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Abstract
We present a rational extension of the Newton diagram for the positivity of 1F2 gener-
alized hypergeometric functions. As an application, we give upper and lower bounds
for the transcendental roots β(α) of

∫ jα,2

0
t−β Jα(t)dt = 0 (− 1 < α ≤ 1/2),

where jα,2 denotes the second positive zero of Bessel function Jα .
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1 Introduction

We consider the problem of determining (α, β) for

∫ x

0
t−β Jα(t)dt ≥ 0 (x > 0), (1.1)

where Jα stands for the first-kind Bessel function of order α. For the sake of conver-
gence and application, it will be assumed α > −1, β < α + 1.

Owing to various applications, the problem has been studied by many authors over
a long period of time. In connection with the monotonicity of Bessel functions, for
instance, the problem dates back to Bailey [5] and Cooke [9]. We refer to Askey [1,2]
for further historical background.

By interpolating known results for some special cases in a certain way, Askey [2]
described an explicit range of parameters as follows.

Theorem A Let P be the set of (α, β) ∈ R
2 defined by

P = {α > −1, 0 ≤ β < α + 1
} ∪
{
α ≥ 0, max

(
−α, −1

2

)
≤ β ≤ 0

}
.

(i) For each (α, β) ∈ P, the inequality of (1.1) holds with strict positivity unless it
coincides with (1/2,−1/2).

(ii) If α > −1, β < −1/2, then (1.1) does not hold.

As is shown in Fig. 1, the positivity regionP represents an infinite polygon enclosed
by four boundary lines

β = α + 1, β = 0, β = −α, β = − 1/2.

By part (ii), observed by Steinig [20], Theorem A leaves only the trapezoid

T =
{
−1 < α <

1

2
, −1

2
≤ β < min (0, −α)

}

undetermined in regards to problem (1.1).
As for this missing region, the best possible range of parameters is known in an

implicit formulation that involves roots of certain transcendental equations. To be
precise, we follow Askey’s summary [2] to state:

Theorem B Let jα,2 be the second positive zero of Jα(t), α > −1.

(i) For − 1 < α ≤ 1/2, (1.1) holds if and only if β ≥ β(α), where β(α) denotes the
unique zero of

A(β) =
∫ jα,2

0
t−β Jα(t)dt, −1

2
< β < α + 1.
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Fig. 1 The known positivity region for problem (1.1) (Color figure online)

(ii) As a special case of (1.1), the inequality

∫ x

0
t−α Jα(t)dt ≥ 0 (x > 0) (1.2)

holds for α ≥ ᾱ, where ᾱ denotes the unique zero of

G(α) =
∫ jα,2

0
t−α Jα(t)dt, α > −1

2
.

Regarding part (i), the existence and uniqueness of such a zero as well as the
positivity of (1.1) is due to Makai [17,18] when − 1/2 < α < 1/2, and Askey and
Steinig [3] when − 1 < α < −1/2, respectively. The remaining case α = ±1/2
follows by an integration by parts.

Part (ii) is obtained by Szegö [10] much earlier and reproved by Koumandos [14],
and Lorch et al. [15]. Since (1.2) is a special case of (1.1) and part (i) gives a necessary
and sufficient condition for (1.1), it is equivalent to define ᾱ as the unique solution of
β(α) = α.

A major drawback of Theorem B lies in the intricate nature of the zeros β(α) and
ᾱ. As is pointed out by Askey [2], in fact, essentially nothing has been known yet on
the nature of β(α) and ᾱ except a few numerical simulations and the trivial limiting
behavior limα→−1+ β(α) = 0.

In this paper, we aim to extend the positivity region P of Theorem A and thereby
obtain informative bounds of β(α) and ᾱ that provide an insight into their nature and
an approximating means in practical use.

123



52 Constructive Approximation (2020) 51:49–72

By making use of the series representation (Luke [16], Watson [21])

Jα(t) = 1

�(α + 1)

(
t

2

)α

0F1

(
α + 1 ;− t2

4

)
(α > −1) (1.3)

and integrating termwise, it is easy to see that

∫ x

0
t−β Jα(t)dt = xα−β+1

2α(α − β + 1)�(α + 1)

× 1F2

[
α−β+1

2
α + 1, α−β+3

2

∣∣∣∣− x2

4

]
, (1.4)

and hence problem (1.1) is equivalent to the problem of positivity for the functions
defined on the right side of (1.4).

More generally, we shall be concerned with the positivity of generalized hyperge-
ometric functions of type

1F2

[
a
b, c

∣∣∣∣− x2

4

]
(x > 0) (1.5)

with parameters a > 0, b > 0, c > 0. In the recent work [8], to be explained in
detail, a positivity criterion for the functions of type (1.5) is established in terms of
the Newton diagram associated with {(a + 1/2, 2a), (2a, a + 1/2)}. Due to a certain
region of parameters being left undetermined, however, it turns out that an application
of the criterion to (1.4) yields Theorem A immediately but does not cover the missing
region T either.

The main purpose of this paper is to give an extension of the Newton diagram that
leads to an improvement of Theorem A in an explicit way and provides information
on the nature of β(α) and ᾱ.

As is more or less standard in the theory of special functions, we shall carry out
Gasper’s sums of squares method [12] for investigating positivity, which essentially
reduces the matter to how to determine the signs of 4F3 terminating series given in
the form

4F3

[−n, n + α1, α2, α3
β1, β2, β3

]
, n = 1, 2, . . . , (1.6)

for appropriate values of α j , β j expressible in terms of a, b, c.
From a technical point of view, if we express (1.6) as a finite sum with index k, it

is the alternating factor (− n)k that causes the main difficulties in analyzing its sign.
To circumvent, we shall apply Whipple’s transformation formula to convert it into a
7F6 terminating series that does not involve such an alternating factor. By estimating
a lower bound for the transformed series, we shall deduce positivity in an inductive
way.
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While Askey and Szegö studied problem (1.1) primarily as a limiting case for the
positivity of certain sums of Jacobi polynomials, there are many other applications
and generalizations (see, e.g., [10,12,13,19]). As an exemplary generalization,we shall
consider the integrals of type

∫ x

0
(x2 − t2)γ t−β Jα(t)dt (x > 0),

and extend the range of parameters for its positivity in Gasper [12] by applying our
new criterion.

2 Preliminaries

As is standard, given nonnegative integers p, q, we shall define and write pFq gener-
alized hypergeometric functions in the form

pFq

[
α1, . . . , αp

β1, . . . , βq

∣∣∣∣ z
]

=
∞∑
k=0

(α1)k · · · (αp)k

k! (β1)k · · · (βq)k
zk (z ∈ C), (2.1)

where the coefficients are written in Pochhammer’s notation; that is, for any α ∈ R,
(α)k = α(α + 1) · · · (α + k − 1) when k ≥ 1 and (α)0 = 1. In the case when z = 1,
we shall delete the argument z in what follows.

A function of type (2.1) is said to be Saalschützian when the parameters satisfy the
condition 1 + α1 + · · · + αp = β1 + · · · + βq . If one of the numerator-parameters
α j is a negative integer, e.g., α1 = − n with n a positive integer, then it becomes a
terminating series given by

pFq

[−n, α2, . . . , αp

β1, . . . , βq

∣∣∣∣ z
]

=
n∑

k=0

(− 1)k
(
n

k

)
(α2)k · · · (αp)k

(β1)k · · · (βq)k
zk .

For the generalized hypergeometric functions of type (2.1) that are both termi-
nating and Saalschützian, there are a number of formulas available for summing or
transforming into other terminating series. Of particular importance will be the fol-
lowing, extracted from Bailey [4]:

(i) (Saalschütz’s formula, [4, 2.2(1)])
If 1 + α1 + α2 = β1 + β2, then

3F2

[−n, n + α1, α2
β1, β2

]
= (β1 − α2)n (β2 − α2)n

(β1)n (β2)n
.

(ii) (Whipple’s transformation formula, [4, 4.3(4)])
If 1 + α1 + α2 + α3 = β1 + β2 + β3, then
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4F3

[−n, n + α1, α2, α3
β1, β2, β3

]
= (1 + α1 − β3)n(β3 − α2)n

(1 + σ)n(β3)n

× 7F6

[
σ, 1 + σ/2, −n, n + α1,

σ/2, n + 1 + σ, −n + 1 + α2 − β3,

α2, β1 − α3, β2 − α3
1 + α1 − β3, β2, β1

]
, (2.2)

where we put σ = α1 +α2 −β3. It is a modification of the original form suitable
to the present application and arranged in such a way that the sums of columns
of the 6F6 terminating series, obtained from deleting σ , are all equal to 1 + σ .

3 Positivity of 4F3 Terminating Series

The purpose of this section is to prove the following positivity result for a special
class of terminating 4F3 generalized hypergeometric series, which will be crucial in
our subsequent developments.

Lemma 3.1 For each positive integer n, put

�n = 4F3

[−n, n + α1, α2, α3
β1, β2, β3

]
.

Suppose that α j , β j satisfy the following assumptions simultaneously:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(A1) 1 + α1 + α2 + α3 = β1 + β2 + β3,

(A2) 0 < α2 < β3 ≤ 2 + α1,

(A3) 0 < α3 < min
(
β1, β2

)
,

(A4) (1 + α1)α2α3 ≤ β1β2β3.

(3.1)

Then �1 ≥ 0 and �n > 0 for all n ≥ 2.

Proof We apply Whipple’s transformation formula to transform �n into a product of
3F2 and 7F6 terminating series as stated in (2.2). By using

(α)n = (α)k(k + α)n−k, (α)n = (α)n−k(n − k + α)k,

valid for any real number α and k = 0, . . . , n, it is equivalent to

�n = 1

(1 + σ)n(β3)n
�n,

�n =
n∑

k=0

(
n

k

)
(k + 1 + α1 − β3)n−k(β3 − α2)n−k

(n + α1)k

(n + 1 + σ)k

× (α2)k(β1 − α3)k(β2 − α3)k

(β1)k(β2)k

(σ )k(1 + σ/2)k
(σ/2)k

,
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where σ = α1 + α2 − β3 and the last factor must be understood as

(σ )k(1 + σ/2)k
(σ/2)k

=
{

1 for k = 0,

(1 + σ)k−1(2k + σ) for k ≥ 1.
(3.2)

By the Saalschützian condition of (A1) and (A3), we observe that

1 + σ = β1 + β2 − α3 > 0,

and hence the positivity or nonnegativity of �n reduces to that of �n . We also note
that the assumptions of (A1)–(A3) imply

1 + α1 = β1 + (β2 − α3) + (β3 − α2) > 0.

As a consequence, if β3 ≤ 1 + α1, then the first term is nonnegative and all of the
other terms are positive so that �n > 0 for each n ≥ 1. Therefore it suffices to deal
with the case β3 > 1 + α1, which will be assumed hereafter.

In the special case n = 1, it is a matter of algebra to factor out

�1 = (1 + α1 − β3)(β3 − α2) + (1 + α1)α2(β1 − α3)(β2 − α3)

β1β2

= (β1 + β2 − α3)
[
β1β2β3 − (1 + α1)α2α3

]
β1β2

,

which clearly shows �1 ≥ 0 under the stated assumptions.
For n ≥ 2, we shall deduce the strict positivity of �n by considering each case

β3 ≥ 1 + α2, β3 < 1 + α2 separately in the following manner.
I. The case β3 ≥ 1 + α2. We claim that

�n > (2 + α1 − β3)n−1(1 + β3 − α2)n−1�1. (3.3)

To verify, we observe that each term of �n except the first one is positive so that
�n exceeds the sum of the first two terms, which implies

�n > (2 + α1 − β3)n−1(β3 − α2)n

×
[
1 + α1 − β3 + n(n + α1)α2(β1 − α3)(β2 − α3)(2 + σ)

(n + 1 + σ)(n − 1 + β3 − α2)β1β2

]
. (3.4)

If we set

f (n) = n(n + α1)

(n + 1 + σ)(n − 1 + β3 − α2)

= n2 + α1n

n2 + α1n + (1 + σ)(β3 − 1 − α2)

123



56 Constructive Approximation (2020) 51:49–72

and regard n as a continuous variable, then the derivative of f is given by

f ′(n) = (2n + α1)(1 + σ)(β3 − 1 − α2)[
n2 + α1n + (1 + σ)(β3 − 1 − α2)

]2 .

Due to the case assumption, it shows f ′(n) ≥ 0 on the interval [1,∞), and hence we
may conclude f (n) ≥ f (1); that is,

n(n + α1)

(n + 1 + σ)(n − 1 + β3 − α2)
≥ 1 + α1

(2 + σ)(β3 − α2)
.

Reflecting this estimate in (3.4) and simplifying, we obtain

�n > (2 + α1 − β3)n−1
(β3 − α2)n

(β3 − α2)

×
[
(1 + α1 − β3)(β3 − α2) + (1 + α1)α2(β1 − α3)(β2 − α3)

β1β2

]

= (2 + α1 − β3)n−1(1 + β3 − α2)n−1�1,

which proves (3.3). The strict positivity of �n is an immediate consequence of this
inequality and the nonnegativity of �1.
II. The case β3 < 1 + α2. In this case, we shall deduce the strict positivity of �n by
induction on n. To simplify notation, we put

An,k =
(
n

k

)
(k + 1 + α1 − β3)n−k(β3 − α2)n−k

(n + α1)k

(n + 1 + σ)k
,

Bk = (α2)k(β1 − α3)k(β2 − α3)k

(β1)k(β2)k

(σ )k(1 + σ/2)k
(σ/2)k

so that�n =∑n
k=0 An,k Bk .By the stated assumptions and (3.2),wenote that An,0 < 0

but An,1 ≥ 0, An,k > 0 for 2 ≤ k ≤ n and Bk > 0 for each 0 ≤ k ≤ n. In this
notation we claim that

�n+1 > An+1,n+1Bn+1 +
[
(n + 1)(n + 1 + α1 − β3)(n + 1 + σ)

n + α1

]
�n . (3.5)

As is already shown that �1 ≥ 0, once (3.5) was true, it follows by an obvious
induction argument that we may conclude �n > 0 for all n ≥ 2.

To verify, we make use of the identities

(
n + 1

k

)
=
(
n

k

)
n + 1

n + 1 − k
,

(k + 1 + α1 − β3)n+1−k = (k + 1 + α1 − β3)n−k (n + 1 + α1 − β3),

(β3 − α2)n+1−k = (β3 − α2)n−k (n − k + β3 − α2),
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(n + 1 + α1)k = (n + α1)k
n + k + α1

n + α1
,

(n + 2 + σ)k = (n + 1 + σ)k
n + 1 + k + σ

n + 1 + σ
,

to write An+1,k in the form

An+1,k = An,k

[
(n + 1)(n + 1 + α1 − β3)(n + 1 + σ)

n + α1

]
gn(k),

gn(k) = (k + n + α1)(k − n + α2 − β3)

(k − n − 1)(k + n + 1 + σ)

= k2 + σk − (n + α1)(n + β3 − α2)

k2 + σk − (n + 1)(n + 1 + σ)
.

Regarding k as a continuous variable as before, we differentiate

g′
n(k) = (2k + σ)(β3 − α2 − 1)(2n + 1 + α1)[

k2 + σk − (n + 1)(n + 1 + σ)
]2 .

By the case assumption, it shows g′
n(k) < 0 on the interval [1,∞). In view of the

limiting behavior gn(k) → 1 as k → ∞, hence, we may conclude gn(k) > 1 for
k = 1, . . . , n, which leads to the estimate

An+1,k ≥ An,k

[
(n + 1)(n + 1 + α1 − β3)(n + 1 + σ)

n + α1

]
(3.6)

for each k = 1, . . . , n with strict inequalities when k ≥ 2.
As for the initial term An+1,0, we may write

An+1,0 = An,0
[
(n + 1 + α1 − β3)(n + β3 − α2)].

We observe that an upper bound for the last factor is given by

n + β3 − α2 <
(n + 1)(n + 1 + σ)

n + α1
,

which follows easily from the sign of cross difference

(n + 1)(n + 1 + σ) − (n + β3 − α2)(n + α1)

= 2(1 + α2 − β3)n + (1 + α1)(1 + α2 − β3)

= (1 + α2 − β3)(2n + 1 + α1) > 0

due to the case assumption. Since An,0 < 0, this upper bound gives

An+1,0 > An,0

[
(n + 1)(n + 1 + α1 − β3)(n + 1 + σ)

n + α1

]
. (3.7)
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Multiplying each term of (3.6) and (3.7) by Bk and adding up, we obtain

�n+1 = An+1,n+1Bn+1 +
n∑

k=0

An+1,k Bk

> An+1,n+1Bn+1 +
[
(n + 1)(n + 1 + α1 − β3)(n + 1 + σ)

n + α1

] n∑
k=0

An,k Bk

= An+1,n+1Bn+1 +
[
(n + 1)(n + 1 + α1 − β3)(n + 1 + σ)

n + α1

]
�n,

which proves (3.5), and our proof is now complete. 	

Remark 3.1 Since �n is symmetric in α2, α3 and β1, β2, β3, respectively, Lemma 3.1
also holds true ifα2 is interchangedwithα3 orβ1, β2, β3 are permuted in the conditions
of (A2) and (A3).

4 Rational Extension of the Newton Diagram

In this section, we aim to extend the aforementioned positivity criterion of [8] for the
generalized hypergeometric functions of type (1.5).

To state the criterion precisely, we recall that the Newton diagram associated with
a finite set of planar points

{
(αi , βi ) : i = 1, . . . ,m

}
refers to the closed convex hull

containing

m⋃
i=1

{
(x, y) ∈ R

2 : x ≥ αi , y ≥ βi

}
.

For each a > 0, we denote by Oa the set of (b, c) ∈ R
2+ defined by

Oa =
{
a < b < a + 1

2
, c ≥ 3a + 1

2
− b

}

∪
{
a < c < a + 1

2
, b ≥ 3a + 1

2
− c

}
if a ≥ 1

2
, (4.1)

Oa =
{
a < b < 2a, c ≥ 3a + 1

2
− b

}

∪
{
a < c < 2a, b ≥ 3a + 1

2
− c

}
if 0 < a <

1

2
, (4.2)

which represents two symmetric infinite strips bounded by b+ c = 3a+1/2 and four
half-lines parallel to the coordinate axes.

By combining the methods of Fields and Ismail [11], Gasper [12], and fractional
integrals with the squares of Bessel functions as kernels, two of the present authors
established the following criterion.
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Theorem 4.1 (Cho and Yun [8]) For a > 0, b > 0, c > 0, put

	(x) = 1F2

[
a
b, c

∣∣∣∣− x2

4

]
(x > 0).

Let Pa be the Newton diagram associated with 
 = {(
a + 1

2 , 2a
)
,
(
2a, a + 1

2

)}
,

Oa the set defined in (4.1), (4.2), and Na the complement of Pa ∪ Oa in R
2+ so that

the decomposition R
2+ = Pa ∪ Oa ∪ Na holds.

(i) If 	 ≥ 0, then necessarily

b > a, c > a, b + c ≥ 3a + 1

2
. (4.3)

(ii) If (b, c) ∈ Pa, then 	 ≥ 0 and strict positivity holds unless (b, c) ∈ 
.

(iii) If (b, c) ∈ Na, then 	 alternates in sign.

Remark 4.1 For the cases of nonnegativity, we follow [8] to introduce

Jα(x) = 0F1

(
α + 1 ;− x2

4

)
(α > −1).

Owing to the relation of (1.3), it is easy to see that Jα shares positive zeros in common
with Bessel function Jα and its square takes the form

J
2
α (x) = 1F2

[
α + 1

2
α + 1, 2α + 1

∣∣∣∣− x2
]

when α > −1/2. Consequently, if (b, c) ∈ 
, then

	(x) = 1F2

[
a

a + 1
2 , 2a

∣∣∣∣− x2

4

]
= J

2
a− 1

2

( x
2

)
, (4.4)

which is nonnegative but has infinitely many zeros on (0,∞).

Theorem 4.1 unifies many earlier positivity results, and we refer to our recent paper
[7] in which it is applied to improve the results of Misiewicz and Richards [19], and
Buhmann [6] at the same time.

For (b, c) ∈ Oa, it is left undetermined whether positivity holds or not. We now
state our main extension theorem, which still does not fill out the whole of Oa but
covers the upper half of the rational function

c = a + a

2(b − a)
(b > a).

We shall use the letter 
 below for the same notation as above.
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Theorem 4.2 For a > 0, b > 0, c > 0, put

	(x) = 1F2

[
a
b, c

∣∣∣∣− x2

4

]
(x > 0).

Let P∗
a be the set of parameter pairs (b, c) ∈ R

2+ defined by

P∗
a =

{
b > a, c > a, c ≥ max

[
3a + 1

2
− b, a + a

2(b − a)

]}
.

If (b, c) ∈ P∗
a \
, then 	 is strictly positive.

Proof In view of the difference

a + a

2(b − a)
−
[
3a + 1

2
− b

]
=
(
b − a − 1

2

)
(b − 2a)

b − a
,

it is graphically obvious that the rational function c = a + a/2(b − a) lies below the
line c = 3a + 1/2 − b only for b ∈ L, where L denotes

L = {(1 − t)(a + 1/2) + t(2a) : 0 ≤ t ≤ 1} .

As is already shown in Theorem 4.1 that 	 is strictly positive for (b, c) ∈ Pa\
,

it remains to prove the positivity of 	 in the case (b, c) ∈ P∗
a with b lying outside the

closed interval L . By symmetry in b, c, we may assume b ≤ c, and hence it suffices
to deal with the case

c ≥ a + a

2(b − a)
, (4.5)

where a < b < a + 1/2 when a ≥ 1/2 or a < b < 2a when 0 < a < 1/2.
We apply Gasper’s sums of squares formula [12, 3.1] to write

	(x) = �2(ν + 1)
( x
4

)−2ν
{
J 2ν
( x
2

)

+
∞∑
n=1

C(n, ν)
2n + 2ν

n + 2ν

(2ν + 1)n
n! J 2ν+n

( x
2

)}
, (4.6)

in which C(n, ν) denotes the terminating series defined by

C(n, ν) = 4F3

[−n, n + 2ν, ν + 1, a
ν + 1

2 , b, c

]
(4.7)

and ν can be arbitrary as long as 2ν is not a negative integer.
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Due to the interlacing property on the zeros of Bessel functions Jν, Jν+1 (see Wat-
son [21]), the positivity of	would follow instantly from formula (4.6) ifC(n, ν) > 0
for all n, for instance, and ν > −1/2.

To investigate the sign of C(n, ν), we apply Lemma 3.1 with

α1 = 2ν, α2 = ν + 1, α3 = a, β1 = ν + 1

2
, β2 = b, β3 = c.

The Saalschützian condition (A1) of (3.1) is equivalent to the choice

ν = 1

2

(
b + c − a − 3

2

)
. (4.8)

It is elementary to translate conditions (A2)–(A4) of (3.1) into

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

c > b − a + 1

2
, b ≥ a − 1

2
,

c > 3a + 1

2
− b, b > a,

c ≥ a + a

2(b − a)
.

(4.9)

On inspecting the region determined by (4.9) in the (b, c)-plane, it is immediate
to find that (4.9) amounts to (4.5) subject to the restriction a < b < a + 1/2 when
a ≥ 1/2 or a < b < 2a when 0 < a < 1/2.

By Lemma 3.1, we may conclude C(1, ν) ≥ 0 and C(n, ν) > 0 for all n ≥ 2 with
ν chosen according to (4.8), and our proof is now complete. 	


Remark 4.2 For the sake of convenience, we illustrate Theorems 4.1, 4.2 with Figs. 2
and 3 for the case a > 1/2, a = 1/2, separately (the case 0 < a < 1/2 is similar
to the case a > 1/2). In each figure, the red-colored part indicates the improved
positivity region P∗

a , and the grey-colored part indicates the region where positivity
breaks down. The blank or white-colored parts indicate the missing region.

5 Askey–Szegö Problem

Returning to problem (1.1), an application of the above positivity criteria in an obvious
way yields what we aimed to establish.

Theorem 5.1 For α > −1, β < α + 1, put

ψ(x) =
∫ x

0
t−β Jα(t)dt (x > 0).
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Fig. 2 The improved positivity region P∗
a in the case a > 1

2 which includes the Newton diagram associated
with 
 = {(a + 1/2, 2a), (2a, a + 1/2)} (Color figure online)

Fig. 3 The improved positivity region P∗
1
2
which includes the Newton diagram associated with
 = {(1, 1)}

(Color figure online)
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(i) If ψ ≥ 0, then necessarily

−α − 1 < β < α + 1, β ≥ −1

2
.

(ii) Let P∗ be the set of (α, β) ∈ R
2 defined by

P∗ =
{
α > −1, max

[
− 1

2
, −1

3
(α + 1)

]
≤ β < α + 1

}
.

Then ψ ≥ 0 for each (α, β) ∈ P∗, and strict positivity holds unless it coincides
with (1/2,−1/2).

Proof In view of (1.4), it suffices to deal with

(x) = 1F2

[
α−β+1

2
α + 1, α−β+1

2 + 1

∣∣∣∣− x2

4

]
(x > 0). (5.1)

Under the assumption α > −1, β < α + 1, each parameter of  is positive. If
 ≥ 0, then it follows from necessary condition (4.3) that

α + 1 >
α − β + 1

2
,

α − β + 1

2
+ 1 ≥ 3

(
α − β + 1

2

)
+ 1

2
− (α + 1),

which reduces to the stated necessary condition of part (i).
To prove part (ii), we apply Theorem 4.2 with

a = α − β + 1

2
, b = α + 1, c = α − β + 1

2
+ 1.

Inspecting the conditions c ≥ 3a + 1/2 − b, c ≥ a + a/2(b − a) for b > a in terms
of α, β separately, it is elementary to find that the condition

c ≥ max
[
3a + 1

2
− b, a + a

2(b − a)

]
, b > a,

is equivalent to

β ≥ max
[

− 1

2
, −1

3
(α + 1)

]
, β > −α − 1. (5.2)

Combining (5.2) with the necessary condition of part (i), we deduce  ≥ 0 for
each (α, β) ∈ P∗.Regarding strict positivity, we note that the nonnegativity condition
required by
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Fig. 4 The improved positivity region for problem (1.1) in which the line β = α corresponds to Szegö’s
problem (1.2) (Color figure online)

(b, c) ∈ 
 =
{(

a + 1

2
, 2a
)
,
(
2a, a + 1

2

)}

reduces to the single case (α, β) = (1/2,−1/2). Indeed,

(x) = 1F2

(
1 ; 3

2
, 2 ;− x2

4

)
=
[
sin(x/2)

x/2

]2

in this case, which is nonnegative but has infinitely many positive zeros.
By Theorem 4.2, we conclude that is strictly positive for each (α, β) ∈ P∗ unless

it coincides with (1/2,−1/2), and our proof is complete. 	


Remark 5.1 In Fig. 4, the green-colored part represents P∗. As is evident pictorially
on comparing with Fig. 1, Theorem 5.1 improves Theorem A by adding the triangle

� =
{
−1 < α <

1

2
, −1

3
(α + 1) ≤ β < min(−α, 0)

}
(5.3)

as a new positivity region and by narrowing down the necessity region.

As an immediate consequence of Theorem 5.1, we obtain the following upper and
lower bounds for β(α) and ᾱ.
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Corollary 5.1 Under the same setting as in Theorem B, we have

(i) max

(
−α − 1, −1

2

)
< β(α) ≤ −1

3
(α + 1),

(ii) lim
α→−1+ β(α) = 0, β

(
1

2

)
= −1

2
,

(iii) − 1

2
< ᾱ ≤ −1

4
.

Remark 5.2 While the results are evident by Theorem B and Theorem 5.1, that
β(1/2) = −1/2 can be verified in a simple way. Indeed, the formula

J 1
2
(t) =

√
2

π t
sin t

(see Luke [16], Watson [21]) implies that j 1
2 , 2 = 2π and

∫ 2π

0

√
t J 1

2
(t)dt =

√
2

π

∫ 2π

0
sin t dt = 0,

whence the desired value follows instantly by the uniqueness of β(α).

Corollary 5.1 indicates that β = β(α), −1 < α ≤ 1/2, is a smooth curve joining
(− 1, 0), (1/2,−1/2) which lies in the triangle determined by

β = −α − 1, β = − 1/2, β = − (α + 1)/3.

In [3], Askey and Steinig gave a list of numerical approximations for β(α). To
get an insight into how accurate or informative the above upper bound would be, we
compare it with their list as follows.

α β(α) − 1

3
(α + 1)

−0.5 −0.1915562 −0.1666667
−0.4 −0.2259427 −0.2000000
−0.3 −0.2593436 −0.2333333
−0.2 −0.2918541 −0.2666667
−0.1 −0.3235531 −0.3000000
0 −0.3545096 −0.3333333
0.1 −0.3847832 −0.3666667
0.2 −0.4144258 −0.4000000
0.3 −0.4434834 −0.4333333
0.4 −0.4719960 −0.4666667
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Regarding the approximated values as true ones, these comparisons show that β(α)

lies within distance 0.026 from − (α +1)/3 and the error increases up to certain point
near α = − 0.3 and then decreases to zero.

On the other hand, we also point out that Szegö [10] approximated ᾱ ≈
−0.2693885, whereas our upper bound of ᾱ is − 0.25.

6 A Simplified Proof for the Improved Part

RegardingAskey–Szegö problem (1.1), Professor Gasper pointed out that it is possible
to give a much simpler proof for the positivity in the improved region �, defined in
(5.3), of parameters. Based on a modification of Lemma 3.1, his proof proceeds as
follows. Let

�n = 4F3

[
−n, n + 2ν, ν + 1, α−β+1

2

ν + 1
2 , α + 1, α−β+3

2

]
,

which corresponds to coefficient C(n, ν) of (4.7) in Gasper’s series expansion (4.6)
for the function  defined in (5.1).

Choosing 2ν = α + 1/2 so that �n becomes Saalschützian, we apply Whipple’s
transformation formula (2.2) with

α1 = α + 1

2
, α2 = α − β + 1

2
, α3 = 1

2

(
α + 5

2

)
,

β1 = α + 1, β2 = 1

2

(
α + 3

2

)
, β3 = α − β + 3

2
.

Since 1 + σ = α1, β3 = 1 + α2, 1 + σ/2 = β2 = 1 + β1 − α3, on cancelling out
four pairs of numerator-denominator parameters, the 7F6 series on the right of (2.2)
reduces to a terminating 3F2 series. It is thus found that

�n =
n!
(

α+β
2

)
n(

α + 1
2

)
n

(
α−β+3

2

)
n

n∑
k=0

(
α − 1

2

)
k

(
α−β+1

2

)
k

(− 1
2

)
k

k!
(

α+β
2

)
k
(α + 1)k

, (6.1)

where the case α = −1/2 must be understood as an appropriate limit.
In the case n = 1, it is easy to simplify (6.1) in the form

�1 = α + 3β + 1

2(α + 1)(α − β + 3)
,

which indicates �1 ≥ 0 for (α, β) ∈ �. For n ≥ 2, we find

123



Constructive Approximation (2020) 51:49–72 67

�n =
n!
(

α+β+2
2

)
n−1(

α + 3
2

)
n−1

(
α−β+3

2

)
n

{
α + 3β + 1

4(α + 1)

+ 1 − 2α

4

n∑
k=2

(
α + 3

2

)
k−2

(
α−β+1

2

)
k

( 1
2

)
k−1

k!
(

α+β+2
2

)
k−1

(α + 1)k

}
,

which indicates �n > 0 for (α, β) ∈ �.

By the same reasoning as in the proof of Theorem 4.2, we may conclude that  is
strictly positive for (α, β) ∈ � and hence Theorem 5.1 is proved for this improved
region of parameters. Notice that �n of this type does not satisfy the sufficient condi-
tions of Lemma 3.1, and the required inequality 1+ σ > 0 in the proof of Lemma 3.1
does not need to hold, either.

More generally, if 1+ σ = α1 in Whipple’s transformation formula (2.2), then the
7F6 series reduces to a terminating 5F4 series with parameters independent of n, and it
may be possible to prove the nonnegativity or positivity of �n in a simplified manner
as above even when 1 + σ ≤ 0.

In practice, if we consider a 1F2 generalized hypergeometric function of type (1.5)
and its series expansion according to Gasper’s formula (4.6), then it is easy to see that
such a reduction takes place in each coefficient only when b or c coincides with a+1.
To carry out the above idea of simplification concretely, let us fix b = a + 1 and put

�n = 4F3

[−n, n + 2ν, ν + 1, a
ν + 1

2 , a + 1, c

]
,

where 2ν = c − 1/2, which corresponds to the coefficient of (4.7).
On rearranging the parameters in the form

α1 = c − 1

2
, α2 = a, α3 = 1

2

(
c + 3

2

)
,

β1 = 1

2

(
c + 1

2

)
, β2 = c, β3 = a + 1

so as to 1 + σ = α1, Whipple’s transformation formula (2.2) gives

�n = n! (c − a − 1
2

)
n(

c − 1
2

)
n (a + 1)n

n∑
k=0

(− 1
2

)
k (a)k

(
c − 3

2

)
k

k!(c)k
(
c − a − 1

2

)
k

. (6.2)

As readily verified, since the first two terms of (6.2) add up to

(
c − 1

2

) (
c − 3a

2

)
c
(
c − a − 1

2

) ,
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we easily deduce that �1 ≥ 0 and �n > 0 for all n ≥ 2 under the assumption
0 < a < 1, 3a/2 ≤ c < 3/2. In summary, we obtain:

Theorem 6.1 If 0 < a < 1, 3
2a ≤ c < 3

2 , then

	s(x) = 1F2

[
a

a + 1, c

∣∣∣∣− x2

4

]
> 0 (x > 0).

In the special case a = (α − β + 1)/2, c = α + 1, that is, 	s = , the sufficient
condition is readily seen to be equivalent to �. We should remark that an application
of Theorem 4.2 shows that 	s is strictly positive for

c ≥ max

[
2a − 1

2
,

3

2
a

]
, a > 0,

unless a = 1, c = 3/2, and therefore this result is a part of Theorem 4.2 although its
proof is considerably simplified as above.

7 Gasper’s Extensions

As a generalization of (1.1), we consider the problem of determining parameters
α, β, γ for the inequality

∫ x

0
(x2 − t2)γ t−β Jα(t)dt ≥ 0 (x > 0), (7.1)

which reduces to problem (1.1) in the special case γ = 0.
By integrating termwise, it is plain to evaluate

∫ x

0
(x2 − t2)γ t−β Jα(t)dt =

B
(
γ + 1, α−β+1

2

)

2α+1�(α + 1)
xα−β+2γ+1

× 1F2

[
α−β+1

2
α + 1, α−β+1

2 + γ + 1

∣∣∣∣− x2

4

]
(7.2)

subject to the condition α > −1, γ > −1, β < α + 1, where B denotes the usual
Euler’s beta function. Analogously to (1.1), hence, problem (7.1) is equivalent to the
positivity question on the 1F2 generalized hypergeometric function defined on the
right side of (7.2).

In [12],Gasper employed the sums of squaresmethod and an interpolation argument
involving fractional integrals to prove that (7.1) holds with strict positivity for each
(α, β) ∈ Sγ \ {(γ + 1/2, −γ − 1/2)} , where
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Sγ =
{
α ≥ γ + 1

2
, α − 2γ − 1 ≤ β < α + 1

}

in the case − 1 < γ ≤ −1/2 and

Sγ = {α > −1, 0 ≤ β < α + 1
}

∪
{
α ≥ γ + 1

2
, −

(
γ + 1

2

)
≤ β ≤ 0

}

in the case γ > −1/2 (see Figs. 5, 6).
Our purpose here is to improve Gasper’s result as follows.

Theorem 7.1 Let α > −1, γ > −1, β < α + 1.

(i) If (7.1) holds, then necessarily

β ≥ −
(
γ + 1

2

)
, −α − 1 < β < α + 1.

(ii) For each γ > −1, let S∗
γ be the set of (α, β) ∈ R

2 defined by

S∗
γ =

{
α > −1, max

[
−
(
γ + 1

2

)
, − 2γ + 1

2γ + 3
(α + 1)

]
≤ β < α + 1

}
.

If (α, β) ∈ S∗
γ , then (7.1) holds with strict positivity unless

α = γ + 1

2
, β = −

(
γ + 1

2

)
or γ = − 1

2
, β = 0.

Proof In view of (7.2), it suffices to deal with

�(x) = 1F2

[
α−β+1

2
α + 1, α−β+1

2 + γ + 1

∣∣∣∣− x2

4

]
(x > 0).

On setting

a = α − β + 1

2
, b = α + 1, c = α − β + 1

2
+ γ + 1

and applying the necessary part of Theorem 4.1, 4.2 in the same way as in the proof
of Theorem 5.1, it is straightforward to verify (i), (ii).

As for the cases of nonnegativity, we note from (4.4) of Remark 4.1 that if α =
γ + 1/2, β = − (γ + 1/2), γ > −1, then

�(x) = 1F2

[
γ + 1

γ + 3
2 , 2(γ + 1)

∣∣∣∣− x2

4

]
= J

2
γ+ 1

2

( x
2

)
.
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Fig. 5 The improved positivity region for (7.1) in the case γ > −1/2, where the yellow-colored part
represents Gasper’s positivity region (Color figure online)

On the other hand, if α > −1, β = 0, γ = − 1/2, then

�(x) = 1F2

[
α+1
2

α + 1, α+2
2

∣∣∣∣− x2

4

]
= J

2
α
2

( x
2

)
.

Both identities show � ≥ 0 with infinitely many positive zeros. 	


Remark 7.1 As for the missing ranges, we point out the following:

• In the case γ > −1/2, as shown in Fig. 5, Theorem 7.1 leaves the triangle formed
by the boundary lines

β = −α − 1, β = −(γ + 1/2), β = − 2γ + 1

2γ + 3
(α + 1),

and it is an open question if it is possible to give a necessary and sufficient condition
in terms of certain transcendental root βγ (α) in an analogous manner with the case
γ = 0.

• In the case γ = − 1/2, problem (7.1) is completely resolved in the sense that it
holds if and only if α > −1, 0 ≤ β < α + 1.
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Fig. 6 The improved positivity region problem (7.1) in the case− 1 < γ < −1/2,where the yellow-colored
part represents Gasper’s positivity region (Color figure online)

• In the case − 1 < γ < −1/2, as shown in Fig. 6, Theorem 7.1 leaves the infinite
sector defined by

α > γ + 1/2, −(γ + 1/2) ≤ β < − 2γ + 1

2γ + 3
(α + 1).
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