, . . . , xm according to this measure.
2. In an online stage, we evaluate u at the sampling points xi and construct an estimate

ũn by the weighted least-squares method.

In the offline stageM could bemuch larger than n; however, it should be understood
that the function u is only evaluated in the online stage at the m point xi which will
be seen to have optimal cardinality m ∼ n up to logarithmic factors.

The twomain requirements in these approaches are the access to a (non-orthogonal)
basis (φ1, . . . , φn) of Vn and the ability to sample according to measureμ. When D ⊂
R
d is a general multivariate domain, one typical setting for this second assumption to

be valid is the following:

• There is a set R containing D such that μ is the restriction of a measure μR which
can easily be sampled.

• Membership of a point x to the set D can be efficiently tested, that is, χD is easily
computed.

This includes for instance the uniform probability measure on domains described
by general systems of algebraic inequalities (such as polyhedrons and ellipsoids), by
including such domains D in a rectangle R = I1×· · ·× Id on which sampling accord-
ing to the uniform measure can be done componentwise. Then the zi are produced
by sampling according to μR and rejecting the samples that do not belong to D. The
offline stage is described more precisely as follows.

Algorithm 1 Draw a certain number M of points z1, . . . , zM independently according
to μ, and construct from (φ j ) j=1,...,n an orthonormal basis (˜L j ) j=1,...,n of Vn with

123



Constructive Approximation (2022) 56:121–163 135

respect to the inner product

〈u, v〉M := 1

M

M
∑

i=1

u(zi ) v(zi ). (3.1)

Then define

˜kn(x) =
n
∑

j=1

|˜L j (x)|2,

the approximate inverseChristoffel function, and the corresponding samplingmeasure

dσ̃ := α
˜kn
n

dμ,

where α is the normalization factor such that α
∫

D
˜kn dμ = n.

Note that the factorα is unknown to us but its value is not needed in typical sampling
strategies, such as rejection sampling or MCMC. In contrast to kn , the function˜kn is
stochastic since it depends on the drawing of the zi . In the online stage, we sample
x1, . . . , xm independently according to dσ̃ . We then measure u at the points xi , and
define the estimator ũn ∈ Vn as the solution to the weighted least-squares problem

min
v∈Vn

m
∑

i=1

w̃(xi ) |u(xi ) − v(xi )|2, (3.2)

with w̃ = n
α˜kn

. This least-squares problem can be solved explicitly by computing

ũn = Pm
n u as the orthogonal projection of u on Vn with respect to the inner product

from (2.2)

〈u, v〉m := 1

m

m
∑

i=1

w̃(xi ) u(xi ) v(xi ).

Remark 3.1 There are now two levels of stochasticity: the draw of the zi and the
subsequent draw of the xi . We sometimes use the symbols Ez and Prz referring to the
first draw, and Ex and Prx referring to the second draw given the first one, while E

and Pr refer to both draws.

We keep the notations G and ũTn from (2.3) and (2.4). In the following section, we
establish instance optimal convergence results under near optimal sample complexity
m similar to (2.6) and (2.8) in Theorem 2.3. On the other hand we do not consider
the conditioned estimator ũCn any further since we do not have access to the matrix G
whichwould require the knowledgeof the functions L j . Thederivationof a computable
estimator that satisfies a similar estimate as ũCn is an open question. We also discuss
the required sample complexity M of the offline stage.
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3.2 Convergence Bounds and Sample Complexity

Our principle objective is to ensure the uniform framing

c1 kn(x) ≤˜kn(x) ≤ c2 kn(x), x ∈ D, (3.3)

for some known constants 0 < c1 ≤ c2. Our motivation is that instance optimal
convergence bounds with near-optimal sampling budget hold under this framing, as
expressed by the following result.

Theorem 3.2 Assume that (3.3) holds for some 0 < c1 ≤ c2 and let c = c2
c1

≥ 1. Then,
under the sampling budget condition

m ≥ c γ n ln(2n/ε), (3.4)

one has Prx
(‖G − I‖2 ≥ 1

2

) ≤ ε. In addition, one has the convergence bounds

Ex

(

‖u − ũn‖2χ‖G−I‖2≤ 1
2

)

≤ (1 + η(m)) en(u)2, (3.5)

and

Ex (‖u − ũTn ‖2) ≤ (1 + η(m)) en(u)2 + 4 ε τ 2,

where η(m) = 4 c n
m ≤ 4

γ ln(2n/ε)
.

Proof It is an immediate application of the results from §2.2. Indeed

‖w̃ kn‖L∞ =
∥

∥

∥

∥

n kn
α˜kn

∥

∥

∥

∥

L∞
=
∥

∥

∥

∥

kn
˜kn

∥

∥

∥

∥

L∞

∫

D

˜kn dμ ≤
∥

∥

∥

∥

kn
˜kn

∥

∥

∥

∥

L∞

∥

∥

∥

∥

˜kn
kn

∥

∥

∥

∥

L∞

∫

D
kn dμ ≤ c n.

Therefore, the sampling condition (3.4) implies m ≥ γ ‖w̃ kn‖L∞ ln(2n/ε), and the
results follow by direct application of Lemma 2.1 and Theorem 2.3. ��

We now concentrate our attention on the offline procedure which should be tuned
in order to ensure that (3.3) holds with high probability. For this purpose, we introduce
the Gramian matrix

GM := (〈L j , Lk〉M ) j,k=1,...n,

where 〈·, ·〉M is the inner product defined by (3.1) that uses the intermediate samples
zi which are i.i.d. according to μ. This matrix should not be confused with G defined
in (2.3) that uses the inner product 〈·, ·〉m based on the final samples xi .

Lemma 3.3 For any pair of constants 0 < c1 ≤ c2 < ∞, the matrix framing property

c−1
2 I ≤ GM ≤ c−1

1 I (3.6)

implies the uniform framing (3.3).
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Proof We use the fact that, similar to kn , the function ˜kn is characterized by the
extremality property

˜kn(x) = max
v∈Vn

|v(x)|2
‖v‖2M

.

For any x ∈ D and v ∈ Vn , one has on the one hand

|v(x)|2 ≤˜kn(x) ‖v‖2M ≤ c−1
1
˜kn(x) ‖v‖2,

where the last inequality results from the upper one in (3.6). This shows that c1 kn(x) ≤
˜kn(x). On the other hand, using the lower inequality in (3.6), we find that

|v(x)|2 ≤ kn(x) ‖v‖2 ≤ c2 kn(x) ‖v‖2M ,

which shows that˜kn(x) ≤ c2 kn(x). ��

Remark 3.4 The matrix framing (3.6) implies the uniform framing (3.3), but the con-
verse does not seem to hold. Finding an algebraic condition equivalent to (3.3) is an
open question.

Lemma 2.1 indicates that if the amount of offline samples satisfies the condition

M ≥ γ Kn ln(2n/ε), Kn := ‖kn‖L∞(D), (3.7)

then we are ensured that

Prz (‖GM − I‖2 ≥ 1/2) ≤ ε,

and therefore the framing (3.6) holds with probability greater than 1 − ε, for the
particular values c1 = 2

3 and c2 = 2. Bearing in mind that kn is unknown to us, we
assume at least that we know an upper estimate for its L∞ norm

Kn ≤ B(n).

Explicit values for B(n) for general domains D are established in Sect. 5 in the case
where the Vn are spaces of algebraic polynomials. Therefore, given such a bound,
taking M such that

M ≥ γ B(n) ln(2n/ε) (3.8)

guarantees a similar framing with probability greater than 1 − ε. We obtain the fol-
lowing result as a direct consequence of Theorem 3.2.
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Corollary 3.5 Assume that the amount of samples M used in the offline stage described
by Algorithm 1 satisfies (3.8) for some given ε > 0. Then, under the sampling budget
condition

m ≥ 3 γ n ln(2n/ε),

for the online stage, the event E := {‖G − I‖2 ≤ 1
2 and ‖GM − I‖2 ≤ 1

2 } satisfies
Pr(Ec) ≤ 2ε. In addition, one has the convergence bounds

E(‖u − ũn‖2χE ) ≤ (1 + η(m)) en(u)2 (3.9)

and

E(‖u − ũTn ‖2) ≤ (1 + η(m)) en(u)2 + 8 ε τ 2, (3.10)

where η(m) = 12 n
m ≤ 4

γ ln(2n/ε)
.

Proof The estimate on Pr(Ec) follows by a union bound. Since ‖GM − I‖2 ≥ 1
2

ensures the framing (3.3) with c1 = 2
3 and c2 = 2, the bound (3.9) follows from

(3.5) in Theorem 3.2. Finally, the bound (3.10) follows from (3.9) and the probability
estimate on Ec by the same argument as in the proof of Theorem 2.3. ��

3.3 An Empirical Determination of the Value ofM

In many situations, the best available bound B(n) on Kn could be overestimated by
a large amount. Moreover, the theoretical requirement M ≥ γ Kn ln(2n/ε) is only a
sufficient condition that guarantees that ‖GM − I‖2 ≤ 1

2 with probability larger than
1−ε. It could happen that for smaller values of M , the matrixGM satisfies the framing
(3.6) with constants c1 and c2 that have moderate ratio c = c2

c1
.

Since the computational cost of the offline stage is proportional to M , it would be
desirable to use such a smaller value of M . If we could compute the matrix GM it
would suffice to raise M until the condition number

κ(GM ) = λmax(GM )

λmin(GM )
,

has value smaller than a prescribed threshold c∗ > 1, so that (3.6) holds with c =
κ(GM ) ≤ c∗.

However, since the exact orthonormal basis elements L j are generally unknown to
us, we cannot compute the matrix GM . As an alternate strategy, we propose the fol-
lowing method that provides an empirical determination of the value M that should be
used in Algorithm 1: start from theminimal valueM = n, and draw points y1, . . . , yM

and z1, . . . zM independently according to μ. Then, defining

〈u, v〉y = 1

M

∑

i=1

u(yi ) v(yi ) and 〈u, v〉z = 1

M

∑

i=1

u(zi ) v(zi ),
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compute an orthonormal basis (Ly
j ) with respect to 〈·, ·〉y , and define the test matrix

T := (〈Ly
j , L

y
k 〉z) j,k=1,...,n .

If κ(T ) ≥ c∗, then raise the value of M by some fixed amount, and repeat this step
until κ(T ) ≤ c∗. For this empirically found value M = Memp(n), use the points
{z1, . . . , zM } in the offline stage described by Algorithm 1, and the constant c = c∗
in the sampling budget condition (3.4) used in the online stage.

The rationale for this approach is that if GM is well conditioned with high proba-
bility, then T should also be, as shown for example by the following result.

Proposition 3.6 If M is chosen in such a way that Pr(κ(GM ) ≥ c) ≤ ε for some
c > 1, then

Pr(κ(T ) ≥ c2) ≤ 2 ε.

Proof SincebothmatricesGy = (〈L j , Lk〉y) j,k=1,...,m andGz = (〈L j , Lk〉z) j,k=1,...,m
are realizations ofGM , we obtain by a union bound that, with probability at least 1−2ε,
both Gy and Gz have condition numbers less than c. Under this event,

λmax(T ) = sup
α∈Rn

‖∑n
j=1 α j L

y
j‖2z

|α|2 ≤ sup
α∈Rn

‖∑n
j=1 α j L

y
j‖2

|α|2 sup
v∈Vn

‖v‖2z
‖v‖2

= sup
v∈Vn

‖v‖2
‖v‖2y

sup
v∈Vn

‖v‖2z
‖v‖2 =

(

inf
v∈Vn

‖v‖2y
‖v‖2

)−1

sup
v∈Vn

‖v‖2z
‖v‖2 = λmax(Gz)

λmin(Gy)
,

and

λmin(T ) = inf
α∈Rn

‖∑n
j=1 α j L

y
j‖2z

|α|2 ≥ inf
α∈Rn

‖∑n
j=1 α j L

y
j‖2

|α|2 inf
v∈Vn

‖v‖2z
‖v‖2

= inf
v∈Vn

‖v‖2
‖v‖2y

inf
v∈Vn

‖v‖2z
‖v‖2 =

(

sup
v∈Vn

‖v‖2y
‖v‖2

)−1

inf
v∈Vn

‖v‖2z
‖v‖2 = λmin(Gz)

λmax(Gy)
,

which implies that κ(T ) ≤ κ(Gy) κ(Gz) ≤ c2. ��

The above proposition shows that a good conditioning of GM with high probability
implies the same property for T . There is of course no theoretical guarantee that the
value of M provided by the above empirical approach is sufficient to achieve good
conditioning of GM , unless the resulting M satisfies (3.8). However, in the numerical
experiments of Sect. 6, we will check that the values of M for which κ(T ) ≤ c do
also ensure that a similar bound holds for κ(GM ).
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4 Multilevel Strategies

The sampling strategy described by Algorithm 1 provides instance optimal recon-
structions of u with an optimal sampling budget up to a multiplicative factor ln(2n/ε).
Thus, the execution time of the online stage, dominated by the m evaluations of u
at points xi , cannot be significantly improved. On the other hand, the complexity of
the offline stage is dominated by the computation of the Gramian matrix for deriving
the basis {˜L1, . . . ,˜Ln} and is therefore of order O(Mn2). In particular, it depends
linearly on the number of points M , which could be very large if Kn grows fast, or if
its available bound B(n) is over-estimated.

In this section we discuss a multilevel approach aiming at improving this offline
computational cost: we produce an approximation to kn in several iterations, by suc-
cessive refinements of this function as the dimension of Vn increases. We consider a
family of nested spaces (Vnp )p≥1 of increasing dimension n p and take an orthonormal
basis (L j ) j≥1 adapted to this hierarchy, in the sense that

Vnp = Span{L1, . . . , Lnp }, n p ≥ 1.

As previously, the exact functions knp are out of reach, since we do not have access
to the continuous inner product by which we would compute the basis (L j )1≤ j≤n p .
The offline stage described in Sect. 3 computes approximations˜L j by orthogonalizing
with respect to a discrete inner product with points zi drawn according to dμ.We know
that a more efficient sample for performing this orthogonalization should be drawn

according to dσ = kn p
n p

dμ which is, however, unknown to us. The idea for breaking

this dependency loop is to replace knp with˜knp−1 , which was computed at the previous
step. Our analysis of this strategy is based on the following assumption of proximity
between knp−1 and knp :

There exists a known constant κ > 1 such that

kn1(x) ≤ 3 κ n1 and knp (x) ≤ knp+1(x) ≤ κ knp (x), p ≥ 1, x ∈ D. (4.1)

The validity of this assumption can be studied through lower and upper estimates for
kn , such as those discussed in the next section. For example, Theorem 5.9 allows one
to establish (4.1) for bivariate polynomial spaces of total degree p, therefore with
n p = (p+1)(p+2)/2, on domains with piecewise smooth boundary. Note that (4.1)
allows up to exponential growth of Kn , if we simply take n p = p.

Assuming that the targeted space Vn is a member of this hierarchy, that is,

n = nq , for some q > 1,

we modify the offline stage as follows.

Algorithm 2 Start with w̃0 = 1 and σ̃0 = μ. For p = 1, . . . , q, iterate the following:

draw a certain numberMp of points z1p, . . . , z
Mp
p independently according to σ̃p−1, and
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construct an orthonormal basis (L p
j )1≤ j≤n p of Vnp with respect to the inner product

〈u, v〉p := 1

Mp

Mp
∑

i=1

w̃p−1(z
i
p) u(zip) v(zip). (4.2)

Then define

˜knp =
n p
∑

j=1

|L p
j |2, w̃p = n p

˜knp

, and dσ̃p := αp

˜knp

n p
dμ,

where αp is the normalization constant, and proceed to the next iteration. At the end
of iteration q, define the perturbed Christoffel function for Vn as ˜kn = ˜knq , weight
function w̃ = w̃q and sampling measure

dσ̃ = dσ̃q = α
˜kn
n

dμ,

where α is a normalization factor.

The online stage remains unchanged: the samples x1, . . . , xm for evaluation of u
are drawn i.i.d. according to σ̃ , and we solve the weighed least-squares problem (3.2).
The sample size M of the offline stage is now replaced by M = M1 + · · · + Mq . We
denote by Gp := (〈L j , Lk〉p) j,k=1,...,n p the Gramian matrices for the inner products
(4.2), The following result shows that the conditions imposed on the Mp are less
stringent than those that were imposed on M .

Theorem 4.1 Let εp > 0 such that ε := ∑q
p=1 εp < 1, and assume that the amount

of offline samples used in Algorithm 2 satisfies

Mp ≥ 3 κ γ n p ln
2n p

εp
, p = 1, . . . , q,

with κ the constant in the assumption (4.1). Then if m ≥ 3 γ n ln 2n
ε
, the same con-

vergence bounds (3.9) and (3.10) as in Corollary 3.5 hold, with E := {‖G − I‖2 ≤
1
2 and ‖Gq − I‖2 ≤ 1

2 } that satisfies Pr(Ec) ≤ 2ε.

Proof We show by induction on p that the event

Bp :=
{

‖G1 − I‖2 ≤ 1

2
, . . . , ‖Gp − I‖2 ≤ 1

2

}

occurs with probability at least 1 − ε1 − · · · − εp. As

M1 ≥ 3 κ γ n1 ln
2 n1
ε1

≥ γ ‖w̃0 kn1‖L∞ ln
2 n1
ε1

,
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by Lemma 2.1,

Pr(B1) ≥ 1 − ε1.

For 1 ≤ p < q, under the event Bp, Lemma 3.3 gives

2

3
knp (x) ≤˜knp (x) ≤ 2 knp (x), x ∈ D.

Therefore, using assumption (4.1), we find that

∥

∥

∥

∥

w̃p knp+1

αp

∥

∥

∥

∥

L∞
=
∥

∥

∥

∥

∥

n p

αp

knp+1

˜knp

∥

∥

∥

∥

∥

L∞
≤ n p

∥

∥

∥

∥

˜knp

knp

∥

∥

∥

∥

L∞

∥

∥

∥

∥

∥

knp

˜knp

∥

∥

∥

∥

∥

L∞

∥

∥

∥

∥

∥

knp+1

knp

∥

∥

∥

∥

∥

L∞
≤ 3 κ n p.

As Mp+1 ≥ 3 κ γ n p ln 2 n p
εp+1

, Lemma 2.1 applies, and combining this with the induc-
tion hypothesis:

Pr(Bp+1) = Pr(Bp) Pr

(

‖Gp+1 − I‖2 ≤ 1

2

∣

∣

∣ Bp

)

≥ (1 − ε1 − · · · − εp)(1 − εp+1) ≥ 1 − ε1 − · · · − εp − εp+1.

Use Lemma 3.3 one last time to write, in the event Bq ,

2

3
knq (x) ≤˜knq (x) ≤ 2 knq (x), x ∈ D,

which is the framing (3.6) for the particular values c1 = 2
3 and c2 = 2. Since Bq has

probability larger than 1 − ε, we conclude by the exact same arguments used in the
proof of Corollary 3.5. ��

We now comment on the gain of complexity by using Algorithm 2:

1. Exponential growth of Kn : the property (4.1) might be satisfied even when Kn

grows exponentially with n, by taking the choice n p = p. Then, the complex-
ity of Algorithm 1 is of order O(M n2) � O(Kn n2 ln(2n/ε)), which grows
exponentially in n. In contrast, the total amount of sampling in Algorithm 2 is
M = M1 + · · · + Mn ≤ n Mn = O(n2 ln(2n/ε)), so the first stage remains of
polynomial complexity O(n4 ln(2n/ε)).

2. Algebraic growth of Kn : if Kn ∼ nr only grows algebraically in n, one may
choose n p = 2p, in which case the total number of sample points M rewrites as
Mn0 +· · ·+Mnq ∼ Mnq , giving an optimal complexityO(n3 ln(2n/ε)) for the first
stage. This is smaller than the complexityO(Kn n2 ln(2n/ε)) = O(n2+r ln(2n/ε))

encountered in Algorithm 1.

While Algorithm 2 produces a computational gain in computing a near-optimal
measure σ̃ , the resulting sample x1, . . . , xm is specifically targeted at approximating
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u in the space Vn = Vnq . As explained in Sect. 1.2, it is sometimes desirable to
obtain optimal weighted least-squares approximations ũn p for each space Vnp while
maintaining the cumulated number of evaluations of u until step p of the optimal order
n p up to logarithmic factors. Therefore, we would like to recycle the evaluation points
{x1, . . . , xmp−1} used until step p − 1 in order to create the new evaluation sample
{x1, . . . , xmp }, for some well chosen sequence (mp)p≥1 that grows similar to (n p)p≥1
up to logarithmic factors.

Here, we assume that the family (Vnp )p≥1 has been fixed, independently of the
target function u, in contrast to being generated in an adaptive manner. Adaptive
space generation brings out new difficulties: the space Vnp depends on the approxima-
tion computed in the previous space Vnp−1 and therefore the new evaluation samples
xmp−1+1, . . . , xmp will not be independent from the previous ones. Maintaining opti-
mal sample complexity in the adaptive context is, to our knowledge, an open problem.

Intuitively, since the sample should have a density proportional to knp , most of the
new points we draw at step p should be distributed according to a density proportional
to knp − knp−1 = ∑n p

j=n p−1+1 |L j |2. This leads us to the following algorithm.

Algorithm 3 Start with w̃0 = 1 and σ̃0 = μ and m0 = 0. For p = 1, 2, . . . , generate
zin p

and compute w̃n p , σ̃n p and˜knp as in Algorithm 2. When creating the orthonormal

basis (L
np
j ), ensure compatibility with the inclusion Vnp−1 ⊂ Vnp , in the sense that

Span(L
np
1 , . . . , L

np
n p−1) = Vnp−1 .

Having defined the evaluation points {x1, . . . , xmp−1}, draw the new evaluation points
xi for i = mp−1 + 1, . . . ,mp according to

dρp := αp

m p − mp−1

⎛

⎝

mp

np

np
∑

j=1

|Lnp
j |2 − mp−1

n p−1

n p−1
∑

j=1

|Lnp
j |2

⎞

⎠ dμ, (4.3)

with αp a normalization factor.

Remark 4.2 Note that the non-negativity of ρp is only guaranteedwhen (mp/n p)p≥1 is
non-decreasing, a conditionwhich is easilymet sincemp has to grow as n p ln n p. If we
had takenmp exactly linear with respect to the dimension n p, the terms with j ≤ n p−1
in the expression (4.3) would cancel; hence, dρp would only be an approximation of
kn p−kn p−1
n p−n p−1

dμ.

Remark 4.3 Another approach to hierarchical sampling was proposed in [17] and con-
sists in drawing constant proportions of samples according to the measure |L j |2dμ. It
was adapted in [2] to our setting of interest where the L j cannot be exactly computed.

Remark 4.4 In the above algorithm, the various sections {xmk−1+1, . . . , xmk } of
{x1, . . . , xmp } for k = 1, . . . , p are drawn according to different probability mea-
sures. The sample {x1, . . . , xmp } is thus not i.i.d. anymore, which affects the proof of
the convergence theorem given below. Instead it may be thought of as a deterministic
mixture of collections of i.i.d. samples, as in Theorem 2 of [17].
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At any iteration q, we use the evaluations of u at all points x1, . . . , xm as follows
to compute a least-squares approximation ũn ∈ Vn , where n := nq and m := mq . We
denote by w the weight function defined by

w(x)
q
∑

p=1

(mp − mp−1) dρp = m dμ,

and solve the weighted least-squares problem (2.1). The following result shows that
instance optimality is maintained at every step q, with a cumulated sampling budget
mq that is near-optimal.

Theorem 4.5 Take numbers δp, εp ∈]0, 1[ such that ε := ∑q
p=1 εp < 1 and δ :=

∑q
p=1 δp < 1/2, and define cδ = ((1 + δ) ln (1 + δ) − δ)−1. Assume that, for all

p ≥ 1,

Mnp ≥ 2 κ cδp n p ln
2n p

εp
and mp ≥ γ

1 − 2δ
n p ln

2n p

ε
,

with κ the constant in the assumption (4.1), and that m p/n p is an non-decreasing
function of p. Then, with n := nq and m := mq, the convergence bounds (3.9) and
(3.10) simultaneously hold for all q ≥ 1, with

η(m) = 4

(1 − 2δ)

n

m
≤ 4

γ ln(2n/ε)

and E := {‖G− I‖2 ≤ 1
2 and ‖Gp− I‖2 ≤ δp, p ≥ 1}, which satisfies Pr(Ec) ≤ 2ε.

The proof of this theorem requires a refinement of Lemma 2.1, due to the fact that
the xi are not anymore identically distributed. This uses the following tail bound,
directly obtained from the matrix Chernoff bound in [20].

Proposition 4.6 Consider a finite sequence {Xi }i=1,...,m of independent, random, self-
adjoint matrices with dimension n. Assume that each matrix satisfies 0 ≤ Xi ≤ R I
almost surely, and that

∑m
i=1 E(Xi ) = I . Then for all δ ∈]0, 1[,

Pr

(∥

∥

∥

∥

∥

m
∑

i=1

Xi − I

∥

∥

∥

∥

∥

2

> δ

)

≤ 2 n exp

(

− 1

cδ R

)

,

where cδ = ((1 + δ) ln (1 + δ) − δ)−1 as in Theorem 4.5.

Proof of Theorem 4.5 By the same argument as in Theorem 4.1, we find that the event

B = {‖Gp − I‖2 ≤ δp, p ≥ 1}

has probability larger than 1 − ε, where the Gp are as in the proof of Theorem 4.1.
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We then fix a value of q and for n = nq andm = mq , we study the Gramian matrix
G which is the sum of the independent, but not identically distributed, matrices

Xi := 1

m
w(xi ) (L j (x

i )Lk(x
i )) j,k=1,...,n, i = 1, . . . ,m.

Then, with the notation H(x) = (L j (x)Lk(x)) j,k=1,...,n ,

m
∑

i=1

E(Xi ) =
q
∑

p=1

(mp − mp−1)

∫

D

1

m
w(x) H(x) dρp(x) =

∫

D
H(x) dμ(x) = I ,

and

‖Xi‖2 = 1

m
w(xi )

n
∑

j=1

|L j (x
i )|2 ≤ 1

m
‖w kn‖L∞ =: R.

One also has, under the event B,
∫

D |Lnp
j |2 dμ ≤ 1

1−δp
for j = 1, . . . , n p so αp ≥

1 − δp, and consequently

m

w
=

q
∑

p=1

(mp − mp−1)
dρp

dμ

=
q
∑

p=1

αp

⎛

⎝

mp

np

np
∑

j=1

|Lnp
j |2 − mp−1

n p−1

n p−1
∑

j=1

|Lnp
j |2

⎞

⎠

≥
q
∑

p=1

(

mp

np

1 − δp

1 + δp
knp − mp−1

n p−1
knp−1

)

≥ m

n
kn −

q
∑

p=1

mp

np

2δp
1 + δp

knp

≥ (1 − 2δ)
m

n
kn,

so R = 1
m ‖w kn‖L∞ ≤ 1

(1−2δ)
n
m . Applying Proposition 4.6, we find that

Prx

(

‖G − I‖2 >
1

2

∣

∣

∣ B

)

≤ 2 n exp

(

− 1

γ R

)

≤ 2 n exp

(

−1 − 2δ

γ

m

n

)

≤ ε.

Therefore, since E := B ∩ {‖G − I‖2 ≤ 1
2

}

, we find that Pr(E) ≥ 1 − 2ε.
In order to prove the convergence bounds (3.9) and (3.10), we cannot proceed as

in Corollary 3.5 by simply invoking Theorem 3.2, because the xi are not identically
distributed. This leads us to modify the statement of Lemma 2.2 and its proof given

123



146 Constructive Approximation (2022) 56:121–163

in [9], following a strategy proposed in [17]. First, using similar arguments as in [9],
we find that

E(‖u − ũn‖2 χE ) ≤ en(u)2 + 4E

(

n
∑

k=1

|〈Lk, g〉m |2 χE

)

, (4.4)

where g = u − Pnu is the projection error. For each k = 1, . . . , n, we define gk :=
w Lk g and write

E (|〈Lk, g〉m |2 χE )

≤ E (|〈Lk, g〉m |2 χB)

= 1

m2

∑

1≤i, j≤m

E

(

gk(x
i ) gk(x

j ) χB

)

= 1

m2 Ez

⎛

⎝χB

⎛

⎝

∑

1≤i≤m

Ex

(

|gk(xi )|2
)

+
∑

i �= j

Ex

(

gk(x
i ) gk(x

j )
)

⎞

⎠

⎞

⎠

≤ 1

m2 Ez

⎛

⎜

⎝
χB

⎛

⎜

⎝

∑

1≤i≤m

Ex

(

|gk(xi )|2
)

+
⎛

⎝

∑

1≤i≤m

Ex

(

gk(x
i )
)

⎞

⎠

2
⎞

⎟

⎠

⎞

⎟

⎠

= Ez

(

χB

(

1

m
Et

(

|gk(t)|2
)

+ (

Et (gk(t))
)2
))

,

where t is a random variable distributed according to
∑q

p=1
mp−mp−1

m dρp = 1
w
dμ.

We then note that

Et (gk(t)) =
∫

D
g Lk dμ = 0

since g ∈ V⊥
n , and that

∑n
k=1 |gk(t)|2 = w(t)2 g(t)2 kn(t). Therefore,

E

(

n
∑

k=1

|〈Lk, g〉m |2 χE

)

≤ Ez

(

χB
1

m

∫

D
w kn g

2dμ

)

≤ Ez

(

χB R ‖g‖2
)

≤ 1

(1 − 2δ)

n

m
en(u)2

Combining this with (4.4), we finally obtain

E(‖u − ũn‖2 χE ) ≤
(

1 + 4

(1 − 2δ)

n

m

)

en(u)2.

��
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Remark 4.7 If a stopping time q is known in advance, the simplest choice is to take
εp = ε/q and δp = δ/q. If the stopping time q is not known in advance, we can take
for instance εp = 6

π2
ε
p2

and δp = 6
π2

δ
p2
. As cδ ∼ 2

δ2
when δ → 0, this choice only

increases the number Mp of sample points zi by a factor p4, which is satisfactory in
view of the previous remarks.

5 Estimates on the Inverse Christoffel Function

We have seen that the success of Algorithm 1 is based on the offline sampling condi-
tion (3.8), which means that a uniform upper bound B(n) on the inverse Christoffel
function kn is needed in the first place. Likewise, the multilevel Algorithms 2 and 3
from Sect. 4 are based on the assumption (4.1), whose verification requires pointwise
upper and lower estimates on kn(x). In this sectionwe establish such bounds and point-
wise estimates on general domains when the Vn are spaces of algebraic multivariate
polynomials of varying total degree. Throughout this section, we assume that

μ = μD = |D|−1 χD dx

is the uniformmeasure over D, which is thus assumed to have finite Lebesguemeasure
|D|.

5.1 Comparison Strategies

Our vehicle for estimating the Christoffel function is a general strategy, first introduced
in [15]: compare D with reference domains R for which the Christoffel function can
be estimated. For simplicity, we use the notation

L2(R) = L2(R, μR),

for any domain R where μR = |R|−1 χR dx is the uniform measure over R. In order
to make clear the dependence on the domain, we define

kn,R(x) = max
v∈Vn

|v(x)|2
‖v‖2

L2(R)

and

Kn,R = ‖kn‖L∞(R) = max
v∈Vn

‖v‖2L∞(R)

‖v‖2
L2(R)

.

We first state a pointwise comparison result.
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Lemma 5.1 For x ∈ D, let R be such that x ∈ R ⊂ D and β |D| ≤ |R| for some
β ∈]0, 1]. Then

kn,D(x) ≤ β−1 kn,R(x).

Conversely, let S be such that D ⊂ S and β |S| ≤ |D| for some β ∈]0, 1]. Then

kn,D(x) ≥ β kn,S(x).

Proof For any v ∈ Vn , we have

|v(x)|2 ≤ kn,R(x) ‖v‖2L2(R)
≤ kn,R(x)

|D|
|R| ‖v‖2L2(D)

,

and

|v(x)|2 ≤ kn,D(x) ‖v‖2L2(D)
≤ kn,D(x)

|S|
|D| ‖v‖2L2(S)

.

Optimizing over v gives the upper and lower estimates of kn,D(x). ��
Obviously, a framing on Kn,D can be readily derived as follows, by application of

the above lemma to any point in D.

Proposition 5.2 Assume that there exist a family R of reference domains with the
following properties:

(i) For all x ∈ D there exist Rx ∈ R such that x ∈ Rx ⊂ D.
(ii) There exists a constant β ∈]0, 1] such that |R| ≥ β |D| for all R ∈ R.

Then, one has

Kn,D ≤ β−1 sup
x∈D

kn,Rx (x) ≤ β−1 sup
R∈R

Kn,R .

Likewise, for any S ∈ R such that D ⊂ S and |D| ≥ β |S|, one has

Kn,D ≥ β sup
x∈D

kn,S(x).

In what follows, we apply this strategy to spaces Vn of multivariate algebraic poly-
nomials. Throughout this section, we consider

Vn = P� := span{x �→ xν = xν1
1 . . . xνd

d : |ν| = ν1 + · · · + νd ≤ �}, (5.1)

the space of polynomials with total degree less or equal to �, for which we have

n =
(

d + �

�

)

.
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We assume D is a bounded open set of Rd .
It is important to note thatVn is invariant by affine transformation.As a consequence,

if A is any affine transformation, one has

R′ = A(R) �⇒ kn,R′(A(x)) = kn,R(x), x ∈ R,

and in particular Kn,R′ = Kn,R .

5.2 Lipschitz Domains

In the case of the cube Q = [−1, 1]d , we may express kn,Q by using tensorized
Legendre polynomials, that is

kn,Q(x) =
∑

|ν|≤�

|Lν(x)|2, Lν(x) =
d
∏

i=1

Lνi (xi ),

where the univariate polynomials t �→ L j (t) are normalized in L2([−1, 1], dt
2 ). Using

this expression, it can be proved by induction on the dimension d that

Kn,Q ≤ n2, n ≥ 1,

see Lemma 1 in [6]. Therefore, by affine invariance,

Kn,R ≤ n2, n ≥ 1,

for any d-dimensional parallelogram R. Using this result, we may bound the growth
of Christoffel functions from above for a general class of domains.

Definition 5.3 An open set D ⊂ R
d satisfies the inner cone condition if there exist

r̄ > 0 and θ ∈ (0, π), such that for all x ∈ D, there exists a unit vector u such that
the cone

Cr̄ ,θ (x, u) := {x + r v, 0 ≤ r ≤ r̄ , |v| = 1, u · v ≥ cos(θ)}

is contained in D. In particular, any Lipschitz domain D ⊂ R
d satisfies the inner cone

condition (see, e.g., §4.11 in [1]).

Theorem 5.4 Let D ⊂ R
d be a bounded domain that satisfies the inner cone condition.

Then, one has

Kn ≤ CD n2, n ≥ 1, (5.2)

where CD depends on d, |D|, and on r̄ and θ in the previous definition.
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Proof The uniform cone condition ensures that there exists κ = κ(r̄ , θ, d) > 0 such
that for any x ∈ D, there exists a parallelogram R such that x ∈ R ⊂ D and |R| = κ .
Therefore, applying Proposition 5.2 with R the family of all parallelograms of area
κ , one obtains (5.2) with CD = |D|

κ
. ��

Remark 5.5 The bound Kn,Q ≤ n2 is actually established in [6] for the more general
class of polynomial spaces of the form

Vn = P� := span{x �→ xν : ν ∈ �}, #(�) = n,

where � ∈ N
d is downward closed, i.e., such that

ν ∈ � and ν̃ ≤ ν �⇒ ν̃ ∈ �.

These spaces are, however, not invariant by affine transformation and so one cannot
apply the above method to treat general domains with inner cone condition. On the
other hand, these spaces are invariant by affine transformation of the form x �→
x0 + Mx where M is a diagonal matrix, therefore transforming the cube Q into an
arbitrary rectangle R aligned with the coordinate axes. As observed in [3], this leads
to a bound of the form (5.2) for any domain D that satisfies the following geometrical
property: for all x ∈ D there exists a rectangle R aligned with the coordinate axes such
that x ∈ R ⊂ D and |R| ≥ β |D|. Note that this property does not readily follows
from a smoothness property of the boundary, in particular there exists smooth domains
for which this property does not hold.

5.3 Smooth Domains

We next investigate smooth domains. For this purpose, we replace parallelograms
by ellipsoids as reference domains. In the case of the unit ball B := {|x | ≤ 1}, it
is known [21] that the Christoffel function reaches its maximum on the unit sphere
S := {|x | = 1}, where we have

kn,B(x) =
(

� + d + 1

�

)

+
(

� + d − 2

� − 1

)

.

In order to estimate how this quantity scales with n = (

�+d
�

)

we use the fact that for
any integer m, one has

e
(m

e

)m ≤ m! ≤ mm .

For the lower bound, we bound from below the first term

(

� + d + 1

�

)

=
(

� + d

�

)

� + d + 1

d + 1
= n

� + d + 1

d + 1
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≥ n

d e1/d
(� + d + 1) ≥ n

e (d!)1/d
(

(� + d)!
�!

)1/d

= e−1 n
d+1
d ,

which leads to

Kn,B ≥ kn,B(x) ≥ e−1 n
d+1
d , x ∈ S. (5.3)

For the upper bound, we write

(

� + d + 1

�

)

+
(

� + d − 2

� − 1

)

=
(

� + d

�

)(

� + d + 1

d + 1
+ �d

(� + d)(� + d − 1)

)

≤ n

(

� + d + 1

d + 1
+ 1

)

= n

(

�

d + 1
+ 2

)

,

Since

n1/d = (d!)−1/d
(

(� + d)!
�!

)1/d

≥ � + 1

d
≥ �

d + 1
,

we find that

kn,B(x) ≤
(

n1/d + 2
)

n ≤ 3 n
d+1
d .

By affine invariance, we thus obtain

e−1 n
d+1
d ≤ Kn,E ≤ 3 n

d+1
d , (5.4)

for all ellipsoids E . This leads to the following result.

Theorem 5.6 Assume D ⊂ R
d is a bounded domain with C2 boundary. Then, one has

Kn ≤ CD n
d+1
d , n ≥ 1, (5.5)

where CD depends on D.

Proof Since the boundary of D has finite curvature, we are ensured that there exists a
β > 0 such that for any x ∈ D, there exist an ellipsoid E such that x ∈ E ⊂ D and
|E | ≥ β |D|. Therefore, applying Proposition 5.2 withR the family of ellipsoids with
area larger than β |D|, we obtain (5.5) with CD = 3β−1. ��
Remark 5.7 In the above argument, one could simply use balls instead of ellipsoids,
however, at the price of diminishing the value of β and thus raising the constant CD .

We next give a general lower bound for Kn showing that the above rate for smooth
domains is sharp.
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Theorem 5.8 Let D ⊂ R
d be an arbitrary bounded domain, and let B be its Chebychev

ball, that is, the smallest closed ball that contains D. Then, one has

Kn,D ≥ e−1 |B|
|D| n

d+1
d , n ≥ 1.

Proof As D is compact and B is the smallest possible ball containing D, there exists
a point x ∈ D ∩ ∂B, and by Lemma 5.1 one has

Kn,D ≥ kn,D(x) ≥ |D|
|B| kn,B(x) ≥ e−1 |B|

|D| n
d+1
d ,

where the last inequality follows from (5.3) and affine invariance. ��

5.4 Pointwise Bounds for Piecewise Smooth Domains

As already observed, it may be needed to get sharper bounds on kn(x) that depend
on the point x , in particular when checking the validity of (4.1). In the case of alge-
braic polynomials in dimension d = 2, so n = (�+1)(�+2)

2 , such bounds have been
obtained for a particular class of piecewise smooth domains with exiting corners, in
the following result from [19].

Theorem 5.9 Let D ⊂ R
2 be a bounded open set such that ∂D = ∪K

i=1�i , where the
�i are one-to-one C2 curves that intersect only at their extremities, at which points the
interior angles belong to (0, π). Then, there exists a constant CD that only depends
on D such that, for all x ∈ D,

C−1
D kn(x) ≤ n min

(i, j)∈S ρi (x) ρ j (x) ≤ CD kn(x), n ≥ 1,

where S consists of the (i, j) such that �i and � j intersects, and ρi (x) :=
min

(

�, d(x, �i )
−1/2

)

.

For the square domain D = Q = [−1, 1]2, this implies that kn,Q(x) ∼ n �2 ∼
n2 when x is close enough to a corner, and we retrieve the bound Kn,Q ≤ CD n2

from (5.2). It is also proved that kn(x) ∼ n min
(

�, d(x, ∂D)−1/2
)

for bidimensional
domains with C2 boundary, which is consistent with the global bound (5.5) in the case
d = 2.

5.5 Rate of Growth of Kn,D and Order of Cuspitality

We end this section by a more technical but systematic approach which allows us
to estimate the rate of growth of the inverse Christoffel function in a sharp way for
domains D that could either be smooth, of α-Hölder boundary, or even with cusps of
a given order. It is based on using the following more elaborate reference domain that
describes a certain order of smoothness at the origin.
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Definition 5.10 For α1, . . . , αd−1 ∈]0, 2], denote Rα1,...,αd−1 the reference domain

Rα1,...,αd−1 :=
{

x ∈ [ − 1, 1]d , max
1≤i≤d−1

|xi |αi ≤ xd

}

.

We shall establish upper and lower bounds for Kn,D based on comparisons between
D and affine transformations of this reference domain, by adapting certain techniques
and results from [12]. The upper bound is as follows.

Theorem 5.11 Let D be a bounded domain. Assume there exist α1, . . . , αd−1 ∈]0, 2]
and β > 0 such that, for all x ∈ D, one can find an affine map A such that A(0) = x,
A(Rα1,...,αd−1) ⊂ D and |A(Rα1,...,αd−1)| ≥ β |D|. Then

Kn,D ≤ CD n
1
d

(

2+∑d−1
i=1 2/αi

)

, (5.6)

where CD is a constant depending only on D.

This result is obtained with the extension strategy proposed in [12], which consists
in combining Proposition 5.13 below with a comparison of domains. Such a method
was applied in the same paper to the case of smooth domains, polytopes, some two-
dimensional domains, and lα balls in R

d , which all correspond to the situation α1 =
· · · = αd−1 ∈ [1, 2] in our theorem. We give below a series of intermediate results
that lead to the proof of Theorem 5.11.

Lemma 5.12 For α ∈]0, 2] and n ≥ 1, the function f : x �→ 1
9�2

+βx2−|x |α remains

non-negative on R as soon as β ≥ α
2

( 9
2 (2 − α) �2

)
2−α
α .

Proof As f is symmetric, one only has to consider this function on R+. For x > 0,

f ′(x) = 2βx − αxα−1 cancels only at x0 =
(

α
2β

) 1
2−α

, so

min
x∈R f (x) = f (x0) = 1

9�2
− 2 − α

2

(

α

2β

) α
2−α

,

which is non-negative if and only if β ≥ α
2

( 9
2 (2 − α) �2

)
2−α
α . ��

The following result is Theorem 5.2 from [12].

Proposition 5.13 Suppose D ⊂ R
d is a compact set and T is an affine transformation

of Rd such that T (B(0, 1)) ⊂ D. Then

kn,D

(

T

(

0, . . . , 0, 1 + 1

3�2

))

≤ c | det T |−1�d+1.

where c depends only on d.

123



154 Constructive Approximation (2022) 56:121–163

Lemma 5.14 For α1, . . . , αd−1 ∈]0, 2], one has

kn,Rα1,...,αd−1
(0) ≤ C�2+

∑d−1
i=1 2/αi ,

where C depends only on d.

Proof Define βi = αi
2

( 9
2 (2 − αi ) �2

)

2−αi
αi for 1 ≤ i ≤ d − 1, and let T be the affine

transformation

T : x = (x1, . . . , xd) �→
(

x1√
3β1

, . . . ,
xd−1√
3βd−1

,
1

3

(

1 + 1

3�2
− xd

))

.

Then, for all x ∈ B(0, 1), T (x)d ∈ [0, 1], and for (1 ≤ i ≤ d−1), using Lemma 5.12,

T (x)d = 1

3

(

1 + 1

3�2
− xd

)

≥ 1

3

(

1

3�2
+ x2i

)

= 1

9�2
+ βi T (x)2i ≥ T (x)αii ,

so max1≤i≤d−1 |T (x)i |αi ≤ T (x)d , which implies that T (B(0, 1)) ⊂ Rα1,...,αd−1 .

As T
(

0, . . . , 0, 1 + 1
3�2

)

= 0, a direct application of Proposition (5.13) gives

kn,Rα1,...,αd−1
(0) ≤ c | det T |−1�d+1 = 3 c

d
∏

i=1

√

3βi �
d+1

≤ C�
d+1+∑d−1

i=1
2−αi
αi = C�

2+∑d−1
i=1

2
αi .

��
Proof of Theorem 5.11 One simply applies Proposition 5.2 to the family R of
all domains of the form A(Rα1,...,αd−1) where A is an affine map such that
| det A| |Rα1,...,αd−1 | > β |D|. As � ≤ L n1/d for some L > 0, we obtain (5.6) with

CD = β−1 L2+∑d−1
i=1 2/αi C , the constant C coming from the lemma above. ��

We now prove a lower bound based on the same reference domain.

Theorem 5.15 Let D be a bounded domain. Assume there exist x̄ ∈ D, 0 < r1 ≤ r2,
α1, . . . , αd−1 ∈]0, 2] and an affine transformation A with A(0) = x̄ such that

D ⊂ A(Rα1,...,αd−1) ∪ (B(x̄, r2) \ B(x̄, r1)
)

.

Then

Kn,D ≥ cD n
1
d

(

2+∑d−1
i=1 2/αi

)

,

where cD is a constant depending only on D.
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The proof follows the same path as in Theorem 8.1 and Remark 8.4 of [12], but with
a radial polynomial centered at x instead of a planar polynomial, that is a univariate
polynomial composed with an affine function. This small improvement shows that for
a point x and a domain D satisfying the conditions of Theorems 5.11 and 5.15 with
the same αi , the asymptotic behavior of kn,D(x) only depends on D in a neighborhood
of x .

We first recall Lemma 6.1 from the same article:

Lemma 5.16 For any �,m ≥ 1 and y ∈ [−1, 1], there exists a univariate polynomial
P�,m,y of degree at most � such that P�,m,y(y) = 1 and

|P�,m,y(x)| ≤ c(m)

(

1 + �
√

1 − y2

1 + �
√

1 − y2 + �2 |x − y|

)m

, x ∈ [−1, 1].

Taking y = −1 and applying a change of variable x �→ x+1
2 , we get as an immediate

consequence:

Lemma 5.17 For any �,m ≥ 1, there exists a univariate polynomial P�,m of degree at
most � such that P�,m(0) = 1 and

|P�,m(x)| ≤ c(m)min

(

1,
1

�2m |x |m
)

, x ∈ [0, 1].

We also need a bound on the volume of Rα1,...,αd−1 .

Lemma 5.18 For all r > 0, |Rα1,...,αd−1 ∩ B(0, r)| ≤ c r1+
∑d−1

i=1 1/αi .

Proof Given r ∈ [0, 1],

Rα1,...,αd−1 ∩ {xd = r} = [−r1/α1 , r1/α1 ] × · · · × [−r1/αd−1 , r1/αd−1 ] × {r}

has a (d − 1)-volume equal to
∏d−1

i=1 2 r−αi , so

|Rα1,...,αd−1 ∩ {0 ≤ xd ≤ r}| =
∫ r

0

d−1
∏

i=1

2 x1/αid dxd = c r1+
∑d−1

i=1 1/αi .

As for all r > 0, Rα1,...,αd−1 ∩ B(0, r) ⊂ Rα1,...,αd−1 ∩ {0 ≤ xd ≤ min(1, r)}, we
obtain the desired result. ��
Proof of Theorem 5.15 Take �0 = � �

2�, m ≥ 1
2

∑d−1
i=1

1
αi

and r3 ≥ r2 such that

T (Rα1,...,αd−1) ⊂ B(x̄, r3), and define the multivariate polynomial

P(x) = P�0,m

(

|x − x̄ |2
r23

)

, x ∈ R
d .
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Then P has degree at most 2�0 ≤ � in each variable, P(x̄) = 1, and Lemma 5.17
bounds P from above since D ⊂ B(x̄, r3). It remains to compute an upper bound of
‖P‖L2(D). For 0 < r < r1, one has:

|D ∩ B(x̄, r)| = |T (Rα1,...,αd−1) ∩ B(x̄, r)|
≤ | det T | |Rα1,...,αd−1 ∩ T−1(B(x̄, r))|
≤ | det T | |Rα1,...,αd−1 ∩ B(0, r λmax(T

−1))|
≤ c′r1+

∑d−1
i=1 1/αi ,

where in the last line we used Lemma 5.18, andwith c′ = c | det T |
λmin(T )

1+∑d−1
i=1 1/αi

. Therefore,

one can compute

‖P‖2L2(D)

≤
∥

∥

∥

∥

c(m)min

(

1,
1

�2m |x |m
)∥

∥

∥

∥

2

L2(D)

≤ c(m)2

(

∫

D∩B(x̄,�−2)

dx +
∫

B(x̄,r3)

dx

�4mr2m1

+
∫

D∩B(x̄,r1)\B(x̄,�−2)

(

1

|x |2m − 1

r2m1

)

dx

�4m

)

= c(m)2

(

∣

∣

∣D ∩ B
(

x̄, �−2
)∣

∣

∣+ |B(x̄, r3)|
�4mr2m1

+
∫ r1

�−2

2m

�4mr2m+1 |D ∩ B(x̄, r)| dr
)

≤ c(m)2

(

c′�−2−∑d−1
i=1 2/αi + |B(x̄, r3)|

�4mr2m1
+ c′ 2m

�4m

∫ r1

�−2
r
∑d−1

i=1 1/αi−2mdr

)

≤ c′′ max
(

�−2−∑d−1
i=1 2/αi , �−4m, �−4m−2(

∑d−1
i=1 1/αi−2m+1)

)

= c′′�−2−∑d−1
i=1 2/αi ,

and conclude that Kn,D ≥ kn,D(x̄) ≥ |P(x̄)|2
‖P‖2

L2(D)

≥ cD �2+
∑d−1

i=1 2/αi , with cD = 1/c′′.

��
Remark 5.19 These theorems include the case of smooth domains : indeed, taking
α1 = · · · = αd−1 = 2 and ed = (0, . . . , 0, 1), one has

B

(

1

2
ed ,

1

2

)

⊂ R2,...,2 ⊂
{

x ∈ [−1, 1]d , 1

d − 1

d−1
∑

i=1

|xi |2 ≤ xd

}

⊂ B ((d − 1)ed , (d − 1)) ,
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so one can recover the results 5.6 and 5.8 , without explicit constants. Similarly,
Lipschitz boundaries correspond to the particular values α1 = · · · = αd−1 = 1.

Example 5.20 It becomes useful to take distinct values for the αi in the case of

domains with edges but no corners. For instance, consider D =
√
3
2 ed + B

( 1
2e1, 1

)∩
B(− 1

2e1, 1). Then 0 ∈ A(R1,2...,2) ⊂ D ⊂ B(R1,2...,2), where A and B are the linear
maps defined by

A(x1, . . . , xd) =
(

1

4
x1,

1

2
√
d − 2

x2, . . . ,
1

2
√
d − 2

xd−1,

√
3

2
xd

)

and

B(x1, . . . , xd) =
(

3 x1,
1√
3
x2, . . . ,

1√
3
xd−1,

√
3 xd

)

.

Thus, Kn,D ≥ kn,D(0) ∼ �d+2. Moreover, for all x ∈ D there exists an affine
transformation T such that det T ≥ 2−d , T (D) ⊂ D and T (0) = x , so Kn,D ∼ �d+2.

Remark 5.21 It is easily seen that for domains having a cusp that points outside, the
value of Kn may grow as fast as any polynomial, depending on the order of cuspitality.
For instance, given α ∈]0, 2], according to Theorems 5.11 and 5.15, one has

kn,Rα,...,α (0) ∼ �2+
2
α
(d−1),

so that Kn,Rα,...,α ≥ c �2+ 2
α
(d−1).

6 Numerical Illustration

In this section we give numerical illustrations of the offline and online sampling
strategies in the particular case of algebraic polynomials and for different domains.
As in the previous section, we consider spaces of polynomials of fixed total degree
Vn = P� as defined by (5.1).

The three considered domains are

1. D := {x21 + x22 ≤ 2
π
}, the ball of area 2.

2. D := {−1 ≤ x1 ≤ 1, |x1| − 1 ≤ x2 ≤ |x1|}, a polygon with a re-entrant corner
at (0, 0).

3. D := {−1 ≤ x1 ≤ 1,
√|x1| − 1 ≤ x2 ≤ √|x1|}, a domain with a re-entrant cusp

at (0, 0).

The measure μ for the error metric L2(D, μ) is the uniform probability measure on
the considered domain. In all three cases, the domain D is embedded in the unit cube
Q = [−1, 1]2, and described by algebraic inequalities. Thus, sampling according to
μ is readily performed by uniform sampling on Q, which is done separately on the
two coordinates, followed by rejection when x /∈ D.
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Fig. 1 The three domains (disc, polygon and cusp) and the function kn/n for n = 231

The above three domains are instances of smooth, Lipschitz and cuspital domains,
respectively. They are meant to illustrate how the smoothness of the boundary affects
the amount of sample needed in the offline state, as rigorously analyzed in the previous
section. On these particular domains, we are actually able to exactly integrate polyno-
mials, and therefore in principle to compute the exact orthogonal polynomials L j up to
round-off error due to the orthogonalization procedure. In our numerical tests, the con-
sidered total degrees are � = 0, 1, . . . , 20, therefore n = n(�) = 1, 3, 6, . . . , 231. The
intermediate values of n between n(�) and n(�+ 1) are treated by complementing the
space Vn with themonomials xα1

1 xα2
2 forα1+α2 = �+1 in the orderα2 = 0, . . . , �+1.

For such values, we could compute the L j using Cholesky factorization with quadru-
ple precision and check that |〈L j , Lk〉 − δ j,k | ≤ 10−16, that is, orthonormality holds
up to double precision.

We may thus compute for each value of n the exact inverse Christoffel function kn
and optimal measure σ ∗ = kn

n μ. Figure 1 displays the three domains and the value
of kn/n for the maximal value n = 231 which, as explained by the results in Sect. 5,
grows near to the boundary, faster at the exiting corners (and even faster at exiting
cusps), and slower in smooth regions or at re-entrant singularities.

This exact computation allows us to compare the optimal sampling strategy based
on σ ∗ and the more realistic strategy based on σ̃ which is computed from the approx-
imate inverse Christoffel function˜kn derived in the offline stage. We next show that
both strategies perform similarly well in terms of instance optimality at near-optimal
sampling budget. We stress, however, that for more general domains where exact
integration of polynomials is not feasible, only the second strategy based on ˜kn is
viable.

6.1 Sample Complexity of the Offline Stage

We first illustrate the sample complexity M in the offline stage of Algorithm 1. As
discussed in §3.2, a sufficient condition to ensure the framing (3.3) between kn and
˜kn is the matrix framing property (3.6) which expresses the fact that the condition
number of GM satisfies the bound

κ(GM ) ≤ c = c2
c1

.
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Fig. 2 Conditioning of the matrix GM for the disc (left), polygon (center) and cusp (right) domains,
averaged over 100 realizations, with theoretical value of Msuf (n) (full curve) and adjusted value Madj(n)

(dashed curve). The x-coordinate stands for n and the y-coordinate for M ; moreover, the plotted values are
saturated at 10 since we are only interested in small condition numbers

For the constants c1 = 2
3 and c2 = 2, this occurs with high probability when M is

larger than Kn , or a known upper bound B(n), multiplied by logarithmic factors, as
expressed by (3.7).

Figure 2 displays the condition number κ(GM ), averaged over 100 realizations
of the offline sample {z1, . . . , zM }, as a function of n and M ≥ n, for the three
considered domains. We observe a transition region that illustrates the minimal offline
sampling budgetMmin(n) that should be practically invested in order forGM to bewell
conditioned. For example, if Mmin(n) is defined as the minimal value of M such that
E(κ(GM )) ≤ 3, this value can be estimated and visualized in Fig. 2 as the transition
to the dark blue color.

We also draw in full line the value of the sufficient value

Msuf(n) := γ B(n) ln(2n/ε),

for ε = 10−2 where B(n) is the upper bound for Kn derived from the theoretical
analysis of Sect. 5. This upper bound is 3n3/2 for the disc in view of (5.4) and 2n2 for
the polygonal domain by application of Proposition 5.2 with β = 1

2 , since D is the
union of two parallelograms of equal size. While the sampling budget m = Msuf(n)

guarantees that κ(GM ) ≤ 3 with high probability - here 0.99 - the plots reveal that
this budget is by far an over-estimation of Mmin(n).

We draw in dashed line the adjusted values Madj(n) = Cadj Msuf(n) where the
multiplicative constant is picked as small as possible with the constraint of still fitting
the requirement E(κ(GM )) ≤ 3, thus better fitting the minimal budget Mmin(n). We
find that constant Cadj is approximately 1

45 for the disc and 1
120 for the polygon. It

is even smaller for the cusp domain, for which Theorem 5.11 with α1 = 1
2 yields

an upper bound of the form B(n) = Cn3 with a constant C that can be numerically
estimated but turns out to be very pessimistic.

In summary, the offline sampling budget Msuf(n) suggested by the theoretical anal-
ysis is always pessimistic by a large multiplicative constant. Let us remind that the
value Mmin(n) is typically not accessible to us since GM and its condition number
cannot be exactly evaluated for more general domains D.
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Fig. 3 Conditioning of the matrix T for the disc (left), polygon (center) and cusp (right) domains, and
value of Memp(n) (dashed curve), averaged over 100 realizations

This state of affair justifies the use of the empirical method outlined in §3.3 for
selecting a good value of M . Recall that this approach consists in raising M until the
conditioning of the computable matrix T becomes less than some prescribed value,
for example κ(T ) ≤ 3. Figure 3 displays the conditioning κ(T ) again averaged over
100 realizations of the offline sample, as well as the curve showing the empirical
value Memp(n) which corresponds to the smallest value of M such that κ(T ) ≤ 3. It
reveals the relevance of the empirical approach: due to the very good fit between κ(T )

and κ(GM ), the value Memp(n) appears as a much sharper estimate for Mmin(n) than
Msuf(n).

6.2 Sample Complexity of the Online Stage

We next study the sample complexity m of the online stage of Algorithm 1 through
the conditioning of the matrix G = (〈L j , Lk〉m) j,k=1,...,n , where 〈·, ·〉m is the inner
product associated to the discrete norm

‖v‖2m := 1

m

m
∑

i=1

w(xi ) |v(xi )|2.

For the sampling measure σ and weight w, we both consider:

(i) The optimal sampling measure dσ ∗ := kn
n dμ and weight w∗ = n

kn
, which, for

these particular domains, can be exactly computed from the L j , but are not acces-
sible for more general domains.

(ii) The empirical sampling measure dσ̃ := ˜kn
n dμ and weight w̃ = n

˜kn
where˜kn has

been obtained from the offline stage, using the previously described empirical
choice of M .

Figure 4 displays the condition number κ(G), as a function of m and n, for both
choices and the three domains. In order to illustrate the fluctuations of κ(G), we
display an averaging over 100 realizations when using kn , and one single realization
when using ˜kn . While the behavior for a single realization is more chaotic, we find
that in both cases, as expected, the online sampling budgetm(n)which ensures that G
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Fig. 4 Conditioning of G = 〈L j , Lk 〉m depending on m and n for the disc (left), polygon (center) and
cusp (right) domains, using an average over 100 realizations with kn (up), or a single realization with the
estimated˜kn (down)

is well conditioned, for example κ(G) ≤ 3, grows linearly with n (up to logarithmic
factors), now independently of the domain shape.

6.3 Instance and Budget Optimality

In order to illustrate the achievement of our initial goal of instance and budget opti-
mality, we consider the approximation in a polynomial space Vn = P� of a function u
that consists of a polynomial part un ∈ Vn and a residual part u⊥

n ∈ V⊥
n that are both

explicitly given in terms of their expansions

un =
n
∑

j=1

c j L j ,

and

u⊥
n =

∑

j≥n+1

c j L j .

For numerical testing, we take only finitely many non-zero c j in this second expansion
and adjust them so that

∑

j≥n+1 |c j |2 = 10−4. Thus, the best approximation error has
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Fig. 5 Mean-square reconstruction error for the disc (left), polygon (center) and cusp (right) domains, with
total polynomial degree � = 15, and sampling measures μ (blue), σ∗ (orange) and σ̃ (green). Horizontal
red line: best approximation error en(u)2 = 10−4. Vertical black line: polynomial dimension n = 136
(Color figure online)

value

en(u) = ‖u − un‖ = ‖u⊥
n ‖ = 10−2.

We study the mean-square error E(‖u − Pm
n u‖2) as a function of m and compare the

different sampling strategies through their ability to reach this ideal benchmark.
Figure 5 displays the error curves (obtained by averaging ‖u − Pm

n u‖2 over 100
realizations) for the three domains and polynomial degree � = 15 that corresponds
to the dimension n = 136. For all domains, we observe that the best approximation
error is attained up to multiplicative factor 2 with a sampling budget m that is twice
larger than n, when using either the optimal sampling measure σ ∗ based on kn or
the measure σ̃ based on˜kn obtained in the offline stage Algorithm 1. This does not
occur when sampling according to the uniform measure μ: the error remains orders of
magnitude above the best approximation error and this effect is even more pronounced
as the domain becomes singular. This reflects the fact that with the uniform sampling,
the budget m needs to be larger than Kn which has faster growth with n for singular
domains.
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