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Abstract

New sequences of orthogonal polynomials with ultra-exponential weight functions
are discovered. In particular, we give an explicit solution to the Ditkin—Prudnikov
problem (1966). The 3-term recurrence relations, explicit representations, generating
functions and Rodrigues-type formulae are derived. The method is based on differ-
ential properties of the involved special functions and their representations in terms
of the Mellin—Barnes and Laplace integrals. A notion of the composition polynomial
orthogonality is introduced. The corresponding advantages of this orthogonality to dis-
cover new sequences of polynomials and their relations to the corresponding multiple
orthogonal polynomial ensembles are shown.
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1 Introduction and preliminary results

Throughout the text, N will denote the set of all positive integers, Ny = N U {0},
and R and C the field of the real and complex numbers, respectively. The notation
R4 corresponds to the set of all positive real numbers. The present investigation is
primarily targeted at analysis of sequences of orthogonal polynomials with respect
to the weight functions related to the modified Bessel functions of the second kind
or Macdonald functions K, (x) [5, Vol. IT]. The problem was posed by Ditkin and
Prudnikov in the seminal work of 1966 [4] to find a new sequence of orthogonal
polynomials (Py),eN,, satisfying the orthogonality conditions

o
/ 2K0(2/x) Py (x) Py (x)dx = 8., n,m € Np, (1.1)
0

where §,, ,, represents the Kronecker symbol, and related to the weight 2K(24/x)
which can be defined in terms of the Mellin—Barnes integral (see [10, relation
(8.4.23.1), Vol. III})).

Tl Jy—ioco

1 y+ioo
2Ko(24/x) = 2—/ M(s)xds, x,y € Ry, (1.2)
y

where I'(z) is the Euler gamma function [5, Vol. I]. The first four polynomials are

BW=1, P = -, Pw=y (S Eey
0 X) = ’ 1 X) = \/g X ’ 2 X) = 41 4 3x 3 ’
Pyx) = [41 (23 177 2, 267 131
TV \36 T T64T Tl a1 )
Later in 1993 [9] Prudnikov formulated the problem in terms of more general ultra-

exponential weight functions pp x—1, k € N (see Definition 1 below), and in [13] it
was announced in terms of the scaled Macdonald function

ov(x) = 2x"?K,(2/x), x e Ry, v > 0. (1.3)

This function has the Mellin—Barnes integral representation in the form

1 y+ioco
pv(x) = >— Fv+s)C(s)xds, x,7 € Ry, (1.4)
270 Jy—ico

and more general ultra-exponential weight functions can be represented, in turn,
in terms of Meijer G-functions [15]. Namely, the problem is to find a sequence of

orthogonal polynomials (Pn”)n No (P,? = P,), satisfying the following orthogonality
conditions

o
/ P} (x)P) (x)py(x)dx = 8y, n,m € Ny. (1.5)
0
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As was shown in [13] and [2] it is more natural to investigate multiple orthogonal
polynomials for two Macdonald weights p, and p,41 since it gives explicit formu-
las, differential properties, recurrence relations and Rodrigues formulas. Nevertheless,
there is still an attractive original problem: to understand the nature of such polyno-
mial sequences and their relation to classical systems of orthogonal polynomials and
associated multiple orthogonal polynomial ensembles.

On the other hand, the operational calculus associated with the differential operator
% gives rise to the Laplace transform

F(x):/ e M f(dt, x e Ry, (1.6)
0

having the exponential function as a kernel, which is the weight function for classical
Laguerre polynomials [1], being represented in terms of the Mellin—Barnes integral
[10, relation (8.4..3.1), Vol. III]

1 y+ioco
et = —/ I'(s)x*ds, x,y e R,. 1.7
2mi y—ioco
Meanwhile, the operator (f—tt% which is also called the Laguerre derivative [3], leads

to the Meijer transform [15], involving the weight 2 K((2+/x) which is given by (1.2),
namely,

G(x) = foo 2Ko(2v/x0)g(t)dr, x € Ry. (1.8)
0

This transform is an important example of the so-called Mellin type convolution trans-
forms, which are extensively investigated in [ 15]. Moreover, we will employ the Mellin
transform technique developed in [15] in order to investigate various properties of the
scaled Macdonald functions and more general ultra-exponential weights. Specifically,
the Mellin transform is defined, for instance, in L, ,(R;), 1 < p < 2 (see details in
[12]) by the integral

) = foo fox*ldx, secC, (1.9)
0

which is convergent in mean with respect to the norm in L, (u —i00, u +i00), €
R, g = p/(p — 1). Moreover, the Parseval equality holds for f € L, ,(Ry), g €
L 1—p,q (R+)

2mi —ioo

00 1 Hn+ioo
/0 f(x)gx)dx = —/ [H(s)g" (1 — s5)ds. (1.10)
"
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4 Constructive Approximation (2021) 53:1-38

The inverse Mellin transform is given accordingly

+ioo

fx) = L fr(s)x" ds, (1.11)
27Tl u—ioo

where the integral converges in mean with respect to the norm in L, ,(R)

00 1/p
||f||u,p:<‘/(; |f(x)|17xl£17—1dx> .

In particular, letting © = 1/p we get the usual space L,(R;; dx). Recalling the
Meijer transform (1.8) one can treat it as an analog of the Laplace transform (1.6)
in the operational calculus associated with the Laguerre derivative. Consequently,
the corresponding analog of the classical Laguerre polynomials would be important
to investigate, discovering the mentioned Ditkin—Prudnikov polynomial sequence.
Finally, we note in this section that in [8] some non-orthogonal polynomial systems
were investigated which share the same canonical regular form with Ditkin—Prudnikov
polynomial sequence (P,),¢n,- An analogous relation occurs, for instance, between
the Bernoulli polynomials, which also happen to be non-orthogonal, and the (orthog-
onal) Legendre polynomials.

2 Properties of the Scaled Macdonald Functions
We begin with

Definition 1 Let x, y € Ry, v > 0, k € Ny. The function p, x(x) is called the ultra-
exponential weight function and itis expressed in terms of the following Mellin—Barnes
integral

1 y+ioco
Pvk(X) = — T(v+s)[T(s)F x ™ ds. 2.1)
278 Jy—ico

It is easily seen from the reciprocal formulas (1.9), (1.11) for the Mellin transform that
the case k = 0 corresponds to the weight function p, o(x) = x"e™, which is related
to the associated classical Laguerre polynomials L}, (x) [1]

o
/ Ly(x)L,; (x)e *x"dx =8, m, n,me Ny (2.2)
0

and k = 1 gives the function p, 1 = p,, which is associated with the Prudnikov
polynomials P under orthogonality conditions (1.5). As mentioned above the weights
pv.k can be expressed in terms of the Meijer G-functions (see [7]). Concerning the
scaled Macdonald function p,, we employ the Parseval equality (1.10) to the integral
(1.4) to derive the Laplace integral representation for this weight function which will
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be used later. In fact, we obtain
o
ov(x) = f ' le™ =4, x>0, veR. (2.3)
0
The direct Mellin transform (1.9) gives the moments of p,,. Specifically, we obtain

f py(0)xtdx =T (u+v+ DI (e + D). (24
0

Moreover, the asymptotic behavior of the modified Bessel function at infinity and near
the origin [5, Vol. II] gives the corresponding values for the scaled Macdonald function
pv, v € R. To be Precise we have

pu(x) = O (x@—'“')/z) L x— 0, v£0, po(x) = O(logx), x — 0,

o(x) =0 (x”/271/4672ﬁ) , X — 400.

Returning to the Mellin—Barnes integral (1.4), we multiply both sides of this equality
by x ~" and then differentiate with respect to x under the integral sign. This is possible
via the absolute and uniform convergence by x > xo > 0, which can be established
using the Stirling asymptotic formula for the gamma function [5, Vol. I]. Therefore
we deduce

d ) 1 y+ioo e
—[x pv(x)]:—%/ Fwv+s+ DO(E)x™ ds,
14

dx —ico

where the reduction formula I'(z 4+ 1) = zI'(z) for the gamma function is applied.
Multiplying the latter equality by x"*! and differentiating again, we involve a simple
change of variables and the analyticity on the right half-plane Res > 0 of the integrand
to end up with the second order differential equation for p,

d Vv d -V
o [x il pu<x>]} = pu(0). 2.5)

Further, denoting the operator of the Laguerre derivative by 8 = Dx D and its com-
panion 6 = x Dx (see [11]), where D is the differential operator D = %, we calculate
the nth power, employing amazing Viskov-type identities [14]

B" = (DxD)" = D"x"D", 0" = (xDx)" =x"D"x", n € Ny. (2.6)
Equalities (2.6) can be proved by the method of mathematical induction. We show
how to establish (2.6), using the Mellin transform technique for a class of functions

f whose Mellin transforms (1.9) f*(s), s = y + it belong to the Schwartz space as
a function of 7. As is known, this space is a topological vector space of functions ¢
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6 Constructive Approximation (2021) 53:1-38

such that ¢ € C®(R) and x"¢"™ (x) — 0, |x| — 00, m,n € Ny. This means that
one can differentiate under the integral sign in (1.11) infinitely many times. Hence

y+ioco

1
(B"f)(x) = (DxD)" f = e (DxD)"_lf §2 F(s)x 5 1ds

Yy —i00

1 y+ioco
_ L (pxpy— f [s(s + D2 F*(s)x " 2ds
2mi y—ioco

y+ioco

[(s)a ] f*(s)x 5 "ds,

2mi y—ioo
where

r
(s)nzs(s+1)...(s+n—1)=% 2.7

is the Pochhammer symbol [5]. On the other hand,

" y+ioo ]
(D"x"D") f= %D"/ n fF(s)x" ds
l y—ico

1 y+ioo ) e
- / [(s)u T2 F* ()~ "ds.
Tl y

—ioo

which proves the first identity in (2.6). Analogously,

1 y+ioco
@ ) = @D £ = 5o [T a— g et
l y—ioco
1 y+ioo
—= = [T s
2mi y—ioco

X" y+ioco
= ,D"/ fHe)x"ds = (x"D"x") f.
2mi y—ico

This proves the second identity in (2.6). In particular, we easily find the values

(B" po)(x) = (DxD)" po = po(x),

(B"p)(x) = (DxD)" p; = p1(x) —npo(x), n € Ny, (2.8)
@")(x) = xDx)" 1 =nlx",
0" x")(x) = (xDx)" xF = Mx""‘k n, k € Np. (2.9)

k! '
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The quotient of the scaled Macdonald functions p,,, p,+1 is given by the important
Ismail integral representation [6]

pv(x) 1 y~ldy

pri1() w2 /0 CRRULSRICNOES CRICND])

(2.10)

where J,(z), Y, (z) are Bessel functions of the first and second kind, respectively
[5]. Another interesting integral representation for the scaled Macdonald function
py 1s given via [10, relation (2.19.4.13), Vol. II] in terms of the associated Laguerre
polynomials. Namely, we have

(_1)nxn *© v+n—1 _—t—x/tyv
—— = e L'(Hdr, neN. 2.11)
n: 0

Meanwhile, an important property for the scaled Macdonald functions can be obtained
in terms of the Riemann—Liouville fractional integral [15]

1 o0
1" =— t—x)"" fF()dr. 2.12
(1" f) @) F(U)/x (t = 0" f (o) @.12)
In fact, appealing to [5, relation (2.16.3.8), Vol. II]

o
29XV (@) Ky () =/ 1@ = xH K, (nde, (2.13)

X

making simple changes of variables and letting v = 0, we derive the formula

pax) = (19 p0) (). 2.14)

Moreover, the index law for fractional integrals immediately implies

P () = (1Y ) ) = (I£py) (x). (2.15)

The corresponding definition of the fractional derivative presumes the relation D" =

— DI Hence for the ordinary nth derivative of p, we get
D"py(x) = (=1)"py—n(x), n € No. (2.16)

Another way to get this formula is to differentiate n-times the integral (1.4), to use the
definition of the Pochhammer symbol (2.7) and to make a simple change of variables.

In the meantime, the Mellin—-Barnes integral (1.4) and reduction formula for the
gamma function yield

y+ioco

1
Pv1(x) = =— F'(v+s+ DI(s)x " ds
27i Jy—ico
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8 Constructive Approximation (2021) 53:1-38

1 y+ioco
= — / Cw+s)v+s)T(s)x*ds = vp,(x)
2mi y—ioco
1 y+ioco
4+— C(w+s)T(s+ Dx ds
2mi y—ioco

= vy (x) + x0y—1(x).

Hence we deduce the following recurrence relation for the scaled Macdonald functions

Pv+1(x) = vy (x) +xpp—1(x), v eER. (2.17)

In the operator form it can be written as follows

pv41(x) = (v —xD) py(x), (2.18)
and more generally
n—1
poin) = [T +n—k=1-xD)py(x), neNo. (2.19)
k=0

Further, recalling the definition of the operator 6, identities (2.6), and the Rodrigues
formula for Laguerre polynomials, we obtain

0" {x e} = nIx" e L) (x), n € Ny. (2.20)

This formula permits us to derive an integral representation for the product p, f;,
where f, is an arbitrary polynomial of degree n

n
fo) =" faaxt. 2.21)
k=0
In fact, considering the operator equality and using (2.20), we write

fn(_e) {xvefx} = xVe ¥ Z fn,k(—l)kk!kaZ(X) — xvefxqéin(x)’
k=0
where
45, () =Y fua (=D kLY (x) (2.22)
k=0
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will be called the associated polynomial of degree 2n. Then, integrating by parts in
the following integral and eliminating the integrated terms, we find

foofle*x/’fn(—e) {tve™"}dt = /Oo £2(0) [fle*x/’] e ds.
0 0

Meanwhile,
ok [t_le_x/'] = (tD)* [t‘le"‘/’} = xke= e/, (2.23)

Hence, appealing to (2.3) and (2.22), we establish the following integral representation
of an arbitrary polynomial f,, in terms of its associated polynomial g},

1

=0

o0
/ ' le TGy (1)dr. (2.24)
0

The following lemma gives the so-called linear polynomial independence of the
scaled Macdonald functions.

Lemmal Let n,m € No,v > 0, f,, gn be polynomials of degree at most n, m,
respectively. Let

Sn (@) pv(x) + gm(x)pvr1(x) =0 (2.25)
forallx > 0. Then f,, =0, gn =0.

Proof The proof will be based on the Ismail integral representation (2.10) of the
quotient p,/py+1. In fact, let r > max{n, m + 1}. Since p,4+1 > 0, we divide (2.25)
by py+1 and then differentiate r times the obtained equality. Thus we arrive at the
relation

-
[fn(x) pv(®) }:0, x>0 (2.26)
dx” Pv41(x)
Meanwhile, integral representation (2.10) says
Py (X) _ 1 o s~ ds
pvr1(x) w2 Jo (x4 )] V) + Y (2V9)
1 [> _, o e s7lds
L e / .27
72 Jo (ESRICNORS CRICND)

where the interchange of the order of integration is allowed by Fubini theorem, taking
into account the asymptotic behavior of Bessel functions at infinity and near zero
[5, Vol. IT]. Further, assuming f;, by formula (2.21), we substitute it in the left-hand
side of (2.26) together with the right-hand side of the latter equality in (2.27). Then,
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10 Constructive Approximation (2021) 53:1-38

differentiating under the integral sign, which is possible via the absolute and uniform
convergence, we deduce

dr
dx’ I:fn (x)

pu(x) :|
Pv+1(x)

1 d <& o0 o0 =y s~ 1lds
LS et e
72 dx” /; " 0 0 JI L QVS) + Y25
1 & dar [ gk o0 eV s~ lds
== ) fax(=D* / — [ dy/
nz,;o " dx” Jo dyk[ ] 0 JI VS +TYE (29
1 & oo gk+r o) e s 1ds
== > fak(=D* f e ]dy f
ﬂz,; " 0 3yk3X’[ ] 0 JL Q28 +YE(25)

1 & oo gk e e s~ lds
- f ’k(—l)k+r / yre—xy dy/
n? I; ’ 0 dyk[ ] 0 U+1(2“/—)+Y+1(2“/—)

Now, integrating k times by parts in the outer integral with respect to y on the right-hand
side of the latter equality, we eliminate integrated terms and then differentiate under
the integral sign in the inner integral with respect to s owing to the same arguments
as above. Hence we get, combining with (2.26),

2 Pae Tz ye y
i o dF 0 T2 QU5 Y2 25

1 /Oo v —xy/oo s Zf (=D sk ) ds =0, x > 0.
= — ye k s = X >
72 Jo 0 J2 Q25 + Y2 (25) "

Consequently, cancelling twice the Laplace transform (1.6) via its injectivity for inte-
grable continuous functions [12], and taking into account the positivity of the function

g1

NGRS NG|

on R, we conclude that
n
an,k(—l)ksk =0, s5s>0.
k=0

Hence f, x =0, k =0, ..., nandtherefore f, = 0. Returning to the original equality
(2.25), we find immediately that g,, = 0. Lemma 1 is proved. O

Remark 1 An alternative proof of Lemma 1 would follow from the existence of a
multiple orthogonal polynomial sequence with respect to the vector of weight functions

(pv, pv41) (see [13]).
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Leta € R and

n

d
St =15

[x"'“",ov(x)], n € Np. (2.28)

According to [13], the sequence of functions (S ,';’a)n <N, generates multiple orthogonal
polynomials related to the scaled Macdonald functions p,, p,+1. In order to obtain
an integral representation for functions S,°*, we again employ (1.4), Parseval equality
(1.10) for the Mellin transform, and the Mellin—Barnes integral representation for the
Laguerre polynomials (see [10, relation (8.4.33.3), Vol. III]). Then, motivating the
differentiation under the integral sign by the absolute and uniform convergence and
using the reflection formula for the gamma function, we obtain the following chain of
equalities

n+a 1 a" yioo -5
—[x pv(x)]z—, F's+n+a)l'(s+n+v+a)x >ds
2xi dx™ )y, oo

(_l)n y+ioco
= - / F's+n+a)l'(s+n+v+a)s), x *ds
2mi y—ioco
" y+n—+ioco r
= ( ) / F(s+oz)1“(s+v+oz)ix_sds
270 Jy4n—ioo ['(s —n)
(_l)nxoz y+n+a-+ioo F(S _ 06) L
= — rs)res +v)————x°ds
2mi y+n+a—ioco I'(s —a—n)
o y+ioco '« _
- PTG +v) L FeFn =9 oy
27i Jy_ico 'd+oa—ys)
a+v y+v+ioo (1 _
_x / F(s — v)l(s) L Fatvin =9
27 Jyqv—ioo Frl4+a+v—y)

o X\"V dr
— xol-i-vn!/ e—t—x/t (_) L,‘;+a(l‘)—.
0 t t

Thus, combining with (2.28), we established the following integral representation for
S (x)

o0
$U(x) = xﬁtm/ e T LYY (dr, x> 0. (2.29)
0

Now, employing recurrence relations and differential properties for the Laguerre poly-
nomials [1], in particular, the identity %L‘j{ ) = —Lgfll (t), we integrate by parts in
(2.29) and differentiate with respect to x under the integral sign by virtue of the abso-
lute and uniform convergence by x > xo > 0 to deduce the corresponding relations

for the sequence S,°“. Indeed, we have, for instance, forv > 0, € R
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12 Constructive Approximation (2021) 53:1-38

oo
S:;H’O‘_l(x) — xa—ln!f e—t—x/tlez-Hx(t)dt
0
[e.¢] o0
=x“"'n! [v/ e*'*x/’t”*lL;*“(z)derx/ e T LY (1)dr
0 0
o ; v
—/ e_'_"/’t”L:f‘i‘H(t)dt] = - S
0

1
4o S;;—l,a+1(x) o z u+1 a(x)

Hence we obtain the identity

xS @) = v S ) 4+ 87 @) —n 50, x>0, ne N,
(2.30)

Differentiating (2.29) by x, we get

d oo
— 5% (x) = ax"‘*ln!/

o0
eI (Hdr — xn! / T TIL R
dx 0 0

or,

d
x— SV(x) = a8 (x) — P  (x), x>0, neN.
X
(2.31)

On the other hand, integrating again by parts in (2.29) under the same conditions, we
find

x%n! o/ + XUl (% vy vrat
Sy¥(x) = . / x/ t"LyT(H)dr + / eI/ LT (n)de
0 0
a+1 ! 00 1
_.x n / e—[—x/ttu—ZL;)l-i-a(t)dt — _S;l)-f‘l,a—l(x)
v 0 v
v+1 oz( ) Sv 1,a+1 (x)
or,

VS (x) = SUHL el (x) 4 8T () — SPTIeH (x), x>0, ne Ny (2.32)
Combining with (2.30) gives the following identity

(x — HsyHle=lny =1 - )S”+1 *(x), x>0, neN. (2.33)
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Meanwhile, from (2.28) and (2.17) we have

_ da"
St = [x”“‘“pvq(x)]
n

<o [ Lo (0 = v (0]

SR () — vS* (x).

Therefore from (2.32) we have

1
Syt = Sy + Syt (), (2.34)
and from (2.33) we find
(= DS = (x —=m)SUH (), x>0, neNo. (2.35)

Moreover, recalling again (2.17), we deduce

d
d_Sv—Ha( )

[x"+a_1pv+1(x)] = 8" (x) 4§71 ). (2.36)
Finally, employing the 3-term recurrence relation for Laguerre polynomials

(n+ DL ) =Qn+1+v+a—x)L)H(x)
—(n+v+a)LTY (), (2.37)

we return to (2.29) to obtain the following identity
Sy =Q@n4+14+v4+a)S8%x) —n(n+v+a)S, " (x)
—xSVFel(x), x > 0, n € No. (2.38)
3 Prudnikov’s Orthogonal Polynomials

Our goal in this section is to find an explicit expression for Prudnikov’s orthogonal
polynomial sequence (P ) v > 0. We will do even more, defining the Prudnikov

eNp’
orthogonality (1.5) in a more general setting for the sequence (P,f ’a)neNO , o0 > —1,
o
/ P)Y(x)Py% (x)x%py(x)dx = 8y, n,m € Np. 3.1
0
Here P} = P, 0 Writing it in terms of coefficients
n

P;,(x(x) = Zan,kxkv 3.2)
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14 Constructive Approximation (2021) 53:1-38

we know that it is of degree exactly n because this sequence is regular; i.e., its leading
coefficient a, , = a, # 0 (see [8]). Furthermore, as follows from the general theory
of orthogonal polynomials [1], up to a normalization factor the orthogonality (3.1) is
equivalent to the following n conditions

o0
/ Py x)x" p,(x)dx =0, m=0,1,...,n—1. 3.3)
0

Moreover, the sequence (P,f ’a)n No satisfies the 3-term recurrence relation in the form
xP)(x) = Apy1 P (X) 4+ By P (X) 4+ Ag P8 (1), 3.4
where P""(x) = 0 and

dn by, bny1
, By=—— , by = An.n—1- (3.5)
an+1 an an+1

An+1 =

The associated polynomial sequence with (P,,” ’o‘)neNO (see (2.22)), which will be used
below, has the form

Q2,(x) = Y an k(=D KX L} (x). (3.6)

k=0

It follows from the orthogonality (3.1)

/ [P ()] x¥py(x)dx = 1.
0

However, using properties of the scaled Macdonald functions from the previous section
one can calculate the following values

o
Yo :/ [Pn“’“(x)]zxapvﬂ(x)dx, neNg, v>0, o> —1.
0

In fact, appealing to (3.1), (3.2), (3.6), (2.16), (2.17) and integrating by parts, we derive

o0
Yt = +/ [an’”‘(x)]2 xH o, (x0)dx
0

o0
d
v+a+1+ 2/ 1f’,1”~“(x)a [Pr*0)]x* T py()dx =20+ 1+ v+«
0
since

/ PV (x)x" T p, (x)dx = i. 3.7)
0

An
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Therefore we find the formula
Y =2n+14+v+a. 3.8)

In the meantime, taking the corresponding integral representation (2.11) for the product
x™ p,,(x), we substitute its right-hand side in (3.3) and change the order of integration
by Fubini’s theorem. Thus we obtain

o0 o0
/0 t”*'"ile”Lxl(t)/o P,f’“(x)ef"/’x“dxdt =0, m=0,1,..., n—1. (3.9

But the inner integral with respect to x can be treated, involving the differential
operator 6 (see (2.6)). Indeed, using (3.2) and (2.23), we have

1 [ - 1 [
?/ PV (x)e / x%dx = Zan,kek {?/ e_x/tx“dx}
0 Pt 0

=T +a) Y anit* {1*} =T +a) P 0)1°),
k=0

where the interchange of the differential operator 6% and integration is guaranteed due
to the uniform convergence by t € [1/M, M], M > 0 of the integral

1 o0
;/ e Xyetkqy kK =0,1,....n.
0

Moreover, the Rodrigues formula for Laguerre polynomials and Viskov-type identity
(2.6) for the operator 6 imply

1
+m —t _ —t
e L) (1) = %9'" {tVe™"}.
Substituting these values in (3.9), it becomes
o0
/ 0" {t"e_l} P)@O){t*}dr =0, m=0,1,...,n—1.
0

After m times integration by parts in the latter integral, we end up with the following
orthogonality conditions

(0.¢]
/ e P (O){(t*)dr =0, m=0,1,...,n—1. (3.10)
0
Analogously, the orthogonality (3.1) is equivalent to the equality

o0
)
e P @) P (O) (1Y)t = — 2 —1. 3.11
/O e "PYO)P, Y (O)(t) T o > (3.11)
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Definition 2 The orthogonality (3.11) is called the composition orthogonality of the
sequence (P, ’D‘)HGNO in the sense of Laguerre.

Thus we proved the following theorem.

Theorem 1 The Prudnikov orthogonality (3.1) is equivalent to the composition orthog-
onality (3.11) in the sense of Laguerre; i.e., Prudnikov’s orthogonal polynomials are
Laguerre polynomials in the sense of composition orthogonality (3.11).

Meanwhile, in terms of the associated polynomial (3.6) the orthogonality conditions
(3.10) can be rewritten, using the commutativity property

0" P (@) ("} = P (0)0™ ("}

and the Rodrigues formula for Laguerre polynomials. Then, integrating by parts an
appropriate number of times and taking into account (2.9), we get

o0 o0
0=/ t”e_tGmP,:”“(G){t“}dtzf Ve P (0)0™ (1¥}dt
0 0
o o0
= (1+a)m/ Py (=0) [t} i Tdr = (1+a)m/ 1T e Oy (1)dt
0 0
or, finally,

o
/ ettt o, (Hdt =0, m=0,1,...,n—1. (3.12)
0

On the other hand, developing the polynomial Q»,(?) in terms of the Laguerre poly-
nomials L, *(x), we find

2n
Qo (x) =) cn LY (0), (3.13)
j=0
where
Cnk = k' /OO tl)-HXe—l Q2 (Z)LV"rOl(t)dt (3 14)
T Th+v+a+1D) Jo Ik ’ :

and orthogonality conditions (3.12) immediately imply that
c,j=0, j=0,1,...,n—-1 (3.15)

Therefore, the expansion (3.13) becomes

2n
Q2 (x) = Y e j L5 (). (3.16)

Jj=n
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In the meantime, expanding (—1)"m!x™ LY, (x) via the Laguerre polynomials L, T (x)
as well, we obtain

2m
(—D)"mIx"Ly, (1) = Y d s LT (), (3.17)
k=0

where coefficients d, ; are calculated accordingly by the formula (see [10, relation
(2.19.14.8), Vol. II])

(=D m! k!
Frk+v+oaoa+
(_1)m+km!
T (m—k)!
xX3sFp(—m, v+a+m+1, m+1; 1+v, m+1—k; 1), (3.18)

o0
dp i = 5 / etV TetmLY (1) LYY (n)de
0

A+ V+a+1+k)nk

where 3 F>(a, b, c; d, e; z) is the generalized hypergeometric function [10, Vol. IIT]. It

is easily seen from the orthogonality of the Laguerre polynomials L;Jr“ (x) that

dnk =0, k>2m.

Moreover, the associated polynomial (3.6) O», has the representation

n 2m
Q2n(x) = Z An,m de,kL;:_Hx(x)
=0 k=0

n m m—1
= Z an,m |:Z dm,ZkL;]j—a(x) + Z dm,2k+1L]2}2_f1 (X):|
k=0

m=0 k=0
n n n—1 n—1
=Y (z d) s (z d) |
k=0 m=k k=0 m=k

(3.19)

Lemma 2 Coefficients dy, 1, m, k € Ny, satisfy the following recurrence relation

dps1k = —mk(k — 1)(m + v)dy—1 k-2 +mk(m +v)(1 4+ 2c + 3k + 2(m + v))dim—1 k-1
— m(m +v) (@® +3k* + (v + D +m) +v)
+ a3 +4k+2(m+v) + kS +40m+v)) du—1k
+mm+v)(1I+a+k+v)Q2(+m)+a+k+v)dn_1k+1
+ k(k — Vdp >
— k(Bk + 20 + v)dp i1
+ (I +a) (1 +a +4k) + 3(k* —m?) +2m(k — 1)
+v(l+a+3k—m)dpr— (1 +o+k+v)Q(1L+m)+a+k+v)dnit-
(3.20)
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Proof In fact, recalling the 3-term recurrence relation (2.37) for Laguerre polynomials
and, as its direct consequence, the following equality

XL () = 4+ v+ ) LT (x) — (n — x) LU (x), (3.21)
we derive from (3.18) via integration by parts

(=D (m + D! k!
Fk+v+a+1) Jo
CED" 4+ DR o+ m 4 1)
- F'k+v+a+1) o
(=D™ (m+ DV k!
Fk+v+a+1)
(=D™ (m+ D'k
Fk+v+a+1)
D" mlklv+a+m+1) [
- Tk+v+a+l) / e
x[@m+14+v—0L)t)— (m+v)L)_ (O] LI (0)dr
(=D™ (m + D' k!
Fk+v+a+l)
X [m+v)Ly, (1) = (m — )Ly, ()] L} (1)dr
(=D™ m! k! 0
F'k+v+a+1)Jy

dm+1,k — efrlv+a+m+1Lu (l‘) Lv+a(t)dl‘

e_tl‘v+a+mL,‘;l+1 ([) Lz+a (t)dt
e*ttv+ot+m+1L;Jn+l(t) Lz+a(t)dt

e—ttv+a+m+1Lv l(t) Lv+0t+1 (t)dt

o]
eftthraer
e—ttv+a+m

x[@m+14+v—0L,¢)—m+v)L),_ 0]
x[k+v4+a—DLF5@6) —(k—t— DL @0)]dr
=—@w+a+m+1DCm+1+v)dyi
D" m' kv +a+m+
Fk+v+a+1)
—(k+v+ )L * @) — (k+ DL ()] de
D" m! kv +a +m+ 1)(m +v)
Fk+v+a+1) 0
x[@k+1+v+a)L] @)
—(k+v+a)L* @) — (k+ DL (0] de
(=)™ (m + DV k! (m + v)
rk+v+a+1) 0
x [k +14v+a)L; (1)
—(k+v+a)L] () - (k + DL (1] dt
(=D™ (m + D' k!
Fk+v+a+1)
x[@k+1+v+ a)L‘”’“(t) k+v+a)LF @) — (k+ DL ()] de
k(k—1)2m +14v)
k+v+a

D / Shpvtetmpy 1) [k + 1+ v+ ) L)

e—[tv+ot+m—l sz—l(t)

—m(m + )dp ik +

eft[v+ot+m le 1([)

e—ttu+a+mL;)” (t)

[dmk—2 — dmi-1]
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D" mlkl kv +a—1) ooe_’t”+°’+'”L";1(z)
Fk+v+a+1) 0
x [k =34+ v+ o)L} "5 (1) — (k+v+a—2)LT5 )
—(k = DL @] dr
(=D)"™ m! k'Qm +v + k)
Tk+v+a+1) 0

o]
e—ttv+a+m Lﬁz (t)

x [k = 14+v+ )L @) = (k+v+a = DLITS0)

—kL; T 1)]dr
1" m! kl(k 1
D" mlklk 4+ v+ —Dm +v) efttv+a+m o
Fkk+v+a+1) 0

x [k =34+ v+ L) — k+v+a—2)LT50)
—(k = DL (1)) dr

(=) m! klm + )k — 1) [ -
e~tprtetm=lpy (1)

Frk+v+a+1) 0
[(2/{— 1 +v+0‘)L”+O‘(t) —htv4a— 1)LV+O‘(I)
—kL; ()] dt

_ (=D" m!kl(m +v)
F'k+v+a+1) Jo
x[Qk—14+v+a) L") — (k+v+a— DL
_ Lv+oz([)] CGtvia—1)
x[@k=3+v+a)LT50) = k+v+a =)L)
—(k = DL O] —k[@k+ 1+ v+ )L — (k+v + ) LT (1)
—(k+ DL O]]ar
_% et L [k - 14 v+ 0)
x[@k =1+ v+ L) — k+v+a— DL
kLY (D] = k+v+a— D[k =3 +v+a) L)
—k+v o =)L)

o0
ertetmlpy () [k —1+ v +a)

—(k = DL O] —k[Qk+14+v+a) L) — (k+v+ o)L ()
—(k+ DL (0] de

=@W+a+m+1DQ2%k—-—m)+a)dyr —k(v+a+m+ 1)dy k-1
—(wt+a+m+Dk+v+o+ Ddyit1
—m@+a+m+1D)m+v)2k+1+v+a)dn-1k
+mk(v+o+m+1)(m 4+ v)dy—1 k-1
+m@v+a+m+Dm+v)k+v+a+ Ddn—1 i1
—mm+ Ddpy i — m+1DmQRk+14+v+a)m+v)dn_1x
+mk(m + D)(m + V)1 41
+m(m+ D(m +v)(k+v+a+ Ddpy—1k+1
+m+D)Qk+14+v+a)dyr —k(m~+ D)dpy k-1
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—(m+Dk+v+a+ Ddni+1
k(k—1D2m+14v
( X ) [dmk—2 — dmi-1]

k+v+a
k(k—1)2k—-34+v+a)
- k+v+oa m,k—2
k(k—l)(k—Z)d ktk—1D)k+v+a—1)
Ktvta k3T k+v+a k=l
+k(2m+v+k)(2k—1+v+ot)d - _k(k—l)(2m+v+k)d -
k+v+a m,k—1 k+v+a m,k—2
—kQm + v+ k)dy
mkk — 1)(m +v)2k =3 +v+a)
+ PR—— dn—1,k—2
k(k — 1)(k—2)m(m+v)d
- k+v+a m—1,k—3
_km(k— DHm+v)(k+v+o— l)d
rtvta m—1,k—1
_mk(k— 1)(m+v)(2k—1+v+ot)d
k+v+a m—1k-1
kk — DZm(m +v)
ﬁqu,kfz

mk(m +v)2k — 1 +v 4+ a)?

kmk — 1 dy—
+km( Ym 4+ V)dy -1k + P

m—1,k—1

mk(k — D(m +v)2k — 1 +v +a)
k+v+a
—mk(m +v)2k — 1 + v+ &)dpu—_1k

112

k= Dm(m + )@k =3 +v+a)

K tvia m—1,k—2
k(k — 1)(k —2)m(m + v)
dy— 15—
+ k+v+a molk=3
+mk(k—1)(m+u)(k—l+v+0t)d
Kty ta m—1,k—1

—mk(m 4+ v)(2k + 1+ v + @)1k + K2m(m + v)dp_1 k-1
+mk(m +v)(k + 14+ v+ a)dp—1 k+1
kQk—1+v+a)?
k+v+a
k(k—1DQk—1+v+a)
+
k+v+a
kk—D@k=3+v+a) k(k— 1)k —2)
k+v+a mok=2 k+v+a
k(k— Dk —14v+a)
k+v+a
+hQRk 4+ 14 v+ a)dy g — k2dp i1 —kk + 14 v+ a@)dp ip1-

A k-1

dm,k—Z + k(2k —1+v+ a)dm,k

m,k—3

A k-1

Hence after simplification we get (3.20). O
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On by other hand, taking into account orthogonality conditions (3.15), we have

2n n n—1
+ +
Qon(x) =D e L5700 =Y cnnj LET () + D ennjur LyT5, (0),
Jj=0 Jj=0 j=0

and by the uniqueness of the expansion of the associated polynomial Q,, by Laguerre
polynomials we find from (3.19)

n n
Cn2j = Z Ap,m dm,Zja Cn2j+1 = Z Ap.m dm,2j+l~ (3.22)
m=j m=j+1

We observe via (3.18) thatdy o = 1, din2; #0, m = j,....n, dy2jt1 #0,m =
j+1,...,n Butfrom (3.15) we get forn ¢ N

cn2j =0, j=0,1,...n—-1; cp2j+1=0, j=0,1,...n—1,

nt12; =0, j=0,1,...n; cuy12j41 =0, j=0,1,...n—1.

Consequently, equalities (3.22) represent for the polynomial sequence

( szﬁa)neNo (( szﬁi l)nENo) linear homogeneous systems of 2n (2n + 1) equations

with 2n + 1 (2(n + 1)) unknowns. However, if we assume that the free coeffi-
cient az, 0 (a2n+1,0) is known, we come out with linear non-homogeneous systems
of 2n (2n + 1) equations with 2n (2n 4 1) unknowns. It can be solved uniquely
by Cramer’s rule with nonzero determinant. In fact, we have the following non-
homogeneous systems of 2n, 2n 4+ 1 linear equations to determine the sequences

(sz;;a)nENo ’ (Pgrlil)neNO’ respectively,

dl,O d2,0 ...... dy—1.0 dn,O ce d2n,0
aon, 1 —dazn,0
digvdyy ... .. oo doa oy 0
dindra ... ... . doup "
0 doz ... ... .. du
dysa ... ... - o . doa
0 dzs ... d2n,5 _
d26 ... due
0 .
0 dn—l,2n—3 dn,2n—3 e d2n,2n—3 :
a2n,2n—1 0
0 d,— - d ... d _ ’
n—1,2(n—1) 49n,2(n—1) 2n,2(n—1) aan.on 0

0O ... ... 0 0 dn.2n—1 cee d2n,2n—1
(3.23)
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dan+1,0
don+1,1
dant1,2
dont1,3

dopt1,4
don+1,5

don+1,6

0 dyon—1 ... dopt1,2n-1

0 dn,2n d2n+1,2n

azn+1,1

aA2n+1,2n
A2n+1,2n+1

—a2n+1,0
0

(3.24)

Denoting by D»,, D2,y the corresponding nonzero determinants of the systems

(3.23), (3.24)

Dy, =

D2n+1 =

@ Springer

dn,2n71 .

dan+1,0
dont1,1
don+1,2
don+1,3

doni1,4
doni1,5

dani1,6

0 dpon—1 ... dowms1,20-1

0 dn,Zn

dont1,0n

. don2n—3
. dan 2(n-1)

don0
don,1
don,2
d2n,3

don 4
d2n,5 ’

d2n,6

don,2n—1
(3.25)

, (3.26)
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we apply Cramer’s rule to get the expressions for the coefficients of the sequences
v, v, . . . .
1() Py )nENo . (P Jrl)neNo in terms of the related free coefficients. Precisely, denoting
y

dz)] dZn,l
d22 dzn,z
d23 dgn’3
d24 dzn’4
0 d3’5............ d2n,5

Dopi = ,
2n,1 d26 d2n,6
0 . :
0 ...............d2n’2n_3
0 ~-~~-~~~--~d2n,2(n—l)
0 ...............dzn)zn,]
(3.27)
d])] d2,1 ...... dk,1,1 dk+1’1 dZn,l
dl’zdz,z ...... dzn’z
0 d2,3 ...... dzn’3
Codyy .. R

Dong = 9d3,5... dzn,S Ck=2.....m—1.

... ... coe oo. due

0 ... ...... cev oo donon—3
0 ... ... '~~d2n,2(n71)
0o ... ... ... cee e dapon—

(3.28)
d1,1d2,1~~-~~---~~~---~ d2n—1,1
dl’zdz,z............... d2n—l,2
0 d23 dzn_1,3

d24 dzn_1,4

0 dzs .o dyye
Dyon=| 7 B (3.29)

d36..c.o.cooo. du—16

e d2n71,2n73
e d2n71,2(n71)
0 .. d2n—l,2n—l
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dy.| dopnt1,1
dy drps12
dr 3 dony1,3
drg ... . dont1,4
Donsr1 = . d3s............ dwt15 ’
D dag dant1,6
0 ... .o i dumt12n—1
0 ... ..o oo dutom

diidyy ... .. dr—1,1 dit1,1 --- dongin
dipdrp ... ... dont1,2
0 d2,3 ...... d2n+1,3
d2,4 ...... d2n+1,4
Doyt k= 0 d35... ... cie e dopyrs |, k=
dz.6 dan+1,6
0 ... ... ... oo dont1,2n—1
0 ... ...... d2n+1,2n
d]’1d2,1 N T T8
d1’2d2,2............... dzn,z
0 d23 d2n,3
d24 dzn’4
D2n+l,2n+l =

0 d3s.ovnvennnn. dons |

..o due

A 3 o), TS|
0 oo i dapon

we obtain the values for coefficients of the sequences (P;,’l”‘)nGNO
respectively,

D

k 2n,k
apk = (—1) a0 ,
D2n
Dopt1.x

Doy q1

k=1,...,2n,
= (—1 k
a1k = (=D az+1,0

@ Springer

, k=1,...,2n+1.

(3.30)

(3.31)

(3.32)

(Pv,a

2n+1)nENO’

(3.33)

(3.34)
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Moreover, returning to (3.5), we immediately obtain the values of the coefficients for
the 3-term recurrence relation (3.4). Indeed, we have

a D D
A2n+1 _ 2n,0 2n,2n 2n+1 (335)

bl
n+1,0 Dont1,2n+1 Do
a2n—1,0 Dan—1,2n—1 Doy

Ay = — s (3.36)
" azn,0 D2n,2n Doy
BZ _ D2n+l,2n _ D2n,2n—l (3 37)
" Dopgi ot Dopon '
D D
Bonsl = 2(n+1),2n+1 2n+1,2n (3.38)

Doy 2m+1)  Dont1,2n+1

In order to find free coefficients of the even and odd Prudnikov’s sequences, we appeal
to the identity (3.7) and values (2.4) of the moments for p,. Thus using (3.33), we
derive from (3.7) for the sequence (P,,") eNo

2n
D
2n _ aszn,0 Z(—l)szn,mF(Zn +m4+a+v+DI'Cn+m+a+1),
a2n,0 D2 on Dy m=0
Doy 0 = Doy

Hence, taking into account the positive sign of the leading coefficient ay,, we get the
value of ay, o in the form

D»y

a0 = - 112
! [D2n,2n]1/2

2n —1/2
x [Z(l)muz,,,mr(zn +m+a+v+DICn4+m+a+ 1)} . Do = Doy
m=0

(3.39)

Analogously, we obtain the value az, 11,0 for the odd sequence (P,

-t l)neNo’ namely,

Doy 11
Am+1,0 = =75

[D2n+l,2n+l]1 g

2n+1 —1/2
X [Z (=D"Dopy1,n TR+ 1) +m+a+ )L Q2n+1) +m +Oé)i| )
m=0

(3.40)

where Da,4+1,0 = Dan+1. Leading coefficients for the Prudnikov sequences have the
values, accordingly,

~12
2n
ayp = [D2n,2n]1/2 |:Z (=nm DyymlCn+m+a+v+DICn+m+a+ 1):| (34])

m=0
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12
am+1 = [Dant1,2n+1] /

2n+1 -172
X | Y (=D Dyp TR+ D +m+a+ TR+ 1) +m + ) .

m=0

(3.42)

Thus we proved the following theorem.

Theorem2 Let v > 0, @ > —1, n € Ny. Prudnikov’s sequences of orthogonal
polynomials (Py%) No (PZV,;‘_T_I)%NO have explicit values with coefficients calcu-
lated by formulas (3.33), (3.34), respectively, where the determinants D>y, Dap+1,
Doy iy Dont1 i are defined by (3.25)- (3.32) and free coefficients a0, azn+1,0 by
(3.37), (3.38). Moreover, the 3-term recurrence relation (3.4) holds with coefficients
(3.35)-(3.38).

Remark 2 1t would be an interesting problem to study algebraic properties of the
determinants (3.25)- (3.32) whose entries satisfy the recurrence relation (3.20).

Corollary 1 Coefficients (3.14) are calculated by formulas

2n
aszn,0 .
Connj = D’; > (=1)"Dopm dmaj. j=n.....2n, (3.43)
n

m—j

A2n+1,0
Contl1,2j = D';++1 E (=D)"Daypyimdmpj, j=n+1,....2n+1,
n
m=j

(3.44)

2n
a2n,0 .
majt = 7= D (D" Do dmajir, =m0 21 (345)
2 m=j+1
@10 2n+1
+1, i
Cont12j+1 = #ﬂ Y (~D"Dosim dmojer. j=n..... 20, (3.46)
n N
m=j+1

where values D2y, Dapt1, Do ks Dont1.k are defined by (3.25)-(3.32) and free coef-
ficients azy 0, azn+1,0 by (3.39), (3.40).

Our goal now is to find an analog of the Rodrigues formula for Prudnikov’s poly-
nomials. To do this, we recall the representation (2.24) of an arbitrary polynomial in
terms of its associated polynomial and representations (2.28), (2.29), (3.15), (3.16) to

write the following equalities for the sequence (P,™*), .y,
2n 2n i
x ¢ Cn.i x ¢ cp i d/
Py (x) = —LST () = L [ Ttp, (x)]
" ov(x) Z v pu(x) Z J!odx/
j=n j=n
— n i
_ x¢ Z Cn,j+n dj+n [ j+n+otp (x)]
po(x) “=5 (j +n)! dx/+n
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v, v, .
Therefore for sequences (P,,%), No (P +1)neNo we have, correspondingly,

—a 2n
CZn j+2n
Py (x) = g 3.47
—_a 2n+l Conal —_—
v, _ n+1,j+2n+
P00 = 2 /2;) (+2n+ 1)1S1+2'l+1(x) (3.48)

In the meantime, the sums in (3.47), (3.48) can be treated as follows

2n
Con, j+2n g - C2n,2(j+n) gy
Zu T2y i) = Z@( Tyt 20 )

n—1
Con2(j+m+1 v
Y A g ),
. 1 20 +n)+1
= QG +n)+1)!

2n+1

n
Con+1, j+2n+1 C2n+1,2(j+n+1)
Z G+ 2n D )= Za(] Fat 2

n
C2n+1,2(j+n)+1 gy
F GG e m +

Hence, employing the theory of multiple orthogonal polynomials associated with the
scaled Macdonald functions and the related Rodrigues formulas (see details in [13],
[2]), we find the following expressions

Sty () = 2 [ AT a1 (P00 + B 1 (0] (349)

Sy eyt () = 2% [ A%, (0P + B (00 (0] (350)

where A-polynomials in front of p, are of degree j + n as well as B-polynomial in
(3.50), while B-polynomial in (3.49) is of degree j + n — 1. These polynomials are
explicitly calculated in [2]. Therefore formulas (3.47), (3.48) become, respectively,

n n—

C2n,2(j+n) Cn,2(j+m)+1 o

Pyé(x) =y LSl A (x) + E e AT ()

Aj4n, j+n—1 . VHjtn,j+n
= Q2 +n))! (2(] +n)+ 1)!

Pv+1(x) - C2n,2(j+n)
pv(x) g() (2(] +n))! +n j4+n— l(x)

n—1

Cn2(j+m+1 g
+;m3mmm : (3.51)
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n
C2n+1,2(j+n+1) Co2n41,2(j4+n)+1

PV,Ot X) = — T AY AS j X

2n+1( ) jE_O QG +n+ D) Jj+n+1, j+n( x) + QG +n) + ! ]+n,j+n( )

Pv+1(x) - Con+1,2(j+n+1)
pv(x) 2. [(2(1 +n+ 1) jnt1,jn ()

Con+1,2(j+n)+1 g
TR f+"~f+n(")} - (3.52)

But Lemma 1 presumes immediately the following identities from (3.51), (3.52)

2n 2n—1

PO = DGl D G 6
Jj=n

2n
v, . Con+1, 2(j+1) Con+1,2j+1 , o
PQ”H(X)_,Z”[—@( oy A T T Aj,j(x)] (3.54)

giving explicit expressions of Prudnikov’s polynomials in terms of the multiple orthog-
onal polynomials for the scaled Macdonald functions, and two more relations between
multiple B-polynomials

2n
C2n,2 Con,2j+1 B
jgn(z){ JJl()+Z(2 _{_Jl)‘j]()_o

2n
C2n+1,2(j+1) C2n+12j+1 pao
—_ = 7 4+ — X =0
Zn[(z(]-Fl))' Bl 0+ G P )}

On the other hand,

P = 2SR O gy L X O sy (355)
" x‘pvo«); o P & S (Gl ) '

Hence, recalling integral representations (2.3), (2.29), and the explicit formula for
Laguerre polynomials [1], we obtain

J .
S]{,n-‘,-a n+a]‘ Z (_l)k ] + n + V + (07 /OO eftfx/ttv+k7]dt
4 = k! Jj—k 0
(— 1)" +n+v+a
X 'Z AR PARTE (3.56)

The problem now is to express py+k, k € Ng in terms of p,, and p, 1. To do this, we
use the Mellin—Barnes representation (1.4) and the definition (2.7) of the Pochhammer
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symbol to derive

1 +ioco
—/ I'(s +v+kIC(s)xds
%

Pk (X) i )i
1 y+ioco

o (s + V) (s +v)L(s)x*ds
Tl y—ioco

( 1)1{ vtk dk y+ioco

r I(s)x—""d

i Ak J, e (s +vFs)xds
k k dk
= D [ )]

Then, employing the Leibniz formula and (2.16), we find

k

k
ok () =) (m><v)k_m 2" 0y (). (3.57)

m=0

Meanwhile, employing the identity from [2] for the scaled Macdonald functions,
specifically,

X"y (1) = X" 21 24/ 0) oy (x) + x D2, 12X v — Dpugi (x), m e No,

(3.58)
where r_1(z; v) =0,
[m/2] X
X 2% v) = (=) Y i —m D = 204 1)
1.
i=0
formula (3.57) takes the final expression
k [m/2] K\ xf
Pok (1) = oy (1) Y D (=D Wi —m A Dai (m =20+ 1) (V) ( )T'
m=0 i=0 ’
k—1[m/2] X i
+pv+1<x>”§ ; (=1 Wi —=m)pi (m =20+ 1)i kw1 (m N 1)7
(3.59)

Substituting the right-hand side of the equality (3.59) into (3.56), we get finally

ik [m/2] k+m
v,n+a _ +o ( 1) J—i—n—l—v—l—a
S = 2" py(x) E E E ( Pk

k=0m=0 i=0

1
X0+ —m e+ D (= 20+ 1) (W < )x—,
mj) 1.
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J k—11m/2]

k+m
ITNE)3) DD D= (”jf;”)

k=0m=0 i=0

(Vi =)o (m =2 4+ 1); () ( ¢ )"—}
XVt —m)y_2i (m l i Wk—m—1 ma1)i |

Thus, returning to (3.55), we end up with the so-called Rodrigues type formula for the
Prudnikov orthogonal polynomials P,"“

—o gn j k [m/2]

P)%(x) = a X" p (x)ZZZ Z ey D
" py(x) dx” b (j +n)!

j=0k=0m=0 i=0
XCp, j4n(n+v+o+k+ 1)/_k(v+i —m+ 1)pyu—o;

j k n j k—1[m/2]
 (m —2i 4+ 1); (k- <k> ( ) Fo )Y Y 3N

j=0k=0m=0 i=0

(_1)k+m
m Cn’j_,_,,(n +v+4+oa+ k + 1)./_k
+i- F(m = 2i + 1) () <j £
X (V+i—m)y—o (m l )i (Wk—m—1 ) \n+ l)l_' .

(3.60)

Theorem 3 Prudnikov’s orthogonal polynomials P,"* can be obtained from the
Rodrigues type formula (3.60), where connection coefficients ¢, j1n are calculated
. . > v, v,

in Corollary 1. Moreover, Prudnikov’s sequences (P2n )neNo , (P2n+1)n€N0 are
expressed in terms of multiple orthogonal polynomials related to the scaled Macdonald
functions by equalities (3.53), (3.54), respectively, where the polynomials A% A?‘ﬁ j

Jij=r
are calculated explicitly in [2] by formulas

J .
o 2j x™
0 =0 32 (o )

m=0
X3 (=2(j—m), m—v, m+1; 2m+1+4+«a, 2m+1; 1),

o 2j+1 X
AG () = (e + D2jp Z( m >m

xX3F (=2(j—m)—1, m—v, m+1; 2m+1+o, 2m+1; 1).

m

Further, the generating function for polynomials P,® can be defined as usual by
the equality

G(x,7) = ZP”“(X)—, x>0, zeC, (3.61)
n=0
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where |z| < hy and h, > 0is a convergence radius of the power series. Then returning
to (3.55) and employing (2.28), we have from (3.61)

Glx.z) =~ iiic’” & [0, )]
U pe) &l U A P

1 S cnjj+a
= = (- 1)"ﬂ(. )x"p k().
pv(x)rgn!;,; k' \j—k !

Hence substituting the value of xk Pv—k(x) by formula (3.58), we get, finally, the
expression for the generating function for the Prudnikov sequence (P,f ’O‘)n eNg?
namely,

oo 2n
Gx.2) = ZZZ( 3;’”(“‘;‘) K2 2/ )2

n=0 j=n k=0

,Ou+1(x) izz (=Dke, JJ (] +(¥>x(k—1)/2rk1(2ﬁ; b= 1)7",

k! —
p(x)nOJnkO n! k! ‘]k

where ¢, ; are defined in Corollary 1.

4 Orthogonal Polynomials with Ultra-Exponential Weights

In this section we will consider a sequence of polynomials (QZ’k> N which is
neNy
orthogonal with respect to the weight function (2.1) x* p,, & (x)
o
| @0 Wpuatdy = b vz 0 @ > <1 @)
0

The function p, ; satisfies some interesting properties. In fact, recalling the Mellin—
Barnes integral representation (2.1), we write

27 —ioo

1 y+ioo k
Pr+1.k(X) = —/ FU+1+s [ x™°
Y

v y+ioco
= — F(v+s) [T x*ds
27Tl y—ioo
1 y+ioco
+— T+ s)s[C)Fx™*
27Tl y—ioco

= Voyk(X) — xDpy i (x).
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Hence, as in (2.18)
Po+1,k(x) = (v —xD)py (). 4.2)

Further,

(_1)k+1 y+ioo
D D) ("D (x7 oy () = / P +s+ Ds [N 27 ds
Y

2mi —ioco

= (=D py k().

Thus we derive the following k 4 1th order differential equation for the function p, f,
generalizing equation (2.5) for p, 1 = py

(—1} 1 D (x Dy (x““D (x—”pv,k(x))) =pyx(), keN, D= %. (4.3)

The integral recurrence relation for functions p, x follows from the Parseval equality
(1.10). To be precise, we obtain

o _x)t dr
Pvk+1(x) = A e ,Ou,k(t)T, k € Np. 4.4)

An analog of the integral representation (2.11) for p, x can be deduced in the following
manner. In fact, the Mellin—Barnes integral for Laguerre polynomials (see [10, relation
(8.4.33.3), Vol. III])

1 y+ioco (1 _
n! e_xL:;(x) = —/ r(s)wx—sd&
21i Jyico ra4+v—s)

integral (2.1) with the Parseval identity (1.10), and the reflection formula for the gamma
function imply the equality for k € N

1 y+ioco ‘ '
x"pyr(x) = 2—/ Cs+v+n) [T +n] x"%ds
wi J,

_ Lo (M +m!
= 2—7” . F(S +v +n)F(s + n)F(l -5 — n)mx dS
B (_l)n y+ioco [F(s+n)]k—1 s

= mi /}:_ioo F(S +v +n)F(s)F(1 - S)mx ds

o0
= (—1)"n! fo =L LY (1) gy (;) dr,

where

1 y+ioco
k() = —— / I(s) [T(s + )1~ x~*ds. @.5)
2mi

y—ioo
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Therefore we obtain the integral representation

n n o v+n—1 _—tyv X
Xpup) = (=l [ L (;)dt. (4.6)

Differentiating (4.5) n times by x, where the differentiation under the integral sign
is possible due to the absolute and uniform convergence, we take into account the
reduction formula for the gamma function and (2.1) to obtain

d" _1yr [pyico
Pk (x) = ( ) / ()L () [T(s +m)1 x5 "ds
dx” 270 Jy—ioo

=n" yieo k —s—n n
_ / [ (s + m)T x5 "ds = (=1)" pogr (¥). (4.7)
Y

2mi —ioo
Consequently, after differentiating both sides of (4.6) n times we find an analog of the
representation (2.29), namely,

n

dxn

[x" pu k()] = n!/ e LY (1) po k1 (f) dr. (4.8)
0 t

Now, returning to (4.1), we substitute the function p, x with the integral (4.4) and
interchange the order of integration by Fubini’s theorem. Then, employing again the
Viskov-type identities (2.6) for the differential operator 6, we derive for k € N

S = fo 0% (x) Q%% (x) oy (x)x%dx
- f " ekt (O / et QU () 0% (x)x dxdr
0 t Jo
— I 4w fo Pos1 (1) 01(8) Q%% (6) (1 )dt.

Hence it leads to

Theorem4 Letk € N, v > 0, > —1. The orthogonality (4.1) for the sequence of
polynomials (Q',),’a)n No with the weight x% p, x(x) is the composition orthogonality
of the same sequence with respect to the weight p, x—1, namely

OO v,a v,a a _ ‘sm—,n
/0 Pk QL OO Ot = T T, @9)

In particular, for k = 2 this sequence is compositionally orthogonal in the sense of
Prudnikov.

Further, up to a normalization constant equality, (4.1) is equivalent to the following
n conditions

o0
/ 0V (xX)pyk()x*™dx =0, m=0,1,....,.n—1, neN.  (4.10)
0
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Hence the composition orthogonality (4.9) implies, with the integration by parts and
properties of the operator 6,

o0
/ 0" {pvk—1 (O} OO {t*}dr =0, m=0,1,....,n— 1, k,n € N(4.11)
0

Writing 9,7 in the explicit form
n .
0y () = an jx) = 0y O(),
=0

we have

n . n .

re@ {1} = an 07 {1} =1 an (1 + ) ) =17 Qp (o),
j=0

J=0

where

n
ovel(r) = > an T +a+ j)tl. (4.12)
j=0

rd+a)

On the other hand, employing (4.4) for k > 2 and observing that owing to the Viskov-
type identities (2.6) (6; = tDt, By = DyD)

o e} = (=" B (e}, m e N, (4.13)

we deduce, integrating by parts,

o X 1\ d
0" {pvk—1()} = 0/" {/ eV pyi—2 (—) _y}
0 y;y

00 B 1\ dy
( )/o Al }p’“(y>

y
o 1\ 1
= ey {pv,kz (—) —}dy,
0 Y,y

where the differentiation under integral sign is allowed via the absolute and uniform
convergence. Thus, returning to (4.11), we plug in the latter expressions and change
the order of integration by Fubini’s theorem to write it in the form

*© v,a,2 1 m 1 1 —a—1
( o, ¥ By 1 Py k-2 55 y dy=0,m=0,1,....,.n—1, neN,
)

(4.14)
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where

Q%2 (x) = > an DA +a+ )P x/. (4.15)
Jj=0

'+ a)

Meanwhile, recalling (2.1), we get

m 1 1 m.,m pym 1 yHieo k=2  s—1
By §Pvik—2 (*)* = (D"y"D™) —f Cs+v) [T 7y ds
y)y 27 Jy—ioo

1 y+ioo

=3 =D - m)2 T(s + v) [T()]F 2y 1ds
y—100
1 y+ioco |
=5 | LWl TG m 4D +m 2y ds
Y —l1o0
y—m y+ioo T(s +v)

- o F k S*ld .
270 Sy io F2(s — )y LTy ds

Therefore we find from (4.14)

o0
/ 002 () @2 (y)y*dy =0, m=0,1,....n—1, neN, (4.16)
| X,
where

1 y+ioco r
/ DEHEMEV) n6 byt yds, k2. 4.17)
Y

@ o
® -
kO =25 | TR

But it is easily seen from the properties of the Mellin transform [15] and (2.1) that
2
) (3) = y" D"y D"y (o2 (1)}, k= 2. (4.18)

Now, recalling (4.4), we have

m m . .n m._.m m m._.m nm .. .m * —yu 1 du
Y D"y D" y" {pe—a(y)} = y" D" y" D™y R el R
0
(4.19)
Hence, modifying the formula (4.13), we obtain
ymDZzymD;ifym {e—yu} — (_l)mD:?umD;numD;n {e—yu} . (420)

Therefore, integrating by parts, we get from (4.18), (4.19), (4.20)

o0 1) 1
o), () = /O e Y Dy'u™ D u™ Dy {pv,m (;);}du. (4.21)
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Moreover, in a similar manner as above we derive

I\ 1
D;"umD;"umDum {pv’k:; <;> ;}

1 y+ioco
= D"u" D"y D" {— / T'(s 4 v) [[(s)]F3 u“ds}
Y

2mi —ioo
1 yico 3 k=3  s—m—1
=% [(s—1D...s—m)PT(+v)[T)] " u ds
y—i00
1 y+ioco

=7 [()m]’ T(s +m +v) [T(s +m)] 7w~ ds
270 Jy—ico

um /)/—H'OO (s +v)
14

k. s—1
e —1"3(s—m) [T(s)]" u’™"ds. 4.22)

T 2w

So, substituting the right-hand side of the last equality in (4.22) into (4.21) and the
obtained expression into (4.16), we find after the interchange of the order of integration
and simple change of variables the following orthogonality conditions

v,k,m

o0
/ QZ""’3(M)CI>(3) W) u“du =0, m=0,1,....,.n—1, n e N,
0

where
3) 1 YT (s 4+m+v) P
@ =— ——— T ds, k>3,
v () = 5 /y_ioo 30s) [T +m]* u""ds, k=
and
n
,a,3 _ . 13 7
oue (u)_—F(Ha);)an,][r(waﬂ)] ul .

Continuing this process by virtue of the same technique, involving the Mellin and
Laplace transforms and the Mellin—Barnes integrals, after the kth step we end up with
the equalities

v,k,m

o0
/ 00k (xyd®) () x¥dx =0, m=0,1,....n—1, n €N,
0
where

—i00

) 1 y+ioo .
o0 = 5 fy (D) Ts +m + w)x—ds,
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and

0yt () =

n
— q0(1 DRSS
F(1+a)j2:(j)an,][ (I4a+HlFx

On the other hand,

y+ioco
ol () = L/ [()n)TE (s 4 m 4 v)x~*ds = (=D {xm pm}* (xvtme )
14

v,k,m 2o i

= (=D*"m! {x™ D’”}k_1 (x""e ™ Ly (x)) .

Consequently, the orthogonality (4.10) is equivalent to the following conditions

o0
/ QZ’O"k (x) x* {me’"}k (x”+me_x)dx =0, m=0,1,....n—1, neN, k eNy.
0

Moreover, we see that {x™ Dm}k (x”'*‘me_") = x"e " puik+1)(x), where py k41 is
a polynomial of degree m(k + 1) whose coefficients can be calculated explicitly via
properties of the Pochhammer symbol and the Laguerre polynomials. Thus it can
be reduced to the orthogonality with respect to the measure x"+t%¢~*dx and ideas
of the previous section can be applied. We leave all details to the interested reader.

Bes

ides, further developments, an analog of Lemma 1 and relations with the multiple

orthogonal polynomial ensemble from [7] will be a promising investigation.
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