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Abstract
We describe generalizations of the universal approximation theorem for neural net-
works to maps invariant or equivariant with respect to linear representations of groups.
Our goal is to establish network-like computational models that are both invari-
ant/equivariant and provably complete in the sense of their ability to approximate
any continuous invariant/equivariant map. Our contribution is three-fold. First, in
the general case of compact groups we propose a construction of a complete invari-
ant/equivariant network using an intermediate polynomial layer. We invoke classical
theorems of Hilbert and Weyl to justify and simplify this construction; in particular,
we describe an explicit complete ansatz for approximation of permutation-invariant
maps. Second, we consider groups of translations and prove several versions of the
universal approximation theorem for convolutional networks in the limit of continuous
signals on euclidean spaces. Finally, we consider 2D signal transformations equivari-
antwith respect to the group SE(2) of rigid euclideanmotions. In this casewe introduce
the “charge–conserving convnet”—a convnet-like computational model based on the
decomposition of the feature space into isotypic representations of SO(2). We prove
this model to be a universal approximator for continuous SE(2)—equivariant signal
transformations.
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1 Introduction

1.1 Motivation

Symmetric models An important topic in learning theory is the design of predictive
models properly reflecting symmetries naturally present in the data (see, e.g., [3,
35,37]). Most commonly, in the standard context of supervised learning, this means
that our predictive model should be invariant with respect to a suitable group of
transformations: given an input object, we often know that its class or some other
property that we are predicting does not depend on the object representation (e.g.,
associated with a particular coordinate system), or for other reasons does not change
under certain transformations. In this case we would naturally like the predictive
model to reflect this independence. If f is our predictive model and � the group of
transformations, we can express the property of invariance by the identity f (Aγ x) =
f (x), where Aγ x denotes the action of the transformation γ ∈ � on the object x.
There is also a more general scenario where the output of f is another complex

object that is supposed to transform appropriately if the input object is transformed.
This scenario is especially relevant in the setting of multi-layered (or stacked) pre-
dictive models, if we want to propagate the symmetry through the layers. In this case
one speaks about equivariance, and mathematically it is described by the identity
f (Aγ x) = Aγ f (x), assuming that the transformation γ acts in some way not only on
inputs, but also on outputs of f . (For brevity, here and in the sequel we will slightly
abuse notation and denote any action of γ byAγ , though of course in general the input
and output objects are different and γ acts differently on them. It will be clear which
action is meant in a particular context).

A well-known important example of equivariant transformations are convolutional
layers in neural networks, where the group � is the group of grid translations, Zd .

Symmetrization vs. intrinsic symmetry We find it convenient to roughly dis-
tinguish two conceptually different approaches to the construction of invariant and
equivariant models that we refer to as the symmetrization-based one and the intrinsic
one. The symmetrization-based approach consists in starting from some asymmetric
model, and symmetrizing it by a group averaging. On the other hand, the intrinsic
approach consists in imposing prior structural constraints on the model that guarantee
its symmetricity.

In the general mathematical context, the difference between the two approaches is
best illustrated with the example of symmetric polynomials in the variables x1, . . . , xn ,
i.e., the polynomials invariant with respect to arbitrary permutations of these variables.
With the symmetrization-based approach, we can obtain any invariant polynomial by
starting with an arbitrary polynomial f and symmetrizing it over the group of per-
mutations Sn , i.e. by defining fsym(x1, . . . , xn) = 1

n!
∑

ρ∈Sn f (xρ(1), . . . , xρ(n)). On
the other hand, the intrinsic approach is associated with the fundamental theorem of
symmetric polynomials, which states that any invariant polynomial fsym in n variables
can be obtained as a superposition f (s1, . . . , sn) of some polynomial f and the ele-
mentary symmetric polynomials s1, . . . , sn . Though both approaches yield essentially
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the same result (an arbitrary symmetric polynomial), the two constructions are clearly
very different.

In practical machine learning, symmetrization is ubiquitous. It is often applied both
on the level of data and the level of models. This means that, first, prior to learning an
invariant model, one augments the available set of training examples (x, f (x)) by new
examples of the form (Aγ x, f (x)) (see, for example, Section B.2 of Thoma [43] for
a list of transformations routinely used to augment datasets for image classification
problems). Second, once some, generally non-symmetric, predictive model f̂ has
been learned, it is symmetrized by setting f̂sym(x) = 1

|�0|
∑

γ∈�0
f̂ (Aγ x), where �0

is some subset of � (e.g., randomly sampled). This can be seen as a manifestation
of the symmetrization-based approach, and its practicality probably stems from the
fact that the real world symmetries are usually only approximate, and in this approach
one can easily account for their imperfections (e.g., by adjusting the subset �0). On
the other hand, the weight sharing in convolutional networks [22,45] can be seen as
a manifestation of the intrinsic approach (since the translational symmetry is built
into the architecture of the network from the outset), and convnets are ubiquitous in
modern machine learning [23].

Completeness In this paper we will be interested in the theoretical opportunities
of the intrinsic approach in the context of approximations using neural-network-type
models. Suppose, for example, that f is an invariant map that we want to approximate
with the usual ansatz of a perceptron with a single hidden layer, f̂ (x1, . . . , xd) =∑N

n=1 cnσ(
∑d

k=1 wnk xk + hn) with some nonlinear activation function σ . Obviously,
this ansatz breaks the symmetry, in general. Our goal is to modify this ansatz in such a
way that, first, it does not break the symmetry and, second, it is complete in the sense
that it is not too specialized and any reasonable invariant map can be arbitrarily well
approximated by it. In Sect. 2 we show how this can be done by introducing an extra
polynomial layer into the model. In Sects. 3, 4 we will consider more complex, deep
models (convnets and their modifications). We will understand completeness in the
sense of the universal approximation theorem for neural networks [32].

Linear representations Designing invariant and equivariant models requires us to
decide how the symmetry information is encoded in the layers. A standard assumption,
to which we also will adhere in this paper, is that the group acts by linear transfor-
mations. Precisely, when discussing invariant models we are looking for maps of the
form

f : V → R, (1.1)

where V is a vector space carrying a linear representation R : � → GL(V ) of a group
�. More generally, in the context of multi-layer models

f : V1 f1→ V2
f2→ . . . (1.2)

we assume that the vector spaces Vk carry linear representations Rk : � → GL(Vk)
(the “baseline architecture” of the model), and we must then ensure equivariance in

123



410 Constructive Approximation (2022) 55:407–474

each link. Note that a linear action of a group on the input space V1 is a natural and
general phenomenon. In particular, the action is linear ifV1 is a linear space of functions
on some domain, and the action is induced by (not necessarily linear) transformations
of the domain. Prescribing linear representations Rk is then a viable strategy to encode
and upkeep the symmetry in subsequent layers of the model.

Compact vs. non-compact groups From the perspective of approximation the-
ory, we will be interested in finite computational models, i.e. including finitely many
operations as performed on a standard computer. Finiteness is important for potential
studies of approximation rates (though such a study is not attempted in the present
paper). Compact groups have the nice property that their irreducible linear represen-
tations are finite-dimensional. This allows us, in the case of such groups, to modify
the standard shallow neural network ansatz so as to obtain a computational model
that is finite, fully invariant/equivariant and complete, see Sect. 2. On the other hand,
irreducible representations of non-compact groups such asR

ν are infinite-dimensional
in general. As a result, finite computational models can be only approximately R

ν-
invariant/equivariant. Nevertheless, we show in Sects. 3, 4 that complete R

ν—and
SE(ν)—equivariant models can be rigorously described in terms of appropriate limits
of finite models.

1.2 RelatedWork

Our work can be seen as an extension of results on the universal approximation
property of neural networks [7,10,18,19,24,29,31,32] to the setting of group invari-
ant/equivariant maps and/or infinite-dimensional input spaces.

Our general results in Sect. 2 are based on classical results of the theory of poly-
nomial invariants [16,17,46].

An important element of constructing invariant and equivariantmodels is the extrac-
tion of invariant and equivariant features. In the present paper we do not focus on this
topic, but it has been studied extensively, see e.g. general results along with applica-
tions to 2D and 3D pattern recognition in [3,27,35,37,41].

In a series of works reviewed in Cohen et al. [5], the authors study expressiveness of
deep convolutional networks using hierarchical tensor decompositions and convolu-
tional arithmetic circuits. In particular, representation universality of several network
structures is examined in Cohen and Shashua [4].

In a series of works reviewed in Poggio et al. [33], the authors study expressive-
ness of deep networks from the perspective of approximation theory and hierarchical
decompositions of functions. Learning of invariant data representations and its rela-
tion to information processing in the visual cortex has been discussed in Anselmi et
al. [1].

In the series of papers [2,25,26,39], multiscale wavelet-based group invariant scat-
tering operators and their applications to image recognition have been studied.

There is a large body of work proposing specific constructions of networks for
applied group invariant recognition problems, in particular image recognition approx-
imately invariant with respect to the group of rotations or some of its subgroups: deep
symmetry networks of Gens and Domingos [11], G-CNNs of Cohen and Welling [6],
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networks with extra slicing operations in Dieleman et al. [8], RotEqNets of Marcos
et al. [28], networks with warped convolutions in Henriques and Vedaldi [15], Polar
Transformer Networks of Esteves et al. [9]. In Sect. 4 we study a family of models
equivariant w.r.t. 2D euclidean motions; our construction partly resembles the one
used in Worrall et al. [48]. However, in contrast to all these papers, we are primarily
interested in the theoretical guarantees of invariance and completeness.

Our Theorem 3.1 resembles the Curtis-Hedlund-Lyndon theorem from the theory
of cellular automata, that states that a map f : {1, . . . , N }Z

ν → {1, . . . , N }Z
ν
is

Z
ν-equivariant and continuous in the product topology if and only if it is defined

by a finite cellular automaton [14]. In Theorem 3.1 we characterize the maps f :
L2(Rν, R

dV ) → L2(Rν, R
dU ) that are R

ν-equivariant and continuous in the norm
topology as limit points of convnets.

In Sect. 2.4 we apply the invariant theory to construct complete permutation-
invariant networks. See [34,49] for related results and discussions of permutation-
invariant models, as well as applications to image recognition problems.

In Kondor and Trivedi [20], it is proved that network layers of the conventional
structure “a linear transformation followed by pointwise nonlinear activation” are
group-equivariant iff the linear part is a (generalized) convolution. This can be viewed
as a completeness result for equivariant maps implementable by a single standard
layer. In the present paper, our point of view is rather different: first, we strive to
describe approximations to maps from general functional classes, and second, we are
particularly interested in symmetries like R

ν or SE(2), that cannot be implemented in
a single finite layer, but can be recovered in a suitable limit (cf. Sects. 3, 4).

1.3 Contribution of this Paper

As discussed above, we will be interested in the following general question: assuming
there is a “ground truth” invariant or equivariant map f , how can we “intrinsically”
approximate it by a neural-network-like model? Our goal is to describemodels that are
finite, invariant/ equivariant (up to limitations imposed by the finiteness of the model)
and provably complete in the sense of approximation theory.

Our contribution is three-fold:

• In Sect. 2 we consider general compact groups and approximations by shallow
networks. Using the classical polynomial invariant theory, we describe a general
construction of shallow networks with an extra polynomial layer which are exactly
invariant/equivariant and complete (Propositions 2.3, 2.4). Then, we discuss how
this construction can be improved using the idea of polarization and a theorem of
Weyl (Propositions 2.5, 2.7). Finally, as a particular illustration of the “intrinsic”
framework, we consider maps invariant with respect to the symmetric group SN ,
and describe a corresponding neural network model which is SN -invariant and
complete (Theorem 2.4). This last result is based on another theorem of Weyl.

• In Sect. 3 we prove several versions of the universal approximation theorem for
convolutional networks and groups of translations. The main novelty of these
results is that we approximate maps f defined on the infinite-dimensional space
of continuous signals on R

ν . Specifically, one of these versions (Theorem 3.1)
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states that a signal transformation f : L2(Rν, R
dV ) → L2(Rν, R

dU ) can be
approximated, in some natural sense, by convnets without pooling if and only if
f is continuous and translationally-equivariant (here, by L2(Rν, R

d) we denote
the space of square-integrable functions � : R

ν → R
d ). Another version (Theo-

rem 3.2) states that amap f : L2(Rν, R
dV ) → R can be approximated by convnets

with pooling if and only if f is continuous.
• In Sect. 4 we describe a convnet-like model which is a universal approximator for
signal transformations f : L2(R2, R

dV ) → L2(R2, R
dU ) equivariant with respect

to the group SE(2) of rigid two-dimensional euclidean motions.We call this model
charge–conserving convnet, based on a 2D quantum mechanical analogy (conser-
vation of the total angular momentum). The crucial element of the construction
is that the operation of the network is consistent with the decomposition of the
feature space into isotypic representations of SO(2). We prove in Theorem 4.1
that a transformation f : L2(R2, R

dV ) → L2(R2, R
dU ) can be approximated by

charge–conserving convnets if and only if f is continuous and SE(2)-equivariant.

2 Compact Groups and Shallow Approximations

In this section we give several results on invariant/equivariant approximations by
neural networks in the context of compact groups, finite-dimensional representations,
and shallow networks. We start by describing the standard group-averaging approach
in Sect. 2.1. In Sect. 2.2 we describe an alternative approach, based on the invariant
theory. In Sect. 2.3 we show how one can improve this approach using polarization.
Finally, in Sect. 2.4 we describe an application of this approach to the symmetric group
SN .

2.1 Approximations Based on Symmetrization

We start by recalling the universal approximation theorem, which will serve as a
“template” for our invariant and equivariant analogs. There are several versions of this
theorem (see the survey Pinkus [32]), we will use the general and easy-to-state version
given in Pinkus [32].

Theorem 2.1 (Pinkus [32], Theorem 3.1) Let σ : R → R be a continuous activation
function that is not a polynomial. Let V = R

d be a real finite dimensional vector
space. Then any continuous map f : V → R can be approximated, in the sense of
uniform convergence on compact sets, by maps f̂ : V → R of the form

f̂ (x1, . . . , xd) =
N∑

n=1

cnσ
( d∑

s=1

wns xs + hn
)

(2.1)

with some coefficients cn, wns, hn.

Throughout the paper, we assume, as in Theorem 2.1, that σ : R → R is some
(fixed) continuous activation function that is not a polynomial.
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Also, as in this theorem, we will understand approximation in the sense of uniform
approximation on compact sets, i.e. meaning that for any compact K ⊂ V and any
ε > 0 one can find an approximating map f̂ such that | f (x)− f̂ (x)| ≤ ε (or ‖ f (x)−
f̂ (x)‖ ≤ ε in the case of vector-valued f ) for all x ∈ K . In the case of finite-
dimensional spaces V considered in the present section, one can equivalently say
that there is a sequence of approximating maps f̂n uniformly converging to f on
any compact set. Later, in Sects. 3, 4, we will consider infinite-dimensional signal
spaces V for which such an equivalence does not hold. Nevertheless, we will use
the concept of uniform approximation on compact sets as a guiding principle in our
precise definitions of approximation in that more complex setting.

Now suppose that the space V carries a linear representation R of a group �.
Assuming V is finite-dimensional, this means that R is a homomorphism of � to the
group of linear automorphisms of V :

R : � → GL(V ).

In the present section we will assume that � is a compact group, meaning, as is
customary, that � is a compact Hausdorff topological space and the group operations
(multiplication and inversion) are continuous. Accordingly, the representation R is
also assumed to be continuous. We remark that an important special case of compact
groups are the finite groups (with respect to the discrete topology).

One important property of compact groups is the existence of a unique, both left-
and right-invariant Haar measure normalized so that the total measure of � equals
1. Another property is that any continuous representation of a compact group on a
separable (but possibly infinite-dimensional) Hilbert space can be decomposed into
a countable direct sum of irreducible finite-dimensional representations. There are
many group representation textbooks to which we refer the reader for details, see
e.g. [38,40,44]. Accordingly, in the present section we will restrict ourselves to finite-
dimensional representations. Later, in Sects. 3 and 4, we will consider the noncompact
groupsR

ν andSE(ν) and their natural representations on the infinite-dimensional space
L2(Rν), which cannot be decomposed into countably many irreducibles.

Motivated by applications to neural networks, in this section and Sect. 3 we will
consider only representations over the field R of reals (i.e. with V a real vector space).
Later, in Sect. 4, we will consider complexified spaces as this simplifies the exposition
of the invariant theory for the group SO(2).

For brevity, we will call a vector space carrying a linear representation of a group
� a �-module. We will denote by Rγ the linear automorphism obtained by applying
R to γ ∈ �. In particular, the property that R is a homomorphism between � and
GL(V ) can then be written as

Rγ −1 = R−1
γ , Rγ θ = Rγ Rθ , ∀γ, θ ∈ �.

The integral over the normalized Haar measure on a compact group � is denoted by∫
�

·dγ .Wewill denote vectors by boldface characters; scalar components of the vector
x are denoted xk .
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Recall that given a �-module V , we call a map f : V → R �-invariant (or simply
invariant) if f (Rγ x) = f (x) for all γ ∈ � and x ∈ V . We state now the basic result
on invariant approximation, obtained by symmetrization (group averaging).

Proposition 2.1 Let� be a compact group and V afinite-dimensional�-module. Then,
any continuous invariant map f : V → R can be approximated by �-invariant maps
f̂ : V → R of the form

f̂ (x) =
∫

�

N∑

n=1

cnσ(ln(Rγ x) + hn)dγ, (2.2)

where cn, hn ∈ R are some coefficients and ln ∈ V ∗ are some linear functionals on
V , i.e. ln(x) = ∑

k wnk xk .

Proof It is clear that the map (2.2) is �-invariant, and we only need to prove the
completeness part. Let K be a compact subset in V , and ε > 0. Consider the sym-
metrization of K defined by Ksym = ∪γ∈�Rγ (K ). Note that Ksym is also a compact
set, because it is the image of the compact set � × K under the continuous map
(γ, x) 
→ Rγ x. We can use Theorem 2.1 to find a map f1 : V → R of the form
f1(x) = ∑N

n=1 cnσ(ln(x) + hn) and such that | f (x) − f1(x)| ≤ ε on Ksym. Now
consider the �-invariant group-averaged map f̂ (x) = ∫

�
f1(Rγ x)dγ . Then for any

x ∈ K ,

| f̂ (x) − f (x)| =
∣
∣
∣

∫

�

(
f1(Rγ x) − f (Rγ x)

)
dγ

∣
∣
∣ ≤

∫

�

∣
∣ f1(Rγ x) − f (Rγ x)

∣
∣dγ ≤ ε,

where we have used the invariance of f and the fact that | f1(x) − f (x)| ≤ ε for
x ∈ Ksym. ��

Nowwe establish a similar result for equivariant maps. Let V ,U be two�-modules.
For brevity, we will denote by R the representation of � in either of them (it will be
clear from the context which one is meant). We call a map f : V → U �-equivariant
if f (Rγ x) = Rγ f (x) for all γ ∈ � and x ∈ V .

Proposition 2.2 Let � be a compact group and V and U two finite-dimensional �-
modules. Then, any continuous �-equivariant map f : V → U can be approximated
by �-equivariant maps f̂ : V → U of the form

f̂ (x) =
∫

�

N∑

n=1

R−1
γ ynσ(ln(Rγ x) + hn)dγ, (2.3)

with some coefficients hn ∈ R, linear functionals ln ∈ V ∗, and vectors yn ∈ U.

Proof The proof is analogous to the proof of Proposition 2.1. Fix any norm ‖ · ‖ inU .
Given a compact set K and ε > 0, we construct the compact set Ksym = ∪γ∈�Rγ (K )

as before. Next, we find f1 : V → U of the form f1(x) = ∑N
n=1 ynσ(ln(x) + hn)
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and such that ‖ f (x)− f1(x)‖ ≤ ε on Ksym (we can do it, for example, by considering
scalar components of f with respect to some basis in U , and approximating these
components using Theorem 2.1). Finally, we define the symmetrized map by f̂ (x) =∫
�
R−1

γ f1(Rγ x)dγ . This map is �-equivariant, and, for any x ∈ K ,

‖ f̂ (x) − f (x)‖ =
∥
∥
∥

∫

�

(
R−1

γ f1(Rγ x) − R−1
γ f (Rγ x)

)
dγ

∥
∥
∥

≤ max
γ∈�

‖Rγ ‖
∫

�

∥
∥ f1(Rγ x) − f (Rγ x)

∥
∥dγ

≤ ε max
γ∈�

‖Rγ ‖.

By continuity of R and compactness of�,maxγ∈� ‖Rγ ‖ < ∞, sowe can approximate
f by f̂ on K with any accuracy. ��
Propositions 2.1, 2.2 present the “symmetrization-based” approach to constructing

invariant/equivariant approximations relying on the shallow neural network ansatz
(2.1). The approximating expressions (2.2), (2.3) are �-invariant/equivariant and uni-
versal. Moreover, in the case of finite groups the integrals in these expressions are
finite sums, i.e. these approximations consist of finitely many arithmetic operations
and evaluations of the activation function σ . In the case of infinite groups, the integrals
can be approximated by sampling the group.

In the remainder of Sect. 2 we will pursue an alternative approach to symmetrize
the neural network ansatz, based on the theory of polynomial invariants.

We finish this subsection with the following general observation. Suppose that we
have two �-modules U , V , and U can be decomposed into �-invariant submodules:
U = ⊕

β U
mβ

β (wheremβ denotes the multiplicity ofUβ inU ). Then a map f : V →
U is equivariant if and only if it is equivariant in each component Uβ of the output
space. Moreover, if we denote by Equiv(V ,U ) the space of continuous equivariant
maps f : V → U , then

Equiv
(
V ,

⊕

β

U
mβ

β

)
=

⊕

β

Equiv(V ,Uβ)mβ . (2.4)

This shows that the task of describing equivariant maps f : V → U reduces to the
task of describing equivariant maps f : V → Uβ . In particular, describing vector-
valued invariant maps f : V → R

dU reduces to describing scalar-valued invariant
maps f : V → R.

2.2 Approximations Based on Polynomial Invariants

The invariant theory seeks to describe polynomial invariants of group representations,
i.e. polynomial maps f : V → R such that f (Rγ x) ≡ f (x) for all x ∈ V . A fun-
damental result of the invariant theory is Hilbert’s finiteness theorem [16,17] stating
that for completely reducible representations, all the polynomial invariants are alge-

123



416 Constructive Approximation (2022) 55:407–474

braically generated by a finite number of such invariants. In particular, this holds for
any representation of a compact group.

Theorem 2.2 (Hilbert) Let � be a compact group and V a finite-dimensional �-
module. Then there exist finitely many polynomial invariants f1, . . . , fNinv : V → R

such that any polynomial invariant r : V → R can be expressed as

r(x) = r̃( f1(x), . . . , fNinv(x))

with some polynomial r̃ of Ninv variables.

See, e.g., Kraft and Procesi [21] for a modern expositions of the invariant theory
and Hilbert’s theorem. We refer to the set { fs}Ninv

s=1 from this theorem as a generating
set of polynomial invariants (note that this set is not unique and Ninv may be different
for different generating sets).

Thanks to the density of polynomials in the space of continuous functions, we can
easily combine Hilbert’s theorem with the universal approximation theorem to obtain
a complete invariant ansatz for invariant maps:

Proposition 2.3 Let � be a compact group, V a finite-dimensional �-module, and
f1, . . . , fNinv : V → R a finite generating set of polynomial invariants on V (existing
by Hilbert’s theorem). Then, any continuous invariant map f : V → R can be
approximated by invariant maps f̂ : V → R of the form

f̂ (x) =
N∑

n=1

cnσ
( Ninv∑

s=1

wns fs(x) + hn
)

(2.5)

with some parameter N and coefficients cn, wns, hn.

Proof It is obvious that the expressions f̂ are �-invariant, so we only need to prove
the completeness part.

Let us first show that the map f can be approximated by an invariant polynomial.
Let K be a compact subset in V , and, like before, consider the symmetrized set Ksym.

By the Stone-Weierstrass theorem, for any ε > 0 there exists a polynomial r on
V such that |r(x) − f (x)| ≤ ε for x ∈ Ksym. Consider the symmetrized function
rsym(x) = ∫

�
r(Rγ x)dγ . Then the function rsym is invariant and |rsym(x)− f (x)| ≤ ε

for x ∈ K . On the other hand, rsym is a polynomial, since r(Rγ x) is a fixed degree
polynomial in x for any γ .

Using Hilbert’s theorem, we express rsym(x) = r̃( f1(x), . . . , fNinv(x)) with some
polynomial r̃ .

It remains to approximate the polynomial r̃(z1, . . . , zNinv) by an expression of
the form f̃ (z1, . . . , zNinv) = ∑N

n=1 cnσ(
∑Ninv

s=1 wns zs + hn) on the compact set
{( f1(x), . . . , fNinv(x))|x ∈ K } ⊂ R

Ninv . By Theorem 2.1, we can do it with any accu-
racy ε. Setting finally f̂ (x) = f̃ ( f1(x), . . . , fNinv(x)), we obtain f̂ of the required
form such that | f̂ (x) − f (x)| ≤ 2ε for all x ∈ K . ��
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Note that Proposition 2.3 is a generalization of Theorem 2.1; the latter is a special
case obtained if the group is trivial (� = {e}) or its representation is trivial (Rγ x ≡ x),
and in this case we can just take Ninv = d and fs(x) = xs .

In terms of neural network architectures, formula (2.5) can be viewed as a shallow
neural network with an extra polynomial layer that precedes the conventional linear
combination and nonlinear activation layers.

We extend now the obtained result to equivariant maps. Given two �-modules V
and U , we say that a map f : V → U is polynomial if l ◦ f is a polynomial for
any linear functional l : U → R. We rely on the extension of Hilbert’s theorem to
polynomial equivariants:

Lemma 2.1 Let � be a compact group and V and U two finite-dimensional �-
modules. Then there exist finitely many polynomial invariants f1, . . . , fNinv : V →
R and polynomial equivariants g1, . . . , gNeq : V → U such that any polyno-
mial equivariant rsym : V → U can be represented in the form rsym(x) =
∑Neq

m=1 gm(x)̃rm( f1(x), . . . , fNinv(x)) with some polynomials r̃m.

Proof We give a sketch of the proof, see e.g. Section 4 of Worfolk [47] for details.
A polynomial equivariant rsym : V → U can be viewed as an invariant element of
the space R[V ] ⊗ U with the naturally induced action of �, where R[V ] denotes the
space of polynomials on V . The space R[V ] ⊗U is in turn a subspace of the algebra
R[V ⊕ U∗], where U∗ denotes the dual of U . By Hilbert’s theorem, all invariant
elements in R[V ⊕ U∗] can be generated as polynomials of finitely many invariant
elements of this algebra. The algebra R[V ⊕ U∗] is graded by the degree of the U∗
component, and the corresponding decomposition ofR[V ⊕U∗] into the direct sum of
U∗-homogeneous spaces indexed by the U∗-degree dU∗ = 0, 1, . . . , is preserved by
the group action. The finitely many polynomials generating all invariant polynomials
in R[V ⊕ U∗] can also be assumed to be U∗-homogeneous. Let { fs}Ninv

s=1 be those of

these generating polynomials with dU∗ = 0 and {gs}Neq
s=1 be those with dU∗ = 1. Then,

a polynomial in the generating invariants is U∗-homogeneous with dU∗ = 1 if and
only if it is a linear combination of monomials gs f

n1
1 f n22 · · · f nNinvNinv

. This yields the
representation stated in the lemma. ��

We will refer to the set {gs}Neq
s=1 as a generating set of polynomial equivariants.

The equivariant analog of Proposition 2.3 now reads:

Proposition 2.4 Let � be a compact group, V and U be two finite-dimensional �-
modules. Let f1, . . . , fNinv : V → R be a finite generating set of polynomial invariants
and g1, . . . , gNeq : V → U be a finite generating set of polynomial equivariants
(existing by Lemma 2.1). Then, any continuous equivariant map f : V → U can be
approximated by equivariant maps f̂ : V → U of the form

f̂ (x) =
N∑

n=1

Neq∑

m=1

cmngm(x)σ
( Ninv∑

s=1

wmns fs(x) + hmn

)

with some parameter N and coefficients cmn, wmns, hmn .
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Proof The proof is similar to the proof of Proposition 2.3, with the difference that the
polynomial map r is now vector-valued, its symmetrization is defined by rsym(x) =∫
�
R−1

γ r(Rγ x)dγ , and Lemma 2.1 is used in place of Hilbert’s theorem. ��
We remark that, in turn, Proposition 2.4 generalizes Proposition 2.3; the latter is a

special case obtained whenU = R, and in this case we just take Neq = 1 and g1 = 1.

2.3 Polarization andMultiplicity Reduction

The main point of Propositions 2.3 and 2.4 is that the representations described there

use finite generating sets of invariants and equivariants { fs}Ninv
s=1 , {gm}Neq

m=1 independent
of the function f being approximated. However, the obvious drawback of these results
is their non-constructive nature with regard to the functions fs, gm . In general, finding
generating sets is not easy. Moreover, the sizes Ninv, Neq of these sets in general grow
rapidly with the dimensions of the spaces V ,U .

This issue can be somewhat ameliorated using polarization and Weyl’s theorem.
Suppose that a �-module V admits a decomposition into a direct sum of invariant
submodules:

V =
⊕

α

Vmα
α . (2.6)

Here, Vmα
α is a direct sum of mα submodules isomorphic to Vα:

Vmα
α = Vα ⊗ R

mα = Vα ⊕ . . . ⊕ Vα︸ ︷︷ ︸
mα

. (2.7)

Any finite-dimensional representation of a compact group is completely reducible and
has a decomposition of the form (2.6) with non-isomorphic irreducible submodules
Vα . In this case the decomposition (2.6) is referred to as the isotypic decomposition, and
the subspaces Vmα

α are known as isotypic components. Such isotypic components and
their multiplicitiesmα are uniquely determined (though individually, themα spaces Vα

appearing in the direct sum (2.7) are not uniquely determined in general, as subspaces
in V ).

For finite groups the number of non-isomorphic irreducibles α is finite. In this case,
if the module V is high-dimensional, then this necessarily means that (some of) the
multiplicities mα are large. This is not so, in general, for infinite groups, since infinite
compact groups have countably many non-isomorphic irreducible representations.
Nevertheless, it is in any case useful to simplify the structure of invariants for high-
multiplicity modules, which is what polarization and Weyl’s theorem do.

Below, we slightly abuse the terminology and speak of isotypic components and
decompositions in the broader sense, assuming decompositions (2.6), (2.7) but not
requiring the submodules Vα to be irreducible or mutually non-isomorphic.

The idea of polarization is to generate polynomial invariants of a representation
with large multiplicities from invariants of a representation with small multiplicities.
Namely, note that in each isotypic component Vmα

α written as Vα ⊗ R
mα the group
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essentially acts only on the first factor, Vα . So, given two isotypic �-modules of the

same type, Vmα
α = Vα ⊗ R

mα and V
m′

α
α = Vα ⊗ R

m′
α , the group action commutes

with any linear map 1Vα ⊗ A : Vmα
α → V

m′
α

α , where A acts on the second factor,

A : R
mα → R

m′
α . Consequently, given two modules V = ⊕

α Vmα
α , V ′ = ⊕

α V
m′

α
α

and a linear map Aα : Vmα
α → V

m′
α

α for each α, the linear operator A : V → V ′
defined by

A =
⊕

α

1Vα ⊗ Aα (2.8)

will commute with the group action. In particular, if f is a polynomial invariant on
V ′, then f ◦ A will be a polynomial invariant on V .

The fundamental theorem of Weyl states that it suffices to take m′
α = dim Vα to

generate in this way a complete set of invariants for V . We will state this theorem in
the following form suitable for our purposes.

Theorem 2.3 (Weyl [46], sections II.4-5) Let F be the set of polynomial invariants for
a �-module V ′ = ⊕

α V dim Vα
α . Suppose that a �-module V admits a decomposition

V = ⊕
α Vmα

α with the same Vα , but arbitrary multiplicities mα . Then the polynomials
{ f ◦A} f ∈F linearly span the space of polynomial invariants on V , i.e. any polynomial
invariant f on V can be expressed as f (x) = ∑T

t=1 ft (Atx) with some polynomial
invariants ft on V ′.

Proof A detailed exposition of polarization and a proof of Weyl’s theorem based on
the Capelli–Deruyts expansion can be found in Weyl’s book or in Sections 7–9 of
Kraft and Procesi [21]. We sketch the main idea of the proof.

Consider first the case where V has only one isotypic component: V = Vmα
α . We

may assume without loss of generality that mα > dim Vα (otherwise the statement
is trivial). It is also convenient to identify the space V ′ = V dim Vα

α with the subspace
of V spanned by the first dim Vα components Vα . It suffices to establish the claimed
expansion for polynomials f multihomogeneous with respect to the decomposition
V = Vα ⊕ . . . ⊕ Vα , i.e. homogeneous with respect to each of the mα components.
For any such polynomial, the Capelli–Deruyts expansion represents f as a finite sum
f = ∑

n CnBn f . Here Cn, Bn are linear operators on the space of polynomials on V ,
and they belong to the algebra generated by polarization operators on V . Moreover,
for each n, the polynomial f̃n = Bn f depends only on variables from the first dim Vα

components of V = Vmα
α , i.e. f̃n is a polynomial on V ′. This polynomial is invariant,

since polarization operators commute with the group action. Since Cn belongs to the
algebra generated by polarization operators, we can then argue (see Proposition 7.4 in
Kraft and Procesi [21]) that CnBn f can be represented as a finite sum CnBn f (x) =∑

k f̃n((1Vα ⊗ Akn)x) with some mα × dim Vα matrices Akn . This implies the claim
of the theorem in the case of a single isotypic component.

Generalization to several isotypic components is obtained by iteratively applying
the Capelli–Deruyts expansion to each component. ��

Now we can give a more constructive version of Proposition 2.3:

123



420 Constructive Approximation (2022) 55:407–474

Proposition 2.5 Let ( fs)
Ninv
s=1 be a generating set of polynomial invariants for a �-

module V ′ = ⊕
α V dim Vα

α . Suppose that a �-module V admits a decomposition V =⊕
α Vmα

α with the same Vα , but arbitrary multiplicities mα . Then any continuous
invariant map f : V → R can be approximated by invariant maps f̂ : V → R of the
form

f̂ (x) =
T∑

t=1

ctσ
( Ninv∑

s=1

wst fs(Atx) + ht
)

(2.9)

with some parameter T and coefficients ct , wst , ht ,At , where each At is formed by
an arbitrary collection of (mα × dim Vα)-matrices Aα as in (2.8).

Proof We follow the proof of Proposition 2.3 and approximate the function f by an
invariant polynomial rsym on a compact set Ksym ⊂ V . Then, using Theorem 2.3, we
represent

rsym(x) =
T∑

t=1

rt (Atx) (2.10)

with some invariant polynomials rt on V ′. Then, by Proposition 2.3, for each t we can
approximate rt (y) on At Ksym by an expression

N∑

n=1

c̃ntσ
( Ninv∑

s=1

w̃nst fs(y) + h̃nt
)

(2.11)

with some c̃nt , w̃nst , h̃nt .Combining (2.10)with (2.11), it follows that f canbe approx-
imated on Ksym by

T∑

t=1

N∑

n=1

c̃ntσ
( Ninv∑

s=1

w̃nst fs(Atx) + h̃nt
)
.

The final expression (2.9) is obtained now by removing the superfluous summation
over n. ��

Proposition 2.5 is more constructive than Proposition 2.3 in the sense that the
approximating ansatz (2.9) only requires us to know an isotypic decomposition V =
⊕

α Vmα
α of the �-module under consideration and a generating set ( fs)

Ninv
s=1 for the

reference module V ′ = ⊕
α V dim Vα

α . In particular, suppose that the group � is finite,
so that there are only finitely many non-isomorphic irreducible modules Vα . Then,
for any �-module V , the universal approximating ansatz (2.9) includes not more
than CT dim V scalar weights, with some constant C depending only on � (since
dim V = ∑

α mα dim Vα).
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We remark that in terms of the network architecture, formula (2.9) can be inter-
preted as the network (2.5) from Proposition 2.3 with an extra linear layer performing
multiplication of the input vector by At .

We establish now an equivariant analog of Proposition 2.5. We start with an equiv-
ariant analog of Theorem 2.3.

Proposition 2.6 Let V ′ = ⊕
α V dim Vα

α and G be the space of polynomial equivariants
g : V ′ → U. Suppose that a �-module V admits a decomposition V = ⊕

α Vmα
α with

the same Vα , but arbitrary multiplicities mα . Then, the functions {g ◦ A}g∈G linearly
span the space of polynomial equivariants g : V → U, i.e. any such equivariant can be
expressed as g(x) = ∑T

t=1 gt (Atx) with some polynomial equivariants gt : V ′ → U.

Proof As mentioned in the proof of Lemma 2.1, polynomial equivariants g : V → U
can be viewed as invariant elements of the extended polynomial algebra R[V ⊕U∗].
The proof of the theorem is then completely analogous to the proof of Theorem 2.3
and consists in applying the Capelli–Deruyts expansion to each isotypic component
of the submodule V in V ⊕U∗. ��

The equivariant analog of Proposition 2.5 now reads:

Proposition 2.7 Let ( fs)
Ninv
s=1 be a generating set of polynomial invariants for a

�-module V ′ = ⊕
α V dim Vα

α , and (gs)
Neq
s=1 be a generating sets of polynomial equiv-

ariants mapping V ′ to a �-module U. Let V = ⊕
α Vmα

α be a �-module with the
same Vα . Then any continuous equivariant map f : V → U can be approximated by
equivariant maps f̂ : V → U of the form

f̂ (x) =
T∑

t=1

Neq∑

m=1

cmt gm(Atx)σ
( Ninv∑

s=1

wmst fs(Atx) + hmt

)
(2.12)

with some coefficients cmt , wmst , hmt ,At , where each At is given by a collection of
(mα × dim Vα)-matrices Aα as in (2.8).

Proof As in the proof of Theorem 2.4, we approximate the function f by a polynomial
equivariant rsym on a compact Ksym ⊂ V . Then, using Theorem 2.6, we represent

rsym(x) =
T∑

t=1

rt (Atx) (2.13)

with some polynomial equivariants rt : V ′ → U . Then, by Proposition 2.4, for each
t we can approximate rt (x′) on At Ksym by expressions

N∑

n=1

Neq∑

m=1

c̃mnt g(x′)σ
( Ninv∑

s=1

w̃mnst fs(x′) + h̃mnt

)
. (2.14)
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Using (2.13) and (2.14), f can be approximated on Ksym by expressions

T∑

t=1

N∑

n=1

Neq∑

m=1

c̃mnt g(Atx)σ
( Ninv∑

s=1

w̃mnst fs(Atx) + h̃mnt

)
.

We obtain the final form (2.12) by removing the superfluous summation over n. ��

We remark that Proposition 2.7 improves the earlier Proposition 2.4 in the equiv-
ariant setting in the same sense in which Proposition 2.5 improves Proposition 2.3 in
the invariant setting: construction of a universal approximator in the case of arbitrary
isotypic multiplicities is reduced to the construction with particular multiplicities by
adding an extra equivariant linear layer to the network.

2.4 The Symmetric Group SN

Even with the simplification resulting from polarization, the general results of the
previous section are not immediately useful, since one still needs to find the iso-
typic decomposition of the analyzed �-modules and to find the relevant generating
invariants and equivariants. In this section we describe one particular case where the
approximating expression can be reduced to a fully explicit form.

Namely, consider the natural action of the symmetric group SN on R
N :

Rγ en = eγ (n),

where en ∈ R
N is a coordinate vector and γ ∈ SN is a permutation.

Let V = R
N ⊗ R

M and consider V as a SN -module by assuming that the group
acts on the first factor, i.e. γ acts on x = ∑N

n=1 en ⊗ xn ∈ V by

Rγ

N∑

n=1

en ⊗ xn =
N∑

n=1

eγ (n) ⊗ xn .

We remark that this module appears, for example, in the following scenario (cf.
Zaheer et al. [49]). Suppose that f is amap defined on the set of sets X = {x1, . . . , xN }
of N vectors from R

M . We can identify the set X with the element
∑N

n=1 en ⊗ xn of
V and in this way view f as defined on a subset of V . However, since the set X is
unordered, it can also be identified with

∑N
n=1 eγ (n) ⊗xn for any permutation γ ∈ SN .

Accordingly, if the map f is to be extended to the whole V , then this extension needs
to be invariant with respect to the above action of SN .

We describe now an explicit complete ansatz for SN -invariant approximations of
functions on V . This is made possible by another classical theorem of Weyl and by a
simple form of a generating set of permutation invariants on R

N . We will denote by
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xnm the coordinates of x ∈ V with respect to the canonical basis in V :

x =
N∑

n=1

M∑

m=1

xnmen ⊗ em .

Theorem 2.4 Let V = R
N ⊗R

M and f : V → R be a SN -invariant continuous map.
Then f can be approximated by SN -invariant expressions

f̂ (x) =
T1∑

t=1

ctσ

( T2∑

q=1

wqt

N∑

n=1

σ
(
bq

M∑

m=1

atmxnm + eq
)

+ ht

)

, (2.15)

with some parameters T1, T2 and coefficients ct , wqt , bq , atm, eq , ht .

Proof It is clear that expression (2.15) is SN -invariant and we only need to prove
its completeness. The theorem of Weyl [46, Section II.3] states that a generating
set of symmetric polynomials on V can be obtained by polarizing a generating set
of symmetric polynomials { f p}Ninv

p=1 defined on a single copy of R
N . Arguing as in

Proposition 2.5, it follows that any SN -invariant continuous map f : V → R can be
approximated by expressions

T1∑

t=1

c̃tσ
( Ninv∑

p=1

w̃pt f p(Ãtx) + h̃t
)
,

where Ãtx = ∑N
n=1

∑M
m=1 ãtmxnmen . A well-known generating set of symmetric

polynomials on R
N is the first N coordinate power sums:
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f p(y) =
N∑

n=1

f̃ p(yn), where y = (y1, . . . , yN ), f̃ p(yn) = y pn , p = 1, . . . , N .

It follows that f can be approximated by expressions

T1∑

t=1

c̃tσ

( N∑

p=1

w̃pt

N∑

n=1

f̃ p
( M∑

m=1

ãtmxnm
)

+ h̃t

)

. (2.16)

Using Theorem 2.1, we can approximate f̃ p(y) by expressions
∑T

q=1 d̃pqσ (̃bpq y +
h̃ pq). It follows that (2.16) can be approximated by

T1∑

t=1

c̃tσ

( N∑

p=1

T∑

q=1

w̃pt d̃pq

N∑

n=1

σ
(
b̃pq

M∑

m=1

ãtmxnm + h pq

)
+ h̃t

)

.

Replacing the double summation over p, q by a single summation over q, we arrive
at (2.15). ��

Note that expression (2.15) resembles the formula of the usual (non-invariant)
feedforward network with two hidden layers of sizes T1 and T2:

f̂ (x) =
T1∑

t=1

ctσ

( T2∑

q=1

wqtσ
( N∑

n=1

M∑

m=1

aqnmxnm + eq
)

+ ht

)

.

Let us also compare ansatz (2.15) with the ansatz obtained by direct symmetrization
(see Proposition (2.1)), which in our case has the form

f̂ (x) =
∑

γ∈SN

T∑

t=1

ctσ
( N∑

n=1

M∑

m=1

wγ(n),m,t xnm + ht
)
.

From the application perspective, since |SN | = N !, at large N this expression has
prohibitively many terms and is therefore impractical without subsampling of SN ,
which would break the exact SN -invariance. In contrast, ansatz (2.15) is complete,
fully SN -invariant and involves only O(T1N (M + T2)) arithmetic operations and
evaluations of σ .

We remark that another complete permutation-invariant network architecture, using
the max function, was given in Qi et al. [34, Theorem 1].

3 Translations and Deep Convolutional Networks

Convolutional neural networks (convnets, [22]) play a key role in many modern appli-
cations of deep learning. Such networks operate on input data having grid-like structure
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(usually, spatial or temporal) and consist of multiple stacked convolutional layers
transforming initial object description into increasingly complex features necessary to
recognize complex patterns in the data. The shape of earlier layers in the networkmim-
ics the shape of input data, but later layers gradually become “thinner” geometrically
while acquiring “thicker” feature dimensions. We refer the reader to deep learning
literature for details on these networks, e.g. see Chapter 9 in Goodfellow et al. [12]
for an introduction.

There are several important concepts associated with convolutional networks, in
particular weight sharing (which ensures approximate translation equivariance of the
layers with respect to grid shifts); locality of the layer operation; and pooling. Locality
means that the layer output at a certain geometric point of the domain depends only on
a small neighborhood of this point. Pooling is a grid subsampling that helps reshape the
data flow by removing excessive spatial detalization. Practical usefulness of convnets
stems from the interplay between these various elements of convnet design.

From the perspective of the main topic of the present work—group invari-
ant/equivariant networks—we are mostly interested in invariance/equivariance of
convnets with respect to Lie groups such as the group of translations or the group
of rigid motions (to be considered in Sect. 4), and we would like to establish rel-
evant universal approximation theorems. However, we first point out some serious
difficulties that one faces when trying to formulate and prove such results.

Lack of symmetry in finite computational models Practically used convnets are
finite models; in particular they operate on discretized and bounded domains that do
not possess the full symmetry of the spaces R

d . While the translational symmetry is
partially preserved by discretization to a regular grid, and the groupR

d can be in a sense
approximated by the groups (λZ)d or (λZn)

d , one cannot reconstruct, for example,
the rotational symmetry in a similar way. If a group � is compact, then, as discussed
in Sect. 2, we can still obtain finite and fully �-invariant/equivariant computational
models by considering finite-dimensional representations of �, but this is not the case
with noncompact groups such as R

d . Therefore, in the case of the group R
d (and the

group of rigid planar motions considered later in Sect. 4), we will need to prove the
desired results on invariance/eqiuvariance and completeness of convnets only in the
limit of infinitely large domain and infinitesimal grid spacing.

Erosion of translation equivariance by pooling Pooling reduces the translational
symmetry of the convnet model. For example, if a few first layers of the network define
a map equivariant with respect to the group (λZ)2 with some spacing λ, then after
pooling with stride m the result will only be equivariant with respect to the subgroup
(mλZ)2. (We remark in this regard that in practical applications, weight sharing and
accordingly translation equivariance are usually only important for earlier layers of
convolutional networks.) Therefore, we will consider separately the cases of convnets
without or with pooling; the R

d -equivariance will only apply in the former case.
In view of the above difficulties, in this section we will give several versions of

the universal approximation theorem for convnets, with different treatments of these
issues.

In Sect. 3.1 we prove a universal approximation theorem for a single non-local
convolutional layer on a finite discrete grid with periodic boundary conditions
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(Proposition 3.1). This basic result is a straightforward consequence of the general
Proposition 2.2 when applied to finite abelian groups.

In Sect. 3.2 we prove the main result of Sect. 3, Theorem 3.1. This theorem extends
Proposition 3.1 in several important ways. First, we will consider continuum signals,
i.e. assume that the approximated map is defined on functions on R

n rather than on
functions on a discrete grid. This extension will later allow us to rigorously formulate
a universal approximation theorem for rotations and euclidean motions in Sect. 4. Sec-
ond, wewill consider stacked convolutional layers and assume each layer to act locally
(as in convnets actually used in applications). However, the setting of Theorem 3.2
will not involve pooling, since, as remarked above, pooling destroys the translation
equivariance of the model.

In Sect. 3.3 we prove Theorem 3.2, relevant for convnets most commonly used
in practice. Compared to the setting of Sect. 3.2, this computational model will be
spatially bounded, will include pooling, and will not assume translation invariance of
the approximated map.

3.1 Finite Abelian Groups and Single Convolutional Layers

We consider a group

� = Zn1 × · · · × Znν , (3.1)

where Zn = Z/(nZ) is the cyclic group of order n. Note that the group � is abelian
and conversely, by the fundamental theorem of finite abelian groups, any such group
can be represented in the form (3.1).

We consider the “input” module V = R
� ⊗ R

dV and the “output” module U =
R

� ⊗ R
dU , with some finite dimensions dV , dU and with the natural representation of

�:

Rγ (eθ ⊗ v) = eθ+γ ⊗ v, γ, θ ∈ �, v ∈ R
dV or R

dU .

We will denote elements of V ,U by boldface characters � and interpret them as
dV - or dU -component signals defined on the set �. For example, in the context of
2D image processing we have ν = 2 and the group � = Zn1 × Zn2 corresponds to
a discretized rectangular image with periodic boundary conditions, where n1, n2 are
the geometric sizes of the image while dV and dU are the numbers of input and output
features, respectively (in particular, if the input is a usual RGB image, then dV = 3).

Denote by �θk the coefficients in the expansion of a vector � from V or U over
the standard product bases in these spaces:

� =
∑

θ∈�

dV or dU∑

k=1

�θkeθ ⊗ ek . (3.2)

We describe now a complete equivariant ansatz for approximating �-equivariant
maps f : V → U . Thanks to decomposition (2.4), we may assume without loss
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that dU = 1. By (3.2), any map f : V → U is then specified by the coefficients
f (�)θ (≡ f (�)θ,1) ∈ R as � runs over V and θ runs over �.

Proposition 3.1 Any continuous�-equivariant map f : V → U can be approximated
by �-equivariant maps f̂ : V → U of the form

f̂ (�)γ =
N∑

n=1

cnσ
( ∑

θ∈�

dV∑

k=1

wnθk�γ+θ,k + hn
)
, (3.3)

where � = ∑
γ∈�

∑dV
k=1 �γ keγ ⊗ ek , N is a parameter, and cn, wnθk, hn are some

coefficients.

Proof We apply Proposition 2.2 with ln(�) = ∑
θ ′∈�

∑dV
k=1 w′

nθ ′k�θ ′k and yn =∑
κ∈� ynκeκ , and obtain the ansatz

f̂ (�) =
∑

γ ′∈�

N∑

n=1

∑

κ∈�

ynκσ
( ∑

θ ′∈�

dV∑

k=1

w′
nθ ′k�θ ′−γ ′,k + hn

)
eκ−γ ′ =

∑

κ∈�

N∑

n=1

ynκaκn,

where

aκn =
∑

γ ′∈�

σ
( ∑

θ ′∈�

dV∑

k=1

w′
nθ ′k�θ ′−γ ′,k + hn

)
eκ−γ ′ . (3.4)

By linearity of the expression on the r.h.s. of (3.3), it suffices to check that each aκn

can be written in the form

∑

γ∈�

σ
( ∑

θ∈�

dV∑

k=1

wnθk�θ+γ,k + hn
)
eγ .

But this expression results if wemake in (3.4) the substitutions γ = κ−γ ′, θ = θ ′−κ

and wnθk = w′
n,θ+κ,k . ��

The expression (3.3) resembles the standard convolutional layer without pooling as
described, e.g., in Goodfellow et al. [12]. Specifically, this expression can be viewed
as a linear combination of N scalar filters obtained as compositions of linear convolu-
tions with pointwise non-linear activations. An important difference with the standard
convolutional layers is that the convolutions in (3.3) are non-local, in the sense that
the weights wnθk do not vanish at large θ . Clearly, this non-locality is inevitable if
approximation is to be performed with just a single convolutional layer.

We remark that it is possible to use Proposition 2.4 to describe an alternative com-
plete �-equivariant ansatz based on polynomial invariants and equivariants. However,
this approach seems to be less efficient because it is relatively difficult to specify a
small explicit set of generating polynomials for abelian groups (see, e.g. Schmid [36]
for a number of relevant results). Nevertheless, we will use polynomial invariants of
the abelian group SO(2) in our construction of “charge-conserving convnet” in Sect. 4.
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3.2 Continuum Signals and Deep Convnets

In this section we extend Proposition 3.1 in several ways.
First, instead of the group Zn1 ×· · ·×Znν we consider the group � = R

ν . Accord-
ingly, we will consider infinite-dimensional R

ν-modules

V = L2(Rν) ⊗ R
dV ∼= L2(Rν, R

dV ),

U = L2(Rν) ⊗ R
dU ∼= L2(Rν, R

dU )

with some finite dV , dU . Here, L2(Rν, R
d) is the Hilbert space of maps� : R

ν → R
d

with
∫

Rd |�(γ )|2dγ < ∞, equipped with the standard scalar product 〈�,�〉 =∫
Rd �(γ ) ·�(γ )dγ , where�(γ ) ·�(γ ) denotes the scalar product of�(γ ) and�(γ )

in R
d . The group R

ν is naturally represented on V ,U by

Rγ �(θ) = �(θ − γ ), � ∈ V or U , γ, θ ∈ R
ν . (3.5)

Throughout this section, Rγ will denote this representation ofRν onV orU . Compared
to the setting of the previous subsection,we interpret themodulesV ,U as carrying now
“infinitely extended” and “infinitely detailed” dV - or dU -component signals. We will
be interested in approximating arbitraryR

ν-equivariant continuous maps f : V → U .
The second extension is that we will perform this approximation using stacked con-

volutional layers with local action. Our approximation will be a finite computational
model, and to define it we first need to apply a discretization and a spatial cutoff to
vectors from V and U .

Let us first describe the discretization. For any grid spacing λ > 0, let Vλ be the
subspace in V formed by signals � : R

ν → R
dV constant on all cubes

Q(λ)
k =

ν×
s=1

[(
ks − 1

2

)
λ,

(
ks + 1

2

)
λ
]
,

where k = (k1, . . . , kν) ∈ Z
ν . Let Pλ be the orthogonal projector onto Vλ in V :

Pλ�(γ ) = 1

λν

∫

Q(λ)
k

�(θ)dθ, where Q(λ)
k � γ . (3.6)

A function � ∈ Vλ can naturally be viewed as a function on the lattice (λZ)ν , so that
we can also view Vλ as a Hilbert space

Vλ
∼= L2((λZ)ν, R

dV ),

with the scalar product 〈�,�〉 = λν
∑

γ∈(λZ)ν �(γ ) ·�(γ ). We define the subspaces
Uλ ⊂ U similarly to the subspaces Vλ ⊂ V .
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Next, we define the spatial cutoff. For an integer L ≥ 0 we denote by ZL the
size-2L cubic subset of the grid Z

ν :

ZL = {k ∈ Z
ν |‖k‖∞ ≤ L}, (3.7)

where k = (k1, . . . , kν) ∈ Z
ν and ‖k‖∞ = maxn=1,...,ν |kn|. Let �·� denote the

standard floor function. For any 
 ≥ 0 (referred to as the spatial range or cutoff ) we
define the subspace Vλ,
 ⊂ Vλ by

Vλ,
 = {� : (λZ)ν → R
dV |�(λk) = 0 if k /∈ Z�
/λ�}

∼= {� : λZ�
/λ� → R
dV }

∼= L2(λZ�
/λ�, R
dV ). (3.8)

Clearly, dim Vλ,
 = (2�
/λ� + 1)νdV . The subspaces Uλ,
 ⊂ Uλ are defined in a
similar fashion. We will denote by Pλ,
 the linear operators orthogonally projecting
V to Vλ,
 or U to Uλ,
.

In the following, wewill assume that the convolutional layers have a finite receptive
field ZLrf—a set of the form (3.7) with some fixed L rf > 0.

We can nowdescribe ourmodel of stacked convnets thatwill be used to approximate
maps f : V → U (see Fig. 1). Namely, our approximation will be a composition of
the form

f̂ : V Pλ,
+(T−1)λLrf−→ Vλ,
+(T−1)λLrf (≡ W1)
f̂1→ W2

f̂2→ . . .
f̂T→ WT+1(≡ Uλ,
).

(3.9)

Here, the first step Pλ,
+(T−1)λLrf is an orthogonal finite-dimensional projection
implementing the initial discretization and spatial cutoff of the signal. The maps f̂t
are convolutional layers connecting intermediate spaces

Wt =
{

{� : λZ�
/λ�+(T−t)Lrf → R
dt }, t ≤ T

{� : λZ�
/λ� → R
dt }, t = T + 1

(3.10)

with some feature dimensions dt such that d1 = dV and dT+1 = dU . The first interme-
diate space W1 is identified with the space Vλ,
+(T−1)λLrf (the image of the projector
Pλ,
+(T−1)λLrf applied to V ), while the end space WT+1 is identified with Uλ,
 (the
respective discretization and cutoff of U ).

The convolutional layers are defined as follows. Let (�γ n)γ∈Z�
/λ�+(T−t)Lrf
n=1,...,dt

be the

coefficients in the expansion of � ∈ Wt over the standard basis in Wt , as in (3.2).
Then, for t < T we define f̂t using the conventional “linear convolution followed by
nonlinear activation” formula,

f̂t (�)γ n = σ
( ∑

θ∈ZLrf

dt∑

k=1

w
(t)
nθk�γ+θ,k + h(t)

n

)
, γ ∈ Z�
/λ�+(T−t−1)Lrf , n = 1, . . . , dt+1,
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Fig. 1 A one-dimensional (ν = 1) basic convnet with the receptive field parameter Lrf = 1. The dots show
feature spaces R

dt associated with particular points of the grid λZ

(3.11)

while in the last layer (t = T ) we drop nonlinearities and only form a linear combi-
nation of values at the same point of the grid:

f̂T (�)γ n =
dT∑

k=1

w
(T )
nk �γ k + h(T )

n , γ ∈ Z�
/λ�, n = 1, . . . , dU . (3.12)

Note that the grid size �
/λ� + (T − t)L rf associated with the spaceWt is consistent
with the rule (3.11) which evaluates the new signal f̂ (�) at each node of the grid as
a function of the signal � in the L rf -neighborhood of that node (so that the domain
λZ�
/λ�+(T−t)Lrf “shrinks” slightly as t grows).

Note that we can interpret the map f̂ as a map between V andU , sinceUλ,
 ⊂ U .

Definition 3.1 A basic convnet is a map f̂ : V → U defined by (3.9), (3.11), (3.12),
and characterized by parameters λ,
, L rf , T , d1, . . . , dT+1 and coefficientsw

(t)
nθk and

h(t)
n .

Note that, defined in this way, a basic convnet is a finite computational model in
the following sense: while being a map between infinite-dimensional spaces V and
U , all the steps in f̂ except the initial discretization and cutoff involve only finitely
many arithmetic operations and evaluations of the activation function.

We aim to prove an analog of Theorem 2.1, stating that any continuous R
ν-

equivariant map f : V → U can be approximated by basic convnets in the topology
of uniform convergence on compact sets. However, there are some important caveats
due to the fact that the space V is now infinite-dimensional.

First, in contrast to the case of finite-dimensional spaces, balls in L2(Rν, R
dV ) are

not compact. The well-known general criterion states that in a complete metric space,
and in particular in V = L2(Rν, R

dV ), a set is compact iff it is closed and totally
bounded, i.e. for any ε > 0 can be covered by finitely many ε-balls.
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The second point (related to the first) is that a finite-dimensional space is hemi-
compact, i.e., there is a sequence of compact sets such that any other compact set
is contained in one of them. As a result, the space of maps f : R

n → R
m is first-

countable with respect to the topology of compact convergence, i.e. each point has a
countable base of neighborhoods, and a point f is a limit point of a set S if and only
if there is a sequence of points in S converging to f . In a general topological space,
however, a limit point of a set S may not be representable as the limit of a sequence
of points from S. In particular, the space L2(Rν, R

dV ) is not hemicompact and the
space of maps f : L2(Rν, R

dV ) → L2(Rν, R
dU ) is not first countable with respect

to the topology of compact convergence, so that, in particular, we must distinguish
between the notions of limit points of the set of convnets and the limits of sequences
of convnets. We refer the reader, e.g., to the book [30] for a general discussion of this
and other topological questions and in particular to §46 for a discussion of compact
convergence.

Whendefining a limitingmap,wewould like to require the convnets to increase their
resolution 1

λ
and range 
. At the same time, we will regard the receptive field and its

range parameter L rf as arbitrary but fixed (the current common practice in applications
is to use small values such as L rf = 1 regardless of the size of the network; see, e.g.,
the architecture of residual networks [13] providing state-of-the-art performance on
image recognition tasks).

With all these considerations in mind, we introduce the following definition of a
limit point of convnets.

Definition 3.2 With V = L2(Rν, R
dV ) and U = L2(Rν, R

dU ), we say that a map
f : V → U is a limit point of basic convnets if for any L rf , any compact set
K ⊂ V , and any ε > 0, λ0 > 0 and 
0 > 0 there exists a basic convnet f̂ with
the receptive field parameter L rf , spacing λ ≤ λ0 and range 
 ≥ 
0 such that
sup�∈K ‖ f̂ (�) − f (�)‖ < ε.

We can state now the main result of this section.

Theorem 3.1 A map f : V → U is a limit point of basic convnets if and only if f is
R

ν-equivariant and continuous in the norm topology.

Before giving the proof of the theorem, we recall the useful notion of strong con-
vergence of linear operators on Hilbert spaces. Namely, if An is a sequence of bounded
linear operators on a Hilbert space and A is another such operator, then we say that
the sequence An converges strongly to A if An� converges to A� for any vector �

from this Hilbert space. More generally, strong convergence can be defined, by the
same reduction, for any family {Aα} of linear operators once the convergence of the
family of vectors {Aα�} is specified.

An example of a strongly convergent family is the family of discretizing projectors
Pλ defined in (3.6). These projectors converge strongly to the identity as the grid

spacing tends to 0: Pλ�
λ→0−→ �. Another example is the family of projectors Pλ,


projecting V onto the subspace Vλ,
 of discretized and cut-off signals defined in (3.8).
It is easy to see that Pλ,
 converge strongly to the identity as the spacing tends to 0
and the cutoff is lifted, i.e. as λ → 0 and 
 → ∞. Finally, our representations Rγ
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defined in (3.5) are strongly continuous in the sense that Rγ ′ converges strongly to Rγ

as γ ′ → γ .
A useful standard tool in proving strong convergence is the continuity argument: if

the family {Aα} is uniformly bounded, then the convergence Aα� → A� holds for all
vectors� from theHilbert space once it holds for a dense subset of vectors. This follows
by approximating any � with �’s from the dense subset and applying the inequality
‖Aα� − A�‖ ≤ ‖Aα� − A�‖ + (‖Aα‖ + ‖A‖)‖� − �‖. In the sequel, we will
consider strong convergence only in the settings where Aα are orthogonal projectors
or norm-preserving operators, so the continuity argument will be applicable.

Proof of Theorem 3.1 Necessity (a limit point of basic convnets is R
ν-equivariant and

continuous).
We start by noting that basic convnets f̂ : V → U , as defined by Definition 3.1,

are continuous in the norm topology, because the initial projection Pλ,
+(T−1)λLrf is
continuous, and the subsequent layers are finite-dimensional transformations that are
continuous since they are composed of linear operations and continuous activation
functions. The continuity of a limit point of convnets then follows from the continuity
of convnets and their uniform convergence on compact sets by a standard argument
(see Theorem 46.5 in Munkres [30]).

Let f denote a limit point of convnets. Let us prove the R
ν-equivariance of f , i.e.

f (Rγ �) = Rγ f (�), γ ∈ R
ν,� ∈ V . (3.13)

Let DM = [−M, M]ν ⊂ R
ν with some M > 0, and PDM be the orthogonal projector

in U onto the subspace of signals supported on the set DM . Then PDM converges
strongly to the identity as M → +∞. Hence, (3.13) will follow if we prove that for
any M

PDM f (Rγ �) = PDM Rγ f (�). (3.14)

Let ε > 0. Let γλ ∈ (λZ)ν be the nearest point to γ ∈ R
ν on the grid (λZ)ν . Then,

since Rγλ converges strongly to Rγ as λ → 0, there exist λ0 such that for any λ < λ0

‖Rγλ f (�) − Rγ f (�)‖ ≤ ε, (3.15)

and

‖ f (Rγ �) − f (Rγλ�)‖ ≤ ε, (3.16)

where we have also used the already proven continuity of f .
Observe that the discretization/cutoff projectors Pλ,M converge strongly to PDM as

λ → 0, hence we can ensure that for any λ < λ0 we also have

‖PDM f (Rγ �) − Pλ,M f (Rγ �)‖ ≤ ε,

‖Pλ,M Rγ f (�) − PDM Rγ f (�)‖ ≤ ε.
(3.17)
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Next, observe that basic convnets are partially translationally equivariant by our
definition, in the sense that if the cutoff parameter 
 of the convnet is sufficiently
large then

Pλ,M f̂ (Rγλ�) = Pλ,M Rγλ f̂ (�). (3.18)

Indeed, note first that, away from the boundary of the domain [−
,
]ν , all the oper-
ations of the convnet (the initial discretizing projection and subsequent convolutional
layers) are equivariant with respect to the subgroup (λZ)ν ⊂ R

ν . Accordingly, since
γλ ∈ (λZ)ν , we have f̂ (Rγλ�)(λk) = Rγλ f̂ (�)(λk) for any point λk such that
both λk and λk − γλ belong to the convnet output domain λZ�
/λ�. In other words,
Eq. (3.18) holds as long as both sets λZ�M/λ� and λZ�M/λ�−γλ are subsets of λZ�
/λ�.
This condition is satisfied if we require that 
 > 
0 with 
0 = M + ‖γ ‖∞.

Now, take the compact set K = {Rθ�|θ ∈ N }, where N ⊂ R
ν is some compact

set including 0 and all points γλ for λ < λ0. Then, by our definition of a limit point of
basic convnets, there is a convnet f̂ with λ < λ0 and L > L0 such that for all θ ∈ N
(and in particular for θ = 0 or θ = γλ)

‖ f (Rθ�) − f̂ (Rθ�)‖ < ε. (3.19)

We can now write a bound for the difference of the two sides of (3.14):

‖PDM f (Rγ �) − PDM Rγ f (�)‖
≤ ‖PDM f (Rγ �) − Pλ,M f (Rγ �)‖ + ‖Pλ,M f (Rγ �) − Pλ,M f (Rγλ�)‖

+ ‖Pλ,M f (Rγλ�) − Pλ,M f̂ (Rγλ�)‖ + ‖Pλ,M f̂ (Rγλ�) − Pλ,M Rγλ f̂ (�)‖
+ ‖Pλ,M Rγλ f̂ (�) − Pλ,M Rγλ f (�)‖ + ‖Pλ,M Rγλ f (�) − Pλ,M Rγ f (�)‖
+ ‖Pλ,M Rγ f (�) − PDM Rγ f (�)‖

≤ ‖PDM f (Rγ �) − Pλ,M f (Rγ �)‖ + ‖ f (Rγ �) − f (Rγλ�)‖
+ ‖ f (Rγλ�) − f̂ (Rγλ�)‖ + ‖ f̂ (�) − f (�)‖
+ ‖Rγλ f (�) − Rγ f (�)‖ + ‖Pλ,M Rγ f (�) − PDM Rγ f (�)‖

≤ 6ε,

Here in the first step we split the difference into several parts, in the second step
we used the identity (3.18) and the fact that Pλ,M , Rγλ are linear operators with the
operator norm 1, and in the third step we applied the inequalities (3.15)–(3.17) and
(3.19). Since ε was arbitrary, we have proved (3.14).

Sufficiency (anR
ν-equivariant and continuous map is a limit point of basic convnets).

We start by proving a key lemma on the approximation capability of basic convnets
in the special case when they have the degenerate output range, 
 = 0. In this case,
by (3.9), the output space WT = Uλ,0 ∼= R

dU , and the first auxiliary space W1 =
Vλ,(T−1)λLrf ⊂ V .
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Lemma 3.1 Let λ, T be fixed and 
 = 0. Then any continuous map f :
Vλ,(T−1)λLrf → Uλ,0 can be approximated by basic convnets having spacing λ, depth
T , and range 
 = 0.

Note that this is essentially a finite-dimensional approximation result, in the sense
that the input space Vλ,(T−1)λLrf is finite-dimensional and fixed. The approximation
is achieved by choosing sufficiently large feature dimensions dt and suitable weights
in the intermediate layers.

Proof The idea of the proof is to divide the operation of the convnet into two stages.
The first stage is implemented by the first T − 2 layers and consists in approximate
“contraction” of the input vectors, while the second stage, implemented by the remain-
ing two layers, performs the actual approximation.

The contraction stage is required because the components of the input signal �in ∈
Vλ,(T−1)λLrf

∼= L2(λZ(T−1)Lrf , R
dV ) are distributed over the large spatial domain

λZ(T−1)Lrf . In this stage we will map the input signal to the spatially localized space
WT−1 ∼= L2(λZLrf , R

dT−1) so as to approximately preserve the information in the
signal.

Regarding the second stage, observe that the last two layers of the convnet (starting
from WT−1) act on signals in WT−1 by an expression analogous to the one-hidden-
layer network from the basic universal approximation theorem (Theorem 2.1):

(
f̂T ◦ f̂T−1(�)

)

n
=

dT∑

k=1

w
(T )
nk σ

( ∑

θ∈ZLrf

dT−1∑

m=1

w
(T−1)
kθm �θm + h(T−1)

k

)
+ h(T )

n .

(3.20)

This expression involves all components of � ∈ WT−1, and so we can conclude
by Theorem 2.1 that by choosing a sufficiently large dimension dT and appropriate
weights we can approximate an arbitrary continuous map from WT−1 to Uλ,0.

Now, given a continuous map f : Vλ,(T−1)λLrf → Uλ,0, consider the map g =
f ◦ I ◦ P : WT−1 → Uλ,0, where I is some linear isometric map from a subspace
W ′

T−1 ⊂ WT−1 to Vλ,(T−1)λLrf , and P is the projection in WT−1 to W ′
T−1. Such

isometric I exists if dimWT−1 ≥ dim Vλ,(T−1)λLrf , which we can assume w.l.o.g.
by choosing sufficiently large dT−1. Then the map g is continuous, and the previous
argument shows that we can approximate g using the second stage of the convnet.
Therefore, we can also approximate the given map f = g ◦ I−1 by the whole convnet
if wemanage to exactly implement or approximate the isometry I−1 in the contraction
stage.

Implementing such an isometry would be straightforward if the first T − 2 layers
had no activation function (i.e., if σ were the identity function in the nonlinear layers
(3.11)). In this case for all t = 2, 3, . . . , T − 1 we can choose the feature dimensions
dt = |ZLrf |dt−1 = (2L rf + 1)ν(t−1)dV and set h(t)

n = 0 and

w
(t)
nθk =

{
1, n = ψt (θ, k),

0, otherwise,
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where ψt is some bijection between ZLrf × {1, . . . , dt } and {1, . . . , dt+1}. In this
way, each component of the network input vector �in gets copied, layer by layer, to
subsequent layers and eventually ends up among the components of the resulting vector
in WT−1 (with some repetitions due to multiple possible trajectories of copying).

However, since σ is not an identity, copying needs to be approximated. Consider the
first layer, f̂1. For each γ ∈ ZLrf and each s ∈ {1, . . . , d1}, consider the corresponding
coordinate map

gγ s : L2(λZLrf , R
d1) → R, gγ s : � 
→ �γ s .

By Theorem 2.1, the map gγ s can be approximated with arbitrary accuracy on any
compact set in L2(λZLrf , R

d1) by maps of the form

� 
→
N∑

m=1

cγ smσ
( ∑

θ∈ZLrf

d1∑

k=1

wγ smθk�θk + hγ sm

)
, (3.21)

where we may assume without loss of generality that N is the same for all γ, s. We
then set the second feature dimension d2 = N |ZLrf |d1 = N (2L rf + 1)νdV and assign
the weights wγ smθk and hγ sm in (3.21) to be the weights w

(1)
nθk and h(1)

n of the first
convnet layer, where the index n somehow enumerates the triplets (γ, s,m). Defined
in this way, the first convolutional layer f1 only partly reproduces the copy operation,
since this layer does not include the linear weighting corresponding to the external
summation over m in (3.21). However, we can include this weighting into the next
layer, since this operation involves only values at the same spatial location γ ∈ Z

ν ,
and prepending this operation to the convolutional layer (3.21) does not change the
functional form of the layer.

By repeating this argument for the subsequent layers t = 2, 3, . . . , T − 2, we
can make the sequence of the first T − 2 layers to arbitrarily accurately copy all the
components of the input vector �in into a vector � ∈ WT−1, up to some additional
linear transformations that need to be included in the (T − 1)’th layer (again, this is
legitimate since prepending a linear operation does not change the functional form of
the (T − 1)’th layer). Thus, we can approximate f = g ◦ I−1 by arranging the first
stage of the convnet to approximate I−1 and the second to approximate g. ��

Returning to the proof of sufficiency, let f : V → U be an R
ν-equivariant contin-

uous map that we need to approximate with accuracy ε on a compact set K ⊂ V by a
convnet with λ < λ0 and 
 > 
0. For any λ and 
, define the map

fλ,
 = Pλ,
 ◦ f ◦ Pλ.

Observe that we can find λ < λ0 and 
 > 
0 such that

sup
�∈K

‖ fλ,
(�) − f (�)‖ ≤ ε

3
. (3.22)
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Indeed, this can be proved as follows. Denote by Bδ(�) the radius-δ ball centered
at �. By compactness of K and continuity of f we can find finitely many signals
�n ∈ V , n = 1, . . . , N , and some δ > 0 so that, first, K ⊂ ∪n Bδ/2(�n), and second,

‖ f (�) − f (�n)‖ ≤ ε

9
, � ∈ Bδ(�n). (3.23)

For any � ∈ K , pick n such that � ∈ Bδ/2(�n), then

‖ fλ,
(�) − f (�)‖ ≤ ‖Pλ,
 f (Pλ�) − Pλ,
 f (�n)‖
+ ‖Pλ,
 f (�n) − f (�n)‖ + ‖ f (�n) − f (�)‖

≤ ‖ f (Pλ�) − f (�n)‖ + ‖Pλ,
 f (�n) − f (�n)‖ + ε

9
.

(3.24)

Since � ∈ Bδ/2(�n), if λ is sufficiently small then Pλ� ∈ Bδ(�n) (by the strong
convergence of Pλ to the identity) and hence ‖ f (Pλ�) − f (�n)‖ < ε

9 , again by
(3.23). This choice of λ can be made uniformly in � ∈ K thanks to the compactness
of K . Also, we can choose sufficiently small λ and then sufficiently large 
 so that
‖Pλ,L f (�n) − f (�n)‖ < ε

9 . Using these inequalities in (3.24), we obtain (3.22).
Having thus chosen λ and 
, observe that, by translation equivariance of f , the

map fλ,
 can be written as

fλ,
(�) =
∑

γ∈Z�
/λ�
Rλγ Pλ,0 f (PλR−λγ �),

where Pλ,0 is the projector Pλ,
 in the degenerate case 
 = 0. Consider the map

fλ,
,T (�) =
∑

γ∈Z�
/λ�
Rλγ Pλ,0 f (Pλ,(T−1)λLrf R−λγ �).

Then, by choosing T sufficiently large, we can ensure that

sup
�∈K

‖ fλ,
,T (�) − fλ,
(�)‖ <
ε

3
. (3.25)

Indeed, this can be proved in the sameway as (3.22), by using compactness of K , conti-

nuity of f , finiteness of Z�
/λ� and the strong convergence Pλ,(T−1)λLrf R−λγ �
T→∞−→

PλR−λγ �.
Observe that fλ,
,T can be alternatively written as

fλ,
,T (�) =
∑

γ∈Z�
/λ�
Rλγ fλ,0,T (R−λγ �), (3.26)

123



Constructive Approximation (2022) 55:407–474 437

where

fλ,0,T (�) = Pλ,0 f (Pλ,(T−1)λLrf�).

We can view the map fλ,0,T as a map from Vλ,(T−1)λLrf to Uλ,0, which makes
Lemma 3.1 applicable to fλ,0,T . Hence, since ∪γ∈Z�
/λ� R−λγ K is compact, we can
find a convnet f̂0 with spacing λ, depth T and range 
 = 0 such that

‖ f̂0(�) − fλ,0,T (�)‖ <
ε

3|Z�
/λ�| , � ∈ ∪γ∈Z�
/λ� R−λγ K . (3.27)

Consider the convnet f̂
 different from f̂0 only by the range parameter 
; such a
convnet can be written in terms of f̂0 in the same way as fλ,
,T is written in terms of
fλ,0,T :

f̂
(�) =
∑

γ∈Z�
/λ�
Rλγ f̂0(R−λγ �). (3.28)

Combining (3.26), (3.27) and (3.28), we obtain

sup
�∈K

‖ f̂
(�) − fλ,
,T (�)‖ <
ε

3
.

Combining this bound with bounds (3.22) and (3.25), we obtain the desired bound

sup
�∈K

‖ f̂
(�) − f (�)‖ < ε.

��
Theorem 3.1 suggests that our definition of limit points of basic convnets provides

a reasonable rigorous framework for the analysis of convergence and invariance prop-
erties of convnet-like models in the limit of continual and infinitely extended signals.
Wewill use these definition and theorem as templates when considering convnets with
pooling in the next subsection and charge–conserving convnets in Sect. 4.

3.3 Convnets with Pooling

As alreadymentioned, pooling erodes the equivariance ofmodels with respect to trans-
lations. Therefore, we will consider convnets with pooling as universal approximators
without assuming the approximated maps to be translationally invariant. Also, rather
than considering L2(Rν, R

dU )-valued maps, we will be interested in approximating
simply R-valued maps, i.e., those of the form f : V → R, where, as in Sect. 3.2,
V = L2(Rν, R

dV ) (Fig. 2).
While the most popular kind of pooling in applications seems to be max-pooling,

we will only consider pooling by decimation (i.e., grid downsampling), which appears
to be about as efficient in practice (see Springenberg et al. [42]). Compared to basic
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Fig. 2 A one-dimensional
(ν = 1) convnet with
downsampling having stride
s = 2 and the receptive field
parameter Lrf = 2

convnets of Sect. 3.2, convnets with downsampling then have a new parameter, stride,
that we denote by s. The stride can take values s = 1, 2, . . . and determines the
geometry scaling when passing information to the next convnet layer: if the current
layer operates on a grid (λZ)ν , then the next layer will operate on the subgrid (sλZ)ν .
Accordingly, the current layer only needs to perform the operations having outputs
located in this subgrid. We will assume s to be fixed and to be the same for all layers.
Moreover, we assume that

s ≤ 2L rf + 1, (3.29)

i.e., the stride is not larger than the size of the receptive field: this ensures that infor-
mation from each node of the current grid can reach the next layer.

Like the basic convnet of Sect. 3.2, a convnet with downsampling can be written
as a chain:

f̂ : V Pλ,λL1,T−→ Vλ,λL1,T (≡ W1)
f̂1→ W2

f̂2→ . . .
f̂T→ WT+1(∼= R). (3.30)

Here the space Vλ,λL1,T is defined as in (3.8) (with 
 = λL1,T ) and Pλ,λL1,T is the
orthogonal projector to this subspace. The intermediate spaces are defined by

Wt = L2(st−1λZLt,T , R
dt ).

The range parameters Lt,T are given by

Lt,T =
{
L rf(1 + s + s2 + . . . + sT−t−1), t < T ,

0, t = T , T + 1.

This choice of Lt,T is equivalent to the identities

Lt,T = sLt+1,T + L rf , t = 1, . . . , T − 1,
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expressing the domain transformation under downsampling.
The feature dimensions dt can again take any values, aside from the fixed values

d1 = dV and dT+1 = 1.
As the present convnet model is R-valued, in contrast to the basic convnet of

Sect. 3.2, it does not have a separate output cutoff parameter 
 (we essentially have

 = 0 now). The geometry of the input domain λZL1,T is fully determined by stride s,
the receptive field parameter L rf , grid spacing λ, and depth T . Thus, the architecture
of the model is fully specified by these parameters and feature dimensions d2, . . . , dT .

The layer operation formulas differ from the formulas (3.11), (3.3) by the inclusion
of downsampling:

f̂t (�)γ n = σ
( ∑

θ∈ZLrf

dt∑

k=1

w
(t)
nθk�sγ+θ,k + h(t)

n

)
, γ ∈ ZLt+1 , n = 1, . . . , dt+1, t ≤ T ,

(3.31)

f̂T+1(�) =
dT∑

k=1

w
(T )
nk �k + h(T )

n . (3.32)

Summarizing, we define convnets with downsampling as follows.

Definition 3.3 A convnet with downsampling is a map f̂ : V → R defined by
(3.30), (3.31), (3.32), and characterized by parameters s, λ, L rf , T , d1, . . . , dT and
coefficients w

(t)
nθk and h(t)

n .

Next, we give a definition of a limit point of convnets with downsampling analogous
to Definition 3.2 for basic convnets. In this definition, we require that the input domain
grow in resolution 1

λ
and in the spatial range λL1,T , while the stride and receptive field

are fixed.

Definition 3.4 With V = L2(Rν, R
dV ), we say that a map f : V → R is a limit

point of convnets with downsampling if for any s and L rf subject to Eq. (3.29), any
compact set K ∈ V , any ε > 0, λ0 > 0 and 
0 > 0 there exists a convnet with
downsampling f̂ with stride s, receptive field parameter L rf , depth T , and spacing
λ ≤ λ0 such that λL1,T ≥ 
0 and sup�∈K ‖ f̂ (�) − f (�)‖ < ε.

The analog of Theorem 3.1 then reads:

Theorem 3.2 A map f : V → R is a limit point of convnets with downsampling if
and only if f is continuous in the norm topology.

Proof The proof is completely analogous to, and in fact simpler than, the proof of
Theorem 3.1, so we only sketch it.

The necessity only involves the claim of continuity and follows again by a basic
topological argument.

In the proof of sufficiency, an analog of Lemma 3.1 holds for convnets with down-
sampling, since, thanks to the constraint (3.29) on the stride, all points of the input
domain λZL1 are connected by the network architecture to the output (though there

123



440 Constructive Approximation (2022) 55:407–474

are fewer connections now due to pooling), so that our construction of approximate
copy operations remains valid.

To approximate f : V → R on a compact K , first approximate it by a map
f ◦Pλ,ZL1,T

with a sufficiently small λ and large T , then use the lemma to approximate
f ◦ Pλ,ZL1,T

by a convnet. ��

4 Charge-Conserving Convnets

The goal of the present section is to describe a complete convnet-likemodel for approx-
imating arbitrary continuous maps equivariant with respect to rigid planar motions. A
rigid motion of R

ν is an affine transformation preserving the distances and the orien-
tation in R

ν . The group SE(ν) of all such motions can be described as a semidirect
product of the translation group R

ν with the special orthogonal group SO(ν):

SE(ν) = R
ν

� SO(ν).

An element of SE(ν) can be represented as a pair (γ, θ) with γ ∈ R
ν and θ ∈ SO(ν).

The group operations are given by

(γ1, θ1)(γ2, θ2) = (γ1 + θ1γ2, θ1θ2),

(γ, θ)−1 = (−θ−1γ, θ−1).

The group SE(ν) acts on R
ν by

A(γ,θ)x = γ + θx.

It is easy to see that this action is compatible with the group operation, i.e.A(0,1) = Id
and A(γ1,θ1)A(γ2,θ2) = A(γ1,θ1)(γ2,θ2) (implying, in particular, A−1

(γ,θ) = A(γ,θ)−1 ).

As in Sect. 3.2, consider the space V = L2(Rν, R
dV ). We can view this space as a

SE(ν)-module with the representation canonically associated with the action A:

R(γ,θ)�(x) = �(A(γ,θ)−1x), (4.1)

where � : R
ν → R

dV and x ∈ R
ν . We define in the same manner the module U =

L2(Rν, R
dU ). In the remainder of the paper we will be interested in approximating

continuous and SE(ν)-equivariant maps f : V → U . Let us first give some examples
of such maps.

Linear maps. Assume for simplicity that dV = dU = 1 and consider a linear
SE(ν)-equivariant map f : L2(Rν) → L2(Rν). Such a map can be written as a
convolution f (�) = � ∗ � f , where � f is a radial signal, � f (x) = �̃ f (|x|). In
general, � f should be understood in a distributional sense.
By applying Fourier transform F , the map f can be equivalently described in the
Fourier dual space as pointwise multiplication of the given signal by constF� f
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(with the constant depending on the choice of the coefficient in the Fourier trans-
from), so f is SE(ν)-equivariant and continuous if and only if F� f is a radial
function belonging to L∞(Rν). Note that in this argument we have tacitly com-
plexified the space L2(Rν, R) into L2(Rν, C). The condition that f preserves
real-valuedness of the signal � translates into F� f (x) = F� f (−x), where the
bar denotes complex conjugation.
Note that linear SE(ν)-equivariant differential operators, such as the Laplacian �,
are not included in our class of maps, since they are not even defined on the whole
space V = L2(Rν). However, if we consider a smoothed version of the Laplacian
given by f : � 
→ �(�∗gε), where gε is the variance-ε Gaussian kernel, then this
map will be well-defined on the whole V , norm-continuous and SE(ν)-equivariant.

Pointwise maps. Consider a pointwise map f : V → U defined by f (�)(x) =
f0(�(x)), where f0 : R

dV → R
dU is somemap. In this case f is SE(ν)-equivariant.

Note that if f0(0) �= 0, then f is not well-defined on V = L2(Rν, R
dV ), since

f (�) /∈ L2(Rν, R
dU ) for the trivial signal �(x) ≡ 0. An easy-to-check sufficient

condition for f to be well-defined and continuous on the whole V is that f0(0) = 0
and f0 be globally Lipschitz (i.e., | f0(x) − f0(y)| ≤ c|x− y| for all x, y ∈ R

ν and
some c < ∞).

Our goal in this section is to describe a finite computational model that would be a
universal approximator for all continuous and SE(ν)-equivariant maps f : V → U .
Following the strategy of Sect. 3.2, we aim to define limit points of such finite models
and then prove that the limit points are exactly the continuous and SE(ν)-equivariant
maps.

We focus on approximating L2(Rν, R
dU )-valued SE(ν)-equivariant maps rather

than R
dU -valued SE(ν)-invariant maps because, as discussed in Sect. 3, we find it

hard to reconcile the SE(ν)-invariance with pooling.
Note that, as in the previous sections, there is a straightforward symmetrization-

based approach to constructing universal SE(ν)-equivariant models. In particular, the
group SE(ν) extends the group of translationsR

ν by the compact group SO(ν), andwe
can construct SE(ν)-equivariant maps simply by symmetrizing R

ν-equivariant maps
over SO(ν), as in Proposition 2.2.

Proposition 4.1 If a map fRν : V → U is continuous and R
ν-equivariant, then the

map fSE(ν) : V → U defined by

fSE(ν)(�) =
∫

SO(ν)

R(0,θ)−1 fRν (R(0,θ)�)dθ

is continuous and SE(ν)-equivariant.

Proof The continuity of fSE(ν) follows by elementary arguments using the continuity
of fRν : V → U , uniform boundedness of the operators R(0,θ), and compactness of
SO(ν). The SE(ν)-equivariance follows since for any (γ, θ ′) ∈ SE(ν) and � ∈ V

fSE(ν)(R(γ,θ ′)�) =
∫

SO(ν)

R(0,θ)−1 fRν (R(0,θ)R(γ,θ ′)�)dθ
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=
∫

SO(ν)

R(0,θ)−1 fRν (R(θγ,1)R(0,θθ ′)�)dθ

=
∫

SO(ν)

R(0,θ)−1R(θγ,1) fRν (R(0,θθ ′)�)dθ

=
∫

SO(ν)

R(γ,θ ′)R(0,θθ ′)−1 fRν (R(0,θθ ′)�)dθ

= R(γ,θ ′) fSE(ν)(�).

��
This proposition implies, in particular, that SO(ν)-symmetrizations of merely

R
ν-equivariant basic convnets considered in Sect. 3.2 can serve as universal SE(ν)-

equivariant approximators. However, like in the previous sections, we will be instead
interested in an intrinsically SE(ν)-equivariant network construction not involving
explicit symmetrization of the approximation over the group SO(ν). In particular, our
approximators will not use rotated grids.

Our construction relies heavily on the representation theory of the group SO(ν),

and in the present paper we restrict ourselves to the case ν = 2, in which the group
SO(ν) is abelian and the representation theory is much easier than in the general case.

Section 4.1 contains preliminary considerations suggesting the network construc-
tion appropriate for our purpose. The formal detailed description of the model is given
in Sect. 4.2. In Sect. 4.3 we formulate and prove the main result of the section, the
SE(2)-equivariant universal approximation property of the model.

4.1 Preliminary Considerations

In this section we explain the idea behind our construction of the universal SE(2)-
equivariant convnet (to be formulated precisely in Sect. 4.2). We start by showing in
Sect. 4.1.1 that a SE(2)-equivariant map f : V → U can be described using a SO(2)-
invariant map floc : V → R

dV . Then, relying on this observation, in Sect. 4.1.2
we show that, heuristically, f can be reconstructed by first equivariantly extracting
local “features” from the original signal using equivariant differentiation, and then
transforming these features using a SO(2)-invariant pointwise map. In Sect. 4.1.3 we
describe discretized differential operators and smoothing operators that we require in
order to formulate our model as a finite computation model with sufficient regularity.
Finally, in Sect. 4.1.4 we consider polynomial approximations on SO(2)-modules.

4.1.1 Pointwise Characterization of SE(�)-Equivariant Maps

In this subsection we show that, roughly speaking, SE(ν)-equivariant maps f : V →
U can be described in terms of SO(ν)-invariant maps f : V → R

ν obtained by
observing the output signal at a fixed position.

(The proposition below has one technical subtlety: we consider signal values �(0)
at a particular point x = 0 for generic signals� from the space L2(Rν, R

dU ). Elements
of this spaces are defined as equivalence classes of signals that can differ on sets of zero
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Lebesgue measure, so, strictly speaking, �(0) is not well-defined. We can circumvent
this difficulty by fixing a particular canonical representative of the equivalence class,
say

�canon(x) =
{
limε→0

1
|Bε (x)|

∫
Bε (x)

�(y)dy, if the limit exists,

0, otherwise.

Lebesgue’s differentiation theorem ensures that the limit exists and agrees with �

almost everywhere, so that �canon is indeed a representative of the equivalence class.
This choice of the representative is clearly SE(ν)-equivariant. In the proposition below,
the signal value at x = 0 can be understood as the value of such a canonical represen-
tative.1)

Proposition 4.2 Let f : L2(Rν, R
dV ) → L2(Rν, R

dU ) be a R
ν-equivariant map.

Then f isSE(ν)-equivariant if andonly if f (R(0,θ)�)(0) = f (�)(0) for all θ ∈ SO(ν)

and � ∈ V .

Proof One direction of the statement is obvious: if f is SE(ν)-equivariant, then
f (R(0,θ)�)(0) = R(0,θ) f (�)(0) = f (�)(A(0,θ−1)0) = f (�)(0).
Let us prove the opposite implication, i.e. that f (R(0,θ)�)(0) ≡ f (�)(0) implies

the SE(ν)-equivariance. We need to show that for all (γ, θ) ∈ SE(ν), � ∈ V and
x ∈ R

ν we have

f (R(γ,θ)�)(x) = R(γ,θ) f (�)(x).

Indeed,

f (R(γ,θ)�)(x) = R(−x,1) f (R(γ,θ)�)(0)

= f (R(−x,1)R(γ,θ)�)(0)

= f (R(0,θ)R(θ−1(γ−x),1)�)(0)

= f (R(θ−1(γ−x),1)�)(0)

= R(θ−1(γ−x),1) f (�)(0)

= R(x,θ)R(θ−1(γ−x),1) f (�)(A(x,θ)0)

= R(γ,θ) f (�)(x),

where we used definition (4.1) (steps 1 and 6), the R
ν-equivariance of f (steps 2 and

5), and the hypothesis of the lemma (step 4). ��
1 Another approach to ensure a well-defined value �(x) is to work with shift-invariant reproducing kernel
Hilbert spaces (RKHS) instead of L2 spaces. Definition of RKHS requires the signal evaluation� 
→ �(x)
to be continuous in � and in particular well-defined. An example of a shift-invariant RKHS is the space of
band-limited signals with a particular bandwidth. We thank the anonymous reviewer for pointing out this
approach.
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Now, if f : V → U is an SE(ν)-equivariant map, then we can define the SO(ν)-
invariant map floc : V → R

dU by

floc(�) = f (�)(0). (4.2)

Conversely, suppose that floc : V → R
dU is an SO(ν)-invariant map. Consider the

map f : V → {� : R
ν → R

dU } defined by

f (�)(x) := floc(R(−x,1)�). (4.3)

In general, f (�) need not be in L2(Rν, R
dU ). Suppose, however, that this is the case

for all � ∈ V . Then f is clearly R
ν-equivariant and, moreover, SE(ν)-equivariant, by

the above proposition.
Thus, under some additional regularity assumption, the task of reconstructing

SE(ν)-equivariant maps f : V → U is equivalent to the task of reconstructing
SO(ν)-invariant maps floc : V → R

dU .
From this point on, we set ν = 2.

4.1.2 Equivariant Differentiation

It is convenient to describe rigid motions of R
2 by identifying this two-dimensional

real space with the one-dimensional complex space C. Then an element of SE(2) can
be written as (γ, θ) = (x + iy, eiφ) with some x, y ∈ R and φ ∈ [0, 2π). The action
of SE(2) on R

2 ∼= C can be written as

A(x+iy,eiφ)z = x + iy + eiφz, z ∈ C.

Using analogous notation R(x+iy,eiφ) for the canonically associated representation of
SE(2) in V defined in (4.1), consider the generators of this representation:

Jx = i lim
δx→0

R(δx,1) − 1

δx
, Jy = i lim

δy→0

R(iδy,1) − 1

δy
, Jφ = i lim

δφ→0

R(0,eiδφ) − 1

δφ
.

The generators can be explicitly written as

Jx = −i∂x , Jy = −i∂y, Jφ = −i∂φ = −i(x∂y − y∂x )

and obey the commutation relations

[Jx , Jy] = 0, [Jx , Jφ] = −i Jy, [Jy, Jφ] = i Jx . (4.4)

We are interested in local transformations of signals� ∈ V , so it is natural to consider
the action of differential operators on the signals. We would like, however, to ensure
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the equivariance of this action. This can be done as follows. Consider the first-order
operators

∂z = 1

2
(∂x − i∂y), ∂z = 1

2
(∂x + i∂y).

These operators commute with Jx , Jy , and have the following commutation relations
with Jφ :

[∂z, Jφ] = ∂z, [∂z, Jφ] = −∂z

or, equivalently,

∂z Jφ = (Jφ + 1)∂z, ∂z Jφ = (Jφ − 1)∂z . (4.5)

Let us define, for any μ ∈ Z,

J (μ)
φ = Jφ + μ = μ − i∂φ.

Then the triple (Jx , Jy, J
(μ)
z ) obeys the same commutation relations (4.4), i.e., consti-

tutes another representation of the Lie algebra of the group SE(2). The corresponding
representation of the group differs from the original representation (4.1) by the extra
phase factor:

R(μ)

(x+iy,eiφ)
�(x) = e−iμφ�(A(x+iy,eiφ)−1x). (4.6)

The identities (4.5) imply ∂z J
(μ)
φ = J (μ+1)

φ ∂z and ∂z J
(μ)
φ = J (μ−1)

φ ∂z . Since the
operators ∂z, ∂z also commute with Jx , Jy , we see that the operators ∂z, ∂z can serve
as ladder operators equivariantly mapping

∂z : Vμ → Vμ+1, ∂z : Vμ → Vμ−1, (4.7)

where Vμ is the space L2(R2, R
dV ) equipped with the representation (4.6). Thus, we

can equivariantly differentiate signals as long as we appropriately switch the repre-
sentation. In the sequel, we will for brevity refer to the parameter μ characterizing the
representation as its global charge.

It is convenient to also consider another kind of charge, associated with angular
dependence of the signal with respect to rotations about fixed points; let us call it local
charge η in contrast to the above global charge μ. Namely, for any fixed x0 ∈ R

2,
decompose the module Vμ as

Vμ =
⊕

η∈Z

V (x0)
μ,η , (4.8)
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where

V (x0)
μ,η = R(x0,1)V

(0)
μ,η, (4.9)

and

V (0)
μ,η = {� ∈ Vμ|�(A(0,eiφ)−1x) = e−iηφ�(x) ∀φ}. (4.10)

Writing x0 = (x0, y0), we can characterize V (x0)
μ,η as the eigenspace of the operator

J (x0)
φ := R(x0,1) JφR(x0,1)−1 = −i(x − x0)∂y + i(y − y0)∂x

corresponding to the eigenvalue η. The operator J (x0)
φ has the same commutation

relations with ∂z, ∂z as Jφ :

[∂z, J (x0)
φ ] = ∂z, [∂z, J (x0)

φ ] = −∂z .

We can then describe the structure of equivariant maps (4.7) with respect to decom-
position (4.8) as follows: for any x0, the decrease or increase of the global charge by
the respective ladder operator is compensated by the opposite effect of this operator
on the local charge, i.e. ∂z maps V (x0)

μ,η to V (x0)
μ+1,η−1 while ∂z maps V (x0)

μ,η to V (x0)
μ−1,η+1:

∂zV
(x0)
μ,η → V (x0)

μ+1,η−1, ∂z : V (x0)
μ,η → V (x0)

μ−1,η+1. (4.11)

We interpret these identities as conservation of the total charge, μ + η. We remark
that there is some similarity between our total charge and the total angular momentum
in quantum mechanics; the total angular momentum there consists of the spin com-
ponent and the orbital component that are analogous to our global and local charge,
respectively.

Now we give a heuristic argument showing how to express an arbitrary equivariant
map f : V → U using our equivariant differentiation. As discussed in the previous
subsection, the task of expressing f reduces to expressing floc using formulas (4.2),
(4.3). Let a signal � be analytic as a function of the real variables x, y, then it can be
Taylor expanded as

� =
∞∑

a,b=0

1

a!b!∂
a
z ∂bz �(0)�a,b, (4.12)

with the basis signals �a,b given by

�a,b(z) = zazb.
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The signal � is fully determined by the coefficients ∂az ∂bz �(0), so the map floc can be
expressed as a function of these coefficients:

floc(�) = f̃loc
(
(∂az ∂bz �(0))∞a,b=0

)
. (4.13)

At x0 = 0, the signals �a,b have local charge η = a − b, and, if viewed as elements
of Vμ=0, transform under rotations by

R(0,eiφ)�a,b = e−i(a−b)φ�a,b.

Accordingly, if we write � in the form � = ∑
a,b ca,b�a,b, then

R(0,eiφ)� =
∑

a,b

e−i(a−b)φca,b�a,b.

It follows that the SO(2)-invariance of floc is equivalent to f̃loc being invariant with
respect to simultaneous multiplication of the arguments by the factors e−i(a−b)φ :

f̃loc
(
(e−i(a−b)φca,b)

∞
a,b=0

) = f̃loc
(
(ca,b)

∞
a,b=0

) ∀φ.

Having determined the invariant map f̃loc, we can express the value of f (�) at an
arbitrary point x ∈ R

2 by

f (�)(x) = f̃loc
(
(∂az ∂bz �(x))∞a,b=0

)
. (4.14)

Thus, the map f can be expressed, at least heuristically, by first computing various
derivatives of the signal and then applying to them the invariant map f̃loc, indepen-
dently at each x ∈ R

2.
The expression (4.14) has the following interpretation in terms of information flow

and the two different kinds of charges introduced above. Given an input signal � ∈ V
and x ∈ R

2, the signal has global charge μ = 0, but, in general, contains multiple
components having different values of the local charge η with respect to x, according
to the decomposition V = Vμ=0 = ⊕η∈ZV

(x)
0,η . By (4.11), a differential operator ∂az ∂bz

maps the space V (x)
0,η to the space V (x)

a−b,η+b−a . However, if a signal � ∈ V (x)
a−b,η+b−a

is continuous at x, then � must vanish there unless η + b − a = 0 (see the definition
(4.9), (4.10)), i.e., only information from the V (x)

0,η -component of � with η = a − b

is observed in ∂az ∂bz �(x). Thus, at each point x, the differential operator ∂az ∂bz can
be said to transform information contained in � and associated with global charge
μ = 0 and local charge η = a − b into information associated with global charge
μ = a − b and local charge η = 0. This transformation is useful to us because the
local charge only reflects the structure of the input signal, while the global charge
is a part of the architecture of the computational model and can be used to directly
control the information flow. The operators ∂az ∂bz deliver to the point x information
about the signal values away from this point—similarly to how this is done by local
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convolutions in the convnets of Sect. 3—but now this information flow is equivariant
with respect to the action of SO(2).

By (4.14), the SE(2)-equivariant map f can be heuristically decomposed into the
family of SE(2)-equivariant differentiations producing “local features” ∂az ∂bz �(x) and
followed by the SO(2)-invariant map f̃loc acting independently at each x. In the sequel,
weuse this decomposition as a general strategy in our construction of thefinite convnet-
like approximation model in Sect. 4.2—the “charge–conserving convnet”—and in the
proof of its universality in Sect. 4.3.

The Taylor expansion (4.12) is not rigorously applicable to generic signals � ∈
L2(R2, R

dV ). Therefore, we will add smoothing in our convnet-like model, to be
performed before the differentiation operations. This will be discussed below in
Sect. 4.1.3. Also, we will discuss there the discretization of the differential opera-
tors, in order to formulate the charge–conserving convnet as a finite computational
model.

The invariant map f̃loc can be approximated using invariant polynomials, as we
discuss in Sect. 4.1.4 below. As discussed earlier in Sect. 2, invariant polynomials can
be produced from a set of generating polynomials; however, in the present setting this
set is rather large and grows rapidly as charge is increased, so it will bemore efficient to
just generate new invariant polynomials by multiplying general polynomials of lower
degree subject to charge conservation. As a result, we will approximate the map f̃loc
by a series of multiplication layers in the charge-conserving convnet.

4.1.3 Discretized Differential Operators

Like in Sect. 3, we aim to formulate the approximation model as a computation which
is fully finite except for the initial discretization of the input signal. Therefore we need
to discretize the equivariant differential operators considered in Sect. 4.1.2. Given a
discretized signal � : (λZ)2 → R

dV on the grid of spacing λ, and writing grid points
as γ = (λγx , λγy) ∈ (λZ)2, we define the discrete derivatives ∂

(λ)
z , ∂

(λ)
z by

∂(λ)
z �(λγx , λγy) = 1

4λ

(

�
(
λ(γx + 1), λγy

) − �
(
λ(γx − 1), λγy

)
(4.15)

− i
(
�

(
λγx , λ(γy + 1)

) − �
(
λγx , λ(γy − 1)

))
)

,

∂
(λ)
z �(λγx , λγy) = 1

4λ

(

�
(
λ(γx + 1), λγy

) − �
(
λ(γx − 1), λγy

)
(4.16)

+ i
(
�

(
λγx , λ(γy + 1)

) − �
(
λγx , λ(γy − 1)

))
)

.

Since general signals� ∈ L2(R2, R
dV ) are not differentiable, we will smoothen them

prior to differentiating. Smoothing will also be a part of the computational model and
can be implemented by local operations as follows. Consider the discrete Laplacian
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�(λ) defined by

�(λ)�(λγx , λγy) = 1

λ2

(
�

(
λ(γx + 1), λγy

) + �
(
λ(γx − 1), λγy

)
(4.17)

+ �
(
λγx , λ(γy + 1)

) + �
(
λγx , λ(γy − 1)

) − 4�(λγx , λγy)
)
.

Then, a single smoothing layer can be implemented by the positive semidefinite oper-
ator 1 + λ2

8 �(λ) :

(
1 + λ2

8
�(λ)

)
�(λγx , λγy) = 1

8

(
�

(
λ(γx + 1), λγy

) + �
(
λ(γx − 1), λγy

)

+ �
(
λγx , λ(γy + 1)

) + �
(
λγx , λ(γy − 1)

)

+ 4�(λγx , λγy)
)
. (4.18)

We will then replace the differential operators ∂az ∂bz used in the heuristic argument in
Sect. 4.1.2 by the discrete operators

L(a,b)
λ = (∂(λ)

z )a(∂
(λ)
z )b

(
1 + λ2

8
�(λ)

)�4/λ2�
Pλ. (4.19)

Here Pλ is the discretization projector (3.6). The power �4/λ2� (i.e., the number of
smoothing layers) scales with λ so that in the continuum limit λ → 0 the operators
L(a,b)

λ converge to convolution operators. Specifically, consider the function �a,b :
R
2 → R:

�a,b = ∂az ∂bz

( 1

2π
e−|x|2/2), (4.20)

where we identify |x|2 ≡ zz. Define the operator L(a,b)
0 by L(a,b)

0 � = � ∗ �a,b, i.e.

L(a,b)
0 �(x) =

∫

R2
�(x − y)�a,b(y)d2y. (4.21)

Then we have the following lemma proved in Appendix A.

Lemma 4.1 Let a, b be fixed nonnegative integers. For all λ ∈ [0, 1], consider the
linear operators L(a,b)

λ as operators from L2(R2, R
dV ) to L∞(R2, R

dV ). Then:

1. The operators L(a,b)
λ are bounded uniformly in λ;

2. As λ → 0, the operatorsL(a,b)
λ converge strongly to the operatorL(a,b)

0 . Moreover,

this convergence is uniformoncompact sets K ⊂ V (i.e., limλ→0 sup�∈K ‖L(a,b)
λ �−

L(a,b)
0 �‖∞ = 0).
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This lemma is essentially just a slight modification of Central Limit Theorem. It
will be convenient to consider L∞ rather than L2 in the target space because of the
pointwise polynomial action of the layers following the smoothing and differentiation
layers.

4.1.4 Polynomial Approximations on SO(2)-Modules

Our derivation of the approximating model in Sect. 4.1.2 was based on identifying the
SO(2)-invariant map floc introduced in (4.2) and expressing it via f̃loc by Eq. (4.13).
It is convenient to approximate the map f̃loc by invariant polynomials on appropriate
SO(2)-modules, and in this section we state several general facts relevant for this
purpose.

First, the following lemma is obtained immediately using symmetrization and the
Weierstrass theorem (see e.g. the proof of Proposition (2.5)).

Lemma 4.2 Let f : W → R be a continuous SO(2)-invariant map on a real finite-
dimensional SO(2)-module W. Then f can be approximated by polynomial invariants
on W.

We therefore focus on constructing general polynomial invariants on SO(2)-
modules. This can be done in several ways; we will describe just one particular
construction performed in a “layerwise” fashion resembling convnet layers.

It is convenient to first consider the case of SO(2)-modules over the field C, since
the representation theory of the group SO(2) is especially easily described when the
underlying field is C. Let us identify elements of SO(2) with the unit complex num-
bers eiφ . Then all complex irreducible representations of SO(2) are one-dimensional
characters indexed by the number ξ ∈ Z:

Reiφx = eiξφx. (4.22)

The representation R induces the dual representation acting on functions f (x):

R∗
eiφ f (x) = f (Re−iφx).

In particular, if zξ is the variable associated with the one-dimensional space where
representation (4.22) acts, then it is transformed by the dual representation as

R∗
eiφ zξ = e−iξφzξ .

Now let W be a general finite-dimensional SO(2)-module over C. Then W can be
decomposed as

W =
⊕

ξ

Wξ , (4.23)
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where Wξ
∼= C

dξ is the isotypic component of the representation (4.22). Let zξk, k =
1, . . . , dξ , denote the variables associated with the subspace Wξ . If f is a polynomial
on W , we can write it as a linear combination of monomials:

f =
∑

a=(aξk )

ca
∏

ξ,k

z
aξk
ξk . (4.24)

Then the dual representation acts on f by

R∗
eiφ f =

∑

a=(aξk )

e−i
∑

ξ,k ξaξkφca
∏

ξ,k

z
aξk
ξk .

We see that a polynomial is invariant iff it consists of invariant monomials, and a
monomial is invariant iff

∑
ξ,k ξaξk = 0.

We can generate an arbitrary SO(2)-invariant polynomial on W in the following
“layer-wise” fashion. Suppose that { ft−1,ξ,n}Nt−1

n=1 is a collection of polynomials gen-
erated after t − 1 layers so that

R∗
eiφ ft−1,ξ,n = e−iξφ ft−1,ξ,n (4.25)

for all ξ, n. Consider new polynomials { ft,ξ,n}Nt
n=1 obtained from { ft−1,ξ,n}Nt−1

n=1 by
applying the second degree expressions

ft,ξ,n = w
(t)
0,n1ξ=0 +

Nt−1∑

n1=1

w
(t)
1,ξ,n,n1

ft−1,ξ,n1

+
∑

ξ1+ξ2=ξ

Nt−1∑

n1=1

Nt−1∑

n2=1

w
(t)
2,ξ1,ξ2,n,n1,n2

ft−1,ξ1,n1 ft−1,ξ2,n2 (4.26)

with some (complex) coefficients w
(t)
0,n, w

(t)
1,ξ,n,n1

, w
(t)
2,ξ1,ξ2,n,n1,n2

. The first term is
present only for ξ = 0. The third term includes the “charge conservation” constraint
ξ = ξ1 + ξ2. It is clear that ones condition (4.25) holds for { ft−1,ξ,n}Nt−1

n=1 , it also holds

for { ft,ξ,n}Nt
n=1.

On the other hand, suppose that the initial set { f1,ξ,n}N1
n=1 includes all variables

zξk . Then for any invariant polynomial f on W , we can arrange the parameters Nt

and the coefficients in Eq. (4.26) so that at some t we obtain ft,ξ=0,1 = f . Indeed,
first note that thanks to the second term in Eq. (4.26) it suffices to show this for the
case when f is an invariant monomial (since any invariant polynomial is a linear
combination of invariant monomials, and the second term allows us to form and pass
forward such linear combinations). If f is a constant, then it can be produced using
the first term in Eq. (4.26). If f is a monomial of a positive degree, then it can be
produced by multiplying lower degree monomials, which is afforded by the third term
in Eq. (4.26).
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Now we discuss the case of the underlying field R. In this case, apart from the
trivial one-dimensional representation, all irreducible representations of SO(2) are
two-dimensional and indexed by ξ = 1, 2, . . .:

Reiφ

(
x
y

)

=
(

cos ξφ sin ξφ

− sin ξφ cos ξφ

) (
x
y

)

. (4.27)

It is convenient to diagonalize such a representation, turning it into a pair of complex
conjugate one-dimensional representations:

Reiφ

(
z
z

)

=
(
e−iξφ 0
0 eiξφ

)(
z
z

)

, (4.28)

where

z = x + iy, z = x − iy.

More generally, any real SO(2)-moduleW can be decomposed exactly as in (4.23)
into isotypic components Wξ associated with complex characters, but with the addi-
tional constraints

Wξ = W−ξ , (4.29)

meaning that dξ = d−ξ and

Wξ = Wξ,Re + iWξ,Im, W−ξ = Wξ,Re − iWξ,Im, (ξ = 1, 2, . . .)

with some real dξ -dimensional spaces Wξ,Re,Wξ,Im.
Any polynomial on W can then be written in terms of real variables z0,k corre-

sponding to ξ = 0 and complex variables

zξ,k = xξk + iyξk, z−ξ,k = xξk − iyξk (ξ = 1, 2, . . .) (4.30)

constrained by the relations

zξ,k = z−ξ,k .

Suppose that a polynomial f on W is expanded over monomials in zξ,k as in Eq.
(4.24). This expansion is unique (the coefficients are given by

ca =
( ∏

ξ,k

∂
aξ,k
zξ,k

aξ,k !
)
f (0),

where ∂zξ,k = 1
2 (∂xξk − i∂yξk ) for ξ > 0 and ∂zξ,k = 1

2 (∂x−ξ,k + i∂y−ξ,k ) for ξ < 0).
This implies that the condition for the polynomial f to be invariant on W is the same
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as in the previously considered complex case: the polynomial must consist of invariant
monomials, and a monomial is invariant iff

∑
ξ,k ξaξk = 0.

Therefore, in the case of real SO(2)-modules, any invariant polynomial can be gen-
erated using the same procedure described earlier for the complex case, i.e., by taking
the complex extension of themodule and iteratively generating (complex) polynomials
{ ft,ξ,n}Nt

n=1 using Eq. (4.26). The real part of a complex invariant polynomial on a real
module is a real invariant polynomial. Thus, to ensure that in the case of real modules
W the procedure produces all real invariant polynomials, and only such polynomials,
we can just add taking the real part of ft,ξ=0,1 at the last step of the procedure.

4.2 Charge-Conserving Convnet

We can now describe precisely our convnet-like model for approximating arbitrary
SE(2)-equivariant continuous maps f : V → U , where V = L2(R2, R

dV ),U =
L2(R2, R

dU ). The overview of the model is given in Fig. 3. Like the models of Sect. 3,
the present model starts with the discretization projection followed by some finite
computation. The model includes three groups of layers: smoothing layers (Lsmooth),
differentiation layers (Ldiff ) and multiplication layers (Lmult). The parameters of the
model are the lattice spacing λ, cutoff range 
 of the output, dimension dmult of
auxiliary spaces, and the numbers Tdiff , Tmult of differentiation and multiplication
layers. The overall operation of the model can be described as the chain

f̂ : V Pλ,
′−→ Vλ,
′(≡ W1)
Lsmooth−→ Wsmooth

Ldiff−→ Wdiff
Lmult−→ Uλ,
. (4.31)

We describe now all these layers in detail.

Initial projection The initial discretization projection Pλ,
′ is defined as explained
in Sect. 3 after Eq. (3.8). The input cutoff range 
′ is given by 
′ = 
 + (Tdiff +
�4/λ2�)λ. This padding ensures that the output cutoff range will be equal to the
specified value 
. With respect to the spatial grid structure, the space W1 can be
decomposed as

W1 = ⊕γ∈λZ�
′/λ�R
dV ,

where ZL is the cubic subset of the grid defined in (3.7).

Smoothing layers The model contains �4/λ2� smoothing layers performing the
same elementary smoothing operation 1 + λ2

8 �(λ):

Lsmooth =
(
1 + λ2

8
�(λ)

)�4/λ2�
,

where the discrete Laplacian �(λ) is defined as in Eq. (4.17). In each layer the value
of the transformed signal at the current spatial position is determined by the values
of the signal in the previous layer at this position and its 4 nearest neigbors as given
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Fig. 3 Architecture of the charge-conserving convnet. The top figure shows the information flow in the
fixed-charge subspaces of the feature space, while the bottom figure shows the same flow in the spatial
coordinates. The smoothing layers only act on spatial dimensions, the multiplication layers only on feature
dimensions, and the differentiation layers both on spatial and feature dimensions. Operation of smoothing
and differentiation layers only involves nearest neighbors while in the multiplication layers the transitions
are constrained by the requirement of charge conservation. The smoothing and differentiation layers are
linear; the multiplication layers are not. The last multiplication layer only has zero-charge (SO(2)-invariant)
output

in Eq. (4.18). Accordingly, the domain size shrinks with each layer so that the output
space of Lsmooth can be written as
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Wsmooth = ⊕γ∈λZ�
′′/λ�R
dV ,

where 
′′ = 
′ − �4/λ2�λ = 
 + Tdiffλ.

Differentiation layers The model contains Tdiff differentiation layers computing
the discretized derivatives ∂

(λ)
z , ∂

(λ)
z as defined in (4.15), (4.16). Like the smoothing

layers, these derivatives shrink the domain, but additionally, as discussed in Sect. 4.1.2,
they change the representation of the group SE(2) associated with the global charge
μ (see Eq. (4.7)).

Denoting the individual differentiation layers by Ldiff,t , t = 1, . . . , Tdiff ,, their
action can be described as the chain

Ldiff : Wsmooth
Ldiff,1−→ Wdiff,1

Ldiff,2−→ Wdiff,2 . . .
Ldiff,Tdiff−→ Wdiff,Tdiff (≡ Wdiff).

We decompose each intermediate spaceWdiff,t into subspaces characterized by degree
s of the derivative and by charge μ:

Wdiff,t = ⊕t
s=0 ⊕s

μ=−s Wdiff,t,s,μ. (4.32)

Each Wdiff,t,s,μ can be further decomposed as a direct sum over the grid points:

Wdiff,t,s,μ = ⊕γ∈λZ�
/λ�+Tdiff−t C
dV . (4.33)

Consider the operator Ldiff,t as a block matrix with respect to decomposition (4.32) of
the input and output spaces Wdiff,t−1,Wdiff,t , and denote by (Ldiff,t )(st−1,μt−1)→(st ,μt )

the respective blocks. Then we define

(Ldiff,t )(st−1,μt−1)→(st ,μt ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂
(λ)
z , if st = st−1 + 1, μt = μt−1 + 1,

∂
(λ)
z , if st = st−1 + 1, μt = μt−1 − 1,

1, if st = st−1, μt = μt−1,

0, otherwise.

(4.34)

With this definition, the final space Wdiff,Tdiff contains all discrete derivatives
(∂

(λ)
z )a(∂

(λ)
z )b� of the smoothed signal � ∈ Wsmooth of degrees s = a + b ≤ Tdiff .

Each such derivative can be obtained by arranging the elementary steps (4.34) in dif-
ferent order, so that the derivative will actually appear inWdiff,Tdiff with the coefficient

Tdiff !
a!b!(Tdiff−a−b)! . This coefficient is not important for the subsequent exposition.

Multiplication layers In contrast to the smoothing and differentiation layers, the
multiplication layers act strictly locally (pointwise). These layers implement products
and linear combinations of signals of the preceding layers subject to conservation of
global charge, based on the procedure of generation of invariant polynomials described
in Sect. 4.1.4.
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Denoting the inividual layers by Lmult,t , t = 1, . . . , Tmult, their action is described
by the chain

Lmult : Wdiff
Lmult,1−→ Wmult,1

Lmult,2−→ Wmult,2 . . .
Lmult,Tmult−→ Wmult,Tmult ≡ Uλ,
.

Each spaceWmult,t except for the final one (Wmult,Tmult ) is decomposed into subspaces
characterized by spatial position γ ∈ (λZ)2 and charge μ:

Wmult,t = ⊕γ∈λZ�
/λ� ⊕Tdiff
μ=−Tdiff

Wmult,t,γ,μ. (4.35)

Each space Wmult,t,γ,μ is a complex dmult-dimensional space, where dmult is a param-
eter of the model:

Wmult,t,γ,μ = C
dmult .

The final space Wmult,Tmult is real, dU -dimensional, and only has the charge-0 compo-
nent:

Wmult,Tmult = ⊕γ∈λZ�
/λ�Wmult,t,γ,μ=0, Wmult,t,γ,μ=0 = R
dU ,

so that Wmult,Tmult can be identified with Uλ,
. The initial space Wdiff can also be
expanded in the form (4.35) by reshaping its components (4.32), (4.33):

Wdiff = ⊕Tdiff
s=0 ⊕s

μ=−s Wdiff,Tdiff ,s,μ

= ⊕Tdiff
s=0 ⊕s

μ=−s ⊕γ∈λZ�
/λ�C
dV

= ⊕γ∈λZ�
/λ� ⊕Tdiff
μ=−Tdiff

Wmult,0,γ,μ,

where

Wmult,0,γ,μ = ⊕Tdiff
s=|μ|C

dV .

The multiplication layers Lmult,t act separately and identically at each γ ∈ λZ�
/λ�,
i.e., without loss of generality these layers can be thought of as maps

Lmult,t : ⊕Tdiff
μ=−Tdiff

Wmult,t−1,γ=0,μ −→ ⊕Tdiff
μ=−Tdiff

Wmult,t,γ=0,μ.

To define Lmult,t , let us represent its input � ∈ ⊕Tdiff
μ=−Tdiff

Wmult,t−1,γ=0,μ as

� =
Tdiff∑

μ=−Tdiff

�μ =
Tdiff∑

μ=−Tdiff

dmult∑

n=1

�μ,neμ,n,
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where eμ,n denote the basis vectors in Wmult,t−1,γ=0,μ. We represent the output � ∈
⊕Tdiff

μ=−Tdiff
Wmult,t,γ=0,μ of Lmult,t in the same way:

� =
Tdiff∑

μ=−Tdiff

�μ =
Tdiff∑

μ=−Tdiff

dmult∑

n=1

�μ,neμ,n .

Then, based on Eq. (4.26), for t < Tmult we define Lmult,t� = � by

�μ,n = w
(t)
0,n1μ=0 +

dmult∑

n1=1

w
(t)
1,μ,n,n1

�μ,n1

+
∑

−Tdiff≤μ1,μ2≤Tdiff
μ1+μ2=μ

dmult∑

n1=1

dmult∑

n2=1

w
(t)
2,μ1,μ2,n,n1,n2

�μ1,n1�μ2,n2 , (4.36)

with some complex weights w
(t)
0,n, w

(t)
1,μ,n,n1

, w
(t)
2,μ1,μ2,n,n1,n2

. In the final layer t =
Tmult the network only needs to generate a real charge-0 (invariant) vector, so in this
case � only has real μ = 0 components:

�0,n = Re
(
w

(t)
0,n +

dmult∑

n1=1

w
(t)
1,0,n,n1

�0,n1

+
∑

−Tdiff≤μ1,μ2≤Tdiff
μ1+μ2=0

dmult∑

n1=1

dmult∑

n2=1

w
(t)
2,μ1,μ2,n,n1,n2

�μ1,n1�μ2,n2

)
. (4.37)

This completes the description of the charge-conserving convnet. In the sequel, it
will be convenient to consider a family of convnets having all parameters and weights
in common except for the grid spacing λ. Observe that this parameter can be var-
ied independently of all other parameters and weights (
, dmult, Tdiff , Tmult, w

(t)
0,n,

w
(t)
1,μ,n,n1

, w
(t)
2,μ1,μ2,n,n1,n2

). The parameter λ affects the number of smoothing layers,
and decreasing this parameter means that essentially the same convnet is applied at a
higher resolution.Accordingly,wewill call such a family a “multi-resolution convnet”.

Definition 4.1 A charge-conserving convnet is a map f̂ : V → U given
in (4.31), characterized by parameters λ,
, dmult, Tdiff , Tmult and weights w

(t)
0,n,

w
(t)
1,μ,n,n1

, w
(t)
2,μ1,μ2,n,n1,n2

, and constructed as described above. A multi-resolution
charge-conserving convnet f̂λ is obtained by arbitrarily varying the grid spacing
parameter λ in the charge-conserving convnet f̂ .

We comment now why it is natural to call this model “charge-conserving”. As
already explained in Sect. 4.1.2, if the intermediate spaces labeled by specific μ’s
are equipped with the special representations (4.6), then, up to the spatial cutoff, the
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differentiation layersLdiff are SE(2)-equivariant and conserve the “total charge”μ+η,
where η is the “local charge” (see Eq. (4.11)). Clearly, the same can be said about the
smoothing layers Lsmooth which, in fact, separately conserve the global charge μ and
the local charge η. Moreover, observe that the multiplication layers Lmult, though
nonlinear, are also equivariant and separately conserve the charges μ and η. Indeed,
consider the transformations (4.36), (4.37). The first term in these transformations
creates an SE(2)-invariant, μ = η = 0 signal. The second, linear term does not
change μ or η of the input signal. The third term creates products �μ = �μ1�μ2 ,
where μ = μ1 + μ2. This multiplication operation is equivariant with respect to the
respective representations R(μ), R(μ1), R(μ2) as defined in (4.6). Also, if the signals
�μ1 ,�μ2 have local charges η1, η2 at a particular point x, then the product �μ1�μ2

has local charge η = η1 + η2 at this point (see Eqs.(4.9), (4.10)).

4.3 TheMain Result

To state our main result, we define a limit point of charge-conserving convnets.

Definition 4.2 With V = L2(R2, R
dV ) and U = L2(R2, R

dU ), we say that a map
f : V → U is a limit point of charge-conserving convnets if for any compact set
K ⊂ V , any ε > 0 and 
0 > 0 there exist a multi-resolution charge-conserving
convnet f̂λ with 
 > 
0 such that sup�∈K ‖ f̂λ(�) − f (�)‖ ≤ ε for all sufficiently
small grid spacings λ.

Then our main result is the following theorem.

Theorem 4.1 Let V = L2(R2, R
dV ) and U = L2(R2, R

dU ). A map f : V → U is
a limit point of charge-conserving convnets if and only if f is SE(2)-equivariant and
continuous in the norm topology.

Proof To simplify the exposition, we will assume that dV = dU = 1; generalization
of all the arguments to vector-valued input and output signals is straightforward.

We start by observing that a multi-resolution family of charge-conserving convnets
has a natural scaling limit as the lattice spacing λ → 0:

f̂0(�) = lim
λ→0

f̂λ(�). (4.38)

Indeed, by (4.31), at λ > 0 we can represent the convnet as the composition of maps

f̂λ = Lmult ◦ Ldiff ◦ Lsmooth ◦ Pλ,
′ .

The part Ldiff ◦ Lsmooth ◦ Pλ,
′ of this computation implements several maps L(a,b)
λ

introduced in (4.19). More precisely, by the definition of differentiation layers in
Sect. 4.2, the output space Wdiff of the linear operator Ldiff ◦ Lsmooth ◦ Pλ,
′ can be
decomposed into the direct sum (4.32) over several degrees s and charges μ. The
respective components of Ldiff ◦Lsmooth ◦ Pλ,
′ are, up to unimportant combinatoric
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coefficients, just the operators L(a,b)
λ with a + b = s, a − b = μ:

Ldiff ◦ Lsmooth ◦ Pλ,
′ = (. . . , ca,bL(a,b)
λ , . . .), ca,b = Tdiff !

a!b!(Tdiff−a−b)! , (4.39)

with the caveat that the output of L(a,b)
λ is spatially restricted to the bounded domain

[−
,
]2. By Lemma 4.1, as λ → 0, the operators L(a,b)
λ converge to the operator

L(a,b)
0 defined in Eq. (4.21), so that for any � ∈ L2(R2) the signals L(a,b)

λ � are

bounded functions on R
2 and converge to L(a,b)

0 � in the uniform norm ‖ · ‖∞. Let us
denote the limiting linear operator by Lconv:

Lconv = lim
λ→0

Ldiff ◦ Lsmooth ◦ Pλ,
′ . (4.40)

The full limiting map f̂0(�) is then obtained by pointwise application (separately at
each point x ∈ [−
,
]2) of the multiplication layers Lmult to the signals LTdiff�:

f̂0(�) = Lmult(Lconv�). (4.41)

For any � ∈ L2(R2), this f0(�) is a well-defined bounded signal on the domain
[−
,
]2. It is bounded because the multiplication layers Lmult implement a con-
tinuous (polynomial) map, and because, as already mentioned, Lconv� is a bounded
signal. Since the domain [−
,
]2 has a finite Lebesgue measure, we have f0(�) ∈
L∞([−
,
]2) ⊂ L2([−
,
]2). By a similar argument, the convergence in (4.38)
can be understood in the L∞([−
,
]2) or L2([−
,
]2) sense, e.g.:

‖ f̂0(�) − f̂λ(�)‖L2([−
,
]2)
λ→0−→ 0, � ∈ V . (4.42)

Below, we will use the scaling limit f̂0 as an intermediate approximator.
We will now prove the necessity and then the sufficiency parts of the theorem.

Necessity (a limit point f is continuous and SE(2)-equivariant). As in the previous
theorems 3.1, 3.2, continuity of f follows by standard topological arguments, and we
only need to prove the SE(2)-equivariance.

Let us first prove the R
2-equivariance of f . By the definition of a limit point, for

any � ∈ V , x ∈ R
2, ε > 0 and 
0 > 0 there is a multi-resolution convnet f̂λ with


 > 
0 such that

‖ f̂λ(�) − f (�)‖ ≤ ε, ‖ f̂λ(R(x,1)�) − f (R(x,1)�)‖ ≤ ε (4.43)

for all sufficiently small λ. Consider the scaling limit f̂0 = limλ→0 f̂λ constructed
above. As shown above, f̂λ(�) converges to f̂0(�) in the L2 sense, so the inequalities
(4.43) remain valid for f̂0(�):

‖ f̂0(�) − f (�)‖ ≤ ε, ‖ f̂0(R(x,1)�) − f (R(x,1)�)‖ ≤ ε. (4.44)
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The map f̂0 is not R
2-equivariant only because its output is restricted to the domain

[−
,
]2, since otherwise both maps Lmult,Lconv appearing in the superposition
(4.41) are R

2-equivariant. Therefore, for any y ∈ R
2,

f̂0(R(x,1)�)(y) = R(x,1) f̂0(�)(y) = f̂0(�)(y − x), if y, y − x ∈ [−
,
]2.(4.45)

Consider the set

�
,x = {y ∈ R
2 : y, y − x ∈ [−
,
]2} = [−
,
]2 ∩ A(x,1)([−
,
]2).

The identity (4.45) implies that

P�
,x f̂0(R(x,1)�) = P�
,x R(x,1) f̂0(�), (4.46)

where P�
,x denotes the projection to the subspace L2(�
,x) in L2(R2). For a fixed
x, the projectors P�
,x converge strongly to the identity as 
 → ∞, therefore we can
choose 
 sufficiently large so that

‖P�
,x f (�) − f (�)‖ ≤ ε, ‖P�
,x f (R(x,1)�) − f (R(x,1)�)‖ ≤ ε. (4.47)

Then, assuming that the approximating convnet has a sufficiently large range 
, we
have

‖ f (R(x,1)�) − R(x,1) f (�)‖ ≤ ‖ f (R(x,1)�) − P�
,x f (Rx,1)�)‖
+ ‖P�
,x f (R(x,1)�) − P�
,x f̂0(R(x,1)�)‖
+ ‖P�
,x f̂0(R(x,1)�) − P�
,x R(x,1) f̂0(�)‖
+ ‖P�
,x R(x,1) f̂0(�) − P�
,x R(x,1) f (�)‖
+ ‖P�
,x R(x,1) f (�) − R(x,1) f (�)‖

≤ 4ε,

where we used the bounds (4.44), (4.47), the equalities ‖P�
,x‖ = ‖R(x,1)‖ = 1, and
the identity (4.46). Taking the limit ε → 0, we obtain the desired R

2-equivariance of
f .
To complete the proof of SE(2)-equivariance, we will show that for any θ ∈ SO(2)

we have

R(0,θ) f̂0(�)(x) = f̂0(R(0,θ)�)(x), x ∈ �
,θ , (4.48)

where

�
,θ = [−
,
]2 ∩ A(0,θ)([−
,
]2).

Identity (4.48) is an analog of identity (4.45) that we used to prove the R(x,1)-
equivariance of f . Once Eq. (4.48) is established, we can prove the R(0,θ)-equivariance
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of f by arguing in the same way as we did above to prove the R(x,1)-equivariance.
After that, the R(0,θ)-equivariance and the R(x,1)-equivariance together imply the full
SE(2)-equivariance.

Note that by using the partial translation equivariance (4.45) and repeating the
computation from Lemma 4.2, it suffices to prove the identity (4.48) only in the
special case x = 0:

f̂0(R(0,θ)�)(0) = f̂0(�)(0). (4.49)

Indeed, suppose that Eq. (4.49) is established and 
 is sufficiently large so that
x, θ−1x ∈ [−
,
]2. Then,

f̂0(R(0,θ)�)(x) = R(−x,1) f̂0(R(0,θ)�)(0)

= f̂0(R(−x,1)R(0,θ)�)(0)

= f̂0(R(0,θ)R(−θ−1x,1)�)(0)

= f̂0(R(−θ−1x,1)�)(0)

= R(−θ−1x,1) f̂0(�)(0)

= R(x,θ)R(−θ−1x,1) f̂0(�)(A(x,θ)0)

= R(0,θ) f̂0(�)(x),

where we used general properties of the representaton R (steps 1, 6, 7), Eq. (4.49)
(step 4), and the partial R

2-equivariance (4.45) (steps 2 and 5, using the fact that
0, x, θ−1x ∈ [−
,
]2).

To establish Eq. (4.49), recall that, by Eq. (4.41), the value f̂0(�)(0) is obtained by
first evaluating Lconv(�) at x = 0 and then applying to the resulting values the map
Lmult. By Eqs.(4.39), (4.40) and Lemma 4.1, we can write Lconv(�)(0) as a vector
with components

Lconv(�)(0) = (. . . , ca,bL(a,b)
0 (�)(0), . . .), (4.50)

where, by Eq. (4.21),

L(a,b)
0 �(0) =

∫

R2
�(−y)�a,b(y)d2y,

and �a,b is given by Eq. (4.20):

�a,b = ∂az ∂bz

( 1

2π
e−|x|2/2) = ∂az ∂bz

( 1

2π
e−zz/2

)
.

In the language of Sect. 4.1.2, �a,b has local charge η = b − a:

�a,b(A(0,e−iφ)x) = ei(a−b)φ�a,b(x).
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It follows that

L(a,b)
0 (R(0,eiφ)�)(0) =

∫

R2
R(0,eiφ)�(−y)�a,b(y)d2y

=
∫

R2
�(A(0,e−iφ)(−y))�a,b(y)d2y

=
∫

R2
�(−y)�a,b(A(0,eiφ)y)d

2y

=
∫

R2
�(−y)ei(b−a)φ�a,b(y)d2y

= ei(b−a)φL(a,b)
0 (�)(0),

i.e., L(a,b)
0 (�)(0) transforms under rotations eiφ ∈ SO(2) as a character (4.22) with

ξ = b − a.
Now consider the map Lmult. Since each component in the decomposition (4.50)

transforms as a character with ξ = b − a, the construction of Lmult in Sect. 4.2
(based on the procedure of generating invariant polynomials described in Sect. 4.1.4)
quarantees thatLmult computes a function invariantwith respect to SO(2), thus proving
Eq. (4.49):

f̂0(R(0,θ)�)(0) = Lmult(Lconv(R(0,θ)�)(0)) = Lmult(Lconv(�)(0)) = f̂0(�)(0).

This completes the proof of the necessity part.

Sufficiency (a continuous SE(2)-equivariant map f : V → U can be approxi-
mated by charge-conserving convnets).

Given a continuous SE(2)-equivariant f : V → U , a compact set K ⊂ V and
positive numbers ε,
0, we need to construct a multi-resolution charge-conserving
convnet f̂ = ( f̂λ) with 
 > 
0 and the property sup�∈K ‖ f̂λ(�) − f (�)‖ ≤ ε for
all sufficiently small λ. We construct the desired convnet by performing a series of
reductions of this approximation problem.

1. Smoothing. For any ε1 > 0, consider the smoothed map f̃ε1 : V → U defined by

f̃ε1(�) = f (�) ∗ gε1, (4.51)

where

gε1(x) = 1

2πε1
e−|x|2/(2ε1).

The map f̃ε1 is continuous and SE(2)-equivariant, as a composition of two continuous
and SE(2)-equivariant maps. We can choose ε1 small enough so that for all � ∈ K

‖ f̃ε1(�) − f (�)‖ ≤ ε

10
. (4.52)
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The problem of approximating f then reduces to the problem of approximating maps
f̃ε1 of the form (4.51).

2. Spatial cutoff. We can choose 
 sufficiently large so that for all � ∈ K

‖P
 f̃ε1(�) − f̃ε1(�)‖ <
ε

10
. (4.53)

We can do this because f̃ε1(K ) is compact, as an image of a compact set under a
continuous map, and because P
 converge strongly to the identity as 
 → +∞.
Thus, we only need to approximate output signals f̃ε1(�) on the domain [−
,
]2.
3. Output localization. Define the map f̃ε1,loc : V → R by

f̃ε1,loc(�) = f̃ε1(�)(0) = 〈gε1, f (�)〉L2(R2). (4.54)

Since both gε1, f (�) ∈ L2(R2), the map f̃ε1,loc is well-defined, and it is continuous
since f is continuous.

By translation equivariance of f and hence f̃ε1 , the map f̃ε1 can be recovered from
f̃ε1,loc by

f̃ε1(�)(x) = f̃ε1(R(−x,1)�)(0) = f̃ε1,loc(R(−x,1)�). (4.55)

By the SO(2)-equivariance of f̃ε1, the map f̃ε1,loc is SO(2)-invariant.

4. Nested finite-dimensional SO(2)-modules Vζ . For any nonnegative integer
a, b consider again the signal �a,b introduced in Eq. (4.20). For any ζ = 1, 2, . . . ,
consider the subspace Vζ ⊂ V spanned by the vectors Re(�a,b) and Im(�a,b) with
a + b ≤ ζ. These vectors form a total system in V if a, b take arbitrary nonnegative
integer values. Accordingly, if we denote by PVζ the orthogonal projection to Vζ in
V , then the operators PVζ converge strongly to the identity as ζ → ∞.

The subspace Vζ is a real finite-dimensional SO(2)-module. As discussed in
Sect. 4.1.4, it is convenient to think of such modules as consisting of complex con-
jugate irreducible representations under constraint (4.29). The complex extension of
the real module Vζ is spanned by signals {�a,b}a+b≤ζ , so that �a,b and �b,a form a
complex conjugate pair for a �= b (if a = b, then �a,b is real). The natural represen-
tation (4.1) of SO(2) transforms the signal �a,b as a character (4.22) with ξ = a − b
(in the language of Sect. 4.1.2, �a,b has local charge η = b − a w.r.t. x = 0):

R(0,eiφ)�a,b(x) = �a,b(A(0,e−iφ)x) = ei(a−b)φ�a,b(x). (4.56)

The action of SO(2) on the real signals Re(�a,b) and Im(�a,b) can be related to its
action on �a,b and �b,a as in Eqs.(4.27), (4.28).

5. Restriction to Vζ . Let f̃ε1,loc,ζ : Vζ → R be the restriction of the map f̃ε1,loc
defined in Eq. (4.54) to the subspace Vζ :

f̃ε1,loc,ζ = f̃ε1,loc|Vζ . (4.57)
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Consider the map f̃ε1,ζ : V → U defined by projecting to Vζ and translating the map
f̃ε1,loc,ζ to points x ∈ [−
,
]2 like in the reconstruction formula (4.55):

f̃ε1,ζ (�)(x) =
{
f̃ε1,loc,ζ (PVζ R(−x,1)�), x ∈ [−
,
]2
0, otherwise.

(4.58)

We claim that if ζ is sufficiently large then for all � ∈ K

‖ f̃ε1,ζ (�) − P
 f̃ε1(�)‖ <
ε

10
. (4.59)

Indeed,

‖ f̃ε1,ζ (�) − P
 f̃ε1(�)‖ ≤ 2
 sup
�1∈K1

| f̃ε1,loc(PVζ �1) − f̃ε1,loc(�1)|, (4.60)

where

K1 = {R(−x,1)�)|(x,�) ∈ [−
,
]2 × K } ⊂ V . (4.61)

The set K1 is compact, by compactness of K and strong continuity of R. Then, by

compactness of K1, strong convergence PVζ �1
ζ→∞−→ �1 and continuity of f̃ε1,loc, the

r.h.s. of (4.60) becomes arbitrarily small as ζ → ∞.
It follows from (4.59) that the problem of approximating f reduces to approximat-

ing the map f̃ε1,ζ for a fixed finite ζ .

6. Polynomial approximation. The map f̃ε1,loc,ζ : Vζ → R defined in (4.57) is a
continuous SO(2)-invariant map on the SO(2)-module Vζ . By Lemma 4.2, such a map
can be approximated by invariant polynomials. Let K1 ⊂ V be the compact set defined
in Eq. (4.61). Note that PVζ K1 is then a compact subset of Vζ . Let f̂loc : Vζ → R be
an SO(2)-invariant polynomial such that for all �2 ∈ PVζ K1

| f̂loc(�2) − f̃ε1,loc,ζ (�2)| ≤ ε

10 · 2
. (4.62)

Consider now the map f̂0 : V → U defined by

f̂0(�)(x) =
{
f̂loc(PVζ R(−x,1)�), x ∈ [−
,
]2,
0, otherwise.

(4.63)

Using Eqs.(4.58) and (4.62), we have for all x ∈ [−
,
]2 and �2 ∈ PVζ K1

| f̂0(�2)(x) − f̃ε1,ζ (�2)(x)| ≤ ε

10 · 2
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and hence for all � ∈ K

‖ f̂0(�) − f̃ε1,ζ (�)‖ <
ε

10
. (4.64)

7. Identification of convnet with λ = 0. We show now that the map f̂0 given
in (4.63) can be written as the scaling limit (λ → 0) of a multi-resolution charge-
conserving convnet.

First note that the projector PVζ can be written as

PVζ � =
∑

a,b:a+b≤ζ

〈� ′
a,b,�〉�a,b,

where � ′
a,b is the basis in Vζ dual to the basis �a,b. Let Vζ,ξ denote the isotypic

component in Vζ spanned by vectors�a,b with a−b = ξ . By Eq. (4.56), this notation
is consistent with the notation of Sect. 4.1.4 where the number ξ is used to specify the
characters (4.22). By unitarity of the representation R, different isotypic components
are mutually orthogonal, so � ′

a,b ∈ Vζ,a−b and we can expand

� ′
a,b =

∑

0≤a′,b′≤ζ

a′−b′=a−b

ca,b,a′,b′�a′,b′

with some coefficients ca,b,a′,b′ . Then we can write

PVζ R(−x,1)� =
∑

a,b:a+b≤ζ

〈� ′
a,b, R(−x,1)�〉�a,b

=
ζ∑

ξ=−ζ

∑

a,b:a+b≤ζ
a−b=ξ

∑

a′,b′ :a′+b′≤ζ

a′−b′=ξ

ca,b,a′,b′ 〈�a′,b′ , R(−x,1)�〉�a,b

=
ζ∑

ξ=−ζ

∑

a,b:a+b≤ζ
a−b=ξ

∑

a′,b′ :a′+b′≤ζ

a′−b′=ξ

ca,b,a′,b′
( ∫

R2
�(x + y)�a′,b′ (y)d2y

)
�a,b

=
ζ∑

ξ=−ζ

∑

a,b:a+b≤ζ
a−b=ξ

∑

a′,b′ :a′+b′≤ζ

a′−b′=ξ

ca,b,a′,b′ (−1)a
′+b′(

∫

R2
�(x − y)�b′,a′ (y)d2y

)
�a,b

=
ζ∑

ξ=−ζ

∑

a,b:a+b≤ζ
a−b=ξ

∑

a′,b′ :a′+b′≤ζ

a′−b′=ξ

ca,b,a′,b′ (−1)a
′+b′

(L(b′,a′)
0 �(x))�a,b, (4.65)

where in the penultimate step we used the identity �a′,b′(y) = �(b′,a′)(y) =
(−1)a

′+b′
�(b′,a′)(−y), and in the last step we used definition (4.21) of L(a,b)

0 .

We can now interpret the map f̂0 given by (4.63) as the λ → 0 limit of a convnet
of Sect. 4.2 in the following way.
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First, by the above expansion, the part PVζ R(−x,1) of the map f̂0 computes various

convolutions L(b′,a′)
0 � with a′ + b′ ≤ ζ, a′ − b′ = ξ—this corresponds to the λ → 0

limit of smoothing and differentiation layers of Sect. 4.2 with Tdiff = ζ . The global
charge parameter μ appearing in the decomposition (4.32) of the target spaces Wdiff,t
of differentiation layers corresponds to −ξ(= b′ − a′) in the above formula, while
the degree s corresponds to a′ + b′. The vectors �a,b with a − b = ξ over which we
expand in (4.65) serve as a particular basis in the μ = −ξ component of Wdiff,Tdiff .

Now, the invariant polynomial f̂loc appearing in (4.63) can be expressed as a polyno-
mial in the variables associated with the isotypic components Vζ,ξ . These components
are spanned by the vectors �a,b with a − b = ξ . By Eq. (4.65), f̂loc(PVζ R(−x,1)�)

can then be viewed as an invariant polynomial in the variables L(b′,a′)
0 �(x) that corre-

spond to the isotypic components Vζ,ξ with ξ = a′ − b′. As shown in Sect. 4.1.4, this
invariant polynomial can then be generated by the layerwise multiplication procedure

(4.26) starting from the initial variables L(b′,a′)
0 �(x). This procedure is reproduced in

the definition (4.36), (4.37) of convnet multiplication layers. (The charge-conservation
constraints are expressed in Eqs.(4.36), (4.37) in terms ofμ rather than ξ , butμ = −ξ ,
and the constraints are invariant with respect to changing the sign of all μ’s.) Thus,
if the number Tmult of multiplication layers and the dimensions dmult of these layers
are sufficiently large, then one can arrange the weights in these layers so as to exactly
give the map � 
→ f̂loc(PVζ R(−x,1)�).

8. Approximation by convnets with λ > 0. It remains to show that the scaling limit
f̂0 is approximated by the λ > 0 convnets f̂λ in the sense that if λ is sufficiently small
then for all � ∈ K

‖ f̂0(�) − f̂λ(�)‖ <
ε

10
. (4.66)

We have already shown earlier in Eq. (4.42) that for any � ∈ V the signals f̂λ(�)

converge to f̂λ(�) in the L2([−
,
]2) sense. In fact, Lemma 4.1 implies that this
convergence is uniform on any compact set K ⊂ V , which proves Eq. (4.66).
Summarizing all the above steps, we have constructed a multi-resolution charge-
conserving convnet f̂λ such that, by the inequalities (4.52), (4.53), (4.59), (4.64) and
(4.66), we have sup�∈K ‖ f̂λ(�) − f (�)‖ ≤ ε for all sufficiently small λ. This com-
pletes the proof of the sufficiency part. ��

5 Discussion

We summarize and discuss the obtained results, and indicate potential directions of
further research.

In Sect. 2 we considered approximation of maps defined on finite-dimensional
spaces and described universal and exactly invariant/equivariant extensions of the
usual shallow neural network (Propositions 2.3, 2.4). These extensions are obtained
by adding to the network a special polynomial layer. This construction can be seen
as an alternative to the symmetrization of the network (similarly to how constructing
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symmetric polynomials as functions of elementary symmetric polynomials is an alter-
native to symmetrizing non-symmetric polynomials). A drawback (inherited from the
theory of invariant polynomials) of this construction is that it requires us to know
appropriate sets of generating polynomial invariants/equivariants, which is difficult in
practice. This difficulty can be ameliorated using polarization if the modules in ques-
tion are decomposed intomultiple copies of a few basicmodules (Proposition 2.5, 2.7),
but this approach still may be too complicated in general for practical applications.

Nevertheless, in the case of the symmetric group SN we have derived an explicit
complete SN -invariant modification of the usual shallow neural network (Theo-
rem 2.4). While complete and exactly SN -invariant, this modification does not involve
symmetrization over SN .With its relatively small computational complexity, thismod-
ification thus presents a viable alternative to the symmetrization-based approach.

One can expect that further progress in the design of invariant/equivariant models
maybe achievedbyusingmore advancedgeneral constructions from the representation
and invariant theories. In particular, in Sect. 2 we have not considered products of
representations, but later in Sect. 4 we essentially use them in the abelian SO(2)
setting when defining multiplication layers in “charge-conserving convnet” .

In Sect. 3 we considered approximations of maps defined on the space V =
L2(Rν, R

dV ) of dV -component signals on R
ν . The crucial feature of this setting is

the infinite-dimensionality of the space V , which requires us to reconsider the notion
of approximation. Inspired by classical finite-dimensional results [32], our approach
in Sect. 3 was to assume that a map f is defined on the whole L2(Rν, R

dV ) as a
map f : L2(Rν, R

dV ) → L2(Rν, R
dU ) or f : L2(Rν, R

dV ) → R, and consider its
approximation by finite models f̂ in a weak sense of comparison on compact subsets
of V (see Definitions 3.2 and 3.4). This approach has allowed us to prove reasonable
universal approximation properties of standard convnets. Specifically, in Theorem 3.1
we prove that a map f : L2(Rν, R

dV ) → L2(Rν, R
dU ) can be approximated by

convnets without pooling if and only if f is norm-continuous and R
ν-equivariant. In

Theorem 3.2 we prove that a map f : L2(Rν, R
dV ) → R can be approximated by

convnets with downsampling if and only if f is norm-continuous.
In applications involving convnets (e.g., image recognition or segmentation), the

approximated maps f are considered only on small subsets of the full space V . Com-
pact (or, more generally, precompact) subsets have properties that seem to make them
a reasonable general abstraction for such subsets. In particular, a subset K ⊂ V is
precompact if, for example, it results from a continuous generative process involving
finitely many bounded parameters; or if K is a finite union of precompact subsets; or if
for any ε > 0 the set K can be covered by finitely many ε-balls. From this perspective,
it seems reasonable to consider restrictions of maps f to compact sets, as we did in
our weak notion of approximation in Sect. 3. At the same time, it would be interesting
to refine the notion of model convergence by considering the structure of the sets K in
more detail and relate it quantitatively to the approximation accuracy (in partucular,
paving the way to computing approximation rates).

In Sect. 4 we consider the task of constructing finite universal approximators for
maps f : L2(R2, R

dV ) → L2(R2, R
dU ) equivariant with respect to the group SE(2) of

two-dimensional rigid planarmotions.We introduce a particular convnet-likemodel—
“charge-conserving convnet”—solving this task.We extend the topological framework
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of Sect. 3 to rigorously formulate the properties of equivariance and completeness to
be proved. Our main result, Theorem 4.1, shows that a map f : L2(R2, R

dV ) →
L2(R2, R

dU ) can be approximated in the small-scale limit by finite charge-conserving
convnets if and only if f is norm-continuous and SE(2)-equivariant.

The construction of this convnet is based on splitting the feature space into iso-
typic components characterized by a particular representation of the group SO(2) of
proper 2D rotations. The information flow in the model is constrained by what can
be interpreted as “charge conservation” (hence the name of the model). The model
is essentially polynomial, only including elementary arithmetic operations (+,−, ∗)
arranged so as to satisfy these constraints but otherwise achieve full expressivity.

While in Sects. 3, 4 we have constructed intrinsically R
ν- and (for ν = 2) SO(2)-

equivariant and complete approximators for maps f : L2(Rν, R
dV ) → L2(Rν, R

dU ),
we have not been able to similarly construct intrinsically R

ν-invariant approximators
for maps f : L2(Rν, R

dV ) → R. As noted in Sect. 3 and confirmed by Theorem 3.2,
if we simply include pooling in the convnet, it completely destroys the R

ν-invariance
in our continuum limit. It would be interesting to further explore this issue.

The convnets considered in Sect. 3 have a rather conventional structure as sequences
of linear convolutional layers equipped with a nonlinear activation function [12]. In
contrast, the charge-conserving convnets of Sect. 4 have a special and somewhat arti-
ficial structure (three groups of layers of which the first two are linear and commuting;
no arbitrary nonlinearities). This structure was essential for our proof of the main The-
orem 4.1, since these assumptions on the model allowed us to prove that the model is
both SE(2)-equivariant and complete. It would be interesting to extend this theorem
to more general approximation models.

Acknowledgements The author thanks the anonymous reviewer for several helpful suggestions.

A Proof of Lemma 4.1

The proof is a slight modification of the standard proof of Central Limit Theorem
via Fourier transform (the CLT can be directly used to prove the lemma in the case
a = b = 0 when L(a,b)

λ only includes diffusion factors).
To simplify notation, assume without loss of generality that dV = 1 (in the general

case the proof is essentially identical).Wewill use the appropriately discretized version
of the Fourier transform (i.e., the Fourier series expansion). Given a discretized signal
� : (λZ)2 → C, we define Fλ� as a function on [−π

λ
, π

λ
]2 by

Fλ�(p) = λ2

2π

∑

γ∈(λZ)2

�(γ )e−ip·γ .

Then, Fλ : L2((λZ)2, C) → L2([−π
λ
, π

λ
]2, C) is a unitary isomorphism, assuming

that the scalar product in the input space is definedby 〈�,�〉 = λ2
∑

γ∈(λZ)2 �(γ )�(γ )

and in the output space by 〈�,�〉 = ∫
[− π

λ
, π

λ
]2 �(p)�(p)d2p. Let Pλ be the discretiza-

tion projector (3.6). It is easy to check that FλPλ strongly converges to the standard
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Fourier transform as λ → 0 :

lim
λ→0

FλPλ� = F0�, � ∈ L2(R2, C),

where

F0�(p) = 1

2π

∫

R2
�(γ )e−ip·γ d2γ

and where we naturally embed L2([−π
λ
, π

λ
]2, C) ⊂ L2(R2, C). Conversely, let P ′

λ

denote the orthogonal projection onto the subspace L2([−π
λ
, π

λ
]2, C) in L2(R2, C) :

P ′
λ : � 
→ �|[− π

λ
, π

λ
]2 . (A.1)

Then

lim
λ→0

F−1
λ P ′

λ� = F−1
0 �, � ∈ L2(R2, C). (A.2)

Fourier transform gives us the spectral representation of the discrete differential oper-
ators (4.15), (4.16), (4.17) as operators of multiplication by function:

Fλ∂
(λ)
z � = �

∂
(λ)
z

· Fλ�,

Fλ∂
(λ)
z � = �

∂
(λ)
z

· Fλ�,

Fλ�
(λ)� = ��(λ) · Fλ�,

where, denoting p = (px , py),

�
∂

(λ)
z

(px , py) = i

2λ
(sin λpx − i sin λpy),

�
∂

(λ)
z

(px , py) = i

2λ
(sin λpx + i sin λpy),

��(λ) (px , py) = − 4

λ2

(
sin2

λpx
2

+ sin2
λpy
2

)
.

The operator L(a,b)
λ defined in (4.19) can then be written as

FλL(a,b)
λ � = �L(a,b)

λ

· FλPλ�,

where the function �L(a,b)
λ

is given by

�L(a,b)
λ

= (�
∂

(λ)
z

)a(�
∂

(λ)
z

)b
(
1 + λ2

8 ��(λ)

)�4/λ2�
.
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We can then write L(a,b)
λ � as a convolution of Pλ� with the kernel

�
(λ)
a,b = 1

2π
F−1

λ �L(a,b)
λ

on the grid (λZ)2 :

L(a,b)
λ �(γ ) = λ2

∑

θ∈(λZ)2

Pλ�(γ − θ)�
(λ)
a,b(θ), γ ∈ (λZ)2. (A.3)

Now consider the operator L(a,b)
0 defined in (4.21). At each x ∈ R

2, the value

L(a,b)
0 �(x) can be written as a scalar product:

L(a,b)
0 �(x) =

∫

R2
�(x − y)�a,b(y)d2y = 〈R−x�̃,�a,b〉L2(R2), (A.4)

where �̃(x) = �(−x),�a,b is defined by (4.20), and Rx is our standard representation
of the groupR

2, Rx�(y) = �(y−x). For λ > 0, we can writeL(a,b)
λ �(x) in a similar

form. Indeed, using (A.3) and naturally extending the discretized signal �
(λ)
a,b to the

whole R
2, we have

L(a,b)
λ �(γ ) =

∫

R2
�(γ − y)�(λ)

a,b(y)d
2y = 〈R−γ �̃,�

(λ)
a,b〉L2(R2).

Then, for any x ∈ R
2 we can write

L(a,b)
λ �(x) = 〈R−x+δx�̃,�

(λ)
a,b〉L2(R2), (A.5)

where −x + δx is the point of the grid (λZ)2 nearest to −x.
Now consider the formulas (A.4), (A.5) and observe that, by Cauchy-Schwarz

inequality and since R is norm-preserving, to prove statement 1) of the lemma we
only need to show that the functions �a,b, �

(λ)
a,b have uniformly bounded L2-norms.

For λ > 0 we have

‖�(λ)
a,b‖2L2(R2)

=
∥
∥
∥

1

2π
F−1

λ �L(a,b)
λ

∥
∥
∥
2

L2(R2)

= 1

4π2 ‖�L(a,b)
λ

‖2L2(R2)

= 1

4π2

∥
∥(�

∂
(λ)
z

)a(�
∂

(λ)
z

)b
(
1 + λ2

8 ��(λ)

)�4/λ2� ∥
∥2
L2(R2)

≤ 1

4π2

∫ π/λ

−π/λ

∫ π/λ

−π/λ

( |px |+|py |
2

)2(a+b)

exp
(
−�4/λ2�

(
sin2 λpx

2 + sin2 λpy
2

))
dpxdpy
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≤ 1

4π2

∫ ∞

−∞

∫ ∞

−∞
( |px |+|py |

2

)2(a+b) exp(− 4
π2 (p

2
x + p2y))dpxdpy

(A.6)

< ∞,

where we used the inequalities

| sin t | ≤ |t |,
|1 + t | ≤ et , t > −1,

| sin t | ≥ 2|t |
π

, t ∈ [−π
2 , π

2 ].

Expression (A.6) provides a finite bound, uniform in λ, for the squared norms ‖�(λ)
a,b‖2.

This bound also holds for ‖�a,b‖2.
Next, observe that to establish the strong convergence in statement 2) of the lemma,

it suffices to show that

lim
λ→0

‖�(λ)
a,b − �a,b‖L2(R2) = 0. (A.7)

Indeed, by (A.4), (A.5), we would then have

‖L(a,b)
λ � − L(a,b)

0 �‖∞ = sup
x∈R2

|〈R−x+δx�̃,�
(λ)
a,b〉 − 〈R−x�̃,�a,b〉|

= sup
x∈R2

|〈R−x(Rδx − 1)�̃,�
(λ)
a,b〉 + 〈R−x�̃,�

(λ)
a,b − �a,b〉|

≤ sup
‖δx‖≤λ

‖Rδx�̃ − �̃‖2 sup
λ

‖�(λ)
a,b‖2 + ‖�̃‖2‖�(λ)

a,b − �a,b‖2
λ→0−→ 0

thanks to the unitarity of R, convergence limδx→0 ‖Rδx�̃−�̃‖2 = 0, uniform bound-
edness of ‖�(λ)

a,b‖2 and convergence (A.7).
To establish (A.7), we write

�
(λ)
a,b − �a,b = 1

2π
(F−1

λ �L(a,b)
λ

− F−1
0 �L(a,b)

0
),

where �L(a,b)
0

= 2πFλ�a,b. By definition (4.20) of �a,b and standard properties of

Fourier transform, the explicit form of the function �L(a,b)
0

is

�L(a,b)
0

(px , py) = ( i(px−i py)
2

)a( i(px+i py)
2

)b exp
( − p2x+p2y

2

)
.

Observe that the function �L(a,b)
0

is the pointwise limit of the functions �L(a,b)
λ

as

λ → 0. The functions |�L(a,b)
λ

|2 are bounded uniformly in λ by the integrable function
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appearing in the integral (A.6). Therefore we can use the dominated convergence
theorem and conclude that

lim
λ→0

∥
∥�L(a,b)

λ

− P ′
λ�L(a,b)

0

∥
∥
2 = 0, (A.8)

where P ′
λ is the cut-off projector (A.1). We then have

‖�(λ)
a,b − �a,b‖2 = 1

2π

∥
∥F−1

λ �L(a,b)
λ

− F−1
0 �L(a,b)

0

∥
∥
2

≤ 1

2π

∥
∥F−1

λ (�L(a,b)
λ

− P ′
λ�L(a,b)

0
)
∥
∥
2 + 1

2π

∥
∥(F−1

λ P ′
λ − F−1

0 )�L(a,b)
0

∥
∥
2

λ→0−→ 0

by (A.8) and (A.2). We have thus proved (A.7).
It remains to show that the convergenceL(a,b)

λ � → L(a,b)
0 � is uniform on compact

sets K ⊂ V . This follows by a version of continuity argument. For any ε > 0, we
can choose finitely many �n, n = 1, . . . , N , such that for any � ∈ K there is
some �n for which ‖� − �n‖ < ε. Then ‖L(a,b)

λ � − L(a,b)
0 �‖ ≤ ‖L(a,b)

λ �n −
L(a,b)
0 �n‖ + 2 supλ≥0 ‖L(a,b)

λ ‖ε. Since supλ≥0 ‖L(a,b)
λ ‖ < ∞ by statement 1) of the

lemma, the desired uniform convergence for� ∈ K follows from the convergence for
�n, n = 1, . . . , N .
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