Constructive Approximation (2022) 56:75-119 CONSTRUCTIVE
https://doi.org/10.1007/500365-021-09554-1 APPROXIMATION

®

Check for

Component-by-Component Digit-by-Digit Construction of
Good Polynomial Lattice Rules in Weighted Walsh Spaces

Adrian Ebert' - Peter Kritzer' - Onyekachi Osisiogu® - Tetiana Stepaniuk?

Received: 20 August 2020 / Revised: 13 April 2021 / Accepted: 19 April 2021/
Published online: 25 August 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract

We consider the efficient construction of polynomial lattice rules, which are special
cases of so-called quasi-Monte Carlo (QMC) rules. These are of particular interest
for the approximate computation of multivariate integrals where the dimension d
may be in the hundreds or thousands. We study a construction method that assem-
bles the generating vector, which is in this case a vector of polynomials over a finite
field, of the polynomial lattice rule in a digit-by-digit (or, equivalently, coefficient-by-
coefficient) fashion. As we will show, the integration error of the corresponding QMC
rules achieves excellent convergence order, and, under suitable conditions, we can
vanquish the curse of dimensionality by considering function spaces equipped with
coordinate weights. The construction algorithm is based on a quality measure that is
independent of the underlying smoothness of the function space and can be imple-
mented in a fast manner (without the use of fast Fourier transformations). Furthermore,
we illustrate our findings with extensive numerical results.

Communicated by Wolfgang Dahmen.

A. Ebert, P. Kritzer, and O. Osisiogu are supported by the Austrian Science Fund (FWF): Project F5506,
which is part of the Special Research Program “Quasi-Monte Carlo Methods: Theory and Applications”.
T. Stepaniuk is supported by the Alexander von Humboldt Foundation.

B Adrian Ebert
adrian.ebert @oeaw.ac.at

Peter Kritzer
peter.kritzer @oeaw.ac.at

Onyekachi Osisiogu

onyekachi.osisiogu@oeaw.ac.at

Tetiana Stepaniuk

stepaniuk @math.uni-luebeck.de

Johann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian
Academy of Sciences, Altenbergerstr. 69, 4040 Linz, Austria

2 Institute of Mathematics, University of Liibeck, Ratzeburger Allee 160, 23562 Liibeck, Germany

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00365-021-09554-1&domain=pdf

76 Constructive Approximation (2022) 56:75-119

Keywords Numerical integration - Polynomial lattice points - Quasi-Monte Carlo
methods - Weighted function spaces - Digit-by-digit construction -
Component-by-component construction - Fast implementations

Mathematics Subject Classification 65D30 - 65D32 - 41A55 - 41A63

1 Introduction

In this article, we study the problem of multivariate numerical integration for a subclass
of square-integrable functions f € L>([0, 1]%). We consider special instances of so-
called quasi-Monte Carlo (QMC) rules, which are methods to approximate integrals

1) = f F(x) dx
[0,114

by equal-weight quadrature rules,
=
Ona(f) =~ D fxn),
N n=0

where the integration nodes xo, X1, ..., X y—1 are deterministically chosen in [0, 114.
This is in contrast to Monte Carlo rules, where the integration nodes are chosen ran-
domly; with QMC rules, we try to make a deliberate and sophisticated choice of the
points x, with the aim of obtaining better error bounds than for Monte Carlo. The
crucial challenge is to find integration nodes yielding a low approximation error simul-
taneously for a large class of functions that may depend on many variables. This means
that, usually, one needs to be able to find millions of good integration nodes in very
high dimensions which is a considerable computational challenge.

In the literature on QMC methods, there are two main concepts that are commonly
made use of when trying to find sets of integration nodes with good properties. These
are, on the one hand, lattice point sets, as introduced independently by Korobov (see
[10]) and Hlawka (see [9]). For more recent introductions to lattice rules, we refer to
[16,21]. The other class of commonly used QMC integration nodes is that of (digital)
(t, m, d)-nets and (¢, d)-sequences, as introduced by Niederreiter, building up on ideas
by Sobol’ and Faure (see [14,16]). A special case of (¢, m, d)-nets, namely so-called
polynomial lattice point sets, is the focus of the present paper. These point sets were
introduced in [15] and have their name since their structure can be viewed as analogous
to (ordinary) lattice point sets.

While the construction principle of lattice point sets is based on integer arithmetic,
polynomial lattice point sets are based on polynomial arithmetic over finite fields. To
be more precise, we will fix a prime b and consider the finite field F;, with b elements.
A polynomial lattice point set with ™ points in [0, 1]¢ is constructed by means of a
modulus p € Fp[x] with deg(p) = m, and a generating vector g € (IF}, [x])? (we refer
to Sect. 2.2 for the precise definition). The QMC rule using the polynomial lattice point

@ Springer

Constructive Approximation (2022) 56:75-119 77

set as integration nodes is then called a polynomial lattice rule. It will be convenient
in this paper to assume that the modulus has the form p,,(x) = x™. However, it is
crucial to note that not every choice of the generating vector g yields a polynomial
lattice point set that has good properties, in the sense that the integration error of the
corresponding polynomial lattice rule is sufficiently low. On the contrary, it is usually
highly non-trivial to find good generating vectors of polynomial lattice rules, and there
are (except for special cases) no explicit constructions of such good generating vectors
known. Hence, one has to resort to computer search algorithms for finding generating
vectors of polynomial lattice point sets of high quality. Regarding the error measure,
we consider in this paper the worst-case setting, i.e., we consider a particular normed
function space and the supremum of the integration error over the unit ball of the
space.

It is known that (ordinary) lattice rules are well suited for the numerical integration
of functions with pointwise convergent Fourier series (see again, e.g., [16] or [21]). On
the other hand, polynomial lattice rules are usually applied for the numerical integration
of functions that can be represented by Walsh series (cf. [2,4,5]). We will therefore
define a reproducing kernel Hilbert space based on Walsh functions in Sect. 2.1, which
will be considered throughout the paper. The function space under consideration will
be characterized by a smoothness parameter « (in some publications, this parameter
is also referred to as “digital smoothness parameter” in the context of Walsh series).
Indeed, the parameter « is linked to the speed of decay of the Walsh coefficients of
the functions in our space, but there is also a connection to the number of derivatives
that exist for the elements of the space (we refer to [5] and the references therein for
details).

The function space considered here is closely related to other function spaces con-
sidered in the literature, such as in [2,4,5]; indeed, results that we show for the space
considered in the present paper immediately imply corresponding results for some of
the Walsh spaces considered in these references. Furthermore, our Hilbert space will
be a “weighted” function space in the sense of Sloan and WoZniakowski (cf. [23]).
This means that we assign non-negative real numbers (weights) to the coordinates,
or groups of coordinates, of the integration problem, in order to model the different
influence of the coordinates on the problem. As pointed out in [23] and numerous
other papers, this method is justified by practical high-dimensional problems in which
different coordinates may indeed have a very different degree of influence on the value
of an integral. The weights will be incorporated in the inner product and norm of the
function space in a suitable way. Using this setting, it is plausible that a nominally very
high-dimensional problem may have a rather low “effective dimension,” i.e., only a
certain, possibly small, part of the components has a significant influence on the inte-
gration problem and the error made by approximative algorithms. This may then yield
situations where a curse of dimensionality can be avoided.

In the present paper, we will restrict ourselves, for technical reasons, to considering
the most common choice of weights, the so-called product weights, but we suspect
that the construction of QMC rules presented here could also work for other choices
of weights. We refer to Remark 5 in Sect. 3.3 for further comments on this question.

The first efficient construction of good generating vectors of polynomial lattice point
sets was done in [2]. In that paper, the authors considered the so-called component-by-

@ Springer

78 Constructive Approximation (2022) 56:75-119

component (CBC) approach, which is a greedy algorithm to construct one component
of the generating vector at a time. CBC algorithms were first considered for ordinary
lattice point sets, with the first examples in the literature going back to Korobov
(cf. [11]), and later a rediscovery by Sloan and Reztsov (cf. [22]). The fast CBC
construction, which is due to Cools and Nuyens (see, e.g., [18-20]), makes the CBC
construction computationally competitive and is currently the standard method to
construct high-dimensional lattice point sets of good quality. It is well known (see,
e.g., [2] and again [18]) that CBC constructions also work for the efficient search
for generating vectors of polynomial lattice point sets; and also in this case, a fast
algorithm is available.

1.1 Overview and Main Results

In the present paper, we present another, different algorithm to construct generating
vectors of polynomial lattice point sets in an efficient way. This construction is also
based on a component-by-component approach. However, as opposed to the CBC
algorithms for polynomial lattice point sets currently available in the literature, our
new approach constructs the single components of the generating vector g “digit-
by-digit” and the used search criterion is independent of the smoothness parameter
«. Actually, the term “digit-by-digit” is based on a similar approach that exists for
ordinary lattice point sets (see [12,13], and for similar results in a more up-to-date
setting, [7]). In the context of polynomial lattice point sets, the generating vector g
consists of polynomials, so it would be more appropriate to speak of a “coefficient-
by-coefficient” instead of a “digit-by-digit” construction. However, to stay consistent
regarding the name of the method, and to avoid confusion with the “component-
by-component” approach, we keep the name “digit-by-digit” construction also for
polynomial lattice rules. In fact, the algorithm which we will present in Sect. 3.2
contains two loops. An outer loop in which the different components are constructed,
and an inner loop in which the coefficients (digits) of each component of the generating
vector are constructed. Both loops can be regarded as greedy, i.e., choices that have
been made in previous steps are kept fixed.

We will show that the polynomial lattice rules obtained by our new construction
method (Algorithm 1) satisfy upper error bounds that are arbitrarily close to the optimal
convergence rate. In particular, we will prove the following main result regarding the
behavior of the worst-case error eym ¢ o,y Of integration in the weighted function space
under consideration.

Theorem 1 Let b be prime, let m,d € Nwithm > 4, let N = b™, let o > 1, and let
(vj) j=1 be positive product weights satisfying

Z)/j < OQ.

j=1

Then, for any § > 0 and each o > 1, the worst-case error of the polynomial lat-
tice rule with generating vector g constructed by Algorithm 1 (with weight sequence

Yy = (vj)j=1) satisfies

@ Springer

Constructive Approximation (2022) 56:75-119 79

1 -
ey (8) = 22 (CHN+C (2, 8) N,

with positive constants C(y*) and C (y,), that are independent of d and N.

Theorem 1 shows that under suitable conditions on the coordinate weights, we can
vanquish the curse of dimensionality, i.e., avoid exponential dependence of the error
on the dimension d of the integration problem, or even obtain error bounds that are
independent of the dimension. Furthermore, the devised algorithm (when run with
weights y) constructs good polynomial lattice rules for which the proven bounds on
the worst-case error hold simultaneously for all « > 1. This can be an advantage
over standard construction algorithms which are often tailored to a particular function
space, and thus, the corresponding error bounds only hold for a particular «. We will
discuss this issue in more detail in the remainder of the article.

We note that Theorem 1 is a simplified version of Theorem 8, and the latter is
proven in Sect. 3. As the proof of Theorem 8, which is essential to the derivation of
our algorithm, is fairly technical, we will briefly outline the proof strategy that is used
in Sect. 3.

The main idea is to relate our error measure, which is related to the dual net of the
polynomial lattice rule, to an auxiliary quantity 7y, that only depends on a subset of
the dual net. The difference of these two quantities will be shown to be of an order of
magnitude that is at least as good as what we may expect for the error itself, which
justifies concentrating on 7y, only. (see Proposition 1). As a next step, we show in
Theorem 4 that T), := T; , can be bounded by the quality function Hy ;, , (modulo
some additive terms that can be controlled), and thus that it suffices to minimize this
quality function in order to device good polynomial lattice rules. Analyzing the average
of Hy »,y with respect to the choices of extending the degree of the components of
the generating vector (Lemma 7) then leads to the formulation of the component-by-
component digit-by-digit construction in Algorithm 1. The remaining step is to show
that Hy ,,), for the constructed polynomial lattice rules is of order O(b~""), which is
done via an inductive argument over the dimension in Theorems 5 and 6.

Due to its structure, the obtained component-by-component digit-by-digit (CBC-
DBD) algorithm can be implemented in a fast manner that only requires O(d m b™)
operations. This is competitive with state-of-the-art CBC constructions; however, our
algorithm does not require the use of fast Fourier transformations as well as the
underlying knowledge regarding circulant matrices. We see this as a benefit of our
construction.

This paper is an extension of the research on the CBC-DBD construction of lattice
point sets (cf. [7]) to a special construction method for polynomial lattice point sets.
As the names of the point sets already suggest, there are certain similarities in the
two approaches, but instead of working with integer arithmetic, as it is the case for
lattice point sets, we now need to work with polynomial arithmetic over a finite field,
which makes the result technically more demanding. In particular, we would like to
stress that—while in the earlier paper [7] on lattice rules we restricted ourselves to N
of the form 2" for technical reasons—we were able to generalize this assumption to
arbitrary prime bases b instead of b = 2, i.e., we allow N to be any prime power. This
implies that we can cover a more general class of point sets as compared to [7]. The

@ Springer

80 Constructive Approximation (2022) 56:75-119

main work underlying this more general result is to be found in Lemma 1, in which
we analyze a Walsh-Dirichlet kernel.

The fact that our new algorithm can be used for the efficient construction of good
polynomial lattice point sets, with a running time competitive with other common
construction methods, but without the need of using the fast Fourier transform, is
an advantage of the method presented. This is even more important as it is known
from the theory developed by Dick (see, e.g., the monograph [5]) that certain variants
of polynomial lattice rules (so-called higher-order polynomial lattice rules) allow for
improved convergence rates for smoother functions, and it would be of great interest to
make the method presented here also applicable to that case, for which we hope to lay
the basis in this paper. We stress that analogous results for lattice rules regarding the
integration of smooth functions are not known, which is why it is even more important
to make the CBC-DBD construction available for polynomial lattice rules.

The rest of the paper is structured as follows. In Sect. 2, we introduce the function
space setting as well as polynomial lattice rules and analyze the corresponding worst-
case error expression. In Sect. 3, we derive the component-by-component digit-by-
digit (or, for short, CBC-DBD) construction algorithm for polynomial lattice rules
following the proof strategy outlined above. In particular, we analyze the worst-case
error behavior of the resulting integration rules. In Sect. 4, we show that the introduced
construction method can be implemented in a fast manner, competitive with state-of-
the-art construction algorithms. Finally, the article is concluded in Sect. 5, where we
illustrate our main results by extensive numerical experiments.

To conclude this introductory section, we fix some notation. In what follows, we
denote the set of positive integers by N and the set of non-negative integers by Ny. To
denote subsets of components, we use fraktur font, e.g., u C N and additionally write
shorthand {1:d} := {1, ..., d}. For the projection of a vector x € [0, 119 or k € N4
onto the components in a set u C {1:d}, we write X, = (xj)jey OF ky = (kj)jeu,
respectively. With a slight abuse of notation, we will frequently identify elements of
the finite field IFj, of prime cardinality » with elements of the group of integers modulo
b denoted by Zj.

2 Polynomial Lattice Rules in Weighted Walsh Spaces

In this article, we consider numerical integration of a sub-class of the square-integrable
functions f € L2([0, l]d) which can be represented in terms of their Walsh series.
This particular series representation of a function is based on the so-called Walsh
functions, which are defined as follows.

Definition 1 Let b > 2 be an integer. For a non-negative integer k, we define the k-th
Walsh function pwaly : [0, 1) — C by
pwaly (x) = 2701 +K152 4+ 4Ka-184) /b

with x € [0, 1) and base b representations k = ko + k1b + -+ + ka1 and
x = &b~ + &b + .- (unique in the sense that infinitely many of the & must

@ Springer

Constructive Approximation (2022) 56:75-119 81

be different from b — 1) with coefficients «;, & € {0,1,...,b — 1}. The imposed
restriction that infinitely many of the & must be different from b — 1 assures that no
ambiguous representations arise.

For d € N, an integer vector k = (ki,...,kq) € Ng and x = (x1,...,Xx4) €
[0,)¢, we define the k-th (d-variate) Walsh function pwal : [0,)¢ — C by

d
pwalg(x) := 1_[bwalkj (xj).
j=1

In the following, we will consider the base b > 2 as fixed (for the sake of simplicity,
we will assume that b is prime), and then simply write wal or waly, instead of ,waly
or pwaly, respectively. It is known (see, e.g., [5]) that the Walsh functions in any fixed
base b form an orthonormal basis of LZ([0, 1]9).

As indicated, we consider a class of square-integrable functions that can be repre-
sented in terms of their Walsh series, that is,

fo)y =) flywalx) with (k)= fmd f)wal(x)dxe, (1)

keNg

where we call f (k) the k-th Walsh coefficient of f.

It is known from the literature on QMC methods in the past decades that it is
advantageous to choose the integration nodes of a QMC rule such that there exists
an efficient way of expressing the integration error for elements in the function class
under consideration. In the case where the integrand f can be represented in terms
of Walsh series as in (1), it is common to consider quasi-Monte Carlo rules which
are based on so-called digital nets and sequences. Digital (¢, m, d)-nets are point sets
consisting of b™ elements in [0, 1]¢ that satisfy certain regular distribution properties
and were in their most general form introduced in [15] (see also [16]). These point sets

are generated by using d generating matrices Cy, ..., Cy over a finite field or ring. In
particular, for a digital (¢, m, d)-net P = {xq, ..., xpm_1} C [0, 1]‘1 constructed over
Zp ={0,1,...,b— 1} with generating matrices Cy, ..., Cq € Z; ™" the integration

error of a QMC rule based on P takes a special form. It is commonly known, see,
e.g., [3, Theorem 6.4], that approximating the integral /;(f) of a d-variate function
f using a QMC rule Qpm 4(f; P), thatis,

m

b"—1
1
Qpm.a(f) = Qpm.alf; P) = oo D flan) /[0 i fe)dx = 1a(f),

n=0

leads to an integration error of the form

Qpna(fi P)—Ia(f)= Y fio)

0£keD

@ Springer

82 Constructive Approximation (2022) 56:75-119

with the dual net D = D(Cy,...,Cy) := {k e N¢ | C[K" + - + C/K” = 0},
where for k € Ny with base b expansion k = kg + k1b + - - - + «k,b" we define the
vector K = (ko, &1, ..., km—1) € Z]', and where we denote by 0 the zero vector
in Zy'. Equation (2) is a consequence of the following character property of Walsh
functions,

b1 _
I, ifC/K!'+---+C Kk} =0,
Z walg(xn) = { 0, otherwise.

We will also use this property in the subsequent analysis.

2.1 The Weighted Walsh Space

Based on the decay of the Walsh coefficients f (k) in (1), we will define a function
space for the integrands considered in this paper. As mentioned in the introduction, this
space will be equipped with weights to model the varying influence of the coordinates.
To this end, let y = (y;)>1 be a non-increasing sequence of positive real numbers.
The weights y; will appear in the definition of the inner product and norm of the
function space defined below. Intuitively, we can think of the weight y; describing the
degree of influence of the j-th variable on the integration problem. Hence, we assume
(w.l.o.g.) that the coordinates are ordered according to their influence. It will also be
convenient to define
Yu = 1_[Vi

Jjeu

for a subset u C {1:d}, and to additionally set yy to equal 1. The weights y,, are (for
obvious reasons) called product weights. In the recent literature on QMC rules, also
other types of weights have been considered, but we will restrict ourselves to product
weights here. We refer to [3] for further information on this subject.

For prime base b > 2 and given smoothness parameter « > 1, we set (k) =
|log, (k) | for k € N and define the decay function r, : No — R by

1’ ifk = 07
ro(k) = ro(b, k) == {bawbuo ifk #0

with k € Np. It is also convenient to define the quantity

Ho(@) = 3 o)™ = me Z Z“"”bd G
k=1

k=b" a=0

@ Springer

Constructive Approximation (2022) 56:75-119 83

For the multivariate case with dimension d € N, integer vector k = (ky, ..., kq) €
Ng, and a sequence of weights y = (y;) j>1, we define the weighted decay functions

d
ra(k) i=[Tratkp) and roy) =y g ra) = Vapoay 11 2"
j=1 Jesupp(k)

with supp(k) := {j € {1:d} | k; # 0}.
Using this decay function, we can estimate the integration error obtained in (2) by

|Qpma(f: PY=La(f)|=| Y. f|=| D fU)rayl) (ray) " 1pk)

07#£keD 07£keNd
< | sup 1/ ®Nray®) | | D Cay)™!)
keNg 0£keD

with 1p denoting the indicator function of the dual net D. Based on this estimate, we
define, for real o > 1 and a sequence of strictly positive weights y = (y;)j>1, the
weighted Walsh space as

Wi, = 1{f e L*(10, 11 | I llwg , < oo}

with corresponding norm ||-| we given by
B%

11wy, = sup |£G0)| ey (k). ®)

d
keNj

Remark 1 We remark that the definition of the norm implies that functions in Wd"‘, y
have an absolutely convergent Walsh series which converges pointwise (see, e.g., [5]).

Remark 2 We would like to note here that in many recent papers (e.g., [2,4]), a slightly
different function space Wd y based on Walsh functions has been studied. In Wd .

the norm is not given as an co-norm as in (5), but in the L?%-sense, i.e.,

1
. 2
I g = (> |f(k>|2ra,y(k)) :

d
keNj

This definition of the norm corresponds to alternatively applying Holder’s inequality
with p = g = 2 in the bound on the integration error that led to (4). As we will see
below, the worst-case error expressions for Wé‘j‘,y and Wd""y are closely related to each
other.

@ Springer

84 Constructive Approximation (2022) 56:75-119

In order to assess the quality of the QMC methods constructed later on, we will
use the worst-case error in the weighted Walsh space as the error criterion. Indeed, the
worst-case error for the QMC rule Qpm 4(-; P) in the space W y is defined as

epnday(P) = sup [Ig(f) = Qpm.a(f; P)I.

fer_
I fllwe <1
dy

A useful formula for the worst-case error for (¢, m, d)-nets in the function space Wd"‘ y
is given in the following theorem.

Theorem2 Let m,d € N, a > 1, a prime b, and a sequence of positive weights
Y = (¥j)j>1 be given. Then, the worst-case error epm 4« y(P) of the QMC rule

QOpn 4(-; P) based on the digital (t,m, d)-net P = {xq, ..., Xpn_1} with generating
matrices C1, ..., Cy in the space Wd"‘yy satisfies
e dayP)= Y (ray®)™". ©6)
0#£keD

Proof Recalling the definition of the worst-case error of the QMC rule Qpn 4(-; P),
the combination of (4) and the definition of || - || we, leads to the estimate

emdayP) < sup N flwg, Y Cay®)™' < D7 Gay@)™
TEWEy 0£keD 0£keD
I/lwe <1

Observing that the function f{ with Walsh coefficients f() (k) = (ra,y (k))~! has norm
I fO”W:}y = 1 and that its integration error equals

Qpn.a(fo, P) = la(fo) = Y (ray ()™,

0£keD
we obtain that the previous upper bound is attained such that the claimed identity
follows. O

Remark 3 Returning to the alternative Walsh space Wg , once again, it is known from
[4] that the worst-case error in this space equals

1/2

> Gayt)™| .

0:£keD

which is just the square root of the worst-case error in W7 y» s outlined in Theorem 2.
Therefore, we see that the worst-case errors in these Walsh spaces are intimately related
to each other, and all results shown here for W7 y immediately yield corresponding

7o
results for Wd’ -

@ Springer

Constructive Approximation (2022) 56:75-119 85

2.2 Polynomial Lattice Rules

While Theorem 2 is a very useful result, the question of how to find and construct
(t, m, d)-nets with a low integration error for practical purposes remains. One of
the most powerful ways of obtaining nets is to consider a special case, namely so-
called polynomial lattice point sets, as introduced by Niederreiter in [15]. The name
“polynomial lattice point sets” is due to the fact that the structure of polynomial lattice
point sets is similar to that of ordinary lattice point sets as introduced by Korobov
[10] and Hlawka [9]. However, while lattice point sets are based on integer arithmetic,
polynomial lattice point sets are obtained by using polynomial arithmetic over finite
fields. We also point out that there are nowadays variants of polynomial lattice point sets
which are especially suited for integrating functions with higher smoothness (see, e.g.,
[5]). However, we will not consider higher order polynomial lattices here, but restrict
ourselves to the more classical construction scheme. We point out that polynomial
lattice point sets are actually a special case of so-called digital (¢, m, d)-nets, which
can be constructed using generating matrices C1, ..., C4 over a finite field. For our
purposes, though, it is more convenient to define these point sets in an alternative way.
Before we give the precise definition, we need to introduce some notation.

As before and for the remainder of this article, we will assume that the base b is
prime, even if not specifically mentioned. Let Fb((x’l)) be the field of formal Laurent
series over [, with elements of the form

00
L = Z t/gx_e,
{=w

where w is an arbitrary integer and all 7, € [F;,. We further denote by Fj[x] the set of
all polynomials over [F;, and define the map v,, : F5((x~')) — [0, 1) by

00 m
U (Z te x_£> = Z ty bt
{=w

£=max(1,w)

There is a close connection between the base b expansions of natural numbers and the
polynomial ring Fp,[x]. For n € Ny with base b expansionn = ng+nb+---+ng,b",
we associate n with the polynomial

n(x) := anxk e Fplx].

k=0

Furthermore, we define the greatest common divisor of two polynomials f, g € Fp[x],
denoted by gecd(f, g), as the monic polynomial of highest degree that divides both f
and g.

The definition of a polynomial lattice point set is then given as follows. We note
that here and in the following we consider the zero polynomial to have degree —oo,
hence, the case n = 0 is included in the following definition. Furthermore, we remark

@ Springer

86 Constructive Approximation (2022) 56:75-119

that the occurring fractions of the form g (x)/p(x) with p, g € Fp[x] are elements of
the field Fj, ((x~1)).

Definition 2 (Polynomial lattice) Let b be prime and let m, d € N be given. Further-
more, choose p € Fy[x] with deg(p) = m, and let g1, ..., g4 € Fp[x]. Then, the
point set P(g, p), defined as the collection of the »™ points

X, = (vm (M) e Um <M>> e [0, H?¢
p(x) p(x)

forn € Fp[x] with deg(n) < m, is called a polynomial lattice point set (we sometimes
also refer to the point set as polynomial lattice for short), where the vector g =
(g1,.-.,8a) € (Fp [x])d is called the generating vector.

As pointed out above, due to the construction principle and the similarities to the
construction of (rank-1) lattices, P(g, p) is often called a (rank-1) polynomial lattice
and a QMC rule using the point set P (g, p) is referred to as a polynomial lattice rule
(modulo p). Furthermore, note that one can restrict the choice of the components g;
of g to the sets

Gom = 1{g € Fplx] | deg(g) <m} or Gy, :={g € Fplx]\ {0} | deg(g) < m}.

We also add that it is known from the literature on polynomial lattice point sets that
it is desirable to have ged(g;, p) = 1 for the components g; of g, as this guarantees
certain regularity properties.

For prime b, the generating matrices Cy, ..., Cq € F;"*™ of a polynomial lattice
point set P (g, p) can be obtained from the generating vector g and p, cf. [5, Theorem
10.5]. To this end, define for k € Ny with b-adic expansion k = ko + k1o + - -- +
kq—1b%~! the truncation map tr, : No = Gp ;, via

try, (k) := Ko+ K1x 4 koo™

where we consider «; as 0 if j > a. If we apply tr,, to a d-dimensional vector, we

define its d-variate generalization tr,, (k) to be applied componentwise. It then follows

that the dual net D(g, p) of a polynomial lattice with generating vector g, modulus p

with deg(p) = m, and generating matrices Cy, ..., Cy equals (see, e.g., [16, Lemma

4.40])

D(g,p) =tk e Ng | CTK['+ - 4+CJ K} =0} = {k € N | tr,,, (k)-g = 0 (mod p)},

where for two vectors u, v € (Fp[x])? we define the vector dot product u - v =
Z?: 1 ujv;. Furthermore, for a subset u C {1:d} we introduce the notation

Dy = Dy(g, p) = Du(gy) := {ky € N | tr,,(ky) - g, = 0 (mod p)}.

Due to the obtained equivalence for the dual net of a polynomial lattice, the result in
Theorem 2 also applies to polynomial lattice rules with D(Cy, ..., Cy) replaced by

@ Springer

Constructive Approximation (2022) 56:75-119 87

D(g, p). Furthermore, we will henceforth denote the worst-case error of a QMC rule
based on the polynomial lattice point set P(g, p) in the space Wd""y by epn g0,y (8).

2.3 The Quality Measure

In this section, we introduce an alternative quality measure which, opposed to the
WOTSE-Case error expression epm 4.4, in (6), is independent of the parameter .

For a > 1, given weight sequence y = (y;)j>1, m € N, modulus p € Fp[x] with
deg(p) = m,and g € (F [x])¢, we define the quantities

Ty(g.p)i= Y. (riy®)™. Tuy(g.p)i= Y. eyl (D

0£keAp(g) 0£keA,(g)
with index set given by

Ay(g):={kef{0,1,....,0" — 1} | k € D(g, p)}.
Furthermore, for a subset ¥ # u C {1:d}, we introduce the sets

Ay = Apu(gy) = Apu(g) i=lky €{0,1,.... 0" — 1} | ky € Dy(g, p)},
AL =A% (g =A% (@) i={ky e {l,....0" — 1" | ky € Dy(g. p)}.

and for a polynomial p € IF5[x] define the indicator function 6, : Fp[x] — {0, 1} by

5,(q) = 1, ifg =0 (mod p),
P00, if g % 0 (mod p).

In the following proposition, we estimate the difference between the worst-case
EITor epm g o,y (€) and the truncated quality measure Ty, , (g, p) of a polynomial lattice
rule with generator g and modulus p € Fy[x] with deg(p) = m.

Proposition 1 Let y = (y;) j>1 be a sequence of positive weights, let p € Fp[x] with
deg(p) = m, and let g = (g1,...,84) € Gz’m such that ged(g;j, p) = 1 for all
j=1,...,d. Then, forany o > 1 and N = b™, we have

1
e aay® = Tuy@p) =2 D, Cupe).
P#£<uc{l:d}

Proof For a non-empty subset ¥ # u C {1:d} and i € {1:d}, we write for short
ko) € Nl)uH and g,y € Gl;‘l;l to denote the projections on the components in

u\ {i}. The difference can then be rewritten as

@ Springer

88 Constructive Approximation (2022) 56:75-119

epm d.a,y (&) — Ty y(g, P)

= > D Caye) = Y Gay k)],

P#uc{l:d} \kyeDy(g,) kueAy u(gy)

motivating us to define the quantity

Soywi= D Cayk))™ = D (rayky)™

kuGDu(gu) kueA;,u(gu)

for # # u C {1 : d}. In the following, we distinguish two cases.

Case 1: Suppose that [u| = 1 such that u = {j} for some j € {1:d}. Then, we have

Sy lj) = > (ay; (k) = > (o, (k)™
keN ke{l,....b"—1}
tr;, (k) ;=0 (mod p) try (k) g ;=0 (mod p)
= > (Fay; (k)7

k>b"
tr;y (k) ;=0 (mod p)

Note that tr,, (k) g; = 0 (mod p) if and only if there is a ¢ € Fp[x] such that
try, (k) g; = cp and thus, since ged(gj, p) = 1, we have that tr,, (k) = ap for some
a € Fp[x]. But deg(tr), (k)) < m while deg(p) = m, which implies that tr,,, (k) = 0
and thus k = ¢ b™ for some ¢ € N. This yields

oo oo o
Sa,y,{j} — Z(ro{,yj (t bm))fl =y beot I_lOgblb’"J =y beoz Lm+10gb IJ

=1 t=1 t=1

bam

00 o0

—am —all Vi _ b (@)

=Vj2b am p, o|logy 1] Zba_mzb ou//b(t):yj_.
t=1

t=1

Case 2: Suppose that |u| > 2. In this case, we find that

Sa,y,u < Z Z Z ap(trm(ki)gi + trm(ku\{i}) : gu\{i}) .

ro.y(k
i€u foy (i eNlul=1 ki =b™ wy (k)

@ Springer

Constructive Approximation (2022) 56:75-119 89

Then, for ky\ ;) € N1 we write g = try, (ky\ (i) - &\ (i} and estimate the expression

Z 8p(try, (ki) gi +q)
ra,y(ku)

Z (Sp(trm(ki)gi +q)
uk->bm I—[jeubotl'logbkjJ

= Yu 1_[b*a |_10gh ij Z w

ki=b™

log, k;
e Pl poLlogy ki |
J#i
oo (t+1)b"—1
Sp(try(ki)gi +q)
_ p—logy & | p\tm
= Yu]l:{ ZXI: Z:tbm b | logy, ki |
J#i
t+1)p" -1
<7 l—[b o|log, k) | Zb o log, 1b™ | Z 8, (tr (ki) gi + q)
jeu ki =tb™
J#

= 1_[p—Llog, & | Zb a|m+log,t]| _ Mbba(:) 1_[p—Llog, k; J

jeu t=1 jeu

J# J#
where the penultimate equality follows since if gcd(g;, p) = 1 then for each # and
each ¢ € Fp[x] there exists exactly one k € {tb™, ..., (t + 1)b™ — 1} such that

try (k) gi +¢q = 0 (mod p).
Hence, we can estimate Sy p,y, for u| > 2, by

Sa,pu < Z Z Yu Mb(a) l_[b o|log, k;]

ieu iy eNlul-1 jeu
J#
(@) e
. “’b o log, k
- bam (Zb «Liog, J)
ieu k=1
i (@) _ i (o)
= 2 @M =y b—| ul < yu—(zub(a»'“'
icu

In summary, we obtain, using the results for both cases from above,

1
Y Seruws=g D va@u@)

B#uc(l:d) P#uc{l:d)
which is the claimed upper estimate. O

@ Springer

90 Constructive Approximation (2022) 56:75-119

Based on the previous result, it is straightforward to show the existence of good
polynomial lattice rules with respect to the worst-case error in the weighted Walsh
space, if one assumes the modulus p to be irreducible. We omit the proof, which uses
standard methods, and instead refer the reader to [7, Theorems 9 and 10], where an
analogous result for lattice rules has been proven.

Theorem 3 Let p € Fy[x]be anirreducible polynomial withdeg(p) = m, let N = b,
and let y = (y;) j>1 be positive weights. Then, there exists a g € Gi m Such that, for
all o > 1, the worst-case error epm g o y(g) satisfies

o

1 1
e aay@ <o 2 w@mEe)M | 3w o)
PEuc{l:d} P#uc(1:d)

Even though the result in Theorem 3 assures us that there always exist generating
vectors of polynomial lattice point sets which are in a certain sense good, the result is
not constructive. The road which we will take in the present paper is slightly different.
Instead of assuming an irreducible modulus p, we will assume that p has the special
form p(x) = p,(x) = x™ and show a constructive approach to find generating vectors
of good polynomial lattice rules. This will be the main result of our paper, which is
stated in Theorem 8.

3 The CBC-DBD Construction for Polynomial Lattice Rules

In this section, we formulate and analyze a method for the construction of good poly-
nomial lattice rules. In contrast to the existence result in Theorem 3, our construction
method yields polynomial lattice rules with modulus p(x) = x™. At first, we prove
some auxiliary statements which will be needed in the further analysis.

3.1 Preliminary Results

We consider the following Walsh series for x € (0, 1), based on the decay function ry,

o0 O p2milkog1+k16a+-)/b

walg (x) .
Z ri1(k) _1+Z pLlog, (k)] ’

k=0 k=1

which, as we will see, is closely related to our quality criterion 7), introduced in (7).
To this end, we define, for n € N, the n-th Walsh-Dirichlet kernel by

n—1
Dy(x) =) wali(x).
k=0

@ Springer

Constructive Approximation (2022) 56:75-119 91

From [5, Lemma A.17], it then follows that, for x € (0, 1),

b, 1fxe(0 .

0, ifxelk D. ®)

Dy (x) = {

We can then prove the following identity.

Lemma 1 For base b > 2, the Walsh series of —(b — 1)(|_10gb(x)J + 1) equals,
pointwise for x € (0, 1),

© 2mi(ko€1+r1€a+) /b 0 |
_(b_l)(Uog”(x)JJrl):“rZe pLiog, (0] =2 al](cg)

k=1 k=0

Proof Using the definition of the Walsh-Dirichlet kernel, we obtain

oo oo

waly (x) wal (x) Dpi (x) — Dpe—1(x)
Z pLiog, (0] Z Z pi—1 Z pi—1 '
k=

t=1 f=p—1 t=1

and from (8) we find that for # > 1 we have
(b—Db~1, ifx e (0,4),
Dy (x) = Dy () = § =07, ifx € b_l“)., ©)
0, ifx € |z, 1)

Applied inductively, the relation in (9) yields that for x € [l%, }%) we have

X Dye(x) — Dyt (x) A (b — Db pil
D = e R AeRCER R
/=1 =1

for all + > 1, which is equivalent to
> wal (x)

1+y # =(b-D—1)=—0b-1)(~t+1) = —(b~—1)(|log,(x) | +1)
k=1

forx e [l%, btl—,l) and for all # € N. This proves the claimed identity. O
Based on the previous result in Lemma 1, we show that the function

—(b — 1)(Llogb (x)J + 1) can be written in terms of its truncated Walsh series with
uniformly bounded remainder term.

@ Springer

92 Constructive Approximation (2022) 56:75-119

Lemma2 Let N = b™ withm € N and base b > 2. Then, for any x € (0, 1) there

existsat = t(x) € Rwith |t(x)| < 327 such that
i waly(x) T(x)
— (- 1)(]|1 = —_— 4+ —. 10

(b= D([log, ()] + 1) ;) YRR (10)

Proof The expansion in Lemma 1 allows us to write
= walg (x)
—(b =D ([logy(x) |+)= > + Ry (x),
= k)

where the remainder Ry (x) has the form

o0 o0 o0

waly (x) walg (x) Dpyiv1(x) — Dy (x)
Ry(x) = =) = .
k;ﬂ ry (k)]Zh;n pllog, ()] t;n b
From (9), we then see that the following inequality holds,
1

| Dyis1 (x) — Dy (x)| < — 1eN xeOD),

and thus, we obtain
o o
Dyi+1(x) — Dpi (x) 1 1 1 b
R = -y —= :
IRy (0] Z bt X Z b b— l)bm T b=1)Nx
t=m t=m

which implies the existence of a T(x) € R with |t(x)| < ;77 such that the identity
(10) holds. O

Remark 4 Using a more involved argument, the result in Lemma 2 can also be extended
to general N € N. In particular, we obtain that for any x € (0, 1) there exists a

T = t(x) € R such that

iy wal (x) T
—(b—D([log,(0)]+ =Y

k=0

r1(k) * Nx

with 7| < b(ﬁ +2) for b = 2 and with |7| < b(ﬁ +2b) forb > 2.

We will also make use of the following lemma, which was proved in [7, Lemma

3].

Lemma3 For j € {1:d}, letu;, wj, and p;j be real numbers satisfying

(@ uj=wj+p;, b)) |lujl<uj, () u;=>1,

@ Springer

Constructive Approximation (2022) 56:75-119 93

forall j € {1:d}. Then, for any subset) % u C {1:d} there exists a 0, with |6,] < 1
such that

[Tui=]Twi+0u|[IG+105D] D 10jl-

Jjeu Jjeu JjEu Jjeu

Furthermore, we recall the character property of Walsh functions for polynomial
lattice rules with prime base b. Let P(g, p) = {xo, ..., Xpm_1} be apolynomial lattice
with generating vector g € (I, [x])d and modulus p € Fy[x] with deg(p) = m. Then,
for any integer vector k € Ng’ the following identity holds,

blﬂ_l .
1 1, iftr,(k)-g =0 (mod p),
— walg (x,,) = §,(tr,, (k) - g) = 11
o ;0 kGen) = 8t (k) - 8) {O’ sthomise. (1n)

We remark that an analogous result to (11) also holds if we only consider projections
of the polynomial lattice and the generating vector onto a non-empty subset of {1:d},
as also the projection of a polynomial lattice is a polynomial lattice that is generated
by the corresponding projection of the generating vector.

We now state an auxiliary result that will be useful at several instances in this paper.

Lemma4 Let P(g, p) be a polynomial lattice with modulus p € Fp[x]withdeg(p) =
m and generating vector g = (g1, ..., ga) € (Fp[x1)?¢ such that ged(gj, p) =1 for
1 < j <d. Then, each one-dimensional projection of P(g, p) is the full grid

1 b —1
{O,—,..., }7
bm b"

and in particular the projection of the point with index 0 is always 0.

Proof The result follows from Definition 2 and [5, Remark 10.3]. O

Additionally, we will need the following result.

Lemma5 Let P(g,p) = {x0,...,Xpm_1} be a polynomial lattice point set with
modulus p € Fp[x] with deg(p) = m and generating vector g € (FplxD? such
that gcd(gj, p) = 1 for 1 < j < d. Furthermore, let m > 4. For a point x, with

n e {0,1,...,b" — 1}, we denote its coordinates via x, = (Xp 1, ..., %Xn.d). Then,
forany j € {1,...,d}, it is true that
1P
o xni<1+mlnb§m(b—l).

Proof We recall that the point set P(g, p) is defined as the collection of the »™ points

of the form
((n(x)gl(x)> (n(x)gd(x)>)
Xy = Um) Um - 5
p(x) p(x)

@ Springer

94 Constructive Approximation (2022) 56:75-119

for n € Fp[x] with deg(n) < m. Due to Lemma 4, we know that {xy j, ..., xpm_1 j}
equals the set {bm e b *1 } foreach j € {1, ..., d}. Thus, we can estimate
" —1 " —1

w1

Xn, j

1 b'”—ll
- X Zl st Lo
1+

_1+ln(bm—1) In(@") =14+mlnb <m(— 1),
which yields the claimed result, where the last estimate follows from the assumption
m > 4. O

3.2 The CBC-DBD Construction Algorithm

We are now ready to study the component-by-component digit-by-digit (CBC-DBD)
construction for polynomial lattice rules, see also [7], where such an algorithm was
analyzed for ordinary lattice rules. In particular, we will assume throughout this section
that our modulus polynomial is of the form p,, (x) = x™ for m € N.

Concerning the weights, the algorithm can, as indicated in our main result (Theo-
rem 8), be run with respect to the weights y /¢ ()/1/ “); j=1 to obtain a polynomial
lattice rule that yields a low worst-case error in the Walsh space W7 d.yOF alternatively,
with respect to the weights p to obtain good polynomial lattice rules in the space Wd -
In the latter case, the construction algorithm is independent of the smoothness param-
eter o and we obtain worst-case error bounds that hold for all « > 1 simultaneously.

In order to avoid confusion, we will therefore denote the weights in this section
by 7 instead of ¥ and outline the algorithm based on 7. In Theorem 8, we will then
choose 5 equal to ¥ '/ or y, respectively. For technical reasons (see Remark 5), it will
be necessary to assume that the positive weights 5 are of product structure, that is,

Nu = Hnj
Jjeu

for u C {1:d}, with a sequence of positive reals (1) j>1. However, we point out that
the following theorem, which is crucial for the proposed construction method, also
holds for general weights n = (ny)uc(1:q}-

Theorem 4 Let b be prime, letm,d € Nwithm > 4, let p,,,(x) = x™ € F[x], and let
1 = (Nu)uc(1:q) be positive weights with ng = 1. Furthermore, letg = (g1, ..., 84) €
(Fb[x])d with deg(g;) < m and gcd(gj, pm) = 1for1 < j < d. Then,

1 Ui
Ty(g pm) < oo Hamn @ = 3 et Yo (b= Dm+ DM
P#uc(l:d} PAuc(l:d}

b [u]
+) Z—;<bm|u|)(<b—1)m+m) , (12)
p#uc(l:d}

@ Springer

Constructive Approximation (2022) 56:75-119 95

where we define the function Hy 5 @ (Fp [x])d — Ras

b —1

Hima@ = Y n(=0" S T] Qlogb <vm (%))J + 1).

P#uC{l:d} n=1 jeu
(13)

Proof We use the character property of Walsh functions in (11) to rewrite Ty (g, pm)
with the help of the identity in Lemma 2. First, we recall that for k € Ny we have

1 for k =0,

ri(k) =ri(b, k) = {b’l_l()gb(k)J, for k # 0.

Using this definition, we obtain that
T,(g, Pm)

_ 517,,1 (try, (ky) - gu)
=2 m) [Tjeu k)

PFuC{lid} kye(l,...bm—1}ul

(Spm (try, (ky) - gu)
=< Z Nu Z Hjeu ri(kj)

PFuC{lid} 0£kye{0,...,.bm—1}lul

= Z &me_:I Z walg, (Xn,u) 1
peacitay V" 1o Ky (0.1, pm—1)lul [Tjeurik))

= > M » 1
(Z);éug{lzd}bm ku€l0, ..., bm —1}lul Hjeu Vl(kj)

b = walg (x. /)
2 [T{1+]; bLlogb:oJJ - Xm

n=1 jeu PFuc{l:d}

_ M _
=2 2 [Tjeur1k))

pAuc{l:d} kyuef0,....bm—1)lul

bpm—1

£ | Mmoo+ TTuom| |~ X

n=1 | jeu jeu Jjeu P#uc{l:d}

. 1 . p—1
-y E oy e Y B uw
PAUC(lid) kyel0,1,... bm—1jlul L LIEWT IS gy (1) n=1 jeu
. b1
= 2w 2 [TT@ 4100) D10 = 3 e
DAuc{l:d} n=1 JjEu jeu AAuc{l:d}

(14)

@ Springer

96 Constructive Approximation (2022) 56:75-119

where we used Lemma 3 with

uj=uj(n) =—b—1)(log,(xp ;)| +1), uj=1ujn) :=>b-1m,

-1
. walg (x, ;) - 7;(n)
wj =w;n) ~—1+’; m, pj=pjn) = Xp,j U™

and all |0, (n)| < 1 and |7;(n)| < %. Due to Lemma 2, Condition (a) of Lemma 3
is fulfilled. Furthermore, we see that by Lemma 4 we have for each j € {1:d} that
Xn,j = b7 forevery 1 <n < b™, and hence

lujm)| < = — D(|log, ™) |+) =—b—D(m+1) < (b-Dm=i;

with u; > 1 such that also Conditions (b) and (c) of Lemma 3 are satisfied.
By simple calculations, the first sum in (14) can be shown to equal

Nu 1
2 b 2 [Tjeurikp)

PFuC{l:d} ku€{0,1,....bm—1}Iul

| [u
1 Z Z 1
=_— nu | 1+ ——
log, (k
b PAuC{l:d) = plea®]
] m—1bt+1-1 lul
= Z Nu 1+ Z Z n n
b gAuc{l:d} =0 k=b bLOgb(g
1
=— > nqu(b-Dm+ DM,
FEuC{1:d)
while the third sum in (14) can be bounded by
0 pm—1
DI BADY § § (TR QN DIIIDI
N#uc{l:d} n=1 jeu jeu
b —1
Ny Ifj(n)l [7j(n)]
> WZQu(n) H((b—l) + an]bm
B#EuC{1:d} n=1 JEu JjEu
M b 7 ()]
< Y = [[(e-vm+—) | >
b , b—1)) =X, ;b
D#uC{l:d} n=1 JjEu jeu
b1 1

< 3w |(e-mm+:5) |2 X g,

pAuc{l:d} b jeu

@ Springer

Constructive Approximation (2022) 56:75-119 97

D 1_[<(b—1)m+bb) Y k- 1)

P#uc{l:d} jeu /eu
1 b \M
= > nubmiul) ((b— l)m—i-ﬁ) ;
A#uc{l:d}

where we used Lemma 5 and the fact that x,, ; > b™™ foreach jandall 1 <n < b™.
Combining these results with (14) yields the claimed result. O

We observe that the latter terms in (12) are of order O(b~™) and the implied con-
stants can be bounded independently of the dimension provided that certain conditions
on the weight sequence 5 hold (see the proof of Theorem 8 for further details). As this
is the desired order of Ty (g, p), Theorem 4 implies that it essentially suffices to find
a generating vector g € (I [x])" such that Hy ,, 5(g) is small, which then implies
that also a good bound on T3(g, pi») holds. We will therefore consider the quantity
Hy .y as a search criterion for good generating vectors.

At first, we prove the following result which will be needed in the further analysis
and remind the reader that by p,, we denote the polynomial p,, € Fp[x] with p,,(x) =
x™ form € N.

Lemma6 Let a prime b, an integer t > 2, and polynomials £,q € Fp[x] with
gcd(?, p1) = ged(q, p1) = 1 be given. Then, the following identity holds:

2 ([o (5 =2))) = Lo (o (55|

g€l

Proof Assume that the product of the polynomials ¢ and ¢ is given by
r
() q(x) =Y aix’ with ap,a, #0.

Let, furthermore,

v
0(x) = szx",
k=0

where we note that v < r. Hence, we obtain that for g € IF},

L(x x) 4 x!7!
()(q() g) Zalzt+Zekgxkl+(atl+£Og)x +Za, —

@ Springer

98 Constructive Approximation (2022) 56:75-119

and thus, we have that if a;—1 + £og # 0 (mod b), then

t—1
{logb (vt (K(X) (Q(X;t-i-x g)))J 41

a +e t—2 -
= Llogb (%Og + Za,b"’)J +l=—1+1=0.

i=0

Otherwise, if a;—1 + £pg = 0 (mod b), then
-2 t
) @)+ '\ e »
v;(qx’ 8 =Z;aiblt=z;at—ibl
1= 1=

iy o1 ¢
= Z (;at—i—lb_l> = Evt_l <%>,

and therefore

t—1
o o (200 0 | (1, (000
= e (o0 (5557))
= | 108y | Vr—1 xt——l .

Observing that there exists exactly one g € I, for which a;_1 + €pg = 0 (mod b)
and combining the two cases considered, we immediately obtain the claimed identity.
O

With the help of Lemma 6, we can prove the following result which motivates the
choice of our quality function for Algorithm 1.

Lemma 7 For integers m € N and w € {1,...,m}, let b be prime, g € Ty, and
g < (IFb[x])d with gcd(gj, p1) = 1 forall 1 < j < d, where g4 € Gp -1, and
let 1 = (M)ucqia), where n, =]_[jeu n;j with positive reals (n;) j>1, be product
weights. Then, the average of Hy .y With respect to the choices for extending the
degree of g4 + & pw—1 up to m equals

1 _
= Z Himn(81s---s 841,84 + & Pw—1+ & Pw)

8€Ghm—w
= i th:I na(l —b)b*™! <{logb <vw (({(x) (gd(xx)w+ gxw_l)>>J + 1>
=w =l
(0 (mod b)
A rnn (oo (222)
=1
+ ;m,w,n(g) - " =1, (15)

@ Springer

Constructive Approximation (2022) 56:75-119 99

where the term Sy, 5 (g), which does not depend on g and g, is given by

w—1 ¢ '
Sm,w,n(g) Z Z 1_[(1 + 77](1 - b) <\\10gb (Ut <w))J =+]))
t=1

(0 (mod b

s bzl 1:[(14—77,(1 b)({logb(“«@cﬂ)”“))

=
£2£0 (mod b’

x (14 na(1=0""").

Proof For product weights n,, =]—[jeu njand g = (81,...,84) € (Fp[x]D? with
gcd(gj, p1) = 1forall 1 < j <d, the quantity Hd,m,,,(g) defined in (13) equals

-1 d

Hima®@ = Y U (1 4, —b)(\}ogb (vm (W»J N 1))

n=1 j=I1
—" —1).

We define Fld,m,,,(g) = Hy my(g) + (b™ — 1) which in turn can be rewritten as

PP | () F ()
d’m’"(g)_z Z 1_[L+n;(1=5)||log, | v — +1)).

T 020 (mod b)©
(16)
In order to see this, note that for any function f : R — R we have that
by — ~
1 n(x) §;(x)
> e (=
X
n=1
b —1 ~ b —1
n(x) g;i(x) mod x™ n(x)
=Zf<”m(— =2 /(o
n=1 n=1
for each j € {1,...,d} since ged(g;,x) = 1 and that v, (L) = £ forn €
{1,...,0" —1}. Then using the general identity
m b —1
Z fa/p™=3"" " fub
=1 020 (r_ngd b)

yields the rewritten formula for Hy,, 5(2) in (16).

@ Springer

100 Constructive Approximation (2022) 56:75-119

Setting %4 = g4+ puw-—1+Z pu With g € Gpm_wand g; = g; for j € {1:d —1},
we can write

Z Hd,m,r](gl»~-~agd—la 8d + & Pw—1 +§Pw)
g’EGbm w

—bm — > Hymy@ - 0" 1)

gEGh,m w

Ly y ¥

8<Chmw =l mod by~
(1 +nj(1=b) ngb (W))J + 1)) — " —1)

e 22 2l

- £2£0 (mod b)

(oo s (222

The term — (b — 1) in (15) is therefore accounted for. What is more, by the definition
of v; we have for any g € Fj[x] that

(v o s (422)])

which is the first sum in Sy, 4 4, and, in particular, is independent of g and all g €
Gb,mfw'

t
vy (@) =, (q(x) ;I:Od X) ’ a7
and hence
w—1 b —1 d -
l_w >3] <1 +n;(1—b) Q]ogb (vl (M))J N 1))
§€Gpm—w =1 =1 j=1 X
£2£0 (mod b)

S

w—1 -1

t=1 =1
£#0 (mod b)

@ Springer

Constructive Approximation (2022) 56:75-119 101

The second sum in S, 5 and all remaining terms in identity (15) are obtained by
considering

G =Y o by~
m b —1 d—1
:Z <1+77j(1—b)<\\10gb (w(ux)%j(x)))J 1))
t=w (=1 j=I
¢£0 (mod b)
1
x (1 a1 = by
w—1 = w

3 (o (o (e 0) g) R

gEGh,m—w

such that, with the help of (17) and under the repeated use of Lemma 6, we obtain for
eacht € {w+1,...,m} that

w—1 s w
Z Qlogh<vt<i(X)(gd(X)+g; +g)x)>>J+1>

8€Ghm-w

w—1 P w
Y (Llogb (Uz (K(X) (gd(x)+g; +g(x)x)))J+1>

8€Gp,i—w

w—1 P w
Ct 3 ([(o (R 0 |

8€Gh1—w—1

m—t ¢ + wjl) m ; —r
= (1o (oo (A2 1) o 32

r=w+l

w—1 _ pw—t
et |y (e (L2 LN | Y e (L2,
xv b—1

Combining this with the identity in (18) yields the remaining term of S, 5 and the
first term in (15) such that the claimed result is proved. O

We note that only the first term of (15) in Lemma 7 depends on the (w — 1)-th order
term gx” ! of gg. Therefore, we can introduce the quality function for our algorithm
which is based on the first term of (15), yet slightly adjusted by an additional summand
that is independent of g and g.

Definition 3 (Digit-wise quality function) Let g € Fp[x], with prime b, let m, d € N,
and let n = (Nu)ucqi:a), Where 0y =]_[jeu n; with positive reals (1) j>1, be product

weights. For integers w € {1:m}, r € {l:d}, and polynomials gy, ..., g-—1 € Fp[x]
with ged(g;, p1) = 1for j =1,...,r — 1, we define the quality function £, y g :
Fpx] — R as

@ Springer

102 Constructive Approximation (2022) 56:75-119

moy b'—1 l
hr,w,m,l](q) = Z pt—w Z (1 + nr(l o b) (Llogb (Uw <%))J * 1))
(=1

t=w

£#£0 (mod b)
r—1)
<1 (1 ma = (|om (o (252)) [+1)).
j=1

We remark that the function A, 4,y directly depends on the polynomials g1, ..., g-—1
even though this is not visible in the notation. In the remainder of this section, however,
these polynomials will always be the components of the generating vector which were
selected in the previous steps of our algorithm. Based on the quality function A) 5,
we formulate the component-by-component digit-by-digit algorithm.

Algorithm 1 Component-by-component digit-by-digit algorithm

Input: Prime number b > 2, integers m, d € N, and positive product weights n = (17;) j>1.
Setgy =1landgy | ="--- =g41= 1.

for r =2 to d do
for w =2 tom do
g" = argmin hy w m.y(&r,w—1 + & Pw—1)
g€l
grow = &rw—1+ g*pw—l
end for
Set gr := gr.m-
end for

Setg = (g1, .-, 84)-

Return: Generating vector g = (g1, ..., 84) € (GZ m)d.

In the next section, we study the worst-case error behavior of polynomial lattice
rules with generating vectors obtained by Algorithm 1.

3.3 Error Bounds for the Constructed Polynomial Lattice Rules

The following theorem shows that for the constructed polynomial lattice rules the
quantity Hy . 5(g), which for product weights 1, = [jeulj equals

T n(x) g, (x)

e =E v o (2221
n=1 j=1
_ (bm _ 1)

m b'—1

=Z f[1<1+nj(1—b)<tlogb (Ut (%))J+l>)

t=1 (=1 j=
£#£0 (mod b)
- " -1,

can be related to the quantity Hg—1 .y (&(1:4—1))-

@ Springer

Constructive Approximation (2022) 56:75-119 103

Theorem 5 Let b be prime, m,d € N be integers with d > 2, and let 1 = (;) j>1
be positive product weights. Furthermore, denote by g the corresponding generating
vector constructed by Algorithm 1. Then, g satisfies

Hamy(8) < (L +n4) Ha—1,mn(&(1.4—1)) +1a®™ — 1). (19)

Proof We will prove (19) by an inductive argument over the selection of the terms of
order 1 <t < m — 1 of the polynomial g; € F,[x]. We start by considering the term
of order m — 1. According to Algorithm 1, this term has been selected by minimizing
hda m,m,y(8d,m—1-+& pm—1) over the choices g € I, and where g4 -1 € Gp,m—1 has
been determined in the previous steps of the algorithm. By Lemma 7 (with w = m)
and Definition 3, this is equivalent to minimizing

Hamy (g1, ..., 8d—1, 8&d.m—1 + & Pm—1)
with respect to g €). By the standard averaging argument, this yields

Hamy(8) = ?el}Fn Hamn (&:a—1) 8d.m—1 + & Pm—1)
b

1 -
= b Z Ha.m.y (g{lzd—l}v 8d.m—1 +gpm_1)
g€l

1 _
o S Hap ($acy 8em2+ g pm2+Epu). Q0)
2€Gp

where g4 ,,—1 hasbeensplitupinto g4 ,,—2 and g p,,—2 in accordance with Algorithm 1
such that g has been selected in the previous step of the algorithm and we used that
Gp1 = Fp.

Similarly, we observe that the term of order m — 2 has been selected by minimizing
ha,m—1,m,n(8d,m—2+ & pm—2) withrespect to the choices g € [F;. Again, by Lemma 7
(with w = m — 1) and Definition 3 this is equivalent to minimizing

1 -
5 Z Hamy(8(1:a-1) 8d.m—2 + & Pm—2 + & Pm—1)
g€Gy,1

with respect to g € Gp,1 = [F;,. By the standard averaging argument, we obtain that

1 _
min — Z Hamy (g{lzd—l}, 8d.m—2+8&Pm—2+& pm—l)
g€Gyp1 b -
g<Fy
1 _
=3 Z Z Hamy (81:d-1)> 8d.m—2 + & Pm—2 + & Pm—1)
g€Fp §€Gp,1

1 _
=52 Z Hamy (8(1:a-1) 8d.m—3 + & Pm—3 + & Pm—2) ,
8€Gp

@ Springer

104 Constructive Approximation (2022) 56:75-119

where again we splitup g4.m—2 = 84.m—3 + & pm—3 according to Algorithm 1. Induc-
tively repeating this argument and combining the result with the estimate in (20), we
obtain the inequality

Himy(g) < Z Hdmﬂ {14_1},1+gpl),
geGbml

where we used that in Algorithm 1 we set g4.1 = 1. Then, using Lemma 7 withw = 1,
g4 = 1, and g = 0 to equate the right-hand side of the previous estimate, we finally
obtain

Hgmy(g)

m b'—1 o £(x)
35 (e (2)))
t=1 =1

" €0 (mod b)
d—1

<T1 <1 +1;(1—b) ({logb <vt (—E(x)x‘ij(x)))J + 1)) " — 1)
=1

1

S E[(Hn,a—w(pob(() |+))

t
z;éo o

(14 na1 - bl—’)) .

For ¢ with £ % 0 (mod b), which is equivalent to gcd(¢, p;) = 1, we have for some
a € Fy\ {0} that | log;, (v (€(x)/x)) | +1 = |log, (a/b)| +1 = —1+1 = 0. Hence,
— — =

we get
1 .
(1 +n;(- b)(\}ogb (Ut (_ﬁ(x);;,(x)))J + 1))
ZaéO (mod b) !

x (1400 =p17) = " = 1)
< (14 00) (Hi—tmn (8§ (1:a-1) + " = 1) = (0" = 1)
= (1 +na) Hi—1.m.n(&(1:a—1y) + na(®" — 1),

d

m b'—1
Hdmn(g)<z Z

which is the claimed estimate. O

Remark 5 The proof strategy in Theorem 5, in which we relate the quantities Hy ;,, 5 (g)
and Hy_1 ,,,5(g) with each other, is the main reason why we restricted our analysis to
product weights. Without this assumption, the inductive argument over the dimension
becomes so complicated that so far it has not been possible to prove the induction
step. The same issue has also occurred for the analogous result for lattice rules, see
[7, Theorems 3 and 4].

@ Springer

Constructive Approximation (2022) 56:75-119 105

Based on the result in Theorem 5, we can use an inductive argument to show that
the quantity Hy ;5 (g) is sufficiently small if g has been constructed by Algorithm 1.

Theorem 6 Let b be prime, let m,d € N be positive integers and let n = (1)) j>1 be
positive product weights. Then, the generating vector g constructed by Algorithm 1
satisfies

Hymy(g) <b™ | =1+] +n)
j=1

Proof Due to the formulation of Algorithm 1, the estimate (19) obtained in Theorem 5
holdsif wereplaced by r forany r € {2, ..., d}, such that we getaresultfor H, ,, (&)
forany r € {2, ..., d}. Hence, we can use this estimate inductively to obtain

Hymy(8)
< (I +na)Ha—1,m (g (1:a—1y) +na @™ = 1)
< (I +na)(A + na—1)Ha—2,my(&(1:0-2)) + L+ n)na—1 (6" — 1) +na@™ — 1)

d d
= Hyomy(@ua—2) [] A+np+@" 1| =14+ [] t+np
j=d—1 Jj=d—1
d d
<Himg@) [[A+up+@" =D | =1+]]a+np|. @1
j=2 j=2
Next, we observe that
Hl,m,r[(gl) = Hl,m.r](l)
b1
n(x) m
=y (1 +n1(1 —b) ngh (vm (T"))J + 1)) — (" -1
n=1

b —1

oo ()])

:_mz Z (b—]){logh<())J-ﬁ-m(l—b)(b’"—l)

n;é() (mod b)
t—1 b'—1

——miz > <b—1>{logh(vz< >>J+m(1—b)(b’"—l).

t=1r=0 n=1
n#0 (mod b)
deg(n(x))=r

For any polynomial n(x) € Fp[x] of degree 0 < r < ¢ with gcd(n, x) = 1, we have

that
o s (52) =

@ Springer

106 Constructive Approximation (2022) 56:75-119

such that we can further deduce that

-1 b'—1

m t
Himp@)=mY (b=1Y > (t=r+md=bo"—1)
t=1

r=0 n=1
n#£0 (mod b)
deg(n(x))=r

m t—1
=my (b-1) ((b — Dty (b— 1 - r)) +01(1 = by(B™ = 1)

t=1 r=1

=m Y (b=1(b-Dt+b —bt+t—1)+m1—-b)®" - 1)

t=1

=mb-DY &' —D+nd-bE" - 1)

t=1

=m@" " —bm—b+m)+m (1 =b)B" = 1) =m@" — (b—Hm—1).

Combining this with the estimate in (21), we finally obtain

d d
Himy(@ <m@" =D [Ja+np+@" =1 | =1+][]0 +n)
j=2 j=2

d
=@" - |-1+]Jd+np |,
j=1
which yields the claimed estimate. O

Theorem 6 allows us to prove the following result regarding the construction in Algo-
rithm 1.

Theorem 7 Let b be prime, let m,d € N with m > 4, and let (nj)j=1 be positive
product weights. Then, the generating vector g constructed by Algorithm 1 satisfies

T,y (g, pm)

! - d 2b
= o 1_[(1 +n;j((b—1m+ 1))—|—bm1_[<1 +1; (Z(b_ Dm + m))

j=1 j=1
Proof We remark that for reals ay, ..., a; € R the general identity
d
Z l_[aj =—1+ l—[(l +aj)
P#uc{l:d} jeu j=1

holds. Using the bound on T3 (g, p;;) in Theorem 4 and inserting for g the generating
vector obtained from Algorithm 1, for which the bound on Hy ,, 5 (g) from Theorem 6
holds, yields

@ Springer

Constructive Approximation (2022) 56:75-119 107

d d
Ty(g. pw) < | —1+ [0 +np | = | -1+][0 +np
j=1 j=1
+ Y Z—:l((b—l)m—i-l)'ul
B#uc{l:d}
Nu b ul
+ > b—m(bm|u|)<(b—1)m+ﬁ)
P#uc{l:d}
1
<]1_[1(1+n]((b—1)m+1))
d 2b
—i—bmjlj[l(l—i-nj(Z(b—l)m—i-m)) ,

where in the last step we used that [u| < 2/*/. Note that by the formulation of Algo-
rithm 1 we have that ged(gj, pn) = 1 for 1 < j < d such that the conditions of
Theorem 4 are satisfied. O

The next theorem states the main result of this paper, implying that by the construc-
tion in Algorithm 1 we obtain an error convergence rate that is arbitrarily close to the
optimal rate of N~%. We know that this order is optimal due to the relation between
the worst-case errors in Wé’"y and W;"y (see Theorem 2 and Remark 3) and due to the

fact that the rate N~%/2 is optimal in Wgy, cf., e.g., [6, Theorem 41]. Additionally,
under a summability condition on the Wéights that is common in the related litera-
ture, the error can be bounded independently of the dimension, by which we obtain
what is known as strong polynomial tractability in the context of information-based
complexity. For an overview of different notions of tractability and basic concepts of
information-based complexity, we refer the interested reader to [17].

Theorem 8 Let b be prime, let m,d € Nwithm > 4, let N = b™, and let (y;) j>1 be
positive product weights satisfying

Z)/j < OQ.

j=1

Furthermore, denote by g the generating vector obtained by Algorithm 1, run for
the weight sequence § =y = (y;)j>1. Then, for any § > 0 and each o > 1, the
generating vector g satisfies

1 _
e daye(®) = 1o (COHM +C (.8 N7,

with positive constants C(y®) and C (y, 8), which are independent of d and N.

@ Springer

108 Constructive Approximation (2022) 56:75-119

1/a

Additionally, if Algorithm 1 is run for the weights n = y'/* with « > 1, which

satisfy
1/a
E y.'" < 00,
J
j=1

then, for any § > 0, the resulting generating vector g satisfies the error bound

~ 1 -
emadar® = 5z (K + R 5 N*).

with positive constants K (y) and K (y'/*, 8), which are independent of d and N.

Proof We know from Proposition 1 that

1
e dane (@) < — Y nEQup@)™ + Ty e (g, pm).

o

P#uc(l:d}

For the special case of product weights n, = [| u C {l1:d}, this yields

jeullj»
d
1 o
e (®) =z [(1+2m(@n) + Tue (g pu).
j=I

Since o > 1, we can use an inequality, sometimes referred to as Jensen’s inequality,

1/p
which states that Zlﬂil yi < (Zlﬁil yip> for non-negative yj, ..., yy and 0 <
p < 1. This yields

Tame (€ pm) = (Gagel)'= Y (riyk)®
0£keA,(g) 0£keA,(g)
Yo)TN = (Ty(g. pw)”

0£keA,(g)

IA

and by Theorem 7 we know that Algorithm 1 run for weights # yields g which satisfy

1

d
Ty(g. pm) = oo | [TO+m;(0 = Dm+ 1)
j=1

d 2b
+bm][] <1+n, (Z(b— 1)m+m>>

J=1

@ Springer

Constructive Approximation (2022) 56:75-119 109

From this, we deduce, using either the weights § = y!/* or y = y for Algorithm 1,
that
d d d
b Ty(g. pm) < [[(1+ njdbm) +bm [[(1 +njdbm) = (1 +bm) [[(1 + n;4bm)
j=1 j=1 j=1

d oo
< C@/2 b2] +njdbm) < C(8/2) 6™ [T(1 + n;4bm)
j=1 j=1

for arbitrary § > 0, where C@ /2) isaconstant depending only on §. Due to the imposed
condition on the weights, i.e., ijl yj < oo or 2131 yjl/a < oo,Awe can use the
result in [8, Lemma 3] to see that the last product can be bounded by C(y, §) b™8/2 or
6(y1/“, 8) b™%/2, respectively, where 6(7, §) and 6(71/0‘, §) may depend on § and
the weights y or !/, but are independent of the dimension. Choosing 5 = y, this
yields that

o o 1 ~ o o o
(Ty(g.)" = (Ty (g, Pm))" = 37 (C(3/2))" (C(v. 8) Ne?,
and similarly, for 5 = p /¢,
a [1~ a (= *
(T(g. p))" = (T (g,)" = 77z (C6/2))" (Cr.8)) " Ne.

Setting then C(y%) =]_[‘;:1(1 + 2pp(@)y§) and C(y,8) = (C(8/2))~ (6()/,)%,
and, similarly, K(y) =]_[‘;:1(1 + 2up(@)y)) and Ky, 8) = (C(5/2))”

(6 (yl/e, 5))“, we obtain the claimed error estimates, where the first stated bound
holds simultaneously for all o« > 1. O

The result in Theorem 8 consists of two statements regarding the worst-case error
behavior of generating vectors constructed by Algorithm 1. On the one hand, when
run with weights y /%, and hence depending on the parameter o, the algorithm yields
typical error bounds for the worst-case error in the space Wc‘i ’ We emphasize that
this type of result could also be obtained by formulating and using an analogous CBC-
DBD algorithm which is instead directly based on the search criterion epm 4 o,y . On the
other hand, when run with weights y, thus independently of «, the algorithm produces
generating vectors for which bounds on the worst-case errors in the spaces W“,yo, hold
simultaneously for all o« > 1.

4 Fast Implementation of the Construction Scheme
In this section, we discuss the efficient implementation of the introduced CBC-DBD

algorithm and analyze its complexity. Throughout this section, we will consider the
implementation for the special case of b = 2 and product weights y,, = [] jeuVi

@ Springer

110 Constructive Approximation (2022) 56:75-119

for a sequence of positive reals (y;)j>1. Choosing the prime base as b = 2 allows
for the use of bitwise operations which facilitate an efficient implementation of the
construction scheme. We remark that the major challenge for the implementation of
the algorithm for b > 2 is an efficient computation of the polynomial multiplication
modulo b, all other steps of the algorithm can be implemented analogously.

4.1 Implementation and Cost Analysis of the CBC-DBD Algorithm

Let g € F2[x], m,d € N be positive integers and let y = (Yu)uc(1:4), Where y,, =
]_[/.Eu y; with positive reals (y;) j>1. We recall that for b = 2 and integers w € {1:m},
r € {l:d} the digit-wise quality function h, y , in Definition 3, which is used in
Algorithm 1, is given by

m | 21 —1 ¢
hrwmy@ =) 5 D (1 o ([logz (”w ((xa)cg(X)»J " 1))
t=w =1

£=1 (mod 2)
r—1
l(x)gi(x
<1 (o ((F2)) [41)):
j=1 *
where the polynomials g1, ..., g-—1 € Fz[x] have been determined in the previous

steps of the algorithm. Since the cost of a single evaluation of the function 4,y m,y
is crucial for the total cost of Algorithm 1, we are interested in an efficient evaluation
procedure which will be discussed in the following paragraph.

For integers ¢t € {2,...,m} and odd £ € {1,...,2" — 1}, we define the term
a(r,t,?) as
-
) £(x) gj(x)
a(r,t,0) == l_ll (1 — ¥ (\}%;2 <vl (T +1
]:

and observe that for the evaluation of £, y 1,y (q) we can compute and store the term
a(r — 1,1, £) since it is independent of w and g. This way we can rewrite A,y .y (q)
as

m 2'—1
1
hrowmy (@ =Y =" Yo ar-1,10
r=w =1
(=1 (mod 2)

o).

@ Springer

Constructive Approximation (2022) 56:75-119 1m

where in Algorithm 1, after having determined g, ,,, the values of a(r, w, £) for odd
integers £ € {1, ...,2" — 1} are computed via the recurrence relation

atrw. O) =a(r — 1, w, €) <1 —p ({log2 (vw (W»J + 1>> .

For an algorithmic implementation, we introduce the vectoru = (u(1), ..., u(2"—
1) e RZ"~! whose components, for the current r € {1, ..., d}, are given by

u(@2m"y =]_[(1 — v (Llogz (u, (W»J + 1)) =a(r,t,0)

j=1

for eacht = 1,...,m and corresponding odd index ¢ € {1,...,2" — 1}. In Algo-
rithm 2, the quantity u stores the values of a(r — 1, ¢, £) for the current r and can
therefore be used to evaluate h, y), according to equation (22). Furthermore, note
that for the evaluation of A, y ,,, we do not require the values of a(r,t, £) for
t =2,...,w—1.Combining these findings leads to the following fast implementation
of Algorithm 1.

Algorithm 2 Fast component-by-component digit-by-digit algorithm

Input: Integers m, d € N and positive weights (yj)‘j.:] .
for ¢ =1to 2" — 1 do

w0 =1 (o8 (o () 1)

enda ior
Setgi=1landgr 1 =---=gg41 =1

for r =2 to d do
for w =2 tom do
g* = argmin Ay .y (gr.w—1 + g X1 With iy, evaluated using (22)
g€l
grow = &rw—1+ g*xwil
for £ = 1to 2% — 1 in steps of 2 do

w2 2 (1, (s (o (55)) 1)

end for
end for
Set gr := gr.m-
end for

Setg =(g1,---,8d)-

Return: Generating vector g = (g1, ..., g4) € (G;m)d for N =2,

The computational complexity of Algorithm 2 is then summarized in the following
theorem.

Theorem9 Letm,d € Nandlety = ()/j)?=1 be a given sequence of positive weights.

Then, Algorithm 2 constructs a generating vector g = (g1, ..., 8ad) € (sz)d using
O(d m 2™) operations and requiring O(2™) memory.

@ Springer

112 Constructive Approximation (2022) 56:75-119

Proof Due to the relation in (22), the cost of evaluating /1, .y (g) can be reduced
to O(X_J,, 2"~ 1) operations. Thus, the number of calculations in the inner loop over
w =2, ..., m of Algorithm 2 is of order

o (i 222’—1> =0 (i iz’) =0 (m2" —22" - 1)) =0 (m2").

w=2 w=2t=w

Hence, the outer loop over » = 2, ..., d, which is the main cost of Algorithm 2, can
be executed in O (d m 2™) operations. Furthermore, we observe that initialization and
updating of the vector u € R2"~! for each r can both be executed in

m m—1
Z @] (2“’_1) = Z O (2”’) = O(2") operations,
w=1

w=2

such that a total cost of O(d 2™) operations for maintaining u is required in Algo-
rithm 2. Additionally, storing the vector u requires O(2™) of memory. O

We note that for the modulus polynomial x™ the evaluation of v, (€(x)/x™) requires
only one integer division since vy, (¢(x)/x™) = £/2". Furthermore, we remark that
the running time of Algorithm 2 can be reduced further by precomputing and storing
the 2" — 1 values

(o () oo

The derivation leading to the fast implementation in Algorithm 2 is using arguments
that were used in [7], where a component-by-component digit-by-digit construction
for lattice rules in weighted Korobov spaces has been studied. Theorem 9 shows that
the fast implementation of the component-by-component digit-by-digit construction
for polynomial lattice rules achieves the same computational complexity as state-of-
the-art component-by-component methods, see, e.g., [3], which, for product weights,
require O(d m 2™) operations. In these constructions, the speed-up of the algorithm
is achieved by reordering the involved matrices to be of circulant structure and by
then employing a fast matrix-vector product which uses fast Fourier transformations
(FFTs). We refer to [19] for further details on an implementation for polynomial
lattice rules. In contrast, our method does not rely on the use of FFTs and the low
time complexity of the resulting algorithm is due to the smaller search space for the
components g ; of the generating vector g. Furthermore, we remark that the mentioned
state-of-the-art CBC constructions mainly use a primitive or irreducible modulus p €
> [x] since then the multiplicative group of F»[x]/(p) is cyclic. While for reducible
polynomials, such as p(x) = x™, a fast CBC construction is theoretically possible
by using a similar strategy as for the fast CBC construction for lattice rules with
a composite number of points, there are, to the best of our knowledge, no explicit
implementations of such an algorithm known. On the other hand, the CBC-DBD
construction considered in this article immediately yields a fast algorithm for the
construction of polynomial lattice rules in O(d m 2™) operations for p(x) = x™.

@ Springer

Constructive Approximation (2022) 56:75-119 13

5 Numerical Results

In this section, we illustrate the error convergence behavior of the polynomial lattice
rules constructed by the CBC-DBD algorithm and visualize the computational com-
plexity of the construction by means of numerical experiments. As in the previous
section, we consider polynomial lattice rules in the weighted Walsh space Wd""y for
prime base b = 2 and product weights y,, =[] jeu ¥j given in terms of positive reals
vj)j=1-

In order to demonstrate the performance of the algorithm, we compare the worst-
case errors of the constructed polynomial lattice rules as well as the algorithm’s
computation times to the corresponding quantities obtained by a state-of-the-art
component-by-component algorithm, see, e.g., [3]. As remarked in the previous sec-
tion, no fast CBC construction is known for the case p(x) = x™ such that instead we
compare our algorithm with a CBC construction with primitive polynomial p € Fa[x]
of degree m as the modulus. Both constructions deliver polynomial lattice rules for
the spaces Wd consisting of 2™ cubature points.

The different algorithms have been implemented in MATLAB R2019b and Python
3.6.3. In Python, the implementations are available in double-precision as well as
arbitrary-precision floating-point arithmetic with the latter provided by the multi-
precision Python library mpmath.

5.1 Error Convergence Behavior

Let m,d € N, @ > 1, and a sequence of positive weights y = (y;),>1 be given.
By Theorem 2, the worst-case error of a polynomial lattice point set P(g, p) =
{x0, ..., xpm_1}inbase b = 2 with generating vector g and modulus p € F,[x], with
deg(p) = m, in the space Wd""y is given by

bl‘ﬂ 1
walg (x,)
epn day(8) = Z (ra y(k) bm Z Z Vsupp(k) (k)n
0£keD(g, p) n=0 0zkeNd

For b = 2 and product weights y, = [] jeuVis this expression then equals

2m—1 d
e day(g) =—1+ ﬁ ST+ v ¢alen)
n=0 j=1
with ¢y : [0, 1] — R given by
o) = p2(a), ifx =0,
= pn (@) — 2049@=D (s (@) + 1), otherwise, with 7 = |log, () |,

@ Springer

114 Constructive Approximation (2022) 56:75-119

see, e.g., [4, Theorem 2], where () is defined as in (3). For the polynomial lattice
rules constructed by the algorithms considered, we will use this worst-case error
expression as a measure of quality.

In particular, we consider the convergence behavior of the worst-case error
e g.q,pe(g) for generating vectors g obtained by the CBC-DBD algorithm (with
modulus p(x) = x) and compare it with the error rates for polynomial lattice rules
constructed by the standard fast CBC algorithm (with primitive polynomial p € Fp[x]
of degree m) which uses the worst-case error eym 4 4y as the quality criterion. We
display the computation results for dimension d = 100 for different sequences of
product weights y = (y;) j>1, different values of m, and different smoothness param-
eters or. We stress that the almost optimal error rates of O(N~%%%), guaranteed by
Theorem 8, may not always be visible for the weights and ranges of N considered in
our numerical experiments. The graphs shown are therefore to be understood as an
illustration of the pre-asymptotic behavior of the worst-case error.

Remark 6 We stress that in these numerical experiments we compare the CBC-DBD
algorithm with modulus p(x) = x™ to the CBC construction with a primitive modulus
polynomial. Both constructions yield polynomial lattices consisting of N = b points
that have been constructed for the same function space Wd""y such that the comparison
is valid. To the best of our knowledge, there is no known implementation of the fast
CBC algorithm for polynomial lattice rules based on the modulus p(x) = x™. The
reason for the elusiveness of such an implementation is the more involved structure
of the group of units of the factor ring Fj,[x]/(x™) when factored into cyclic groups,
see, e.g., [24]. While for lattice rules the group of integer units modulo N = b™ is
either cyclic (for odd b) or can be factored into two cyclic subgroups (for b = 2),
which makes the corresponding generator easily computable, see, e.g., [19], the ring
Fp[x]/(x™) factors into a larger number of cyclic subgroups (for sufficiently large m)
and their generating elements are less studied in the context of QMC methods.

The results in Fig. 1 show that the CBC-DBD algorithm constructs generating vec-
tors of good polynomial lattice rules which have worst-case errors that are comparable
to those of polynomial lattice rules obtained by the fast CBC algorithm. We observe
identical asymptotic error rates for both algorithms considered, and also note that the
CBC-DBD construction always delivers slightly higher error values. The latter behav-
ior can easily be explained by the fact that the CBC construction is directly tailored
to the space WC‘Z e for a particular o since epm g o,y is used as the quality measure.
In contrast, the CBC-DBD construction is independent of the smoothness parameter
« and constructs polynomial lattices which have a good quality for all @ > 1. This
in turn also means that, from a theoretical perspective, the CBC-DBD algorithm only
needs to be executed once while the CBC construction has to be run for all consid-
ered « in order to obtain theoretically assured error convergence rates. Additionally,
we observe that the pre-asymptotic error decay is determined by the weight sequence
¥ = (v;)j>1. The faster the weights y; decay, the closer the error rate is to the optimal
rate of O(N ~%) for the space Wj,ya.

Remark 7 In the recent article [1], it has been shown that polynomial lattice rules
which were constructed for the weighted Walsh space W(‘Z , can also achieve the

@ Springer

Constructive Approximation (2022) 56:75-119

115

Error convergence in the space W;:VQ with d = 100, = 1.5, 2, 3.

- O(N—I.ZS)
- O(N—1.72)
10-13 |- -- 0N 29)

Lol el

102 10% 10*
Number of points N = 2™

10—11 -

Worst-case error ey g (g)

M| L By

100 —
S
= 107t
<
<
<
5 1076 |-
=
o
-
—
(]
o 1079 |
@
I}
o
=
5 10-12 |{--- O(N~14)
g - - O(N-188)
—— O(Nfz.sﬁ)
10-15 bl | ool [EEET
102 103 10*

Number of points N = 2™

(a) Weight sequence v = (y;)%_, with v; = 1/5% (b) Weight sequence v = (y;)%_, with v; = 1/5°.

1012 —
1071
B, -
— - —
> 100 - ‘\z\k i >
~ ‘\"‘r\-L_\ =
< Ao g 1073 |
<100 | =
z z
(8] (8] 10—5 |-
— —
S 10 p 2
- -
(] (] 7l
9 g 10
2 g0 L =
iz iz
17} @ 1079 -
3 ---O(WTh 3 --- O(N~H)
1073 |- 1 —1.48
= --- (N = -- - O(N14%)
--- O(N—107) 10711 - - o(N—219)
1076 | Ll Lol L1 1l Ll Ll Ll
102 10% 10* 102 103 10*

Number of points N = 2™ Number of points N = 2™

(c) Weight sequence v = (’7;‘)?:1 with v; = (0.95)7. (d) Weight sequence v = (’7;‘)?:1 with v; = (0.7)7.

—— CBC-DBD —— standard fast CBC Ho=15Ea=2MH a=3

Fig.1 Convergence results of the worst-case error epm g o yo () in the weighted space Wg »e for smooth-
ness parameters o = 1.5, 2,3 with dimension d = 100. The generating vectors g are constructed via
the component-by-component digit-by-digit algorithm and the standard CBC construction for polynomial

lattice rules for N = 2™ respectively

almost optimal worst-case error convergence rate for the space W;Zly, with different
smoothness parameter &’ > 1 and weight sequence p’, provided that certain conditions
on both weight sequences are satisfied. The result in [1], in particular Corollary 3,
relies on a favorable relation between the different weight sequences and smoothness
parameters and provides a theoretical foundation to use the standard CBC algorithm
with quality measure epm ¢ o p to Obtain error bounds for related function space settings
(and possibly different types of weights). We would like to point out that, in contrast,

@ Springer

116 Constructive Approximation (2022) 56:75-119

Table 1 Computation times (in s) for constructing the generating vector g of a polynomial lattice rule with
2™ points in d dimensions using the component-by-component digit-by-digit algorithm (bold font) and the
standard fast CBC construction (normal font)

d =50 d =200 d =500 d = 1000 d = 2000
m =10 0.005 0.017 0.04 0.075 0.149
0.078 0.303 0.753 1.51 3.036
m =12 0.029 0.07 0.161 0.285 0.566
0.121 0.482 1.207 2.388 4.769
m =14 0.101 0.279 0.658 1.295 2.519
0.231 0.908 2.267 4.499 8.999
m =16 0.493 1.43 3.407 6.624 13.105
0.641 2.563 6.549 12.875 25.628
m =18 2.542 7.617 17.469 34.07 67.235
2.654 10.871 27.257 54.389 108.913
m =20 12.849 36.915 84.819 165.362 326.43
19.48 78.477 195.5 394.627 784.482

The highest computation time out of five independent runs is displayed. For both construction algorithms,
the weight sequence (y;) j>1 with y; = l/j2 was used, the CBC algorithm used as additional input the
smoothness parameter o = 2

our algorithm (when run with weights y) is independent of & and delivers QMC rules
for which error bounds hold simultaneously for all o« > 1.

5.2 Computational Complexity

We demonstrate the computational complexity of Algorithm 2 which was proved in
Theorem 9. For this purpose, we measure and compare the computation times of imple-
mentations of Algorithm 2 and the standard fast CBC algorithm for polynomial lattice
rules with primitive modulus p € Fs[x], cf., e.g., [19]. For all timings, we perform
five independent measurements and then display either the highest time (Table 1) or
the mean (Fig. 2) out of these five runs. We consider multiple values of m, d € N and
fix the positive weight sequence y = (y;);>1 with y; = 1/2. Note that the chosen
weight sequence does not affect the computation times.

In Table 1, we display the timing results for the two considered algorithms. Further-
more, Fig. 2 provides a graphical illustration of the running times of both algorithms.
We remark that the measured times only indicate the duration for the construction of
the generating vectors but do not include the calculation of the corresponding worst-
case error. All timings were performed on an Intel Core i5 CPU with 2.3 GHz using
Python 3.6.3.

The timings displayed in Table 1 and Fig. 2 confirm that the computational com-
plexity of both algorithms depends on m and d in a similar way and the measured
times are in accordance with Proposition 9. Additionally, the linear dependence of
the construction cost on the dimension d is well observable. The measured construc-
tion times for Algorithm 2 are slightly higher than for the fast CBC algorithm but

@ Springer

Constructive Approximation (2022) 56:75-119 117

Mean computation times for CBC-DBD and fast CBC algorithm.

10* T T T T T T T

T T T

103

T T T
ol

102

T T
ol

10!

TTTTTIT

ol

10°

Computation time in seconds

T T T
Lol

1071

T T T TR

Ll

B —— CBC-DBD with d = 50
107 ——fast CBC with d = 50
[—e— CBC-DBD with d = 2000 |
i fast CBC with d = 2000 | |

10—3 1 1 1 I 1 Il 1 1 1 Il I 1 Il

_
5]
—
[
—
N
—
w
—-
'y
—
w
—
=
—-
3
=
©

19 20 21 22 23 24
m

Fig.2 Mean computation times (in s) for constructing the generating vector g of a polynomial lattice rule
with 2" points in d € {50, 2000} dimensions using the component-by-component digit-by-digit algorithm
(circles) and the standard fast CBC construction (crosses). The vertical error bars indicate the spread between
the independent timing runs

in general both algorithms can be executed in comparable time. This is especially
remarkable since the fast CBC construction is based on fast Fourier transformations
which rely on compiled and optimized code via Python’s Discrete Fourier Transform
(numpy.fft) library while the CBC-DBD construction does not make use of any com-
piled libraries. Additionally, we remark that the spread between independent timing
runs is neglectable, see also Fig. 2.

6 Conclusion

In this paper, we presented an algorithm for constructing good polynomial lattice
rules for numerical integration in weighted Walsh spaces. In particular, we stud-
ied a component-by-component digit-by-digit (CBC-DBD) construction with quality
measure independent of the smoothness parameter «, similar to [7], where such an
algorithm was analyzed for ordinary lattice rules. The construction algorithm is formu-
lated for the special case of product weights and yields polynomial lattice rules which

@ Springer

118 Constructive Approximation (2022) 56:75-119

admit error convergence rates that are arbitrarily close to the optimal convergence
order. Furthermore, the proven error bounds become independent of the dimension if
the weights satisfy suitable summability conditions. In addition to these theoretical
results, we derived a fast implementation of the considered algorithm which exhibits
the same computational complexity as the state-of-the-art fast CBC algorithm, but does
not rely on the use of fast Fourier transformations (FFTs). The considered algorithm is,
to the best of our knowledge, the first construction method for good polynomial lattice
rules with modulus p(x) = x™ that requires only O(d m 2™) operations. Extensive
numerical experiments illustrated our findings and proved that the considered method
is competitive with the standard fast CBC algorithm.

Acknowledgements The authors gratefully acknowledge the comments of two anonymous referees, which
were very helpful in helping to improve the presentation of the results.

References

1. Dick, J., Goda, T.: Stability of lattice rules and polynomial lattice rules constructed by the component-
by-component algorithm. J. Comput. Appl. Math. 382, 113062 (2021)

2. Dick, J., Kuo, FY., Pillichshammer, F., Sloan, I.H.: Construction algorithms for polynomial lattice
rules for multivariate integration. Math. Comput. 74, 1895-1921 (2005)

3. Dick, J., Kuo, FY., Sloan, I.H.: High-dimensional integration—the quasi-Monte Carlo way. Acta
Numer. 22, 133-288 (2013)

4. Dick, J., Pillichshammer, F.: Multivariate integration in weighted Hilbert spaces based on Walsh func-
tions and weighted Sobolev spaces. J. Complex. 21, 149-195 (2005)

5. Dick, J., Pillichshammer, F.: Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo
Integration. Cambridge University Press, Cambridge (2010)

6. Dick, J., Pillichshammer, F.: Discrepancy theory and quasi-Monte Carlo integration. In: Chen, W.W.L.,
Srivastav, A., Travaglini, G. (eds.) A Panorama of Discrepancy Theory, pp. 539-619. Springer, Cham
(2014)

7. Ebert, A., Kritzer, P., Nuyens, D., Osisiogu, O.: Digit-by-digit and component-by-component con-
structions of lattice rules for periodic functions with unknown smoothness. J. Complex. (2021). (to
appear)

8. Hickernell, FJ., Niederreiter, H.: The existence of good extensible rank-1 lattices. J. Complex. 19,
286-300 (2003)

9. Hlawka, E.: Zur angenéherten Berechnung mehrfacher Integrale. Monatshefte fiir Mathematik 66,
140-151 (1962)

10. Korobov, N.M.: Approximate evaluation of repeated integrals. Dokl. Akad. Nauk SSSR 124, 1207-
1210 (1959) (in Russian)

11. Korobov, N.M.: Number-theoretic methods in approximate analysis. Goz. Izdat. Fiz.-Math. (1963) (in
Russian)

12. Korobov, N.M.: On the computation of optimal coefficients. Dokl. Akad. Nauk SSSR 267, 289-292
(1982) (in Russian)

13. Korobov, N.M.: On the computation of optimal coefficients. Dokl. Akad. Nauk SSSR 26, 590-593
(1982)

14. Niederreiter, H.: Point sets and sequences with small discrepancy. Monatsh. Math. 104, 273-337 (1987)

15. Niederreiter, H.: Low-discrepancy point sets obtained by digital constructions over finite fields.
Czechoslovak Math. J. 42, 143-166 (1992)

16. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. Society for Industrial
and Applied Mathematics, Philadelphia (1992)

17. Novak, E., WozZniakowski, H.: Tractability of Multivariate Problems. Volume I: Linear Information.
EMS, Zurich (2008)

@ Springer

Constructive Approximation (2022) 56:75-119 119

18.

19.

20.

21.
22.

23.

24.

Nuyens, D.: The construction of good lattice rules and polynomial lattice rules. In: Kritzer, P., Nieder-
reiter, H., Pillichshammer, F., Winterhof, A. (eds.) Uniform Distribution and Quasi-Monte Carlo
Methods: Discrepancy, Integration and Applications, pp. 223-255. De Gruyter, Berlin (2014)
Nuyens, D., Cools, R.: Fast component-by-component construction, a reprise for different kernels. In:
Niederreiter, H., Talay, D. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2004, pp. 373-387.
Springer, Berlin (2006)

Nuyens, D., Cools, R.: Fast algorithms for component-by-component construction of rank-1 lattice
rules in shift-invariant reproducing kernel Hilbert spaces. Math. Comput. 75, 903-920 (2006)

Sloan, I.H., Joe, S.: Lattice Methods for Multiple Integration. Clarendon Press, Oxford (1994)

Sloan, I.H., Reztsov, V.A.: Component-by-component construction of good lattice rules. Math. Comput.
71, 263-273 (2002)

Sloan, I.H., Wozniakowski, H.: When are quasi-Monte Carlo algorithms efficient for high-dimensional
problems? J. Complex. 14, 1-33 (1998)

Smith, J.L., Gallian, J.A.: Factoring finite factor rings. Math. Mag. 58, 93-95 (1985)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

	Component-by-Component Digit-by-Digit Construction of Good Polynomial Lattice Rules in Weighted Walsh Spaces
	Abstract
	1 Introduction
	1.1 Overview and Main Results

	2 Polynomial Lattice Rules in Weighted Walsh Spaces
	2.1 The Weighted Walsh Space
	2.2 Polynomial Lattice Rules
	2.3 The Quality Measure

	3 The CBC-DBD Construction for Polynomial Lattice Rules
	3.1 Preliminary Results
	3.2 The CBC-DBD Construction Algorithm
	3.3 Error Bounds for the Constructed Polynomial Lattice Rules

	4 Fast Implementation of the Construction Scheme
	4.1 Implementation and Cost Analysis of the CBC-DBD Algorithm

	5 Numerical Results
	5.1 Error Convergence Behavior
	5.2 Computational Complexity

	6 Conclusion
	Acknowledgements
	References

