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Abstract
Fourier series approximations of continuous but nonperiodic functions on an interval
suffer the Gibbs phenomenon, which means there is a permanent oscillatory overshoot
in the neighborhoods of the endpoints. Fourier extensions circumvent this issue by
approximating the function using a Fourier series that is periodic on a larger interval.
Previous results on the convergence of Fourier extensions have focused on the error
in the L2 norm, but in this paper we analyze pointwise and uniform convergence of
Fourier extensions (formulated as the best approximation in the L2 norm). We show
that the pointwise convergence of Fourier extensions is more similar to Legendre
series than classical Fourier series. In particular, unlike classical Fourier series, Fourier
extensions yield pointwise convergence at the endpoints of the interval. Similar to
Legendre series, pointwise convergence at the endpoints is slower by an algebraic
order of a half compared to that in the interior. The proof is conducted by an analysis
of the associated Lebesgue function, and Jackson- and Bernstein-type theorems for
Fourier extensions. Numerical experiments are provided. We conclude the paper with
open questions regarding the regularized and oversampled least squares interpolation
versions of Fourier extensions.
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1 Introduction

The Fourier series of a periodic function converges spectrally fast with respect to the
number of terms in the series, that is, with an algebraic order that increases with the
number of available derivatives and exponentially fast for analytic functions. Further-
more, the truncated Fourier series can be approximated via the fast Fourier transform
(FFT) in a fast and stable manner [40]. As such, it is the go-to approach to approximate
a periodic function. However, when the function in question is nonperiodic, the situa-
tion is very different. Regardless of how smooth this function is, convergence is slow
in the L2 norm and there is a permanent oscillatory overshoot close to the endpoints
due to the Gibbs phenomenon [42].

Fourier extensions have been shown to be an effective means for the approximation
of nonperiodic functions while avoiding the Gibbs phenomenon [1,4,7,17,23,24,26].
The idea is as follows: For a function f ∈ L2(−1, 1), consider an approximant fN

given by

fN (x) =
n∑

k=−n

cke
iπ
T kx , N = 2n + 1, (1)

where the coefficients c−n, . . . cn are chosen to minimize the error ‖ f − fN ‖L2(−1,1),
and T > 1 is a user-determined parameter. This approximant fN is the nth Fourier
extension of f to the periodic interval [−T , T ]. For the purposes of this paper, other
kinds of Fourier extensions, which might come from a discrete sampling of f or
regularization, are a modification of this.1

There are many approximation schemes that avoid the Gibbs phenomenon. Cheby-
shev polynomial interpolants such as those implemented in the Chebfun [13,36]
and ApproxFun [30] software packages are extremely successful, so why consider
Fourier extensions? First, discrete collocation versions of Fourier extensions sam-
ple the function on equispaced or near-equispaced grids, which in some situations
are more natural than Chebyshev grids, which cluster near the endpoints [5]. Sec-
ond, the approach generalizes naturally to higher dimensions. If one has a function
on a bounded subset � ⊂ R

d , then one can use multivariate Fourier series that are
periodic on a d-dimensional bounding box containing � [8,18,27]. Modifications of
Fourier extensions that use discete samples of a function are particularly relevant in
this generalization, because the integrals defining the L2(�) norm can be difficult to
compute.

Fourier extensions can be computed stably in O(N log2(N )) floating point oper-
ations, with the following important caveats ([20,23,26]). Computation of fN is
equivalent to inversion of the so-called prolate matrix [37], which is a Toeplitz matrix
G ∈ R

N×N with entries Gk, j = sinc
(
(k − j) π

T

)
, with right-hand-side vector b ∈ C

N

1 Articles such as [4] refer to this type of Fourier extension as the exact continuous Fourier extension.
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with entries bk = ( T
2

) 1
2
∫ 1
−1 e− iπ

T kx f (x) dx [26]. The prolate matrix is exponentially
ill-conditioned [34, Eq. 63], so computation of the exact Fourier extension is practi-
cally impossible, even for moderately sized N . However, a truncated singular value
decomposition (SVD) solution is only worse than the exact solution (in the L2(−1, 1)

norm) by a small factor O(ε
1
2 ) in the limit as N → ∞, where ε > 0 is the trunca-

tion parameter [3,4]. Furthermore, using an oversampled least squares interpolation
in equispaced points in [−1, 1] can bring this down to O(ε) for a sufficient oversam-
pling rate [2–4]. At the heart of these facts is the observation that while the Fourier
basis on [−T , T ] does not form a Schauder basis for L2(−1, 1), it satisfies the weaker
conditions of a frame [3].

Fourier extensions which approximate a truncated SVD solution rather than the
exact solution are called regularized Fourier extensions. An approximate SVD of
the prolate matrix can be computed in O(N log2(N )) operations using the FFT and
exploiting the so-called plunge region in the profile of its singular values [20]. This is
a vast improvement onO(N 3) operations for a standard SVD. Fast algorithms for reg-
ularized, oversampled least squares interpolation Fourier extensions were developed
in [26], building on the work of Lyon [23].

Previous convergence results on Fourier extensions have focused on convergence
in the L2 norm, because the Fourier extension by definition minimizes the error in the
L2 norm over the approximation space. Convergence in L2 of algebraic order k for
functions in the Sobolev space Hk(−1, 1) was proved by Adcock and Huybrechs [4,
Thm. 2.1]. It follows immediately that convergence is superalgebraic for smooth func-
tions. Exponential convergence in L2 and L∞ norms for analytic functions was proved
byHuybrechs for T = 2 [17] and byAdcock et al. for general T > 1 [4]. The proofs of
exponential convergence appeal to connections between the Fourier extension prob-
lem and the sub-range Chebyshev polynomials [4], for which series approximations
converge at an exponential rate which depends on analyticity in Bernstein ellipses in
the complex plane. Regarding pointwise convergence of Fourier extensions for non-
analytic functions, there are no proofs in the literature. Some numerical exploration
of pointwise convergence appears in [9, Sec. 2], but a rigorous theoretical foundation
is lacking.

1.1 Summary of New Results

In this paper we prove that for f in the Hölder space Ck,α([−1, 1]),

f (x) − fN (x) =
{
O(N−k−α log(N )) for x ∈ [a, b] ⊂ (−1, 1),

O(N
1
2−k−α)) for x ∈ [−1, 1], (2)

see Theorem 3.2. The factors of log(N ) and N
1
2 come from bounds on the Lebesgue

function associated with the Fourier extension derived in Sect. 4, and the factor of
N−k−α comes from a Jackson-type theorem proved for Fourier extensions derived in
Sect. 5 on best uniform approximation by Fourier extensions.
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This factor of N−k−α can be pessimistic if f is least regular at the boundary; in
Sect. 5 we discuss how a weighted form of regularity (as opposed to Hölder regularity
taken uniformly over the interval [−1, 1]) might yield a more natural correspondence
between regularity and convergence rate. This is precisely the case in best polyno-
mial approximation on an interval, where weighted moduli of continuity have a tight
correspondence with best approximation errors [11, Ch. 7, Thm. 7.7].

From Eq. (2), it is immediate that if f ∈ Cα([−1, 1]) where α ∈ (0, 1), then fN

converges to f uniformly in any subinterval [a, b] ⊂ (−1, 1), and if α > 1
2 , then we

get uniform convergence over the whole interval [−1, 1].
We also prove a local pointwise convergence result, which states that if f ∈

L2(−1, 1), but f is uniformly Dini–Lipschitz in a subinterval [a, b], then the Fourier
extension converges uniformly in compact subintervals of (a, b) (see Theorem 3.5).
This is done by generalizing a localization theorem of Freud on convergence of orthog-
onal polynomial expansions in [−1, 1] (see Sect. 6).

A key insight of this paper is that the kernel associated with approximation by
Fourier extension has an explicit formula that is related to the Christoffel–Darboux
kernel of theLegendre polynomials on a circular arc (seeLemma4.3). The asymptotics
of these polynomials were derived by Krasovksy using Riemann–Hilbert analysis
[10,21,22], which we use to derive asymptotics of the kernel. The Lebesgue function
for Fourier extensions are estimated using these asymptotics in Theorem 4.1. We

find that the Lebesgue function is O(log(N )) in the interior of [−1, 1] and O(N
1
2 )

globally. This is just as with the Lebesgue function for Legendre series, and distinct
from classical Fourier series which has a O(log N ) Lebesgue function over the full
periodic interval.

The results of this paper would become more interesting if they could be extended
to regularized and oversampled interpolation versions of Fourier extensions, because
as discussed above, these are the versions for which stable and efficient algorithms
have been developed. The multivariate case is another direction this line of inquiry
would ideally lead. We briefly discuss future research like this in Sect. 8.

The paper is structured as follows. Section 2 recounts the known results about
convergence of Fourier extensions in the L2 norm. Section 3 gives new pointwise and
uniform convergence theorems along with proofs that depend on results proved in the
self-contained Sects. 4, 5, and 6. Section 4 is on the Lebesgue function for Fourier
extensions. Section 5 is on uniform best approximation for Fourier extensions, in
which Jackson- andBernstein-type theorems are proved. Section 6 is on an analogue of
Freud’s localization theorem for Fourier extensions. Section 7 provides the reader with
results from numerical experiments, and Sect. 8 provides discussion. The appendix
contains a derivation of asymptotics of Legendre polynomials on a circular arc, on the
arc itself, from the Riemann–Hilbert analysis of Krasovsky [10,21,22].

2 Convergence of Fourier Extensions in L2

In this section we summarize the already known results regarding convergence in the
L2 norm.
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2.1 Exponential Convergence

As is discussed in [1,17], the Fourier extension fN in Eq. (1) is a polynomial in the
mapped variable t = m(x), where

m(x) = 2
cos

(
π
T x
)− cos

(
π
T

)

1 − cos
(

π
T

) − 1.

This change of variables transforms the Fourier extension problem into two series
expansions in modified Jacobi polynomials [17]. Since exponential convergence in
this setting is dictated by Bernstein ellipses in the complex plane, which are defined
to be the closed contours,

B(ρ) =
{
1

2

(
ρeiθ + 1

ρ
e−iθ

)
: θ ∈ [−π, π ]

}
, ρ > 1,

it makes sense to consider the mapped contours,

D(ρ) := m−1 (B(ρ)) , (3)

as a candidate for determining the rate of exponential convergence for Fourier exten-
sions. They are indeed the relevant contours, as was proven in the following theorem.

Theorem 2.1 (Adcock–Huybrechs [17, Thm. 3.14], [4, Thm. 2.3]) If f is an analytic
function in D(ρ�) and continuous on D(ρ�) itself, then

‖ f − fN ‖L2(−1,1) = O(ρ−n)‖ f ‖L∞(D(ρ)),

where ρ < min
{
ρ�, cot2

(
π
4T

)}
and N = 2n + 1. The constant in the big O depends

only on T .

Note that there is a T -dependent upper limit on the rate of exponential convergence.

2.2 Algebraic Convergence

For functions in the Sobolev space Hk(−1, 1) of L2(−1, 1) functions whose kth weak
derivatives are in L2(−1, 1), we have algebraic convergence of order k.

Theorem 2.2 (Adcock–Huybrechs [1, Thm. 2.1]) If f ∈ Hk(−1, 1), then

‖ f − fN ‖L2(−1,1) = O(N−k)‖ f ‖Hk (−1,1),

where the constant in the big O depends only on k and T .

Corollary 2.3 If f is smooth, then fN → f superalgebraically in the L2(−1, 1) norm.
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2.3 Subalgebraic Convergence

This elementary result says that Fourier extensions converge in the L2 norm for L2

functions.

Proposition 2.4 If f ∈ L2(−1, 1), then

‖ f − fN ‖L2(−1,1) → 0 as N → ∞.

Proof Let g ∈ L2(−T , T ) be the function that is equal to f inside [−1, 1] and zero

in the complement. Let g(x) = ∑∞
k=−∞ cke

iπ
T kx be its Fourier series, and for all odd

integers N = 2n + 1, define tN (x) = ∑n
k=−n cke

iπ
T kx . Then following the definitions

of fN , g and tN , we have‖ f − fN ‖L2(−1,1) ≤ ‖ f −tN ‖L2(−1,1) = ‖g−tN ‖L2(−T ,T ) →
0 as N → ∞. �	

3 Pointwise and Uniform Convergence

We prove pointwise convergence rates for functions in various Hölder spaces. For
k = 0, 1, 2, . . . and α ∈ [0, 1], the Hölder space Ck,α([−1, 1]) is the space

Ck,α([−1, 1]) :=
{

f ∈ Ck([−1, 1]) : | f (k)|Cα([−1,1]) < ∞
}

,

where

|g|Cα([−1,1]) := sup
x,y∈[−1,1]

|g(x) − g(y)|
|x − y|α .

It is a Banach space when endowed with the norm ‖ f ‖Ck,α([−1,1]) = ‖ f ‖Ck ([−1,1]) +
| f (k)|Cα([−1,1]) [14]. For all α ∈ [0, 1], we have Cα([−1, 1]) := C0,α([−1, 1]).

3.1 Exponential Convergence

The pointwise convergence result for analytic functions is the same as Theorem 2.1.
In fact, Theorem 2.1 is a corollary of the following theorem.

Theorem 3.1 (Huybrechs [17, Theorem 3.14], Adcock–Huybrechs [4, Theorem 2.11],
[1, Theorem 2.3]) If f is analytic inside of the mapped Bernstein ellipse D(ρ�) (see
Eq. (3)) and continuous on D(ρ�) itself, then

‖ f − fN ‖L∞(−1,1) = O(ρ−n)‖ f ‖L∞(D(ρ)),

where ρ < min
{
ρ�, cot2

(
π
4T

)}
and N = 2n + 1. The constant in the big O depends

only on T .
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3.2 Algebraic Convergence

Pointwise convergence for Hölder continuous functions is as follows.

Theorem 3.2 If f ∈ Ck,α([−1, 1]), where k ≥ 0 and α ∈ [0, 1], then for all [a, b] ⊂
(−1, 1),

‖ f − fN ‖L∞(a,b) = O(N−α−k log N )| f (k)|Cα([−1,1]).

The constant in the big O depends on a, b, k, α, and T . Over the whole interval
[−1, 1], we have

‖ f − fN ‖L∞(−1,1) = O(N
1
2−α−k)| f (k)|Cα([−1,1]).

The constant in the big O depends on k, α, and T .

We lose a half order of algebraic convergence at the endpoints, something that we
could not possibly see in classical Fourier series because a periodic interval has no
endpoints.

Corollary 3.3 If f is smooth, then fN → f superalgebraically in L∞(−1, 1).

3.3 Subalgebraic Convergence

The loss of a half order of algebraic convergence at the endpoints predicted by Theo-
rem 3.2 means that we require at least Hölder continuity with order greater than a half
in order to guarantee uniform convergence.

Theorem 3.4 If f ∈ Cα([−1, 1]), where α > 1
2 , then

‖ f − fN ‖L∞(−1,1) → 0 as N → ∞.

In order to guarantee local, pointwise convergence, there is a weak local continuity
condition that can be employed as follows. A function f is uniformly Dini–Lipschitz
in [a, b] if [42],

lim
δ↘0

sup
x,y∈[a,b]
|x−y|<δ

|( f (x) − f (y)) log δ| = 0. (4)

This is a very weak condition, weaker than the Hölder condition for any α > 0, but it
is sufficient for convergence of Fourier extensions in the interior of [−1, 1].
Theorem 3.5 If f ∈ L2(−1, 1) is uniformly Dini–Lipschitz in [a, b] ⊆ [−1, 1], then

‖ f − fN ‖L∞(c,d) → 0 as N → ∞

for all [c, d] ⊂ (a, b).
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Remark 3.6 This theorem is stronger than it might appear at first. It says that even if
a function is in L2(−1, 1), and can have for example jump discontinuities, we will
still have pointwise convergence in regions where f is Dini–Lipschitz. However, the
localization theorem (Theorem 6.1) which we use to prove this result, does not give
any indication of the rate of convergence.

3.4 Proofs of the Results of This Section

For each odd positive integer N = 2n + 1, let PN be the orthogonal projection from
L2(−1, 1) onto the subspace HN ,

HN = span{e iπ
T kx }n

k=−n .

Then fN = PN ( f ), since fN minimizes the L2(−1, 1) distance between f and HN .
Let {ek}N

k=1 be any orthonormal basis for HN ⊂ L2(−1, 1). Then the kernel

KN (x, y) =
N∑

k=1

ek(x)ek(y)

satisfies

PN f (x) =
∫ 1

−1
KN (x, y) f (y)dy

for all f ∈ L2(−1, 1). The Lebesgue function for the projection PN at a point x ∈
[−1, 1] is the L1 norm of the kernel at x ,


(x; PN ) =
∫ 1

−1
|KN (x, y)| dy.

The best approximation error functional onHN is defined for all f ∈ C([−1, 1]) by

E( f ;HN ) = inf
rN ∈HN

‖ f − rN ‖L∞(−1,1). (5)

The importance of
(x; PN ) and E( f ;HN ) are encapsulated inLebesgue’s lemma,
which states that for any f ∈ C([−1, 1]),

| f (x) − PN ( f )(x)| ≤ (1 + 
(x; PN ))E( f ;HN ) (6)

for all x ∈ [−1, 1] [11, Ch. 2, Prop. 4.1], [32, Thm. 2.5.2].
Now we can proceed to prove the pointwise convergence results stated above. The

proofs depend on the content of Sects. 4, 5, and 6, which consist of self-contained
results.
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Lemma 3.7 Let f ∈ C([−1, 1]). Then for all closed subsets [a, b] ⊂ (−1, 1), we
have

‖ f − PN ( f )‖L∞(a,b) = O(log N )E ( f ;HN ) ,

where the constant in the big O depends on a, b, and T . Over the whole interval
[−1, 1], we have

‖ f − PN ( f )‖L∞(−1,1) = O(N
1
2 )E ( f ;HN ) ,

where the constant in the big O depends only on T .

Proof By Lebesgue’s lemma, given in Eq. (6), it suffices to show that supx∈[a,b]

(x; PN ) = O(log N ), and supx∈[−1,1] 
(x; PN ) = O(N

1
2 ). This is proved in The-

orem 4.1. �	

Proof of Theorem 3.2 By Lemma 3.7, it suffices to show that for f ∈ Ck,α([−1, 1]),
we have E( f ;HN ) = O

(
N−k−α

) | f |Cα([−1,1]). This follows from Lemma 5.1 and
Theorem 5.3. �	

Proof of Theorem 3.4 This follows from Theorem 3.2 with k = 0, because N
1
2−α log

N → 0 as N → ∞ for all α > 1
2 . �	

Proof of Theorem 3.5 The following proof is an analogue of a proof of Freud for poly-
nomial approximation ([15, Thm. IV.5.6]). Define the functions f1 and f2 by

f1(x) =

⎧
⎪⎨

⎪⎩

f (x) for x ∈ [a, b],
f (a) for x ∈ [−1, a),

f (b) for x ∈ (b, 1],

and f2 = f − f1. Since f2 vanishes in [a, b] and is in L2(−1, 1), we have by
Theorem 6.1 that PN ( f2) → 0 uniformly in all subintervals [c, d] ⊂ (a, b). It is clear
by the definition of f1 and the definition of Dini–Lipschitz continuity in Eq. (4) that
f1 is also uniformly Dini–Lipschitz in [−1, 1]. By Lemma 3.7,

‖ f1 − PN ( f1)‖L∞(c,d) = O(log N )E ( f1;HN ) .

By Lemma 5.2 and Theorem 5.3, E ( f1;HN ) = o(1/ log N ). This proves that
PN ( f1) → f1 uniformly on all subintervals [c, d] ⊂ (a, b). Now, since f = f1 + f2,
we have proved the result. �	
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4 The Lebesgue Function of Fourier Extensions

Recall from Sect. 3 that the kernel associated with the Fourier extension operator PN

is the bivariate function on [−1, 1] × [−1, 1],

KN (x, y) =
N∑

k=1

ek(x)ek(y),

where {ek}N
k=1 is any orthonormal basis for HN . We call this kernel the prolate

kernel, because one particular choice of orthonormal basis is the discrete prolate
spheroidal wave functions (DPSWFs). These functions, denoted by {ξk,N }N

k=1, are
the N eigenfunctions of a time-band-limiting operator; specifically, there exist eigen-
values {λk,N }N

k=1 such that

∫ 1

−1
ξk,N (y)

sin
( Nπ

T (x − y)
)

sin
(

π
T (x − y)

) dy = λk,N ξk,N (x)

for k = 1, . . . N . DPSWFs play an important role in the analysis of perfectly ban-
dlimited and nearly timelimited periodic signals, which was pioneered by Landau,
Pollak, and Slepian in the 1970s [34]. More recently, they have also been shown to be
important for the computation of Fourier extensions, because the regularized version
of Fourier extensions projects onto the DPSWFs ξk,N with eigenvalues λk,N > ε for
a given tolerance ε > 0 [3,4]. This is discussed in Sect. 8.

The key outcome of this section is a proof of the following theorem.

Theorem 4.1 (Lebesgue function bounds)

(i) For each closed interval [a, b] ⊂ (−1, 1), the Lebesgue function satisfies

sup
x∈[a,b]


(x; PN ) = O(log N ).

(ii) Over the whole interval [−1, 1], we have

sup
x∈[−1,1]


(x; PN ) = O(N
1
2 ).

This will be proved by finding asymptotic formulae for the prolate kernel KN . The
reader can verify that KN is invariant under a change of orthonormal basis forHN , so
a suitable choice of basis is desired. We have found that rather than the DPSWF basis,
a basis related to orthogonal polynomials on the unit circle have been more amenable
to analysis. For N = 2n + 1, recall the definition of the N -dimensional space HN ,

HN = span
{

e
iπ
T kx

}n

k=−n
.
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Any function rN ∈ HN is of the form

rN (x) = e− iπ
T nx p2n(e

iπ
T x ),

where p2n is a polynomial of degree 2n. Using this ideawe prove the following lemma.

Lemma 4.2 (Orthonormal basis forHN ) Let {k(z)}∞k=0 be the (normalized) orthog-
onal polynomials on the unit circle with respect to the weight

f (θ) = 2T · χ[− π
T , π

T

](θ), θ ∈ [−π, π ];

i.e., for j, k = 0, 1, 2, . . . ,

1

2π

∫ π

−π

k(eiθ ) j (e
iθ ) f (θ)dθ = δ j,k .

Then the set

{
e− iπ

T nx · k

(
e

iπ
T x
)}2n

k=0

forms an orthonormal basis for HN .

Proof By the observation immediately preceding this lemma, the set forms a basis for
HN because {k}2n

k=0 forms a basis for polynomials of degree 2n. We need only show
its orthonormality with respect to the inner product onHN induced by L2(−1, 1). Let
j, k ∈ {0, . . . , 2n}. Then, making the change of variables θ = π

T x , we have

∫ 1

−1
e− iπ

T nx ·  j

(
e

iπ
T x
)

e− iπ
T nx · k

(
e

iπ
T x
)
dx =

∫ 1

−1
 j

(
e

iπ
T x
)
k

(
e

iπ
T x
)
dx

=
∫ π

T

− π
T

 j
(
eiθ
)
k

(
eiθ
) T

π
dθ

= 1

2π

∫ π

−π

 j (eiθ )k(e
iθ ) f (θ)dθ.

By the orthonormal relationship between k and  j on the unit circle, the basis is
orthonormal on [−1, 1]. �	

The Christoffel–Darboux formula for orthogonal polynomials on the unit circle
states that

N−1∑

k=0

k(ζ )k(z) = ∗
N (ζ )∗

N (z) − N (ζ )N (z)

1 − ζ z
, z, ζ ∈ C, ζ z �= 1,
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150 Constructive Approximation (2020) 52:139–175

where∗
N (z) = zN 

(
z−1) (which is also a polynomial of degree N ) [35, Thm11.42].

On the unit circle itself, where z = eiθ , ζ = eiφ , this reduces, after some elementary
manipulations, to

N−1∑

k=0

k(eiφ)k(e
iθ )

= ei N−1
2 (θ−φ) · Imag

⎛

⎝e−i N
2 φ · N

(
eiφ
) · e−i N

2 θ · N
(
eiθ
)

sin
(

θ−φ
2

)

⎞

⎠ . (7)

From this general formula for orthogonal polynomials on the unit circle, we prove the
following lemma regarding the prolate kernel.

Lemma 4.3 (Prolate kernel formula) For all x, y ∈ [−1, 1],

KN (x, y) = Imag

⎛

⎜⎝
e− iπ

T
N
2 y · N

(
e

iπ
T y
)

· e− iπ
T

N
2 x · N

(
e

iπ
T x
)

sin
(

π
2T (x − y)

)

⎞

⎟⎠ .

The formula in fact holds for all x, y ∈ [−T , T ].
Remark 4.4 Setting T = 1 in this formula returns the Dirichlet kernel of classical
Fourier series, because N (z) = zN for the trivial weight f (θ) ≡ 1.

Proof By the fact that
{

e− iπ
T nx · k

(
e

iπ
T x
)}2n

k=0
is an orthonormal basis forHN , from

Lemma 4.2, we have that

KN (x, y) =
2n∑

k=0

e− iπ
T nyk

(
e

iπ
T y
)

e− iπ
T nxk

(
e

iπ
T x
)

= e
iπ
T n(y−x)

N−1∑

k=0

k

(
e

iπ
T y
)
k

(
e

iπ
T x
)

.

Theproof is completed by considering theChristoffel–Darboux formula for orthogonal
polynomials on the unit circle in Eq. (7) (note that N−1

2 = n). �	
Now, to ascertain asymptotics of the prolate kernel, it is sufficient to ascertain

asymptotics of the orthogonal polynomials {k(z)}∞k=0. These polynomials have been
studied before in the literature, and are known as the Legendre polynomials on a
circular arc [25].

Theorem 4.5 Let {k}∞k=0 be the (normalized) orthogonal polynomials on the unit
circle with respect to the weight f (θ) = 2T · χ[− π

T , π
T

](θ), and for x ∈ [−1, 1] define
the variable η ∈ [0, π ] by
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η = cos−1

(
sin
(
x π
2T

)

sin
(

π
2T

)
)

.

There exists a constant δ > 0 such that for x ∈ [−1 + δ, 1 − δ],

N

(
e

iπ
T x
)

= e
iπ
T

N
2 x

√
2T sin

(
π
2T

)
(

e− iπ
4T

(
sin
(
(1 + x) π

2T

)

sin
(
(1 − x) π

2T

)
) 1

4

cos
(

Nη − π

4

)

− e
iπ
4T

(
sin
(
(1 − x) π

2T

)

sin
(
(1 + x) π

2T

)
) 1

4

sin
(

Nη − π

4

))
+ O(N−1), (8)

and for x ∈ [1 − δ, 1],

N

(
e

iπ
T x
)

= e
iπ
T

N
2 x

√
2T sin

(
π
2T

)
(π

2
Nη
) 1

2
(

e− iπ
4T

(
sin
(
(1 + x) π

2T

)

sin
(
(1 − x) π

2T

)
) 1

4

J0 (Nη)

− e
iπ
4T

(
sin
(
(1 − x) π

2T

)

sin
(
(1 + x) π

2T

)
) 1

4

J1 (Nη)

)
+ O(N− 1

2 ). (9)

The constants in the bigO depend only on T and δ. The asymptotics for x ∈ [−1,−1+
δ] are found by using the relation N

(
e− iπ

T x
)

= N

(
e

iπ
T x
)

.

In terms of magnitude with respect to N, we have

N

(
e

iπ
T x
)

=
{
O(1) for x ∈ [−1 + δ, 1 − δ],
O(N

1
2 ) for x ∈ [−1,−1 + δ] ∪ [1 − δ, 1]. (10)

Remark 4.6 The asymptotic order of N

(
e

iπ
T x
)
with respect to N in Eq. (10) is the

same as for the N th (normalized) Legendre polynomial in [−1, 1] [35, Thm. 8.21.6].
Further discussion on how Legendre series approximations compare to Fourier exten-
sions lies in Sect. 8.1

Proof This result follows directly from LemmaA.1 in Appendix A, because if we take

α = π − π/T and fα(θ) ≡ 1, then the polynomials N (z) = (2T )− 1
2 φN (−z, α)

satisfy the orthonormality conditions that define N as in Lemma 4.2. To obtain the
asymptotic formula above, make the change of variables θ = π

T x +π in the asymptotic
formulae for φN (z, α). Be careful to note that the endpoint with explicit formula given
above (x = 1), corresponds to θ = 2π − α, which is not the endpoint with explicit
formula given in Lemma A.1 (θ = α). This was done to shorten the expressions for
the asymptotics at the endpoints.

To complete the proof we must prove Eq. (10). For x ∈ [−1 + δ, 1 − δ], all of the
terms are clearly bounded above by O(δ− 1

4 ) = O(1). Now let x ∈ [1 − δ, 1]. We
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have η2 ≤ π2

4 (1 − cos(η)) for all η ∈ [0, π
2

]
and x sin

(
π
2T

) ≤ sin
(
x π
2T

) ≤ x π
2T for

all x ∈ [0, 1]. Assuming δ < 1
2 , we have x, y ∈ [0, 1] and η, λ ∈ [

0, π
2

]
, and hence

η2 ≤ π2

4 (1− x). Since 1− x ∈ [0, 1] we have 1− x ≤ sin
(
(1 − x) π

2T

)
/ sin

(
π
2T

)
, so

η2 ≤ sin
(
(1 − x) π

2T

)
π2

4 sin( π
2T )

. This implies that

(
η2 sin

(
(1 + x) π

2T

)

sin
(
(1 − x) π

2T

)
) 1

4

= O(1),

uniformly for all x ∈ [0, 1]. Note also that Bessel functions are uniformly bounded

in absolute value by 1 (see [31, Eq. 10.14.1]). This makes it clear that N

(
e

iπ
T x
)

=
O(N

1
2 ) for x ∈ [1 − δ, 1]. For x ∈ [−1,−1 + δ], use the relation N

(
e− iπ

T x
)

=
N

(
e

iπ
T x
)
. �	

We now have the required results to prove Theorem 4.1.

Proof of Theorem 4.1 part (i) Let [a, b] ⊂ (−1, 1), and choose τ > 0 sufficiently small
so that [a − τ, b + τ ] ⊂ (−1, 1). Applying the first part of Theorem 4.5 gives us

N

(
e

iπ
T x
)

= O(1), x ∈ [a − τ, b + τ ]. (11)

For the proof of part (i) we need to bound the integral
∫ 1
−1 |KN (x, y)| dy uniformly

for x ∈ [a, b]. We do so by dividing the interval [−1, 1] into the following subsets:

I1 =
{

y ∈ [−1, 1] : |y − x | ≤ N−1
}

,

I2 =
{

y ∈ [−1, 1] : N−1 < |y − x | ≤ τ
}

,

I3 = {y ∈ [−1, 1] : τ < |y − x |} .

We will obtain estimates for the kernel for x ∈ [a, b] and y in each of I1, I2, and I3,
and then estimate the associated integral over each of I1, I2, and I3.

For N > 1/τ , we have that I1 and I2 are nonempty and are contained within
[a − τ, b + τ ] ⊂ (−1, 1). By Eq. (11),

N

(
e

iπ
T y
)

= O(1), y ∈ I1 ∪ I2.

For y ∈ I1, we have

KN (x, y) = e
iπ
T n(y−x)

N−1∑

k=0

k(e
iπ
T y)k(e

iπ
T x ) = O(N ).
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This implies

∫

I1
|KN (x, y)| dy ≤ O(N )

∫

I1
dy = O(1),

because |I1| ≤ 2N−1.
By Lemma 4.3,

KN (x, y) = Imag

⎛

⎜⎝
e− iπ

T
N
2 y · N

(
e

iπ
T y
)

· e− iπ
T

N
2 x · N

(
e

iπ
T x
)

sin
(

π
2T (x − y)

)

⎞

⎟⎠ .

Note that since the sine function is concave in [0, π ], we have | sin ( π
2T (x − y)

) | ≥
sin
(

π
2T

) |x − y| for x, y ∈ [−1, 1]. Therefore, for all y ∈ [−1, 1],

|KN (x, y)| ≤ O(1)
1

|x − y|
∣∣∣N

(
e

iπ
T y
)∣∣∣ .

For y ∈ I2, this can be reduced to |KN (x, y)| ≤ O(1) 1
|x−y| . Therefore,

∫

I2
|KN (x, y)| dy ≤ O(1)

∫

I2

1

|x − y| dy ≤ O(1)
∫ τ

N−1

1

s
ds = O(log(N )).

For y ∈ I3, since |x−y|−1 < τ−1 = O(1), we have |KN (x, y)| ≤ O(1)
∣∣∣N

(
e

iπ
T y
)∣∣∣.

Therefore,

∫

I3
|KN (x, y)| dy ≤ O(1)

∫

I3

∣∣∣N

(
e

iπ
T y
)∣∣∣ dy ≤ O(1)

(∫ 1

−1

∣∣∣N

(
e

iπ
T y
)∣∣∣

2
dy

) 1
2

= O(1).

This proves that 
(x; PN ) = O(log(N )) uniformly for x ∈ [a, b]. �	
Proof of Theorem 4.1 part (ii). Let δ ∈ (0, 1

4

)
be sufficiently small so that Theorem 4.5

applies to the intervals [−1 + 2δ, 1 − 2δ] and [1 − 2δ, 1]. Using part (i) of the
present theorem, we have that for all x ∈ [−1 + δ, 1 − δ] the Lebesgue func-

tion satisfies 
(x; PN ) = O(log(N )) = O(N
1
2 ) uniformly in such x . Now, since

N

(
e− iπ

T x
)

= N

(
e

iπ
T x
)
, it follows that KN (−x, y) = KN (x,−y), so that


(−x; PN ) = 
(x; PN ). Therefore, to complete the proof we need only show that


(x; PN ) = O(N
1
2 ) uniformly for x ∈ [1 − δ, 1]. For such x , we divide the interval

[−1, 1] into the following subsets:

I1 =
{

y ∈ [−1, 1] : |y − x | ≤ N−1 or |1 − y| ≤ N−1
}

,
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I2 =
{

y ∈ [−1, 1] : N−1 < |y − x | ≤ δ and |1 − y| > N−1
}

,

I3 =
{

y ∈ [−1, 1] : δ < |y − x | and |1 − y| > N−1
}

.

By Theorem 4.5,

N

(
e

iπ
T x
)

= O(N
1
2 ), x ∈ [−1, 1].

Therefore,

KN (x, y) = e
iπ
T n(y−x)

N−1∑

k=0

k(e
iπ
T y)k(e

iπ
T x ) = O(N 2).

By the Cauchy–Schwarz inequality and the fact that |I1| ≤ 3N−1, we have

∫

I1
|KN (x, y)| dy ≤

(∫

I1
|KN (x, y)|2 dy

) 1
2
(∫

I1
dy

) 1
2

≤
(
3

N

) 1
2
(∫ 1

−1
|KN (x, y)|2 dy

) 1
2

.

By the connection between KN and PN ,
∫ 1
−1 |KN (x, y)|2 dy = PN

(
KN (x, ·)

)
(x).

Since KN (x, y) = KN (y, x) and because KN (·, x) ∈ HN for each x ∈ [−1, 1], we
have

∫ 1

−1
|KN (x, y)|2 dy = KN (x, x).

Therefore,

∫

I1
|KN (x, y)| dy = O(N− 1

2 )
(
O(N 2)

) 1
2 = O(N

1
2 ).

Just as in the proof of part (i) of the theorem, but this time using the estimate

N

(
e

iπ
T x
)

= O(N
1
2 ), we have for all x, y ∈ [−1, 1],

|KN (x, y)| ≤ O(N
1
2 )

1

|x − y|
∣∣∣N

(
e

iπ
T y
)∣∣∣ .

Therefore, for y ∈ I3,

|KN (x, y)| ≤ O(N
1
2 )

∣∣∣N

(
e

iπ
T y
)∣∣∣ ,
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because |x − y| > δ for y ∈ I3. Hence,

∫

I3
|KN (x, y)| dy ≤ O(N

1
2 )

∫

I3

∣∣∣N

(
e

iπ
T y
)∣∣∣ dy

≤ O(N
1
2 )

(∫ 1

−1

∣∣∣N

(
e

iπ
T y
)∣∣∣

2
dy

) 1
2

= O(N
1
2 ).

All that remains is to show that
∫

I2
|KN (x, y)| dy = O(N

1
2 ) uniformly for x ∈

[1 − δ, 1]. For x ∈ [1 − δ, 1] and y ∈ I2, we have y ∈ [1 − 2δ, 1] so that the
asymptotic expression in Theorem 4.5 holds. Define the variables

η = cos−1

(
sin
(
x π
2T

)

sin
(

π
2T

)
)

, λ = cos−1

(
sin
(
y π
2T

)

sin
(

π
2T

)
)

.

Take the asymptotic expressions for N in Theorem 4.5 for the x and y cur-
rently in question, and consider the numerator in the formula for the kernel KN (x, y)

(Lemma 4.3). An asymptotic formula is as follows:

Imag

(
e− iπ

T
N
2 y · N

(
e

iπ
T y
)

· e− iπ
T

N
2 x · N

(
e

iπ
T x
))

(12)

= 1

2T

(π

2
Nη
) 1

2
(π

2
Nλ
) 1

2

·
((

sin
(
(1 + x) π

2T

)

sin
(
(1 − x) π

2T

)
) 1

4

J0(Nη)

(
sin
(
(1 − y) π

2T

)

sin
(
(1 + y) π

2T

)
) 1

4

J1 (Nλ)

−
(
sin
(
(1 − x) π

2T

)

sin
(
(1 + x) π

2T

)
) 1

4

J1(Nη)

(
sin
(
(1 + y) π

2T

)

sin
(
(1 − y) π

2T

)
) 1

4

J0 (Nλ)

)
+ O(1) (13)

= N
1
2

π

4T

·
((

η2 sin
(
(1 + x) π

2T

)

sin
(
(1 − x) π

2T

)
) 1

4

J0(Nη)

(
sin
(
(1 − y) π

2T

)

sin
(
(1 + y) π

2T

)
) 1

4

(Nλ)
1
2 J1 (Nλ)

−
(
sin
(
(1 − x) π

2T

)

sin
(
(1 + x) π

2T

)
) 1

4

(Nη)
1
2 J1 (Nη)

(
λ2 sin

(
(1 + y) π

2T

)

sin
(
(1 − y) π

2T

)
) 1

4

J0(Nλ)

)

+O(1). (14)

This was an important step in the proof, because there was cancellation when we
took the imaginary part. This cancellation is essential for the result to hold, and it is
the reason for deriving and including a fully explicit description of the leading order
asymptotics of the polynomials in Appendix A.
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We will now proceed to find upper bounds on the resulting expression. We showed
in the proof of Theorem 4.5 that

(
η2 sin

(
(1 + x) π

2T

)

sin
(
(1 − x) π

2T

)
) 1

4

= O(1)

uniformly for all x ∈ [0, 1]. The same is true when x and η are replaced by y and λ.
It is straightforward to also show that (1 − y) π

2T ≤ sin
(

π
2T

)
λ2 for y ∈ [0, 1]

and λ ∈ [
0, π

2

]
. From this, we have that for y ∈ I2, λ ≥

√
π

2T N . Combining this

with the fact that for t → ∞, Jα(t) = O
(

t− 1
2

)
(see [31, Eq. 10.17.3]), we get that

J0(Nλ) = O
(

N− 1
4

)
.

Note also that Bessel functions are uniformly bounded in absolute value by 1 (see

[31, Eq. 10.14.1]). Furthermore, as t → ∞, t
1
2 Jα(t) = O(1) (see [31, Eq. 10.17.3]).

Collecting the bounds mentioned in the last three paragraphs, we conclude that for
y ∈ I2, we have

Imag

(
e− iπ

T
N
2 y · N

(
e

iπ
T y
)

· e− iπ
T

N
2 x · N

(
e

iπ
T x
))

= O(N
1
2 )J0(Nη)(1 − y)

1
4 + O(N

1
4 ). (15)

To conclude, we prove two refinements of Eq. (15), depending on whether x ∈
[1 − δ, 1 − N−1] or x ∈ [1 − N−1, 1]. When x ∈ [1 − δ, 1 − N−1], we have
J0(Nη) = O(N− 1

4 ) (just like for y ∈ I2 discussed above), and so,

Imag

(
e− iπ

T
N
2 y · N

(
e

iπ
T y
)

· e− iπ
T

N
2 x · N

(
e

iπ
T x
))

= O(N
1
4 ).

This implies that KN (x, y) = O
(

N
1
4

|x−y|
)

for x ∈ [1 − δ, 1 − N−1] and y ∈ I2.

Therefore,

∫

I2
|KN (x, y)| dy ≤ O(N

1
4 )

∫

I2

1

|x − y| dy ≤ O(N
1
4 )

∫ δ

N−1

1

s
ds = O(N

1
4 log(N )).

Finally,when x ∈ [1−N−1, 1] and y ∈ I2,wehave 1−y = x−y+1−x ≤ x−y+N−1

(since x ≥ y). By concavity of the function t �→ |t | 14 at t = x − y > 0, we have

(x − y + N−1)
1
4 ≤ (x − y)

1
4 + 1

4
N−1(x − y)−

3
4 .
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Substituting this bound into Eq. (15), we get,

KN (x, y) = O
(

N
1
2 (1 − y)

1
4

|x − y|

)

= O
(

N
1
2 |x − y|− 3

4

)
+ O

(
N− 1

2 |x − y|− 7
4

)
.

The integral is bounded in the predictable manner as follows:

∫

I2
|KN (x, y)| dy = O(N

1
2 )

∫

I2
|x − y|− 3

4 dy + O(N− 1
2 )

∫

I2
|x − y|− 7

4 dy

≤ O(N
1
2 ) + O(N− 1

2 )

∫ 1

N−1
s− 7

4 ds

= O(N
1
2 ) + O(N− 1

2 · N
3
4 )

= O(N
1
2 ).

Since this covers all x ∈ [−1, 1] with finitely many uniform O(N
1
2 ) upper bounds,

we have the final result uniformly for all x ∈ [−1, 1]. �	

5 Best Uniform Approximation by Fourier Extensions

Wewill compare best uniform approximation in three spaces. For odd positive integer
N = 2n + 1, define

HN = span
{

e
iπ
T kx

}n

k=−n
⊂ C([−1, 1]),

TN = span
{

e
iπ
T kx

}n

k=−n
⊂ Cper([−T , T ]),

PN = span
{

xk
}2n

k=0
⊂ C([−1, 1]).

We will see that best uniform approximation by Fourier extensions is more similar
to that of algebraic polynomials. The best approximation error functionals for these
spaces are defined by

E( f ;HN ) = inf
rN ∈HN

‖ f − rN ‖L∞(−1,1) for all f ∈ C([−1, 1]),
E(g; TN ) = inf

tN ∈TN

‖g − tN ‖L∞(−T ,T ) for all g ∈ Cper([−T , T ]),
E(h;PN ) = inf

pN ∈PN

‖h − pN ‖L∞(−1,1) for all h ∈ C([−1, 1]).

We wish to find bounds in terms of N and the regularity of the functions to be approx-
imated.
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For f ∈ C([−1, 1]) the modulus of continuity is defined by [11,28]

ω( f ; δ) = sup
x,y∈[−1,1]
|x−y|<δ

| f (x) − f (y)|. (16)

For g ∈ Cper([−T , T ]) we define the periodic modulus of continuity to be

ωper(g; δ) = sup
x,y∈[−T ,T ]
dT (x,y)<δ

|g(x) − g(y)|,

where dT (x, y) is the distance between x, y as elements of the periodic interval
[−T , T ]. The following results are immediate.

Lemma 5.1 If f is in the Hölder space Cα([−1, 1]) for α ∈ [0, 1], then ω( f ; δ) ≤
δα| f |Cα([−1,1]) for all δ > 0.

Lemma 5.2 If f ∈ C([−1, 1]) is uniformly Dini–Lipschitz [42], i.e.,

lim
δ↘0

sup
x,y∈[−1,1]
|x−y|<δ

|( f (x) − f (y)) log δ| = 0,

then ω( f ; δ) = o(1/| log δ|).

5.1 A Jackson-Type Theorem

The original Jackson theorem for classical Fourier series asserts that for all k =
0, 1, 2, . . . and all functions g ∈ Ck

per([−T , T ]), we have

E(g; TN ) = O(N−k) ωper

(
g(k); 1

N

)
,

where the constant in the big O depends on k and T [19, Thm. 1.IV].
There is also a polynomial version of Jackson’s theorem, which states that for all

k = 0, 1, 2, . . . and all functions h ∈ Ck([−1, 1]), we have

E(h;PN ) = O(N−k) ω

(
h(k); 1

N

)
, (17)

where the constant in the big O depends only on k [19, Thm. 1.VIII]. We prove a
version of Jackson’s theorem for Fourier extensions.

Theorem 5.3 (Jackson-type) For all k = 0, 1, 2, . . . and all functions f ∈
Ck([−1, 1]),

E( f ;HN ) = O(N−k) ω

(
f (k); 1

N

)
,
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where the constant in the big O depends only on k and T .

Lemma 5.4 (Periodic extension) Let f ∈ Ck([−1, 1]). Then f can be extended to a
function g ∈ Ck

per([−T , T ]) such that

ωper(g
(k); δ) ≤ T

T − 1
ω( f (k); δ).

Proof First let k = 0. Define the function g ∈ Cper([−T , T ]) such that for x ∈
[−1, 1], g(x) = f (x) and for x ∈ [−T , T ]\[−1, 1], g(x) is the the linear function
that interpolates f at {−1, 1}. We distinguish between 4 different cases for points
x, y ∈ [−T , T ] such that dT (x, y) ≤ δ: (i) if x, y ∈ [−1, 1], then

|g(x) − g(y)| = | f (x) − f (y)| ≤ ω( f ; δ);

(ii) if x, y ∈ [−T , T ]\[−1, 1], then since g is linear in this region,

|g(x) − g(y)| ≤ | f (1) − f (−1)|
2(T − 1)

δ;

(iii) if x ∈ [−1, 1], y ∈ [−T , T ]\[−1, 1], then

|g(x) − g(y)| ≤ | f (ξ) − f (x)| + |g(y) − g(ξ)| ≤ ω( f , δ) + | f (1) − f (−1)|
2(T − 1)

δ,

where ξ is the closest of the endpoints to x ; and (iv) if x ∈ [−T , T ]\[−1, 1], y ∈
[−T , T ], the bound is similar to the previous one. Now it remains to bound | f (1) −
f (−1)| in terms of ω( f ; δ). For any positive integer m, we can use a telescoping sum,

| f (1) − f (−1)| ≤
2m−1∑

k=0

∣∣∣∣ f

(
−1 + k

m

)
− f

(
−1 + k + 1

m

)∣∣∣∣ ≤ 2mω

(
f ; 1

m

)
.

It suffices to take m > 1/δ to show that | f (1)− f (−1)|
2(T −1) δ ≤ 1

T −1ω( f ; δ). Combining all

four cases demonstrates ωper(g, δ) ≤ T
T −1ω( f , δ).

Now let k > 0 and choose as extension of f the 2(k + 1)th degree Hermite
interpolant in the points x = 1 and x = −1; then g(k)(x) is the linear interpolation
between f (k)(1) and f (k)(−1) for x ∈ [−T , T ]\[−1, 1]. By the case k = 0 proved
above, ωper(g(k); δ) ≤ T

T −1ω( f (k); δ). �	

Proof of Theorem 5.3 Let f ∈ Ck([−1, 1]). By Lemma 5.4, this function can be
extended to a function g ∈ Ck

per([−T , T ]) such that ωper(g(k); δ) is bounded by
T

T −1ω( f (k); δ). Let tN ∈ TN be the best uniform approximation to g, then (trivially)
there exists a function rN ∈ HN such that rN (x) = tN (x) for all x ∈ [−1, 1]. Hence,

E( f ;HN ) ≤ ‖ f − rN ‖L∞(−1,1) ≤ ‖g − tN ‖L∞(−T ,T ) = E(g; TN ).
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The original Jackson theorem can now be used to bound E(g; TN ):

E(g; TN ) = O(N−k) ωper(g
(k); δ) ≤ O(N−k) ω( f (k); δ).

This proves the result. �	
The combination of Lemma 5.1 and Theorem 5.3 yields the following useful fact.

If f ∈ Ck,α([−1, 1]) for k ≥ 0 and α ∈ [0, 1], then

E( f ;HN ) = O(N−k−α) | f (k)|Cα([−1,1]).

Hereafter, we will see that this is not actually tight, in the sense that functions in
Ck,α([−1, 1]) can see a decay of best approximation error with a rate faster than
N−k−α . This is in contrast to the situation for classical Fourier series in which it is
indeed tight (see Theorem 5.5).

5.2 A Bernstein-Type Theorem

While Jackson-type theorems bound the best approximation error functional by powers
of N and moduli of continuity of derivatives, Bernstein-type theorems attempt to do
the opposite.

Bernstein-type theorems follow from Bernstein inequalities. For classical Fourier
series, the Bernstein inequality is

‖t ′N ‖∞ ≤ π

T
n‖tN ‖∞ (18)

for all tN ∈ TN , where N = 2n + 1 [11, Ch. 4, Th. 2.4]. Equality holds when

tN (x) ∝ e± iπ
T nx . From Bernstein’s inequality it is possible to show that there exists

CT > 0 such that [11, Ch. 7, Thm. 3.1],

ωper

(
g; 1

N

)
≤ CT

n

N∑

k=3
k odd

E(g; Tk).

Now, this is not precisely a converse to Jackson’s theorem, but it implies the following
tightness property.

Theorem 5.5 (Jackson–Bernstein [11, Ch. 7, Thm. 3.3]) Let g ∈ Cper([−T , T ]) and
α ∈ (0, 1). It holds that

E(g; TN ) = O(N−α) ⇐⇒ ωper (g; δ) = O(δα).

The direct analogue of Theorem 5.5 for best uniform approximation by algebraic
polynomials in C([−1, 1]) is not true. Indeed, consider the function h(x) = (1 −
x2)α , whose modulus of continuity satisfies ω(h; δ) = O(δα) by Lemma 5.1. Define
the function g(θ) = h (cos (θ)) = |sin (θ)|2α for θ ∈ [−π, π ]. If α < 1

2 , then
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g ∈ C2α([−π, π ]), so E(g; TN ) = O(N−2α) by Theorem 5.5. Furthermore, the
best approximations will be even since g is even, so the approximants are in fact
polynomials in cos(θ). This implies that the best approximations to h are polynomials
in x , showing that E(h;PN ) = O(N−2α), twice as good as would be expected from
Jackson’s theorem for algebraic polynomials (Eq. (17)).

It was only in the late twentieth century that characterizations of functions h ∈
C([−1, 1]) for which E(h;PN ) = O(N−α) were developed [11, Ch. 8]. The key
insight is to use weighted moduli of continuity. The weighted modulus of continuity
with weight φ : [−1, 1] → [0,∞) for a function f ∈ C([−1, 1]) is defined as

ωφ( f ; δ) = sup
x±h∈[−1,1]
0≤h<φ(x)δ

| f (x + h) − f (x − h)|.

Taking the weight φ(x) = 1
2 returns the standard modulus of continuity in Eq. (16).

It turns out that if thisweightedmodulus of continuity is usedwithφ(x) = √
1 − x2,

then there is a direct analogue of Theorem 5.5 for best uniform approximation by
algebraic polynomials.

Theorem 5.6 (Ditzian–Totik [12, Cor. 7.2.5]) Let h ∈ C([−1, 1]) and α ∈ (0, 1). It
holds that

E(h;PN ) = O(N−α) ⇐⇒ ωφ (h; δ) = O(δα),

where φ(x) = √
1 − x2.

The proof of Theorem 5.6 depends on the Bernstein inequality for algebraic poly-
nomials, which states that for all pN ∈ PN ,

‖φ · p′
N ‖L∞(−1,1) ≤ N‖pN ‖L∞(−1,1), (19)

whereφ(x) = √
1 − x2 [11, Ch. 4, Cor. 1.2]. Compare this with the Bernstein inequal-

ity for classical Fourier series (Eq. (18)). If we wish to remove the factor of φ in the
left-hand side of Eq. (19), then we must change N to N 2 on the right-hand side; this
is then Markov’s inequality [11, Ch. 4, Thm. 1.4].

A Bernstein inequality was proved for Fourier extensions by Videnskii [38], see
also [6, p. 242] and [29, Sec. 2]. It states that for all rN ∈ HN ,

‖φ · r ′
N ‖L∞(−1,1) ≤ π

T
n‖rN ‖L∞(−1,1), (20)

where the weight function is

φ(x) =
√
sin
(
(1 − x) π

2T

)
sin
(
(1 + x) π

2T

)

cos
(
x π
2T

) . (21)
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Note that since the sine function is concave in [0, π ], we have | sin ( π
2T (1 ± x)

) | ≥
sin
(

π
2T

) |1 ± x | for x ∈ [−1, 1]. Also, | sin ( π
2T (1 ± x)

) | ≤ | π
2T (1 ± x)| and

cos
(
x π
2T

) ∈ [cos ( π
2T

)
, 1] for x ∈ [−1, 1]. Therefore,

sin
( π

2T

)√
1 − x2 ≤ φ(x) ≤ π

2T cos
(

π
2T

)
√
1 − x2,

and we can change Eq. (20) to

‖φ · r ′
N ‖L∞(−1,1) ≤ π

T sin
(

π
2T

)n‖rN ‖L∞(−1,1), (22)

where φ(x) = √
1 − x2. Using the Bernstein inequality in Eq. (22) we can prove a

Bernstein-type theorem for Fourier extensions.

Theorem 5.7 (Bernstein-type) There exists a constant CT > 0 such that for all f ∈
C([−1, 1]), the following holds:

ωφ

(
f ; 1

N

)
≤ CT

n

N∑

k=3
k odd

E( f ;Hk),

where φ(x) = √
1 − x2 and N = 2n + 1.

Proof This follows directly from [11, Ch. 6, Thm. 6.2] and [11, Ch. 7, Thm. 5.1(b)],
with r = 1, μ = 1, X = L∞(−1, 1), �n = HN , and Y = W 1∞(φ) := { f ∈
W 1,1(−1, 1) : φ · f ′ ∈ L∞(−1, 1)}, where W 1,1(−1, 1) is the Sobolev space of
absolutely continuous functions on (−1, 1). �	

From this Bernstein-type theorem for Fourier extensions, we get one half of an
equivalence theorem between best approximation errors and weighted moduli of con-
tinuity. For the full equivalence, one must prove Conjecture 5.9 below.

Theorem 5.8 Let f ∈ C([−1, 1]) and α ∈ (0, 1). It holds that

E( f ;HN ) = O(N−α) �⇒ ωφ ( f ; δ) = O(δα).

If Conjecture 5.9 is true, then the reverse implication holds too.

Proof The forward implication follows immediately from Theorem 5.7. Suppose now
that Conjecture 5.9 is true. Then we would have

E( f ;HN ) ≤ CT

n
‖φ · f ′‖L∞(−1,1) (23)

for all f ∈ C1([−1, 1]) by setting f (x) = F
(

e
iπ
T x
)
, because f ∈ C1([−1, 1]) if

and only if F ∈ C1(A), x �→ qn(e
iπ
T x ) ∈ H, and |μ(e

iπ
T x )| ≤ π

T φ(x). We wish
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to extend this to all f ∈ W 1,1(−1, 1) such that φ · f ′ ∈ L∞(−1, 1) by a density
argument, where W 1,p(−1, 1) is the Sobolev space of L p(−1, 1) functions whose
weak derivatives lie in L p(−1, 1). For such a function f , one can verify that the
functions fρ(x) = f (ρx) for ρ ∈ (0, 1) satisfy: fρ ∈ W 1,∞(−1, 1), fρ → f in L∞,
and ‖φ · f ′

ρ‖∞ ≤ ‖φ · f ′‖∞. For each ρ and ε > 0 there exists fρ,ε ∈ C1([−1, 1]) such
that ‖ fρ,ε − fρ‖W 1,∞ < ε by density of C1([−1, 1]) in W 1,∞(−1, 1). Therefore there
exists fε ∈ C1([−1, 1]) such that‖ f − fε‖L∞(−1,1) < ε and‖φ· f ′

ε‖∞ ≤ ‖φ· f ′‖∞+ε.

Hence E( f ;HN ) ≤ ‖ f − fε‖L∞(−1,1) + E( fε;HN ) ≤
(
1 + CT

n

)
ε + CT

n ‖φ · f ′‖∞.

Since ε is arbitrary, we have the desired inequality. A similar argument may be found
in [11, p. 280].

From the above it would follow that there exists a constant CT > 0 such that

E( f ;HN ) ≤ CT ωφ

(
f ; 1

N

)
, (24)

from Eq. (23), [11, Ch. 6, Thm. 6.2], and [11, Ch. 7, Thm. 5.1(a)], with r = 1,
μ = 1, X = L∞(−1, 1), �n = HN , and Y = W 1∞(φ) := { f ∈ W 1,1(−1, 1) :
φ · f ′ ∈ L∞(−1, 1)}. Equation (24) would imply that if ωφ ( f ; δ) = O(δα), then
E( f ;HN ) = O(N−α), as required. �	
Conjecture 5.9 (Jackson inequality for polynomials on a circular arc) For any T > 1,
define the arc on the complex unit circle,

A =
{

eiθ : θ ∈
(
−π

T
,
π

T

)}
.

There exists a constant CT > 0 such that for all F ∈ C1(A) and all n ∈ N, there
exists a polynomial qn of degree n such that

sup
z∈A

|F(z) − qn(z)| ≤ CT

n
sup
z∈A

∣∣μ(z)F ′(z)
∣∣ ,

where μ(z) =
√

(z − e
iπ
T )(z − e− iπ

T ).

Notice that to approximate f we conjecture that we only need to use positive
powers of z, which means we do not need to utilize all of the functions inHN . This is
because by Mergelyan’s theorem [33, Thm. 20.5] polynomials are dense in the space
C(A). It is not surprising because of the redundant nature of approximation by Fourier
extensions.

6 A Localization Theorem for Fourier Extensions

The theorem proved in this section is a modification of a theorem of Freud ([15,
Thm. IV.5.4]), which is a localization theorem for orthogonal polynomials on an
interval. We, however, are working with the orthonormal basis given in Lemma 4.2,
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and there are some clear differences between the two situations. We show that these
differences do not change the statement of the result.

Theorem 6.1 (Localization theorem) Let f ∈ L2(−1, 1) be such that f (x) = 0 for all
x ∈ [a, b] ⊆ [−1, 1]. Then PN ( f ) → 0 uniformly in all subintervals [c, d] ⊂ (a, b).

Proof First note that the pointwise error can be written in terms of the prolate kernel
discussed in Sect. 4 as

PN ( f )(x) − f (x) =
∫ 1

−1
( f (y) − f (x))KN (x, y)dy.

Let x ∈ [c, d] ⊂ (a, b), so that f (x) = 0. By the formula for the prolate kernel
(Lemma 4.3),

PN ( f )(x) − f (x)

=
∫ 1

−1

f (y)

sin
(

π
2T (x − y)

) Imag

(
e− iπ

T
N
2 y · N

(
e

iπ
T y
)

· e− iπ
T

N
2 x · N

(
e

iπ
T x
))

dy.

By expressing the imaginary part as 1
2i times the difference of the complex conjugates,

it is easy to see that for this expression to tend to zero as N → ∞, it is sufficient that
for any f as in the statement of the theorem, we have

lim
N→∞

∫ 1

−1

f (y)

sin
(

π
2T (x − y)

)e
iπ
T

N
2 y · N

(
e

iπ
T y
)
dy = 0.

To prove this we consider the functions

gξ (y) = f (y)e
iπ
2T y

sin
(

π
2T (ξ − y)

)

for ξ ∈ [c, d]. It holds that gξ ∈ L2(−1, 1), because gξ is equal to 0 inside [a, b]
and equal to f (an L2(−1, 1) function) multiplied by a bounded function (y �→
e

iπ
2T y/ sin

(
π
2T (ξ − y)

)
) outside of [a, b].

Let ε > 0. By Proposition 2.4, for any ξ ∈ [c, d], there exists Kξ ∈ N and a function
hKξ ∈ HKξ such that

∥∥gξ − hKξ

∥∥
L2(−1,1) < ε. A key property of the function hKξ is

that for N ≥ Kξ ,

∫ 1

−1
hKξ (y)e

iπ
T

N−1
2 y · N

(
e

iπ
T y
)
dy = 0, (25)

because hKξ (y)e
iπ
T

N−1
2 y is a polynomial of degree Kξ −1

2 + N−1
2 ≤ N − 1 in the

variable z = exp
( iπ

T y
)
. Now, because the map x �→ gx is a continuous mapping

from [c, d] → L2(−1, 1), there exists an interval I (ξ) such that for all x ∈ I (ξ),
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∥∥gx − hKξ

∥∥
L2(−1,1) < ε is still valid. In consequence of theHeine–Borel compactness

theorem [33], the interval [c, d] will be covered by finitely many of these intervals
I (ξ), which we denote by I (ξ1), I (ξ2), . . . , I (ξs).

Let Kε be an odd integer such that hKξi
∈ HKε for i = 1, . . . , s. For an arbitrary

x ∈ [c, d] there is an interval I (ξr ) such that x ∈ I (ξr ) and for N > Kε, we have
(using the expression (25))

∣∣∣∣∣

∫ 1

−1

f (y)

sin
(

π
2T (x − y)

)e
iπ
T

N
2 y · N

(
e

iπ
T y
)
dy

∣∣∣∣∣

=
∣∣∣∣
∫ 1

−1

(
gx (y) − hKξr

(y)
)

e
iπ
T

N−1
2 yN

(
e

iπ
T y
)
dy

∣∣∣∣

≤
(∫ 1

−1
|gx (y) − hKξr

(y)|2 dy

) 1
2

·
(∫ 1

−1

∣∣∣∣e
iπ
T

N−1
2 yN

(
e

iπ
T y
)∣∣∣∣

2

dy

) 1
2

< ε.

This last line used the normality of the basis for HN discussed in Lemma 4.2.
In conclusion, since ε is arbitrary and the inequality above is valid for all N > Kε,

the integral must converge to zero as N → ∞, uniformly with respect to x ∈ [c, d],
as required. �	

7 Numerical Experiments

In this section we provide numerically computed examples of pointwise and uniform
convergence of Fourier extensions for functions with various regularity properties. It
was discussed in the introduction that the condition number of the linear system for
computing the Fourier extension is extremely ill-conditioned, making computation of
the exact solution to the Fourier extension practically impossible. To deal with this
issue, we used sufficiently high precision floating point arithmetic and we did not take
N higher than 129, to ensure that the system could be inverted accurately. The right-
hand side vectors for the computations are computed by quadrature in high precision
floating point arithmetic.

In practice, onewould compute a fast regularized oversampled interpolation Fourier
extension using the algorithm in [26], requiring only O(N log2(N )) floating point
operations. However, we are interested in the exact Fourier extension and want to
avoid any artefacts that may be caused by the regularization or discretization of the
domain.

In some cases, we compare the convergence rate of Fourier extensions to that of
Legendre series, because we predict that the qualitative behavior of Legendre series
will be similar (see Sect. 8). For the Legendre series approximations we computed
the Legendre series coefficients one by one using adaptive quadrature in 64-bit float-
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−2 −1 0 1 2

−1

0

1

2

0 10 20 30 40 50 6010−15

10−11

10−7

10−3

101

Fig. 1 We compute Fourier extension approximations to 5 functions: f (x) = ex (yellow stars) and
f (x) = 1

x−r for r = 0.3i, 0.6i, 1.5i, 2.0i (red circles, blue squares, green crosses and brown dia-
monds, respectively). The T parameter is 2.43. Left: the mapped Bernstein ellipses D(ρ) in the complex
plane, for ρ = 1.891, 3.454, 8.913. The outermost outline (in blue) encloses themaximal mapped Bernstein
ellipse; analyticity outside this largest region does not increase the exponential convergence rate. Right:
the L∞(−1, 1) error against values of N for each of the 5 functions. The black dashed lines indicate the
convergence rates predicted by Theorem 3.1. (Color figures online)

ing point precision. As such, the errors for the Legendre series approximations will
stagnate due to numerical error.

7.1 Analytic and Entire Functions

Theorem 3.1 gives an upper bound on the rate of exponential convergence of Fourier
extension approximations to analytic functions. The regions of analyticity in the com-
plex plane which dictate the rate are the mapped Bernstein ellipseD(ρ), where ρ > 1.
The theorem is illustrated in Fig. 1, where we approximate an entire function and
four analytic functions that each have a pole in a different location in the complex
plane. All examples exhibit exponential convergence in the uniform norm at a rate
that is predicted by Theorem 3.1. This is also the case for the entire function, where
the exponential convergence rate is limited by a T -dependent upper bound.

7.2 Differentiable Functions

We investigate Fourier extension approximation of splines of degree d = 3, 9, and
15 on the interval

[
0, 1

2

]
, which lie in the Hölder spaces C2,1

([
0, 1

2

])
, C8,1

([
0, 1

2

])
,

and C14,1
([
0, 1

2

])
, respectively. By Theorem 3.2, we expect the pointwise errors to

be O(N−d log N ) in the interior and O(N
1
2−d) uniformly over the whole interval.

The spline functions and the pointwise approximation errors for Fourier extensions
with various values of N are plotted in Fig. 2. The rates of convergence predicted by
Theorem 3.2 fit reasonably well, sometimes performing slightly better. For compari-
son, we include the errors for a Legendre series approximation in a dashed line of the
same color. See Sect. 8.1 for a full discussion comparing convergence of Legendre
series and Fourier extensions.
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0

0.5
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C14,1([0, 1
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101 102

10−8
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10−2

100

102

interior
endpoint

N−3log(N)
N−2.5

101 102
10−17

10−13

10−9

10−5

10−1

interior
endpoint

N−9log(N)
N−8.5

101 102
10−22

10−16

10−10

10−4

102

interior
endpoint

N−15log(N)
N−14.5

Fig. 2 Above : plots of splines of degree 3, 9, and 15 in C2,1, C8,1, and C14,1, respectively with an interior
point marked using a red circle, and a boundary point marked with a blue square. Below: the pointwise
error at an interior point (red circle) and an endpoint (blue square) using Fourier extension with T = 2 (full
lines) and using Legendre series (dashed lines) against the number of degrees of freedom, N . The black
dotted lines without markers indicate the upper bounds on the algebraic rates of convergence predicted by
Theorem 3.2. (Color figures online)

7.3 Nondifferentiable Functions

We investigate the approximation of functions with algebraic singularities, disconti-
nuities, and Dini–Lipschitz continuity.

Functions with an algebraic singularity at the endpoint are studied in Fig. 3. We
plot the pointwise errors for Fourier extension and Legendre series approximations to
f (x) = xα for α = 3

4 ,
1
2 , and

1
10 . These functions lie in the Hölder spaces Cα

([
0, 1

2

])

for their respective values of α.
While Theorem 3.2 guarantees uniform convergence over [−1, 1] only for the first

function (since for the other two functions α ≤ 1
2 ), in our experiments we find that the

error of the other two functions converges to zero too. We believe that this discrepancy
is related to the weighted moduli of continuity of these functions being more favorable
than the standard moduli (see Sect. 5). Overall, the observed convergence rates are
sometimes better than the predicted rates, but when Fourier extensions are compared
with Legendre series, we see similar rates of pointwise convergence, especially at the
singular point. See Sect. 8.1 for a full discussion comparing convergence of Legendre
series and Fourier extensions.

Three functions with a singularity at the interior are shown in Fig. 4. The first has
an algebraic singularity: f (x) = |x − r |1/4 where r = 0.29384 (chosen to avoid
any symmetry with respect to the domain). We observe agreement with the expected
convergence rate ofO(N 1/4 log N )) for the error at interior points. The second function
has a jump:

f (x) =
{

x if x ∈ [0, 1
4

]
,

1 if x ∈ ( 14 , 1
2

]
.

(26)

Even though the function is highly irregular because of the jump, this does not deny
convergence at regular points, corroborating the local nature of Theorem 3.5. The last
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Fig. 3 Above left: f (x) = x3/4. Above middle: f (x) = x1/2. Above right: f (x) = x1/10. Below: the
pointwise error at an interior point (red circles), singular endpoint (green crosses), and nonsingular endpoint
(blue square) using Fourier extension with T = 2 (full lines) and Legendre series (dashed lines) against the
number of degrees of freedom, N . The black dotted lines without markers indicate the upper bounds on the
algebraic rates of convergence predicted by Theorem 3.2. (Color figures online)
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Fig. 4 Above left: f (x) = |x − r |1/4 with r = 0.29384. Above middle: function with a jump, given
in Eq. (26). Above right: Dini–Lipschitz continuous function given in Eq. (27). It has a strong cusp at
x = 0.29384. Below: the pointwise error at an interior point (red circles), singular interior point (green
crosses), and endpoint (blue squares) using Fourier extension with T = 2 (full lines) and Legendre series
(dashed lines) against the number of degrees of freedom, N . The black dotted lines without markers in the
bottom left plot indicate the upper bounds on the algebraic rates of convergence predicted by Theorem 3.2.
The black dotted line without markers in the bottom right plot indicates the rate of convergence predicted
by Lemma 3.7. (Color figures online)

function is uniformly Dini–Lipschitz continuous in
[
0, 1

2

]
:

f (x) =
{

(log (|x − r |))−2 if x ∈ [0, 1
2

] \ {r},
0 if x = r ,

(27)

where r = 0.29384 (chosen to avoid any symmetry with respect to the domain). In
Fig. 4, the expected convergence rate of O((log(N ))−1) of Lemma 3.7 is present.
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In all three cases, we compared the convergence of Fourier extension approx-
imations and Legendre series. While there is sometimes a mismatch between the
pessimistic prediction of Theorem 3.2 and Lemma 3.7 for the convergence rates (see
Sect. 5), when we compare Fourier extensions and Legendre series, we observe agree-
ment. See Sect. 8.1 for a full discussion comparing convergence of Legendre series
and Fourier extensions.

8 Discussion

We proved pointwise and uniform convergence results for Fourier extension approx-
imations of functions in Hölder spaces and with local uniform Dini–Lipschitz
conditions. This was achieved by proving upper bounds on the associated Lebesgue
function and the decay rate of best uniform approximation error for Fourier extensions,
then appealing to Lebesgue’s lemma.

8.1 Comparison to Legendre Series

For a function f ∈ L2(−1, 1), let us compare the Fourier extension approximant, fN ,
to the Legendre series approximant,

f LN (x) =
N−1∑

k=0

ak pL
k (x), ak = 1

2

∫ 1

−1
f (x)pL

k (x) dx,

where pL
k is the kth Legendre polynomial normalized so that 1

2

∫ 1
−1 pL

k (x)2 dx = 1.
The Lebesgue function of this approximation scheme isO(log N ) for x ∈ [a, b] ⊂

(−1, 1) andO(N
1
2 ) uniformly for x ∈ [−1, 1] [19, Ch. 1], [16], which is precisely the

same as the Lebesgue function for Fourier extensions (see Theorem 4.1). Best uniform
approximation by Fourier extensions was compared to best uniform approximation by
algebraic polynomials in Sect. 5. For any f ∈ Ck([−1, 1]) for k ∈ Z≥0, we have

E( f ;HN ) = O(N−k)ω

(
f (k); 1

N

)
and E( f ;PN ) = O(N−k)ω

(
f (k); 1

N

)
.

It follows that forCk,α([−1, 1]) functions, the statement of Theorem3.2 also applies to
Legendre series approximations. The localized convergence result for Dini–Lipschitz
functions, Theorem 3.5 also also applies to Legendre series [15, Thm. IV.5.6]. Some
of the experiments in Sect. 7 demonstrate these similarities.

Theorem 2.1 on exponential convergence differs from the exponential convergence
results for Legendre series in two ways. First, the region in the complex plane that
determines the rate of exponential convergence is determined not by Bernstein ellipses
for Legendre series, but by mapped Bernstein ellipses for Fourier extensions. Second,
there is an upper limit of cot2

(
π
4T

)
for the rate of exponential convergence of Fourier

extensions regardless of the region of analyticity, whereas for Legendre series the rate
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can be arbitrarily fast, and for entire functions the rate of convergence is superexpo-
nential [39].

8.2 Extensions of ThisWork

It was mentioned in the introduction that our convergence results will be more appli-
cable if we can extend them to regularized and oversampled interpolation versions of
Fourier extensions, because those are the kinds of Fourier extensions for which stable
and efficient algorithms have been developed.

Regularized Fourier extensions for a given regularization parameter ε > 0 can be
defined as follows. Suppose the matrix G ∈ R

N×N ,

Gk, j = sinc
(
(k − j)

π

T

)
,

has eigendecomposition G = V SV ∗. Let Sε be S but with all entries less than ε set
to 0. The coefficients cε ∈ C

N of the regularized Fourier extension of f ∈ L2(−1, 1)
are given by

cε = V S†
ε V ∗b,

where bk = ( T
2

) 1
2
∫ 1
−1 e− iπ

T kx f (x) dx [26]. In other words, the solution is projected
onto the eigenvectors of G whose eigenvalues are greater than or equal to ε. These
eigenvectors are the discrete prolate spheroidal sequences (DPSSs), which are the
Fourier coefficients of the DPSWFs {ξk,N }N

k=1 discussed in Sect. 4 [34]. The regular-
ized Fourier extension, therefore, finds the best approximation not in HN , but in the
linear space HN ,ε ⊂ HN ⊂ L2(−1, 1), where

HN ,ε = span
{
ξk,N : λk,N ≥ ε

}
.

Therefore, if the Lebesgue function
(x; PN ,ε) (where PN ,ε is the projection operator
from L2(−1, 1) toHN ,ε) and best approximation error functional E( f ;HN ,ε) can be
estimated as in Sects. 4 and 5, then we immediately obtain pointwise convergence
results for regularized Fourier extensions by Lebesgue’s lemma. Extensions to the
regularized oversampled interpolation version of Fourier extensions can be conducted
by considering the analogous quantities for the periodic discrete prolate spheroidal
sequences (PDPSSs) [26,41].

Generalization of this work to the multivariate case would be extremely interesting,
because the shape of the domain � ⊂ R

d and regularity of its boundary will likely
come into play [27].
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Appendix A: Asymptotics of Legendre Polynomials on a Circular Arc

Krasovsky derived the asymptotics of polynomials orthogonal on an arc {eiθ : α ≤
θ ≤ 2π − α} with respect to a positive analytic weight fα(θ) by Riemann–Hilbert
analysis [10,21,22].We are interested in the case fα(θ) ≡ 1, the Legendre polynomials
on an arc of the unit circle. The following lemma follows Krasovsky’s instructions on
how to calculate an asymptotic expansion of these polynomials in various regions of
the complex plane, where we restrict to the special case of the arc itself.

Lemma A.1 For α ∈ (0, π), let {φk(z, α)}∞k=0 be the polynomials in z with positive
leading coefficient, satisfying

1

2π

∫ 2π−α

α

φn(eiθ , α)φm(eiθ , α) dθ = δn,m

for n, m = 0, 1, 2, . . . . Then there exists δ > 0 such that for θ ∈ [α + δ, 2π − α − δ],

φn(eiθ , α) = ei n
2 θ γ − 1

2

(
ei α−π

4

⎛

⎝
sin
(
1
2 (θ − α)

)

sin
(
1
2 (θ + α)

)

⎞

⎠

1
4

cos
(

nτ(θ) − π

4

)

− e−i α−π
4

⎛

⎝
sin
(
1
2 (θ + α)

)

sin
(
1
2 (θ − α)

)

⎞

⎠

1
4

sin
(

nτ(θ) − π

4

))
+ O(n−1), (28)

and for θ ∈ [α, α + δ],

φn(e
iθ , α) = ei n

2 θγ − 1
2

(π

2
nτ(θ)

) 1
2
(

e−i α+π
4

(
sin
( 1
2 (θ + α)

)

sin
( 1
2 (θ − α)

)
) 1

4

J0 (nτ(θ))

− ei α+π
4

(
sin
( 1
2 (θ − α)

)

sin
( 1
2 (θ + α)

)
) 1

4

J1 (nτ(θ))

)
+ O(n− 1

2 ), (29)

where

τ(θ) = cos−1
(
cos (θ/2)

γ

)
and γ = cos

(α

2

)
.

The asymptotics for θ ∈ [2π −α−δ, 2π −α] can be determined using φn(e−iθ , α) =
φn(eiθ , α).
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Proof In the notation of [21], the arc on which the polynomials are orthogonal is
contained within “region 1” of the complex plane. The asymptotics of φn(z, α) in
region 1 (for fα(θ) = 1) are given by

φn(z, α) = z
n
2 χnγ n

(
1
0

)T

R(z)M(z)

(
(ψ(z)/

√
z)n

(ψ(z)/
√

z)−n

)
, (30)

where χn is the leading coefficient of φn(z, α), γ = cos(α/2), R(z) is a 2 × 2-
matrix-valued function that is analytic and satisfies R(z) = I + O(n−1), M(z) is a
2×2-matrix-valued analytic functionwhose expression changes depending onwhether
z is in a neighborhood of the endpoints of the arc or not (see below), and ψ(z) is a
conformal mapping of the outside of the arc to the outside of the unit circle, given by

ψ(z) = 1

2γ

(
z + 1 +

√
(z − eiα)(z − e−iα)

)
.

The branch of the square root that is positive for positive arguments is taken. This is
similar to [21, Eqn. 2.56], which gives the asymptotics of φn(z, α) in subsets of the
complex plane outside a fixed neighborhood of the arc. The job of this lemma is to
unpack this expression and convert to the variable θ ∈ [α, 2π − α] where z = eiθ .

The leading coefficient has asymptotic expression χn = γ −n− 1
2 (1 + O(n−1)) (by

[21, Eq. 2.58]), andwe have after some algebraicmanipulation, for all θ ∈ [α, 2π−α],

ψ
(

eiθ
)

/
√

eiθ = 1

γ

(
cos

(
θ

2

)
− i

√

sin

(
1

2
(θ + α)

)
sin

(
1

2
(θ − α)

))
.

Since
∣∣∣ψ
(
eiθ
)
/
√

eiθ
∣∣∣ = 1 (which can be shown directly or inferred from the confor-

mal mapping definition of ψ above), the function τ(θ) defined in the statement of the
lemma maps θ ∈ [α, 2π − α] to τ ∈ [0, π ] and provides us with the simple identity,
ψ
(
eiθ
)
/
√

eiθ = e−iτ(θ). Substituting this into Eq. (30), we write

φn(e
iθ , α) = (1 + O(n−1))ei n

2 θγ − 1
2 (M11(e

iθ )e−inτ(θ) + M12(e
iθ )einτ(θ))

+ O(n−1)(M21(e
iθ )e−inτ(θ) + M22(e

iθ )einτ(θ))

= ei n
2 θγ − 1

2 (M11(e
iθ )e−inτ(θ) + M12(e

iθ )einτ(θ)) + O(n−1)en(θ),

where en(θ) = ∣∣M11(eiθ )e−inτ(θ) + M12(eiθ )einτ(θ)
∣∣ + ∣∣M21(eiθ )e−inτ(θ) + M22

(eiθ )einτ(θ)
∣∣.

According to [21, Eq. 2.23], there exists δ > 0 so this asymptotic expression is
valid for θ ∈ [α + δ, 2π − α − δ] with M set as the function

M(eiθ ) = 1

2

(
a + a−1 −i(a − a−1)

i(a − a−1) a + a−1

)
, a(eiθ ) = ei α

4

(
sin
( 1
2 (θ − α)

)

sin
( 1
2 (θ + α)

)
) 1

4

,
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and for θ ∈ [α, α + δ] with M set as the function

M(eiθ ) = 2− 5
2

(
a + a−1 −i(a − a−1)

i(a − a−1) a + a−1

)(
1 −i
−i 1

)

·
(

(−iπnτ)
1
2 0

0 (−iπnτ)− 1
2

)

·
(

H (1)
0 (−nτ) H (2)

0 (−nτ)

−iπnτ(H (1)
0 )′(−nτ) −iπnτ(H (2)

0 )′(−nτ)

)

·
(

einτ 0
0 e−inτ

)
,

where H ( j)
ν is the νth Hankel function of the j th kind [31, Sec. 10.2].

For θ ∈ [α + δ, 2π − α − δ], we have en(θ) = O(δ− 1
4 ) = O(1). Therefore,

grouping terms to convert exponentials into trigonometric functions we obtain (28),
(29).

For θ ∈ [α, α + δ], we can simplify the formula for M and obtain

M11(e
iθ )e−inτ(θ) = 2− 3

2 (−iπnτ)
1
2

(
a−1H (1)

0 (−nτ) − ia(H (1)
0 )′(−nτ)

)
,

M12(e
iθ )einτ(θ) = 2− 3

2 (−iπnτ)
1
2

(
a−1H (2)

0 (−nτ) − ia(H (2)
0 )′(−nτ)

)
,

M21(e
iθ )e−inτ(θ) = 2− 3

2 (−iπnτ)
1
2

(
−ia−1H (1)

0 (−nτ) + a(H (1)
0 )′(−nτ)

)
,

M22(e
iθ )einτ(θ) = 2− 3

2 (−iπnτ)
1
2

(
−ia−1H (2)

0 (−nτ) + a(H (2)
0 )′(−nτ)

)
.

Using the fact that Jν = 1
2 (H (1)

ν + H (2)
ν ) [31, Eq. 10.4.4], J ′

0 = −J1, J0(−z) =
J0(z), and J1(−z) = −J1(z), we obtain Eqs. (29), (30), sans the remainder term

O(n−1)en(θ), which we must show to be O(n− 1
2 ). Collecting the terms, we have

en(θ) = 2− 1
2 (−iπnτ)

1
2

(∣∣∣a(eiθ )−1 J0(nτ) − ia(eiθ )J1(nτ)

∣∣∣

+
∣∣∣ia(eiθ )−1 J0(nτ) − a(eiθ )J1(nτ)

∣∣∣
)

.

For all τ ∈ [
0, π

2

]
, τ 2 ≤ π2

4 (1 − cos(τ )), and cos(τ ) = cos(θ/2)/γ , so τ 2 ≤
π2

4γ (γ − cos(θ/2)) = π2

2γ sin
( 1
4 (θ + α)

)
sin
( 1
4 (θ − α)

)
. For θ ∈ [α, π ], we have

sin
( 1
4 (θ − α)

) ≤ sin
( 1
2 (θ − α)

)
, so we can conclude

(
τ(θ)2

sin
( 1
2 (θ − α)

)
) 1

4

= O(1),
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uniformly for all θ ∈ [α, π ]. Note also that Bessel functions are uniformly bounded in

absolute value by 1 (see [31, Eq. 10.14.1]). This makes it clear that en(θ) = O(n
1
2 ),

as required.
The fact thatψn(e−iθ , α) = ψn(eiθ , α) follows from the fact that theweight satisfies

f (−θ) = f (θ), so the coefficients of ψn(z, α) are real (see [35, p. 288]). �	
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35. Szegő, G.: Orthogonal Polynomials, vol. 23. American Mathematical Society, Providence (1939)
36. Trefethen, L.N.: Approximation Theory and Approximation Practice, vol. 128. SIAM, Philadelphia

(2013)
37. Varah, J.: The prolate matrix. Linear Algebra Appl. 187, 269–278 (1993)
38. Videnskii, V.: Extremal estimates for the derivative of a trigonometric polynomial on an interval shorter

than its period. Sov. Math. Dokl 1, 5–8 (1960)
39. Wang, H., Xiang, S.: On the convergence rates of Legendre approximation. Math. Comput. 81(278),

861–877 (2012)
40. Wright, G.B., Javed, M., Montanelli, H., Trefethen, L.N.: Extension of Chebfun to periodic functions.

SIAM J. Sci. Comput. 37(5), C554–C573 (2015)
41. Xu, W.Y., Chamzas, C.: On the periodic discrete prolate spheroidal sequences. SIAM J. Appl. Math.

44(6), 1210–1217 (1984)
42. Zygmund, A.: Trigonometric Series, vol. 1. Cambridge University Press, Cambridge (2002)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://github.com/JuliaApproximation/ApproxFun.jl
http://dlmf.nist.gov/

	Pointwise and Uniform Convergence of Fourier Extensions
	Abstract
	1 Introduction
	1.1 Summary of New Results

	2 Convergence of Fourier Extensions in L2
	2.1 Exponential Convergence
	2.2 Algebraic Convergence
	2.3 Subalgebraic Convergence

	3 Pointwise and Uniform Convergence
	3.1 Exponential Convergence
	3.2 Algebraic Convergence
	3.3 Subalgebraic Convergence
	3.4 Proofs of the Results of This Section

	4 The Lebesgue Function of Fourier Extensions
	5 Best Uniform Approximation by Fourier Extensions
	5.1 A Jackson-Type Theorem
	5.2 A Bernstein-Type Theorem

	6 A Localization Theorem for Fourier Extensions
	7 Numerical Experiments
	7.1 Analytic and Entire Functions
	7.2 Differentiable Functions
	7.3 Nondifferentiable Functions

	8 Discussion
	8.1 Comparison to Legendre Series
	8.2 Extensions of This Work

	Acknowledgements
	Appendix A: Asymptotics of Legendre Polynomials on a Circular Arc
	References




