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Abstract
In a previous paper by the author, a family of iterations for computing thematrix square
root was constructed by exploiting a recursion obeyed by Zolotarev’s rationalminimax
approximants of the function z1/2. The present paper generalizes this construction by
deriving rational minimax iterations for the matrix pth root, where p ≥ 2 is an integer.
The analysis of these iterations is considerably different from the case p = 2, owing
to the fact that when p > 2, rational minimax approximants of the function z1/p

do not obey a recursion. Nevertheless, we show that several of the salient features
of the Zolotarev iterations for the matrix square root, including equioscillatory error,
order of convergence, and stability, carry over to the case p > 2. A key role in the
analysis is played by the asymptotic behavior of rational minimax approximants on
short intervals. Numerical examples are presented to illustrate the predictions of the
theory.

Keywords Matrix root · Matrix power · Rational approximation · Minimax ·
Uniform approximation · Matrix iteration · Chebyshev approximation · Padé
approximation · Newton iteration · Zolotarev
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1 Introduction

In recent years, a growing body of literature has highlighted the usefulness of rational
minimax iterations for computing functions of matrices [4,7,9,28,29]. In these stud-
ies, f (A) is approximated by a rational function r of A possessing two properties:
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r closely (and often optimally) approximates f in the uniform norm over a subset
of the real line, and r can be generated from a recursion. A prominent example of
such an iteration was introduced by Nakatsukasa and Freund [29], who observed that
rational minimax approximants of the function sign(z) = z/(z2)1/2 obey a recursion,
allowing one to rapidly compute sign(A) and related decompositions such as the polar
decomposition, symmetric eigendecomposition, SVD, and, in subsequent work, the
CS decomposition [9]. An analogous recursion for rational minimax approximants of
z1/2 has recently been used to construct iterations for the matrix square root [7], build-
ing upon ideas of Beckermann [2]. There, the iterations are referred to as Zolotarev
iterations, owing to the role played by explicit formulas for rational minimax approx-
imants of sign(z) and z1/2 derived by Zolotarev [36].

The aim of this paper is to introduce a family of rational minimax iterations for
computing the principal pth root of a square matrix A, where p ≥ 2 is an integer.
Recall that the principal pth root of a square matrix A having no nonpositive real
eigenvalues is the unique solution of X p = A whose eigenvalues are contained in
{z ∈ C | −π/p < arg z < π/p} [16, Theorem 7.2]. The iterations we propose reduce
to the Zolotarev iterations for the matrix square root [7] when p = 2, but when p > 2,
they differ from the Zolotarev iterations in several important ways. Notably, for all
integers p ≥ 2, the iterations generate a rational function r of Awhich has the property
that for scalar inputs, the relative error e(z) = (r(z) − z1/p)/z1/p equioscillates on
a certain interval [a, b] (see Sect. 2 for our terminology). Remarkably, when p = 2,
e(z) equioscillates often enough to render maxa≤z≤b |e(z)|minimal among all choices
of r with a fixed numerator and denominator degree [7]. This optimality property is
the hallmark of the Zolotarev iterations, and it allows one to appeal to classical results
from rational approximation theory to estimate the maximum relative error. When
p > 2, no such optimality property holds. Much of this paper is devoted to showing
that the rational minimax iterations for the pth root still enjoy many of the same
desirable features as the Zolotarev iterations for the square root, despite the absence
of optimality in the case p > 2. We take care to present our results in such a way that
when p = 2, the salient features of the Zolotarev iterations are recovered as special
cases.

There are a number of connections between the iterations we derive and existing
iterations from the literature on the matrix pth root. We have already mentioned that
they reduce to the Zolotarev iterationswhen p = 2. For arbitrary p ≥ 2, the two lowest
order versions of our rational minimax iterations are scaled variants of the Newton
iteration and the inverse Newton iteration [16, Chapter 6], [3, Section 6], [20]. In
another limiting case, our iterations reduce to the Padé iterations [24, Section 5].
Relative to these iterations, the rational minimax iterations offer advantages primarily
when the matrix A has eigenvalues with widely varying magnitudes. As an extreme
example, if p = 3 and A is Hermitian positive definite with condition number≤ 1016,
convergence is achieved in double-precision arithmetic after just 2 iterations when
using our type-(6, 6) rational minimax iteration. In contrast, up to 5 iterations are
needed when using the type-(6, 6) Padé iteration. Our numerical experiments indicate
that the situation is similar, but less dramatic, for non-normalmatriceswith eigenvalues
away from the positive real axis.
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This paper is organized as follows. In Sect. 2, we review the Zolotarev iterations
for the matrix square root by summarizing the contents of [7]. In Sect. 3, we intro-
duce rational minimax iterations for the matrix pth root and present our main results:
Theorems 1, 2, and their corollaries. Proofs of these results are provided separately in
Sect. 4. Finally, Sect. 5 presents numerical experiments that illustrate the predictions
of the theory.

2 Background: Zolotarev Iterations for theMatrix Square Root

Let us summarize the Zolotarev iterations for the matrix square root and their key
properties [7]. LetRm,� denote the set of all rational functions of type (m, �)—ratios
of polynomials of degree at most m to polynomials of degree at most �. We say that a
function r(z) = g(z)/h(z) inRm,� has exact type (m′, �′) if, after canceling common
factors, g(z) and h(z) have degree exactly m′ ≤ m and �′ ≤ �, respectively. The
number d = min{m − m′, � − �′} is called the defect of r in Rm,�. In most of what
follows, z is a real variable; we use the letter z since the behavior of r on C will play
an important role later in the paper.

Given a continuous, increasing bijection f : [0, 1] → [0, 1] and a number α ∈
(0, 1), let rm,�(z, α, f ) denote the best type-(m, �) rational approximant of f (z) on
[ f −1(α), 1]:

rm,�(·, α, f ) = argmin
r∈Rm,�

max
z∈[ f −1(α),1]

∣
∣
∣
∣

r(z) − f (z)

f (z)

∣
∣
∣
∣
. (1)

It is well-known that the minimization problem above has a unique solution [1, p. 55].
Furthermore, explicit formulas for rm,�(·, α,

√·) are known for � ∈ {m − 1,m} [36].
Let r̂m,�(z, α, f ) denote the unique scalar multiple of rm,�(z, α, f ) with the property
that

min
z∈[ f −1(α),1]

r̂m,�(z, α, f ) − f (z)

f (z)
= 0. (2)

For m ∈ N and � ∈ {m − 1,m}, the Zolotarev iteration of type (m, �) for computing
the square root of a square matrix A reads

Xk+1 = Xkr̂m,�

(

X−2
k A, αk,

√·
)

, X0 = I , (3)

αk+1 = αk

r̂m,�(α
2
k , αk,

√·) , α0 = α. (4)

It is proved in [7] that in exact arithmetic, Xk → A1/2 and αk → 1 with order of
convergence m + � + 1 for any A with no nonpositive real eigenvalues. In floating
point arithmetic, it is necessary to reformulate the iteration to ensure its stability; we
detail the stable reformulation of (3–4) later on.
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4 Constructive Approximation (2021) 54:1–34

The iteration (3–4) has the remarkable property that it generates an optimal ratio-
nal approximation of A1/2 of high degree. Namely, X̃k := 2αk Xk/(1 + αk) =
rmk ,�k (A, α,

√·), where

(mk, �k) =
{( 1

2 (2m)k, 1
2 (2m)k − 1

)

, if � = m − 1,
( 1
2 ((2m + 1)k − 1), 1

2 ((2m + 1)k − 1)
)

, if � = m.
(5)

A simple consequence of this is that if A is Hermitian positive definitewith eigenvalues
in [α2, 1], then

‖(X̃k − A1/2)A−1/2‖2 ≤ Emk ,�k (
√·, [α2, 1]),

where

Em,�( f , S) = min
r∈Rm,�

max
z∈S

∣
∣
∣
∣

r(z) − f (z)

f (z)

∣
∣
∣
∣
.

For more detailed error estimates, including error estimates for non-normal A with
eigenvalues in C\(−∞, 0], see [7]. Note that by definition,

Em,�( f , [ f −1(α), 1]) = max
z∈[ f −1(α),1]

∣
∣
∣
∣

rm,�(z, α, f ) − f (z)

f (z)

∣
∣
∣
∣
.

3 Minimax Iterations for theMatrix pth Root

In this paper, we propose an iteration for computing pth roots of matrices that gen-
eralizes (3–4). Given α ∈ (0, 1), m, � ∈ N0, and an integer p ≥ 2, the iteration
reads

Xk+1 = Xkr̂m,�

(

X−p
k A, αk,

p√·
)

, X0 = I , (6)

αk+1 = αk

r̂m,�(α
p
k , αk,

p√·) , α0 = α. (7)

The Zolotarev iterations (3–4) correspond to the cases {(m, �, p) | m ∈ N, � ∈
{m−1,m}, p = 2} in (6–7). (Note that we colloquially referred to these cases as “the
case p = 2” in Sect. 1). Since Xk is a rational function of A for each k, it commutes
with A.

With the exception of the cases {(m, �, p) | m ∈ N, � ∈ {m − 1,m}, p = 2}
and {(m, �, p) | (m, �) ∈ {(0, 0), (1, 0), (0, 1)}, p ≥ 2}, explicit formulas for
r̂m,�(z, α,

p√·) are not known. However, the coefficients of the numerator and denom-
inator of r̂m,�(z, α,

p√·) can be computed numerically; see Sect. 5 for details. Note
that the cost of computing r̂m,�(z, α,

p√·) is independent of the dimension of A, so it
is expected to be negligible for problems involving large matrices.

123



Constructive Approximation (2021) 54:1–34 5

As with the square root iteration (3–4), it is necessary to reformulate the pth root
iteration (6–7) to ensure its stability. This is accomplished by considering the iteration
for Yk = X1−p

k A and Zk = X−1
k implied by (6–7). Exploiting commutativity, we have

Yk+1 = Ykh�,m,p (ZkYk, αk)
p−1 , Y0 = A, (8)

Zk+1 = h�,m,p (ZkYk, αk) Zk, Z0 = I , (9)

αk+1 = αkh�,m,p(α
p
k , αk), α0 = α, (10)

where h�,m,p(z, α) = rm,�(z, α,
p√·)−1. (We swapped the order of the first two indices

to emphasize that h�,m,p(z, α) is a rational function of type (�,m), not (m, �).)
The remainder of this section presents a series of results about the behavior of the

iteration (6–7) and its counterpart (8–10). Proofs of these results are given in Sect. 4.

3.1 Functional Iteration

Agreat deal of information about the behavior of the iteration (6–7) (and hence (8–10))
can be gleaned from a study of the functional iteration

fk+1(z) = fk(z)r̂m,�

(
z

fk(z)p
, αk,

p
√·

)

, f0(z) = 1, (11)

αk+1 = αk

r̂m,�(α
p
k , αk,

p
√·) , α0 = α. (12)

Indeed, we have Xk = fk(A) in (6–7), and Yk = fk(A)1−p A and Zk = fk(A)−1

in (8–10).
The following theorem summarizes the properties of the functional iteration (11–

12). In the interest of generality, it focuses on a slight generalization of (11–12) that
reduces to (11–12) when the function f appearing below is f (z) = z1/p. The the-
orem makes use of the following terminology. A continuous function g(z) is said to
equioscillate m times on an interval [a, b] if there existm points a ≤ z0 < z1 < · · · <

zm−1 ≤ b at which

g(z j ) = σ(−1) j max
z∈[a,b] |g(z)|, j = 0, 1, . . . ,m − 1.

for some σ ∈ {−1, 1}. It is well known that theminimax approximants (1) are uniquely
characterized by the property that rm,�(z,α, f )− f (z)

f (z) equioscillates at leastm+ �+2−d

times on [ f −1(α), 1], where d is the defect of rm,�(z, α, f ) in Rm,� [32, Theorem
24.1]. We will be particularly interested in those functions f for which:

(3.A) For every α ∈ (0, 1) and m, � ∈ N0, rm,�(z, α, f ) has exact type (m, �). Fur-

thermore, rm,�(z,α, f )− f (z)
f (z) equioscillates exactlym+�+2 times on [ f −1(α), 1],

achieves its maximum at z = f −1(α), and achieves an extremum at z = 1.

The function f (z) = z1/p satisfies this hypothesis; see Lemma 5 for a proof.
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6 Constructive Approximation (2021) 54:1–34

Theorem 1 Let f : [0, 1] → [0, 1] be a continuous, increasing bijection satisfy-
ing (3.A). Let α ∈ (0, 1) and m, � ∈ N0, and define fk(z) recursively by

fk+1(z) = fk(z)r̂m,�

(

f −1
(

f (z)

fk(z)

)

, αk, f

)

, f0(z) = 1, (13)

αk+1 = αk

r̂m,�( f −1(αk), αk, f )
, α0 = α. (14)

Then, with f̃k(z) = 2αk
1+αk

fk(z) and εk = maxz∈[ f −1(α),1]
∣
∣
∣
f̃k (z)− f (z)

f (z)

∣
∣
∣, we have:

(3.i) For every k ≥ 0,

αk = 1 − εk

1 + εk
(15)

and

εk+1 = Em,�( f , [ f −1(αk), 1]). (16)

(3.ii) For every k ≥ 0, the relative error f̃k (z)− f (z)
f (z) equioscillates (m + � + 1)k + 1

times on [ f −1(α), 1], and it achieves its extrema at the endpoints.
(3.iii) If f ∈ Cm+�+1([α, 1]), f −1 is Lipschitz on [α, 1], and (m, �) 
= (0, 0), then

εk → 0 monotonically with order of convergence m + � + 1 as k → ∞.

Let us discuss the meaning of this theorem. It states that the iteration (13–14) gen-
erates a function f̃k(z) ≈ f (z) with the following curious property: The maximum
relative error in f̃k(z) on the interval [ f −1(α), 1] is equal to themaximum relative error
in the best rational approximant of f (z) on a much smaller interval [ f −1(αk−1), 1].
Indeed, as k increases, the length of [ f −1(α), 1] remains constant, whereas the length
of [ f −1(αk−1), 1] = [ f −1(αk−1), f −1(1)] is O(1 − αk−1) = O(εk−1) by (15),
assuming f −1 is Lipschitz near z = 1. Since rational functions of type (m, �) can
approximate analytic functions on intervals of length O(εk−1) with (generically)
accuracy O(εm+�+1

k−1 ) [32, Theorem 27.1], we see from (16) that εk = O(εm+�+1
k−1 ),

assuming f is smooth enough near z = 1. That is, εk → 0 with order of convergence
m + � + 1.

For most functions f , the iteration (13–14) is not useful, as it (rather circularly)
uses f (and f −1) to generate an approximation of f . Furthermore, the approximation
it generates need not be a rational function of z. The function f (z) = z1/p, however,
is exceptional, in that the iteration (13–14)—which reduces to (11–12) for this f—
generates a rational function fk(z) without requiring the evaluation of any pth roots.

The following theorem specializes Theorem 1 to the case f (z) = z1/p and gives
precise information about the constants implicit in the convergence result (3.iii). In it,
we use the notation (β)m for the rising factorial (the Pochhammer symbol): (β)m =
β(β + 1)(β + 2) · · · (β + m − 1).
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Constructive Approximation (2021) 54:1–34 7

Theorem 2 Let α ∈ (0, 1), m, � ∈ N0, and p ∈ N with p ≥ 2 and (m, �) 
= (0, 0).
Let fk(z) and αk be defined by the iteration (11–12), and let f̃k(z) = 2αk

1+αk
fk(z)

and εk = maxz∈[α p,1]
∣
∣
∣
f̃k (z)−z1/p

z1/p

∣
∣
∣. Then the conclusions (3.i) and (3.ii) hold with

f (z) = z1/p. Furthermore, as k → ∞, εk → 0 monotonically with

εk+1 = C(m, �, p)εm+�+1
k + o(εm+�+1

k ), (17)

where

C(m, �, p) = pm+�+1m!�!(1/p)�+1(1 − 1/p)m
2m+�(m + � + 1)!(m + �)! . (18)

Note that when p = 2 and � ∈ {m−1,m}, (18) simplifies toC(m, �, 2) = 4−(m+�).
This is consistent with the results of [7], where it is shown that for these m, �, and p,
an asymptotically sharp bound of the form εk ≤ 4ρ−(m+�+1)k holds with ρ a constant
depending on α.

Let mk and �k be the degrees of the polynomials in the numerator and denom-

inator, respectively, of f̃k . Since the relative error f̃k (z)−z1/p

z1/p
equioscillates (m +

� + 1)k + 1 times on [α p, 1], it is natural to wonder how the number (m + � +
1)k + 1 compares with mk + �k + 2, the number of equioscillations achieved by

argminr∈Rmk ,�k
maxz∈[α p,1]

∣
∣
∣
r(z)−z1/p

z1/p

∣
∣
∣ (which has defect 0 in Rmk ,�k ; see Lemma 5).

We address this question below.

Proposition 1 Let α,m, �, p, and f̃k be as in Theorem 2. Then, for each k ∈ N, f̃k is
a rational function of type (mk, �k), where

mk =
{

1
p (pm)k, if � < m,
1
p

[

(p� + 1)k − (p(� − m) + 1)k
]

, if � ≥ m,

�k =
{

1
p (pm)k − (m − �), if � < m,
1
p

[

(p� + 1)k − 1
]

, if � ≥ m.

As k → ∞, the asymptotic relation

(m + � + 1)k + 1

mk + �k + 2
∼

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

p
2

(
m+�+1

pm

)k
, if � < m,

p
2

(
m+�+1
p�+1

)k
, if � ≥ m 
= 0,

p
(

�+1
p�+1

)k
, if � > m = 0

(19)

holds.

When p = 2 and � ∈ {m − 1,m}, the asymptotic relation (19) is an equality:
(m+�+1)k+1
mk+�k+2 = 1 for every k.
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8 Constructive Approximation (2021) 54:1–34

3.2 Convergence of theMatrix Iteration

An immediate consequence of Theorem 2 is that the iteration (6–7) converges when
A is Hermitian positive definite with eigenvalues in [α p, 1].
Corollary 1 Let α ∈ (0, 1), m, � ∈ N0, and p, n ∈ N with p ≥ 2 and (m, �) 
= (0, 0).
Let A ∈ C

n×n be Hermitian positive definite. If the eigenvalues of A lie in [α p, 1],
then the iteration (6–7) generates a sequence X̃k = 2αk Xk/(1 + αk) that converges
to A1/p with order m + � + 1. In particular, we have

‖X̃k A
−1/p − I‖2 ≤ εk,

for every k ≥ 0, where εk obeys the recursion

εk+1 = Em,�

(

p√·,
[(

1 − εk

1 + εk

)p

, 1

])

= C(m, �, p)εm+�+1
k + o(εm+�+1

k ),

ε0 = 1 − α

1 + α
, (20)

and C(m, �, p) is given by (18).

A similar result holds for the coupled iteration (8–10).

Corollary 2 Letα,m, �, p, n, and A beas inCorollary1.Then the coupled iteration (8–
10) generates sequences Ỹk = (1+αk)

p−1Yk/(2αk)
p−1 and Z̃k = (1+αk)Zk/(2αk)

that converge to A1/p and A−1/p respectively, with order m + �+ 1. In particular, we
have

‖Ỹk A−1/p − I‖2 ≤ (1 + εk)
p−1 − 1

(1 − εk)p−1 ,

‖Z̃k A
1/p − I‖2 ≤ εk

1 − εk
,

for every k ≥ 0, where εk obeys the recursion (20).

Note that the bounds above imply corresponding bounds on the relative errors
‖X̃k − A1/p‖2/‖A1/p‖2, ‖Ỹk − A1/p‖2/‖A1/p‖2, and ‖Z̃k − A−1/p‖2/‖A−1/p‖2.
For instance,

‖X̃k − A1/p‖2
‖A1/p‖2 = ‖(X̃k A−1/p − I )A1/p‖2

‖A1/p‖2 ≤ ‖X̃k A
−1/p − I‖2 ≤ εk .

When A is non-normal and/or has eigenvalues away from the positive real axis, the
behavior of the matrix iteration (6–7) (and hence (8–10)) is dictated by the behavior
of the scalar iteration (11–12) on complex inputs z. This has been analyzed in detail
for the case p = 2 in [7], but for p > 2, numerical experiments indicate that the
scalar iteration converges in a subset of the complex plane with fractal structure, a
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Constructive Approximation (2021) 54:1–34 9

typical feature of iterations for the pth root. We study this behavior numerically in
Sect. 5. It remains an open problem to determine theoretically the convergence region
{z ∈ C | limk→∞ fk(z) = z1/p} for the iteration (11–12).

3.3 Special Cases

For certain values of m, �, and p, the theory above recovers some known results from
the literature. We discuss these situations below.

3.3.1 Square Roots

When p = 2,m ∈ N, and � ∈ {m−1,m}, a remarkable phenomenon occurs, allowing
us to draw the connection between Theorem 1 and the results of [7] that we alluded to
earlier. For these p,m, and �, the function f̃k(z) is a rational function of type (mk, �k),
where (mk, �k) is given by (5). In both the case � = m − 1 and the case � = m, we
have

mk + �k = (m + � + 1)k − 1,

so (3.ii) implies that f̃k(z)− f (z)
f (z) equioscillates mk + �k + 2 times on [ f −1(α), 1].

It follows from the theory of rational minimax approximation that f̃k(z) is the best
rational approximant of

√
z of type (mk, �k) on [α2, 1]:

f̃k(z) = rmk ,�k (z, α,
√·), if p = 2 and � ∈ {m − 1,m}.

In particular,

εk = Em,�(
√·, [α2

k , 1]) = Emk ,�k (
√·, [α2, 1]), if p = 2 and � ∈ {m − 1,m},

for every k ≥ 1. This shows that Theorem 1 includes [7, Theorem 1] as a special case.

3.3.2 Low-Order Iterations

When p ≥ 2 is an integer and (m, �) = (1, 0) or (0, 1), we recover variants of another
family of iterations.

Proposition 2 Let p ≥ 2 be an integer and α ∈ (0, 1). We have

r̂1,0(z, α, p
√·) = 1

p

(

(p − 1)μ + z

μp−1

)

, μ =
(

α − α p

(p − 1)(1 − α)

)1/p

. (21)

and

r̂0,1(z, α, p
√·) = p

(p + 1)ν − ν p+1z
, ν =

(
(p + 1)(1 − α)

1 − α p+1

)1/p

. (22)
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10 Constructive Approximation (2021) 54:1–34

Note that the formula (21) for r̂1,0(z, α, p
√·) appears in [27, Theorem2] and [23]; see

also [14, Lemma 3.2] for a related result. (When comparing (21) with [27, Theorem 2],
one must bear in mind that r1,0(z, α, p

√·) and r̂1,0(z, α, p
√·) differ by a factor of

2
1+r̂1,0(1,α, p√·) = 2μp p

μ+μp(μ(p−1)+p) .)

The preceding proposition shows that when (m, �) = (1, 0), the iteration (6–7)
reads

Xk+1 = 1

p

(

(p − 1)μk Xk + (μk Xk)
1−p A

)

, X0 = I ,

αk+1 = pαk

(p − 1)μk + μ
1−p
k α

p
k

, α0 = α,

where

μk =
(

αk − α
p
k

(p − 1)(1 − αk)

)1/p

. (23)

This is a scaled variant of the popular Newton iteration [16, Equation 7.5] for the
matrix pth root. The scaling heuristic above is reminiscent of one proposed byHoskins
and Walton [19], but theirs is based on type-(1, 0) rational minimax approximants of
z(p−1)/p.

On the other hand, when (m, �) = (0, 1), the iteration (6–7) reads

Xk+1 = pXk

(

(p + 1)νk I − ν
p+1
k X−p

k A)
)−1

, X0 = I ,

αk+1 = 1

p
αk

(

(p + 1)νk − ν
p+1
k α

p
k

)

, α0 = α,

where

νk =
(

(p + 1)(1 − αk)

1 − α
p+1
k

)1/p

. (24)

In terms of the matrix Zk = X−1
k , the iteration for Xk becomes

Zk+1 = 1

p

(

(p + 1)νk Zk − (νk Zk)
p+1A

)

, Z0 = I ,

which is a scaled variant of the inverse Newton iteration [16, Equation (7.12)] for
computing A−1/p.

3.3.3 Padé Iterations

We recover one more family of iterations by considering the limit as α ↑ 1 in (6–7).
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Below,we say that a family of rational functions {rα ∈ Rm,� | α ∈ (0, 1)} converges
coefficientwise to r1 ∈ Rm,� as α ↑ 1 if the coefficients of the polynomials in the
numerator and denominator of rα , appropriately normalized, approach those of r1 as
α ↑ 1.

Proposition 3 As α ↑ 1, r̂m,�(z, α,
p√·) converges coefficientwise to the type-(m, �)

Padé approximant Pm,�,p(z) of z1/p at z = 1:

Pm,�,p(z) =
m
∑

j=0

(−m) j (−1/p − �) j

j !(−� − m) j
(1 − z) j

/ �
∑

j=0

(1/p) j (1/p − m)m( j − � − m)m

j !(−� − m)m( j + 1/p − m)m
(1 − z) j . (25)

It follows that the iteration (6–7) reduces formally to

Xk+1 = Xk Pm,�,p

(

X−p
k A

)

, X0 = I (26)

as α ↑ 1. This is precisely the Padé iteration for the matrix pth root studied by
Laszkiewicz and Ziętak [24, Equation (36)]. When (m, �) = (1, 1), it is the Halley
iteration [21, p. 11], [13]. In terms of Yk = X1−p

k A and Zk = X−1
k , the iteration (26)

reads

Yk+1 = YkQ�,m,p (ZkYk)
p−1 , Y0 = A, (27)

Zk+1 = Q�,m,p (ZkYk) Zk, Z0 = I , (28)

where Q�,m,p(z) = Pm,�,p(z)−1.
For later use, it will be convenient to define

r̂m,�(z, 1,
p√·) := Pm,�,p(z),

h�,m,p(z, 1) := Q�,m,p(z).

The Padé iterations (26) and (27–28) are then simply the iterations obtained by setting
α = 1 in the minimax iterations (6–7) and (8–10), respectively.

3.4 Stability of the CoupledMatrix Iteration

As alluded to earlier, the uncoupled matrix iteration (6–7) exhibits numerical instabil-
ity, whereas the coupled iteration (8–10) does not. We justify the latter claim below.

We recall the following definition. A matrix iteration Xk+1 = g(Xk) with fixed
point X∗ is said to be stable in a neighborhood of X∗ if the Fréchet derivative of
g at X∗ has bounded powers [16, Definition 4.17]. That is, if Lg(A, E) denotes the
Fréchet derivative of g at A ∈ C

n×n in a direction E ∈ C
n×n , then there exists a

123



12 Constructive Approximation (2021) 54:1–34

constant c > 0 such that ‖G j (E)‖ ≤ c‖E‖ for every j and every E ∈ C
n×n , where

G(E) = Lg(X∗, E).
We first address the stability of the coupled Padé iteration (27–28).

Proposition 4 Let m, � ∈ N0 and p, n ∈ N with (m, �) 
= (0, 0) and p ≥ 2. The
Padé iteration (27–28) is stable in a neighborhood of (B, B−1) for any B ∈ C

n×n. In
particular, with g(Y , Z) = (Y Q�,m,p(ZY )p−1, Q�,m,p(ZY )Z), we have

Lg(B, B−1; E, F) = 1

p

(

E − (p − 1)BFB, (p − 1)F − B−1EB−1
)

for any E, F ∈ C
n×n, and Lg(B, B−1; ·, ·) is idempotent.

Consider now the coupled minimax iteration (8–10). Theorem 1 established that αk

converges to 1 in (10). We argue in Sect. 5 that when αk is close to 1, it is numerically
prudent to set αk (and all subsequent iterates) equal to 1, thereby reverting to the Padé
iteration (27–28). Since the latter iteration is stable, it follows that the aforementioned
modification of (8–10) is stable as well.

4 Proofs

In this section,we proveTheorems 1 and 2,Corollaries 1 and 2, andPropositions 1, 2, 3,
and 4.

4.1 Proof of Theorem 1

4.1.1 Equioscillation

To prove the claims (3.i) and (3.ii) in Theorem 1, we use an inductive argument.

When k = 0, (3.ii) holds since the relative error f̃0(z)− f (z)
f (z) = 2α

f (z)(1+α)
− 1 decreases

monotonically from 1−α
1+α

to − 1−α
1+α

as z runs from f −1(α) to 1. This shows also that

ε0 = 1−α
1+α

, so (15) holds when k = 0. Next, we prove two lemmas in preparation for
the inductive step.

Lemma 1 Let f : [0, 1] → [0, 1] be a continuous, increasing bijection satisfying (3.A).
Then the recurrence (14) is equivalent to

αk+1 = 1 − Em,�( f , [ f −1(αk), 1])
1 + Em,�( f , [ f −1(αk), 1]) , α0 = α. (29)

Proof Since

min
z∈[ f −1(α),1]

rm,�(z, α, f )

f (z)
= 1 − Em,�( f , [ f −1(α), 1]),
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the defining property (2) of r̂m,�(z, α, f ) implies that

r̂m,�(z, α, f ) = rm,�(z, α, f )

1 − Em,�( f , [ f −1(α), 1]) .

Also, the assumption (3.A) implies that

rm,�( f −1(α), α, f )

f ( f −1(α))
= max

z∈[ f −1(α),1]
rm,�(z, α, f )

f (z)
= 1 + Em,�( f , [ f −1(α), 1]),

so

α

r̂m,�( f −1(α), α, f )
= 1 − Em,�( f , [ f −1(α), 1])

1 + Em,�( f , [ f −1(α), 1]) .

Since this holds for any α ∈ (0, 1), it follows that the recurrence (14) is equivalent
to (29). ��
Lemma 2 Let f : [0, 1] → [0, 1] be a continuous, increasing bijection satisfying (3.A).
Let α ∈ (0, 1) and m, � ∈ N0. Let F̃(z) be any continuous function on [ f −1(α), 1]
with the property that F̃(z)− f (z)

f (z) equioscillates q times on [ f −1(α), 1] and achieves
its extrema ±ε at the endpoints, where q ≥ 2 and 0 < ε < 1. Define

α′ = 1 − ε

1 + ε
,

α′′ = 1 − Em,�( f , [ f −1(α′), 1])
1 + Em,�( f , [ f −1(α′), 1]) ,

F(z) = 1 + α′

2α′ F̃(z),

H(z) = 2α′′

1 + α′′ F(z)r̂m,�

(

f −1
(

f (z)

F(z)

)

, α′, f

)

.

Then H(z)− f (z)
f (z) equioscillates (m + � + 1)(q − 1) + 1 times on [ f −1(α), 1] with

extrema ±Em,�( f , [ f −1(α′), 1]), and it achieves its extrema at the endpoints.

Proof The assumed equioscillation of F̃(z)
f (z) −1 on [ f −1(α), 1] implies that the function

F̃( f −1(z))
z − 1 equioscillates q times on [α, 1] with extrema ±ε. If we now define

S(z) = z(1 − ε2)

F̃( f −1(z))
,

thenwe conclude that S(z)−1 equioscillates q times on [α, 1]with extrema 1−ε2

1±ε
−1 =

∓ε. Moreover, it achieves its extrema at the endpoints by our assumptions on F̃ .
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14 Constructive Approximation (2021) 54:1–34

By the same reasoning as above, the function

sm,�(z, α
′, f ) = z(1 − (ε′)2)

rm,�( f −1(z), α′, f )
, ε′ = Em,�( f , [ f −1(α′), 1]),

has the property that sm,�(z, α′, f ) − 1 equioscillates m + � + 2 times on [α′, 1] with
extrema ±ε′, and it achieves its extrema at the endpoints by the assumption (3.A).

Consider now the function

g(z) = sm,�

(
S(z)

1 + ε
, α′, f

)

. (30)

We claim that g(z)−1 equioscillates on [α, 1]with extrema±ε′. To see this, we make
two observations. First, as z runs from α to 1, S(z)

1+ε
runs from/to 1−ε

1+ε
= α′ to/from

1+ε
1+ε

= 1 a total ofq−1 times, achieving its extrema at the endpoints each time. Second,

each time y = S(z)
1+ε

runs from/toα′ to/from1, sm,�(y, α′, f )−1 equioscillatesm+�+2
times with extrema ±ε′. By counting extrema, we conclude that the composition (30)
(minus 1) equioscillates

(m + � + 2)(q − 1) − (q − 2) = (m + � + 1)(q − 1) + 1

times on [α, 1] with extrema ±ε′.
Finally, consider the function

h(z) = (1 − (ε′)2)
g( f (z))

.

In viewof the equioscillationof (30), the functionh(z)−1 equioscillates (m+�+1)(q−
1)+1 times on [ f −1(α), 1]with extrema 1−(ε′)2

1±ε′ −1 = ∓ε′, and it achieves its extrema

at the endpoints. We will complete the proof by showing that h(z) = H(z)
f (z) . Using the

fact that 1−ε′ = 2α′′
1+α′′ , F̃(z)=(1−ε)F(z), and rm,�(z, α′, f )=(1−ε′)r̂m,�(z, α′, f ),

we have

h(z) = (1 − (ε′)2)

sm,�

(
S( f (z))
1+ε

, α′, f
)

=
rm,�

(

f −1
(
S( f (z))
1+ε

)

, α′, f
)

S( f (z))
1+ε

=
rm,�

(

f −1
(

f (z)(1−ε)

F̃(z)

)

, α′, f
)

f (z)(1−ε)

F̃(z)

= (1 − ε′)
F(z)r̂m,�

(

f −1
(

f (z)
F(z)

)

, α′, f
)

f (z)
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= H(z)

f (z)
.

��
Remark 1 When f (z) = z1/p, the function

sm,�(z, α
′, p√·) = z(1 − (ε′)2)

rm,�(z p, α′, p√·)
appearing in the proof above is a rational approximant of the sector function sect p(z) =
z/(z p)1/p; see Fig. 1. In fact, the proof above reveals that on each of the segments
{z ∈ C | e−2π i j/pz ∈ [α′, 1]}, j = 0, 1, 2, . . . , p − 1, the relative error

sm,�(z, α′, p√·) − sect p(z)

sect p(z)
= e−2π i j/psm,�(z, α

′, p√·) − 1

is real-valued and equioscillates m + � + 2 times with extrema ±ε′. In particular,
for � ∈ {m − 1,m}, sm,�(z, α′,

√·) is Zolotarev’s type-(2� + 1, 2m) best rational
approximant of the sign function sign(z) = z/(z2)1/2 on [−1,−α′] ∪ [α′, 1] [29].

We are now ready to prove (3.i–3.ii). Suppose (3.ii) and (15) hold at step k in
the iteration (11–12). Then Lemma 2 (applied with F̃ = f̃k , ε = εk , and q =
(m + � + 1)k + 1, so that α′ = αk and α′′ = αk+1) implies that (3.ii) and (15) hold
at step k + 1, so in fact they hold for all k. It now follows immediately that (16) is
equivalent to (29), which, in turn, is equivalent to (14) by Lemma 1. This completes
the proof of (3.i–3.ii).

Fig. 1 Plots of sm,�(z, α
′, p√·) and sect p(z) with m = 2, � = 2, p = 3, and α′ = 0.03
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16 Constructive Approximation (2021) 54:1–34

4.1.2 Convergence

We now address the last claim (3.iii) of Theorem 1, which concerns the convergence
of εk to 0 in the iteration

εk+1 = G(εk), ε0 = 1 − α

1 + α
, (31)

with α ∈ (0, 1),

G(ε) = Em,�

(

f ,

[

f −1
(
1 − ε

1 + ε

)

, 1

])

, (32)

and (m, �) 
= (0, 0).

Lemma 3 Let m, � ∈ N0, and let f : [0, 1] → [0, 1] be a continuous, increasing
bijection satisfying (3.A). If (m, �) 
= (0, 0), then G is continuous, nonnegative, and
nondecreasing on (0, 1). Furthermore, G(ε) < ε for every ε ∈ (0, 1).

Proof It is obvious that G is nonnegative and nondecreasing. To show that G(ε) < ε

for every ε ∈ (0, 1), note that (32) is no larger than the uniform relative error committed
by the constant function g(z) = 1 − ε:

−ε = 1 − ε − f (1)

f (1)
≤ g(z) − f (z)

f (z)
≤

1 − ε − f
(

f −1
(
1−ε
1+ε

))

f
(

f −1
(
1−ε
1+ε

)) = ε

for every z ∈
[

f −1
(
1−ε
1+ε

)

, 1
]

. This establishes thatG(ε) ≤ ε. The inequality is in fact

strict since we assumed (3.A), which implies that the minimizer of the relative error is
not a constant function when (m, �) 
= (0, 0). It remains to show that G is continuous
on (0, 1). We assumed in (3.A) that the minimizer for Em,�( f , [ f −1(α), 1]) has defect
0 inRm,� for eachα ∈ (0, 1), so, for eachfixedα ∈ (0, 1), themap g �→ rm,�(·, α, g) is
continuous with respect to the uniform norm at g = f [26]. By considering functions
g obtained by scaling and translating the input to f , we deduce that rm,�(·, α, f )
depends continuously on α ∈ (0, 1), again with respect to the uniform norm. Hence,
the map α �→ Em,�( f , [ f −1(α), 1]) is continuous on (0, 1), and so too is G. ��

It follows from the above properties ofG that εk → 0monotonically in the iteration
εk+1 = G(εk) for every ε0 ∈ (0, 1).

4.1.3 Rate of Convergence

It remains to show that the order of convergence of εk to 0 ism+�+1. Aswe explained
in the paragraph below Theorem 1, it suffices to note that when f is Cm+�+1 in a
neighborhood of 1,

Em,�( f , [a, 1]) = O((1 − a)m+�+1), as a → 1.
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Indeed, this, together with (16), gives

εk+1 = O

((

1 − f −1
(
1 − εk

1 + εk

))m+�+1
)

= O(εm+�+1
k ), (33)

assuming that f −1 is Lipschitz near 1 and f −1(1) = 1. Below, we give more precise
information about the constant implicit in (33). We begin with a lemma that shows,
in essence, that the uniform error in the best type-(m, �) rational approximant of a
function g(z) on a small interval [−δ, δ] is about 2m+� times smaller than the uniform
error in the type-(m, �) Padé approximant of g(z). (Note that this does not contradict
Proposition 3; the difference between the two aforementioned uniform errors still tends
to 0 as δ → 0.)

Lemma 4 Let g(z) be Cm+�+1 and positive in a neighborhood of 0. Assume that the
type-(m, �) Padé approximant p(z) of g(z) about 0 has defect 0 in Rm,�, and

p(z) − g(z) = cgz
m+�+1 + o(zm+�+1),

where cg ∈ R. For each δ > 0, let

rδ = argmin
r∈Rm,�

max−δ≤z≤δ

∣
∣
∣
∣

r(z) − g(z)

g(z)

∣
∣
∣
∣
.

Then, as δ → 0,

max−δ≤z≤δ

∣
∣
∣
∣

rδ(z) − g(z)

g(z)

∣
∣
∣
∣
= 2|cg|

g(0)

(
δ

2

)m+�+1

+ o(δm+�+1).

Proof Let

q = argmin
r∈Rm+�,0

max−δ≤z≤δ
|r(z) − zm+�+1|. (34)

Among polynomials of degreem+�+1 with unit leading coefficient, the polynomial
zm+�+1−q(z) is the one that deviates least from 0 on [−δ, δ]. Up to a rescaling, this is
precisely the degree-(m + � + 1) Chebyshev polynomial of the first kind Tm+�+1(z):

zm+�+1 − q(z) = 2

(
δ

2

)m+�+1

Tm+�+1

( z

δ

)

.

Now let R(z) be the type-(m, �) Padé approximant of

ḡ(z) = g(z) − cgq(z).
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18 Constructive Approximation (2021) 54:1–34

Since we assumed that the Padé approximant of g(z) has defect 0 inRm,�, the Taylor
coefficients of R(z) approach those of p(z) as δ → 0 [34, Corollary of Theorem 2a].
It follows that for each δ > 0 sufficiently small,

R(z) − ḡ(z) = c̄gz
m+�+1 + o(zm+�+1),

for some c̄g with c̄g − cg = o(1) as δ → 0. Thus, for each δ > 0 sufficiently small,

R(z) − g(z) = R(z) − ḡ(z) − cgq(z)

= c̄gz
m+�+1 − cgz

m+�+1 + 2cg

(
δ

2

)m+�+1

Tm+�+1

( z

δ

)

+ o(zm+�+1).

Hence, as δ → 0,

R(z) − g(z) = 2cg

(
δ

2

)m+�+1

Tm+�+1

( z

δ

)

+ o(δm+�+1)

for every z ∈ [−δ, δ], uniformly in z. Multiplying by 1
g(z) = 1

g(0) +o(1), we conclude
that

R(z) − g(z)

g(z)
= 2cg

g(0)

(
δ

2

)m+�+1

Tm+�+1

( z

δ

)

+ o(δm+�+1) (35)

for every z ∈ [−δ, δ], uniformly in z. Finally, by the definition of rδ ,

max−δ≤z≤δ

∣
∣
∣
∣

rδ(z) − g(z)

g(z)

∣
∣
∣
∣
≤ max−δ≤z≤δ

∣
∣
∣
∣

R(z) − g(z)

g(z)

∣
∣
∣
∣
= 2cg

g(0)

(
δ

2

)m+�+1

+ o(δm+�+1).

In fact, this bound is sharp, for the following reason. The relation (35) shows that for δ
sufficiently small, R(z)−g(z)

g(z) approximately equioscillates, in the sense that there exist

m + � + 2 points −δ ≤ z0 ≤ z1 ≤ · · · ≤ zm+�+1 ≤ δ at which R(z)−g(z)
g(z) alternates in

sign and satisfies

∣
∣
∣
∣

R(z j ) − g(z j )

g(z j )

∣
∣
∣
∣
≥ 2|cg|

g(0)

(
δ

2

)m+�+1

− γ, j = 0, 1, . . . ,m + � + 1,

where γ = o(δm+�+1). The de la Vallée Poussin lower bound [32, Exercise 24.5] then
implies that

max−δ≤z≤δ

∣
∣
∣
∣

rδ(z) − g(z)

g(z)

∣
∣
∣
∣
≥ 2|cg|

g(0)

(
δ

2

)m+�+1

− γ.

��
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Remark 2 The proof above suggests a heuristic for constructing near-best rational
minimax approximants on short intervals [−δ, δ]: one computes the Padé approximant
of ḡ(z) = g(z) − cgzm+�+1 + 2cg(δ/2)m+�+1Tm+�+1(z/δ) rather than g(z). In view
of (35), this heuristic is closely related to Chebyshev–Padé approximation [35].

Remark 3 The near equioscillation of R in the proof above can be used to show that
R is close to rδ: R(z) − rδ(z) = o(δm+�+1), uniformly in z ∈ [−δ, δ] as δ → 0.
The argument is essentially the same as the one used in [33, pp. 429–430] to show
that Charathéodory–Fejér approximants are close to minimax approximants on small
intervals. See Fig. 2 for an illustration.

It is now a simple matter to estimate the constant implicit in (33). As ε → 0, the
above lemma gives

G(ε) = Em,�

(

f ,

[

f −1
(
1 − ε

1 + ε

)

, 1

])

= max
f −1

(
1−ε
1+ε

)

≤z≤1

∣
∣
∣
∣

rm,�(z, α, f ) − f (z)

f (z)

∣
∣
∣
∣

= 2|c f ,δ|
f (1 − δ)

(
δ

2

)m+�+1

+ o(δm+�+1),

where

δ = 1

2

(

1 − f −1(α)
)

, α = 1 − ε

1 + ε
,

Fig. 2 Relative errors in R(z), rδ(z), and the type-(m, �) Padé approximant p(z) of g(z) = ez with m = 2,
� = 1, and δ = 0.1
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and c f ,δ is the Taylor coefficient of (z − 1+ δ)m+�+1 in the difference between f (z)
and its type-(m, �) Padé approximant about z = 1− δ. Since 1

f (1−δ)
= 1

f (1) + o(1) =
1 + o(1), we have

G(ε) = 2|c f ,δ|
(

δ

2

)m+�+1

+ o(δm+�+1).

A short calculation shows that δ = ε( f −1)′(1) + o(ε) = ε/ f ′(1) + o(ε) and c f :=
c f ,0 = c f ,δ + o(1), so

G(ε) = |c f |
2m+� f ′(1)m+�+1 εm+�+1 + o(εm+�+1).

It follows that in the iteration (31), we have

εk+1 = |c f |
2m+� f ′(1)m+�+1 εm+�+1

k + o(εm+�+1
k ). (36)

4.2 Proof of Theorem 2

Having proved Theorem 1, we now verify that the function f (z) = z1/p satisfies the
hypothesis (3.A), and we prove Theorem 2.

We begin by establishing a few properties of the minimax approximants
rm,�(z, α,

p√·). The proof of the following lemma is similar to that of [31, Lemma 2],
which studies rational functions of type (� + 1, �) that minimize the maximum abso-
lute error on [0, 1] rather than the maximum relative error on [α, 1], α > 0. The proof
makes use of the following terminology. A Chebyshev system of dimension N on an
interval I ⊆ R is a linearly independent set {g j (z)}Nj=1 of continuous functions on

I with the property that any nontrivial linear combination
∑N

j=1 c j g j (z) has at most
N − 1 (distinct) roots in I .

Lemma 5 Let m, � ∈ N0, 0 < a < b < ∞, and p ∈ N, p ≥ 2. If r ∈ Rm,� minimizes

max
z∈[a,b] |e(z)|, e(z) = r(z) − z1/p

z1/p
,

then r has exact type (m, �), e(z) equioscillates exactly m + �+ 2 times on [a, b], and

e(a) = max
z∈[a,b] |e(z)|, (37)

e(b) = (−1)m+�+1 max
z∈[a,b] |e(z)|. (38)

Proof Suppose that r(z) = g(z)/h(z), where g(z) and h(z) are polynomials of exact
degree m′ ≤ m and �′ ≤ �, respectively. Observe that the function

z1/ph(z)e(z) = g(z) − z1/ph(z)
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belongs to the space W spanned by

{1, z, z2, . . . , zm′
, z1/p, z1+1/p, z2+1/p, . . . , z�

′+1/p},

which is a Chebyshev system on [a, b] of dimension m′ + �′ + 2 [22, p. 9, Example
1]. Thus, z1/ph(z)e(z) has at most m′ + �′ + 1 zeros on [a, b]. In particular, e(z)
has at most m′ + �′ + 1 zeros on [a, b], so it equioscillates at most m′ + �′ + 2
times on [a, b]. But e(z) equioscillates at least m + � + 2 − d times on [a, b], where
d = min{m − m′, � − �′} ≥ 0. It follows that

m′ + �′ + 2 ≥ m + � + 2 − d,

so

d ≥ (m − m′) + (� − �′) ≥ 2d.

From this we conclude that d = 0, m′ = m, �′ = �, and e(z) equioscillates exactly
m + � + 2 times on [a, b].

Let a ≤ z0 < z1 < · · · < zm+�+1 ≤ b be the points at which e(z) achieves its
extrema on [a, b]. Suppose that z0 > a or zm+�+1 < b. By considering the graph of
e(z), one easily deduces that there exists c ∈ R such that e(z)−c has at leastm+�+2
roots in [a, b]. But

z1/ph(z)(e(z) − c) = z1/ph(z)e(z) − cz1/ph(z) ∈ W ,

so z1/ph(z)(e(z)−c) has at mostm′ +�′ +1 = m+�+1 roots in [a, b]. In particular,
e(z) − c has at most m + � + 1 roots in [a, b], a contradiction. It follows that z0 = a
and zm+�+1 = b.

It remains to verify that the signs in (37–38) are correct. Consider the dependence of
e(z) on the parameters a and b. Denote this dependence by e(z; a, b). By an argument
similar to the one made in the proof of Lemma 3, the maps a �→ e(a; a, b) and b �→
e(a; a, b) are continuous on (0, b) and (a,∞), respectively. These maps also have no
zeros, since e(z; a, b) has a nonzero extremum at z = a for every 0 < a < b < ∞.
Now, for small δ > 0, the proof of Lemma 4 shows that for z ∈ [1 − δ, 1 + δ],

e(z; 1 − δ, 1 + δ) = 2c f

(
δ

2

)m+�+1

Tm+�+1

(
z − 1

δ

)

+ o(δm+�+1),

where c f is the coefficient of (z−1)m+�+1 in the Taylor expansion of Pm,�,p(z)−z1/p

about z = 1. In particular, e(1−δ; 1−δ, 1+δ) has the same sign as c f Tm+�+1(−1) =
(−1)m+�+1c f for δ close to 0, which, as we verify below in (40), is positive. By
continuity, e(a; a, b) > 0 for every 0 < a < b < ∞, and (37–38) follow. ��

The preceding lemma shows that the function f (z) = z1/p satisfies the hypothe-
sis (3.A), so Theorem 2 will follow if we can show that the constant C(m, �, p) in the
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estimate (17) is given by (18). In view of the general estimate (36), it suffices to deter-
mine the coefficient c f of the leading-order term c f (z−1)m+�+1 in Pm,�,p(z)− z1/p,
where Pm,�,p(z) is the Padé approximant (25) of z1/p about z = 1. This is given by
[11, Lemma 3.12]

c f = (−1)m+�+1m!�!(1/p)�+1(1 − 1/p)m
(m + � + 1)!(m + �)! . (39)

Inserting this into (36) and noting that f ′(1) = 1
p and

|c f | = (−1)m+�+1c f , (40)

we obtain (18).

4.3 Proof of Proposition 1

To prove Proposition 1, it suffices to analyze fk , which is a rational function of the
same type as f̃k . Write fk(z) = uk (z)

vk (z)
with uk and vk polynomials of degree mk and

�k , respectively. Since

r̂m,�(z, α,
p√·) = amzm + am−1zm−1 + · · · + a0

b�z� + b�−1z�−1 + · · · + b0

for some coefficients a j and b j depending on α, m, �, and p, we have

fk+1(z) = fk(z)r̂m,�

(
z

fk(z)p
, αk,

p√·
)

= uk(z)

vk(z)

⎛

⎜
⎝

am
(
zvk(z)p

uk (z)p

)m + am−1

(
zvk (z)p

uk (z)p

)m−1 + · · · + a0

b�

(
zvk(z)p
uk (z)p

)� + b�−1

(
zvk(z)p
uk (z)p

)�−1 + · · · + b0

⎞

⎟
⎠ ,

where the coefficients a j and b j vary with the iteration number k. In the case where
� < m, we can write this as a ratio of two polynomials,

fk+1(z)

= amzmvk(z)pm + am−1zm−1uk(z)pvk(z)p(m−1) + · · · + a0uk(z)pm

b�z�uk(z)p(m−�)−1vk(z)p�+1 + b�−1z�−1uk(z)p(m−�+1)−1vk(z)p(�−1)+1 + · · · + b0uk(z)pm−1vk(z)
.

An inductive argument shows that the termsa0uk(z)pm andb0uk(z)pm−1vk(z) have the
highest degree among terms in the numerator and denominator, respectively. Hence,
fk+1 has type (mk+1, �k+1), where

mk+1 = pmmk, m1 = m,

�k+1 = (pm − 1)mk + �k, �1 = �.
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Solving this recursion gives

mk = 1

p
(pm)k,

�k = 1

p
(pm)k − (m − �).

The case in which � ≥ m is similar. This time we write

fk+1(z)

= amzmuk(z)p(�−m)+1vk(z)pm + am−1zm−1uk(z)p(�−m+1)+1vk(z)p(m−1) + · · · + a0uk(z)p�+1

b�z�vk(z)p�+1 + b�−1z�−1uk(z)pvk(z)p(�−1)+1 + · · · + b0uk(z)p�vk(z)
,

leading to the recursion

mk+1 = m + (p(� − m) + 1)mk + pm�k, m1 = m,

�k+1 = � + (p� + 1)�k, �1 = �,

with solution

mk = 1

p

[

(p� + 1)k − (p(� − m) + 1)k
]

,

�k = 1

p

[

(p� + 1)k − 1
]

.

The asymptotic relation (19) follows easily.

4.4 Proof of Corollaries 1 and 2

To prove Corollaries 1 and 2, let ek(z) = f̃k (z)−z1/p

z1/p
. Since Xk = fk(A) = 1+αk

2αk
f̃k(A),

Yk = X1−p
k A, and Zk = X−1

k in (6), (8), and (9), we have

X̃k A
−1/p − I = ek(A),

Ỹk A
−1/p − I = X̃−(p−1)

k A(p−1)/p − I

= (I + ek(A))−(p−1)
(

I − (I + ek(A))p−1
)

,

and

Z̃k A
1/p − I = X̃−1

k A1/p − I

= −(I + ek(A))−1ek(A).
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The results follow from the above equalities and the bounds

‖ek(A)‖2 ≤ max
α p≤z≤1

|ek(z)| = εk,

‖(I + ek(A))−1‖2 ≤ 1

1 − ‖ek(A)‖2 ≤ 1

1 − εk
,

and

‖I − (I + ek(A))p−1‖2 =
∥
∥
∥
∥
∥
∥

−
p−1
∑

j=1

(
p − 1

j

)

ek(A) j

∥
∥
∥
∥
∥
∥
2

≤
p−1
∑

j=1

(
p − 1

j

)

ε
j
k

= (1 + εk)
p−1 − 1.

4.5 Proof of Proposition 2

To prove the formula (21) for r̂1,0(z, α,
p√·), it suffices to show that the function

ê(z) := r̂1,0(z, α,
p√·) − z1/p

z1/p

achieves its global maximum on [α p, 1] at both endpoints and has global minimum 0
on [α p, 1]. Indeed, if this is the case, then the rescaled function

2

2 + ê(1)
r̂1,0(z, α,

p√·)

has relative error which equioscillates three times on [α p, 1], and so must be the
minimizer for E1,0(

p√·, [α p, 1]). A calculation verifies that ê(z) has a critical point
at z = μp, ê(μp) = 0, ê(α p) = ê(1), ê(z) is decreasing on (α p, μp), and ê(z) is
increasing on (μp, 1).

The proof of (22) is similar. In this case, a calculation verifies that the function

ê(z) := r̂0,1(z, α,
p√·) − z1/p

z1/p

has a critical point at z = 1/ν p , ê(1/ν p) = 0, ê(α p) = ê(1), ê(z) is decreasing on
(α p, 1/ν p), and ê(z) is increasing on (1/ν p, 1).

4.6 Proof of Proposition 3

Trefethen andGutknecht [34, Theorem3b] have shown that for any function f analytic
in a neighborhood of 1, argminr∈Rm,�

maxz∈[1−δ,1] |r(z)− f (z)| converges coefficien-
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twise as δ → 0 to the type-(m, �) Padé approximant of f about z = 1, provided that
the Padé approximant has defect 0 inRm,�. Their proof carries over easily to minimiz-
ers of the relative error |(r(z)− f (z))/ f (z)|, assuming f (1) 
= 0. Since Pm,�,p(z) has
defect 0 in Rm,� [10], Proposition 3 follows. The explicit formula (25) for Pm,�,p(z)
is from [24, p. 954].

4.7 Proof of Proposition 4

Since Q�,m,p(z)−1 = Pm,�,p(z) is a Padé approximant of f (z) = z1/p about z = 1
of type (m, �) 
= (0, 0), we have Q�,m,p(1) = 1 and

−Q′
�,m,p(1) = −Q′

�,m,p(1)

Q�,m,p(1)2
= P ′

m,�,p(1) = f ′(1) = 1

p
.

Hence, Q�,m,p(I ) = I , LQ�,m,p (I , E) = − 1
p E , and L

Qp−1
�,m,p

(I , E) = − p−1
p E for any

E ∈ C
n×n . Thus, with g(Y , Z) = (Y Q�,m,p(ZY )p−1, Q�,m,p(ZY )Z), we obtain

Lg(B, B−1; E, F) =
(

E − B

(
p − 1

p

)

(FB + B−1E), F − 1

p
(FB + B−1E)B−1

)

= 1

p

(

E − (p − 1)BFB, (p − 1)F − B−1EB−1) .

Setting Ẽ = 1
p (E − (p − 1)BFB) and F̃ = 1

p ((p − 1)F − B−1EB−1), we find that

Lg(B, B−1; Ẽ, F̃) = Lg(B, B−1; E, F), so Lg(B, B−1; ·, ·) is idempotent.

5 Numerical Examples

In this section, we present numerical examples and discuss the implementation of the
rational minimax iteration (8–10).

5.1 Implementation

Implementing the rational minimax iteration (8–10) requires evaluating the rational
function h�,m,p(z, αk) = r̂m,�(z, αk,

p√·)−1 at a matrix argument ZkYk . With the
exception of the special cases detailed in Sect. 3.3, explicit formulas for this function
are not available. Nevertheless, r̂m,�(z, αk,

p√·) (or, more precisely, its unscaled coun-
terpart rm,�(z, αk,

p√·)) can be determined numerically using, for instance, the function
MiniMaxApproximation from Mathematica’s FunctionApproximations
package. This function uses the Remez exchange algorithm to determine rational
minimax approximants on real intervals. We used this function along with Apart to
compute h�,m,p(z, αk) in partial fraction form. For αk close to 1, the computation of
h�,m,p(z, αk) poses numerical difficulties, so we rounded αk to 1 (thereby reverting to
the Padé iteration (27–28)) whenever αk > 0.99. We also observed that for αk close to
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0 and � = m, accuracy improved if rm,m(z, αk,
p√·) was computed as R(1/z), where

R = argminr∈Rm,m
max1≤z≤α

−p
k

|(r(z)− z−1/p)/z−1/p|. The time taken to determine

rm,�(z, αk,
p√·) with MiniMaxApproximation ranged from about 0.01 seconds

(for (m, �) = (1, 1) and α far from 0) to about 1 second (for (m, �) = (8, 8) and α

close to 0), with little dependence on p.
Note that a more robust option for computing minimizers of the maximum absolute

error |r(z)− f (z)| is the Chebfun functionminimax [6]. However, Chebfun currently
does not support minimization of the maximum relative error |(r(z) − f (z))/ f (z)|.

Algorithm 1 summarizes the implementation of the rational minimax iteration (8–
10). For simplicity, it focuses on the type-(m,m) iteration. The type-(m, �) iteration
with � 
= m is similar, but the form of the partial fraction expansion of h�,m,p(z, α)

varies with �. In the algorithm, the eigenvalues of A with the smallest and largest
magnitudes are denoted λmin(A) and λmax(A), respectively.

Algorithm 1 Type-(m,m) rational minimax iteration for the matrix pth root
1: τ = |λmax(A)|
2: α0 = |λmin(A)/λmax(A)|1/p
3: Y0 = A/τ

4: Z0 = I
5: k = 0
6: while not converged do
7: if αk > 0.99 then αk = 1 end if
8: Compute hm,m,p(z, αk ) and its partial fraction expansion

hm,m,p(z, αk ) = a0 +
m
∑

j=1

a j
z + b j

.

9: W = ∑m
j=1 a j (ZkYk + b j I )

−1

10: Yk+1 = Yk (a0 I + W )p−1

11: Zk+1 = a0Zk + WZk
12: αk+1 = αkhm,m,p(α

p
k , αk )

13: k = k + 1
14: end while
15: Ỹk = τ1/p(1 + αk )

p−1Yk/(2αk )
p−1

16: Z̃k = τ−1/p(1 + αk )Zk/(2αk )
17: return Ỹk ≈ A1/p , Z̃k ≈ A−1/p

The choices of α0 and τ used in the algorithm are motivated by Corollary 2: they
ensure that the spectrum of A/τ is contained in the annulus {z ∈ C | α

p
0 ≤ |z| ≤ 1}.

In particular, if A is Hermitian positive definite, then the spectrum of A/τ is contained
in [α p

0 , 1], and Corollary 2 is directly applicable. Neither λmin(A) nor λmax(A) need
to be computed accurately; our experience suggests that estimates can be used without
significantly degrading the algorithm’s performance.

As a termination criterion, we terminated the iterations when

‖Z̃k−1Ỹk−1 − I‖∞ ≤ p

(
�

(p − 1)C(m, �, p)

)1/(m+�+1)

,

123



Constructive Approximation (2021) 54:1–34 27

where � = 10−15 is a relative error tolerance. This is a generalization to arbitrary p
of the termination criterion described in [7, Section 4.3].

Floating Point Operations If A is n × n and (a0 I + W )p−1 is computed with binary
powering in Line 10 of Algorithm 1, then the cost of each iteration in Algorithm 1
is about (6 + 2m + β log2(p − 1))n3 flops, where β ∈ [1, 2] [16, p. 72]. In the
first iteration, the cost reduces to (2 + 2m + β log2(p − 1))n3 flops since Z0 = I .
If parallelism is exploited, then the m matrix inversions in Line 9 can be performed
simultaneously, as can Lines 10–11. The effective cost (i.e., the span/depth) of such a
parallel implementation is (4 + β log2(p − 1))n3 flops in the first iteration and (6 +
β log2(p − 1))n3 flops in each remaining iteration. Further savings in computational
costs can be achieved when p = 2; see [7, Section 4.2] for details.

In the vast majority of our numerical experiments with, for instance, the type-(8, 8)
minimax iteration, convergence was achieved in two iterations (see Table 3), yielding
an effective parallel cost of (10 + 2β log2(p − 1))n3 flops. For small to moderate p,
this cost compares favorably against Schur-based algorithms for the matrix pth root,
which are not easy to parallelize and typically cost at least 28n3 flops [14,17,18,30].

5.2 Scalar Iteration

Asymptotic Convergence Rates To verify the asymptotic convergence rates predicted
by Theorem 2, we computed εk = 1−αk

1+αk
, k = 1, 2, 3, for various choices of m, �, p,

and ε0. Table 1 reports the results for three such choices. (We selected values of m, �,
p, and ε0 so that the asymptotic regime was reached before convergence to machine
precision occurred.) The table demonstrates that the ratios εk/ε

m+�+1
k−1 approach the

constant C(m, �, p) given by (18). Note that the entry in the row k = 3 of the last
column has been omitted, since ε3 was below machine precision in that instance.

Complex Inputs To study the behavior of the rational function f̃k(z) generated by the
type-(m, �) iteration (11–12), we numerically computed the sets

S(k) = S(k; δ, α,m, �, p) =
{

z ∈ C :
∣
∣
∣
∣

f̃k(z) − z1/p

z1/p

∣
∣
∣
∣
≤ δ

}

for various choices of δ, α, m, �, and p. The boundaries of these sets are plotted in
Fig. 3. They are plotted in the (log10 |z|, arg z) coordinate plane rather than the usual
(Re z, Im z) coordinate plane to facilitate viewing. The shaded regions in the plots
correspond to points z ∈ C for which limk→∞ f̃k(z) 
= z1/p. Numerical evidence
indicates that at these points, limk→∞ f̃k(z) ∈ {e2π i j/pz1/p | j ∈ {1, 2, . . . , p − 1}}.
Furthermore, the shaded regions have a fractal structure. Both of these phenomena are
typical features of iterations for the pth root when p > 2 [5].

Figure 3 gives valuable insight into the behavior of the matrix iteration (6–7) (and,
of course, its coupled counterpart (8–10)). Indeed, if A is a normal matrix with eigen-
values in S(k), then the iteration (6–7) converges in at most k iterations with a relative
tolerance δ in the 2-norm. As an example, the plot in row 3, column 2 of Fig. 3
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Fig. 3 Boundaries of the sets S(k; δ, α,m, �, p) with δ = 10−14, p = 3, (m, �) = (1, 1) (first row),
(m, �) = (4, 4) (second row), (m, �) = (8, 8) (third row), α = 10−4/3 (first column), α = 10−10/3

(second column), and α = 10−16/3 (third column). In each plot, one of the boundaries has been selected
arbitrarily and labelled with its index k. Each unlabelled boundary has an index which differs by +1 from
that of its nearest inner neighbor. Shaded regions correspond to points z for which limk→∞ f̃k (z) 
= z1/p

demonstrates that S(2) contains the set

{z ∈ C | log10 |z| ∈ [−10, 0], arg z ∈ [−π/2, π/2]}

when (m, �) = (8, 8), p = 3, and α = 10−10/3. It follows that the type-(8, 8)
iteration (6–7) converges to A1/3 in at most 2 iterations for any normal matrix A with
spectrum in the right half plane and |λmax(A)/λmin(A)| ≤ 1010.

For comparison, Fig. 4 shows the boundaries of the sets

T (k) = T (k; δ, α,m, �, p) =
{

z ∈ C :
∣
∣
∣
∣

f̃k(z/α p/2) − (z/α p/2)1/p

(z/α p/2)1/p

∣
∣
∣
∣
≤ δ

}

,

where this time f̃k(z) is the rational function generated by (11–12) with the initial
condition α0 = α replaced by α0 = 1. By Proposition 3, the sets T (k) characterize the
convergence behavior of the Padé iteration (26) (and its coupled counterpart (27–28))
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Fig. 4 Boundaries of the sets T (k; δ, α,m, �, p) with the same parameters as in Fig. 3

with the initial iterate scaled by 1/α p/2. (Scaling by 1/α p/2 facilitates the comparison
with Fig. 3 by centering the Padé contours around z = α p/2.)

Notice that for small α (the two rightmost columns of Fig. 4), the sets T (k) do not
contain scalars with extreme magnitudes (|z| = α p and |z| = 1) unless k is relatively
large. Comparing, for instance, the bottom right plots in Figs. 3 and 4, we see that if A
is Hermitian positive definite with spectrum in [10−16, 1], then the type-(8, 8) rational
minimax iteration (11–12) converges in at most 2 iterations, whereas the type-(8, 8)
Padé iteration (25) converges in at most 5. The same observation holds, in fact, for
the type-(6, 6) and type-(7, 7) iterations, which are not shown in Figs. 3 and 4. This
is entirely analagous to the behavior observed in the case p = 2 in [7, Section 5.1]. In
fact, with the exception of the low-order iterations, Figs. 3 and 4 bear a rather strong
resemblance to Figs. 1-2 of [7].

It isworth noting that for the low-order iterations, the sets {z ∈ C | limk→∞ f̃k(z) 
=
z1/p} occupy more of the complex plane when f̃k(z) is generated from the rational
minimax iteration than when f̃k(z) is generated from the Padé iteration (see the shaded
regions in row 1 of Figs. 3 and 4). This appears to be a drawback of the low-order
rationalminimax iterations. Themoderate-order and high-order iterations do not suffer
as much from this issue; compare the shaded regions in the bottom two rows of Figs. 3
and 4, which occupy only a small neighborhood of the nonpositive real axis (| arg z| =
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π ). The latter observation suggests that for moderate to high m and �, it is safe to
apply Algorithm 1 to matrices with spectrum contained in {z ∈ C : | arg z| ≤ �},
where � < π is close to π . For matrices with eigenvalues that lie very near but
not on the nonpositive real axis, a simple workaround is to compute A1/2 using any
algorithm for the matrix square root, and then compute ((A1/2)1/p)2. One can also
compute ((A1/2s )1/p)2

s
with s > 1, as in [14,17], but the advantages of minimax

approximation over Padé approximation become less pronounced as s increases, since
A1/2s has eigenvalues clustered near 1 for large s.

Dependence on p Next, we studied the dependence of the iteration (11–12) on p. We
fixed z = 1

2 and (m, �) = (1, 0), and, for various choices of p and α, we numerically
determined the smallest integer k for which | f̃k(z)−z1/p|/|z1/p| ≤ 10−14. The results
for 2 ≤ p ≤ 10,000 and α p ∈ {10−4, 10−10, 10−16} are shown in Table 2. The table
indicates that the iteration count k grows with p, but does so rather slowly unless
both p and α p are small. For the higher-order iterations (m, � ≥ 1), we detected little
to no dependence of the iteration count on p. For instance, the iteration counts for
(m, �) = (1, 1) (not shown) were constant for 2 ≤ p ≤ 10,000 (4 iterations when
α p = 10−4 and 5 iterations when α p ∈ {10−10, 10−16}).

5.3 Matrix Iteration

To test Algorithm 1, we applied it to a collection of matrices of size 10 × 10 from
the Matrix Computation Toolbox [15]. We selected those 10 × 10 matrices in the
toolbox with condition number ≤ u−1 (where u = 2−53 denotes the unit roundoff)
and with spectrum contained in the sector {z ∈ C : | arg z| < 0.9π}. We also included
those matrices whose spectrum could be rotated into the aforementioned sector by
multiplying A by a suitable scalar eiθ , θ ∈ [0, 2π ]. A total of 41 matrices met these
criteria. We carried out these tests in MATLAB, using a Wolfram Language script to
call Mathematica’s MiniMaxApproximation function in Line 8 of Algorithm 1.

Figure 5 plots the relative error ‖X̂ − A1/p‖F/‖A1/p‖F in the computed pth root
X̂ of A for each of the 41 matrices, where p = 3. The tests are sorted in order of
decreasing κ(p)(A), where

Table 2 Smallest k for which | f̃k (z) − z1/p |/|z1/p | ≤ 10−14. Here, z = 1
2 , (m, �) = (1, 0), and results

are reported for various choices of p and α

p 2 3 4 5 6 7 8 9 10 100 1000 10,000

α p = 10−4 6 6 7 7 7 7 7 7 7 7 7 7

α p = 10−10 7 8 9 9 9 10 10 10 10 11 11 11

α p = 10−16 8 9 10 10 11 11 12 12 12 14 14 14
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Fig. 5 Relative errors committed by the Padé iterations of type (4, 4) and (8, 8), the minimax iterations of
type (4, 4) and (8, 8), and the Schur method [30]. Results are shown for 41 tests with p = 3, ordered by
decreasing condition number κ(p)(A)

Table 3 Number of iterations
used by each iterative method in
the tests appearing in Fig. 5

Iterations 1 2 3 4 5 ≥ 6

Padé-(4, 4) 0 17 12 6 4 2

Padé-(8, 8) 0 27 7 6 1 0

Minimax-(4, 4) 0 17 20 2 1 1

Minimax-(8, 8) 0 34 6 1 0 0

κ(p)(A) = ‖A‖F
‖X‖F

∥
∥
∥
∥
∥
∥
∥

⎛

⎝

p
∑

j=1

(X p− j )T ⊗ X j−1

⎞

⎠

−1
∥
∥
∥
∥
∥
∥
∥
2

denotes the Frobenius-norm relative condition number of the matrix pth root X
of A [16, Problem 7.4]. Results for five methods are shown: the rational mini-
max iterations (8–10) of type (4, 4) and (8, 8), the Padé iterations (27–28) of type
(4, 4) and (8, 8), and Smith’s Schur method for the matrix pth root [30]. The
Padé iterations were implemented using Algorithm 1 with Lines 1–2 replaced by
τ = 1/

√|λmin(A)λmax(A)| and α0 = 1. The results indicate that the algorithms under
consideration behave in a forward stable way, with relative errors mostly lying within
a small factor of uκ(p)(A).

In Table 3, the number of iterations used by each iterative method on the 41 tests
are recorded. In analogy with the results of [7], the rational minimax iterations very
often converged more quickly than the Padé iterations on these tests.
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6 Conclusion

This paper has constructed and analyzed a family of iterations for computing thematrix
pth root using rational minimax approximants of the function z1/p. The output of each
step k of the type-(m, �) iteration is a rational function r of A with the property that
the scalar function e(z) = (r(z) − z1/p)/z1/p equioscillates (m + � + 1)k + 1 times
on [α p, 1], where α ∈ (0, 1) is a parameter depending on A. With the exception of the
Zolotarev iterations (i.e. p = 2 and � ∈ {m−1,m}), this equioscillatory behavior does
not render maxα p≤z≤1 |e(z)| minimal among all choices of r with the same numerator
and denominator degree. Nevertheless, we have shown that many of the desirable
features of the Zolotarev iterations carry over to the general setting. A key role in the
analysis was played by the asymptotic behavior of rational minimax approximants on
short intervals.

Several topics mentioned in this paper are worth pursuing in more detail. Remark 1
leads naturally to a family of rational minimax iterations for the matrix sector function
sect p(A) = A(Ap)−1/p. As α ↑ 1, these iterations likely reduce to the Padé iterations
for the sector function studied by Laszkiewicz and Ziętak [24, Section 5], so the results
therein could inform an analysis of the convergence of the rational minimax iterations
onmatrices that are non-normal and/or have spectrum away from the positive real axis.
Another topic of interest is computing the action of A1/p on a vector b using rational
minimax iterations. Li and Yang [25] address a similar task: computing the action of a
spectral filter on b using Zolotarev iterations for sign(z). It may be possible to construct
a similar algorithm for computing A1/pb. Finally, the functional iteration (11–12)
is of interest in its own right, as it offers a method of rapidly generating rational
approximants of z1/p with small relative error, a tool that may have applications
in, for instance, numerical conformal mapping [12] and approximation theory for
compositions of rational functions [8].
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