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Abstract
We prove asymptotic evaluations for univariate and multivariate positive linear oper-
ators. Our proofs are different from what has been used so far. As applications of
our results, we find the full asymptotic evaluation for the iterates of the univariate
Cesàro and Volterra operators. Moreover, we find asymptotic evaluations for the iter-
ates of multivariate Cesàro and Volterra type operators on the k-dimensional unit cube,
k-dimensional unit triangle, etc.
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1 Introduction, Notation, and Background

The study of the limit behavior of the iterates of Bernstein’s operators and other
classes of positive linear operators has been considered by many mathematicians.
Without any claim of completeness, we mention [7–9]. In this paper, we prove a gen-
eral convergence result for some sequences of positive linear operators, see Theorem 1
and Corollary 2. Moreover, we obtain the full asymptotic evaluation for some univari-
ate operators, see Theorem 2, and as application of this result, we deduce the full
asymptotic evaluation for the Cesàro and Volterra type operators, Corollaries 5 and
7. We continue by showing other results of the same kind for multivariate positive
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linear operators, see Theorems 3 and 4. We then apply these general results to obtain
the asymptotic evaluations for various kinds of Cesàro and Volterra type multivariate
operators, see for example Corollaries 12, 13, 17, 19, 22.

We now fix some notation and terminology used in this paper. Let T be a compact
metric space and X a real Banach space. We denote by C (T , X) the real Banach
space of the all X -valued continuous functions on T equipped with the uniform norm,
‖ f ‖ = sup

t∈T
‖ f (t)‖ and C (T ) = C (T ,R). For every ϕ ∈ C (T ), x ∈ X , we define

ϕ ⊗ x : T → X by (ϕ ⊗ x) (t) := ϕ (t) x , ∀t ∈ T and write C (T ) ⊗ X ={
n∑

i=1
ϕi ⊗ xi | ϕi ∈ C (T ) , xi ∈ X , i = 1, . . . , n, n ∈ N

}
to denote their tensor prod-

uct, see [4, page 20] or [12, page 11]. We will use that C (T )⊗ X is dense in C (T , X)

and that, by a result of Grothendieck, C (T , X) = C (T ) ⊗̂εX , the completion of
C (T ) ⊗ X with respect to the injective tensor norm, see [4, page 48], [5, Example
6 pages 224-225], or [12, pages 49-50]. Let also V : C (T ) → C (K ) be a bounded
linear operator and X a real Banach space. We define VX : C (T , X) → C (K , X) by
VX (ϕ ⊗ x) = V (ϕ) ⊗ x , ∀ϕ ∈ C (T ), ∀x ∈ X , and then extend by the linearity and
continuity. Since C (T , X) = C (T ) ⊗̂εX , by the general theory, VX = V ⊗̂ε IX , the
injective tensor product (IX : X → X is the identity operator of X , that is, IX (x) = x),
and thus ‖VX‖ = ‖V ‖ ‖IX‖ = ‖V ‖, see again [4, Proposition 4.1, page 46], [5, page
228], or [12, Proposition 3.2, page 47]. Hereafter, we call the operator VX the vector
extension of the bounded linear operator V . For example, if C : C [0, 1] → C [0, 1],

Cϕ (t) = ∫ 1
0 ϕ (tu) du =

{
1
t

∫ t
0 ϕ (u) du, t �= 0

ϕ (0) , t = 0
, is the Cesàro operator and X is a

real Banach space, then its vector extension CX : C ([0, 1] , X) → C ([0, 1] , X) is

defined by CX f (t) = ∫ 1
0 f (tu) du =

{
1
t

∫ t
0 f (u) du, t �= 0

f (0) , t = 0
, f ∈ C ([0, 1] , X);

similarly, if V : C [0, 1] → C [0, 1], Vϕ (t) = ∫ t
0 ϕ (u) du = t

∫ 1
0 ϕ (tu) du, is

the Volterra operator and X is a real Banach space, then its vector extension VX :
C ([0, 1] , X) → C ([0, 1] , X) is defined byVX f (t) = ∫ t

0 f (u) du = t
∫ 1
0 f (tu) du,

f ∈ C ([0, 1] , X). Since the applications of our general results are to the iterates of
positive linear operators, we recall that, as is usual, if V : C (T ) → C (T ) is a
bounded linear operator, we write V n to denote the composition V ◦ V ◦ · · · ◦ V︸ ︷︷ ︸

n-times

and

if VX : C (T , X) → C (T , X) is its vector extension, then V n
X denotes the compo-

sition VX ◦ VX ◦ · · · ◦ VX︸ ︷︷ ︸
n-times

. A function f ∈ C (T ) is called positive, and we write,

as usual, f ≥ 0 if f (t) ≥ 0, ∀t ∈ T , and also if f , g ∈ C (T ), the notation
f ≤ g means g − f ≥ 0. An operator V : C (T ) → C (K ) is called positive if
f ≥ 0 implies V ( f ) ≥ 0. We will use the simple result that a positive linear operator
V : C (T ) → C (K ) is increasing; that is, if f ≤ g, then V ( f ) ≤ V (g), and that
|V ( f )| ≤ V (| f |). If A is a set, we write 1 to denote the constant function 1 : A → R,
1 (x) = 1, andwewrite as is usual e j : [0, 1] → R, e j (x) = x j , j ∈ N∪{0}. If k ∈ N,
k ≥ 2, we consider pi : Rk → R, pi (t1, . . . , tk) = ti , i = 1, . . . , k, the canonical
projections. We will use that if V : C (T ) → C (K ) is a positive linear operator,
then ‖V ‖ = ‖V (1)‖. If ϕ ∈ C (T ), f ∈ C (T , X), we define ϕ ⊗ f : T → X
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by (ϕ ⊗ f ) (t) = ϕ (t) f (t), ∀t ∈ T . Let us note the following obvious equality:
ψ ⊗ (ϕ ⊗ x) = (ψϕ) ⊗ x , ψ, ϕ ∈ C (T ), x ∈ X . We need the following:

Remark 1 Let V : C (T ) → C (K ) be a bounded linear operator, ψ ∈ C (T ) , X
a real Banach space, and define U : C (T ) → C (K ) by U (ϕ) = V (ψϕ). Then
UX ( f ) = VX (ψ ⊗ f ), ∀ f ∈ C (T , X).

Proof It is obvious that U is bounded linear; hence UX is well defined. Let us define
L : C (T , X) → C (K , X), L ( f ) = VX (ψ ⊗ f ). If ϕ ∈ C (T ), x ∈ X , we have
L (ϕ ⊗ x) = VX (ψ ⊗ (ϕ ⊗ x)) = VX ((ψϕ) ⊗ x) = V (ψϕ) ⊗ x = U (ϕ) ⊗ x =
UX (ϕ ⊗ x). By linearity, we deduce that L = UX onC (T )⊗ X , and sinceC (T )⊗ X
is dense in C (T , X), by the continuity, L = UX on C (T , X), which ends the proof.

�
All notation and concepts concerning approximation theory used and not defined

are standard, see [1], and the notation and concepts from Banach space theory are also
standard, see [4], or [12].

2 The Convergence

In this section, T , K are compact metric spaces and X is a real Banach space. We need
the following technical result, see also [7, proof of Theorem 1], [10, Lemma 1], [11,
Lemma 1].

Lemma 1 Let a ∈ T be an accumulation point of T and ϕ : T → R a continuous
function such that ϕ (t) > 0, ∀t ∈ T − {a}.
(i) If g : T → R is a continuous function such that g (a) = 0, then ∀ε > 0, ∃δε > 0,

such that |g (t)| < ε + δεϕ (t), ∀t ∈ T .
(ii) If f : T → R is a continuous function, then ∀ε > 0, ∃δε > 0, such that

| f (t) − f (a)| < ε + δεϕ (t), ∀t ∈ T .

Proof Since a is an accumulation point of T and T is a metric space, there exists
a sequence (tn)n∈N ⊂ T − {a} such that tn → a. Then, by the continuity of ϕ,
ϕ (tn) → ϕ (a), and since by the hypothesis ϕ (tn) > 0, ∀n ∈ N, we deduce that
ϕ (a) ≥ 0.

(i) Let us suppose that (i) is not true. This means that ∃ε0 > 0 such that ∀δ > 0
there exist tδ ∈ T such that |g (tδ)| ≥ ε0 + δϕ (tδ). In particular, for δ = n ∈ N,
there exist tn ∈ T such that |g (tn)| ≥ ε0 + nϕ (tn), ∀n ∈ N. Since T is compact,
there exist t ∈ T and a subsequence (kn)n∈N such that tkn → t . We can have
two cases: The first case is t = a, that is, tkn → a. Since ϕ (t) ≥ 0, ∀t ∈ T ,
we deduce that

∣∣g (tkn )∣∣ ≥ ε0, ∀n ∈ N, and passing to the limit and using that
g (a) = 0, we obtain 0 ≥ ε0, which is impossible. The second case is t �= a, that
is, t ∈ T − {a}. Now note that |g (tn)| ≤ ‖g‖, and thus ‖g‖ ≥ ε0 + knϕ

(
tkn

)
,

∀n ∈ N, or 0 ≤ ϕ
(
tkn

) ≤ ‖g‖−ε0
kn

, ∀n ∈ N. Passing to the limit, we obtain

ϕ
(
tkn

) → 0, and since ϕ is continuous, ϕ (t) = 0. But this is impossible since
t ∈ T −{a}, and by the hypothesis, ϕ (v) > 0 for every v ∈ T −{a}, in particular
ϕ (t) > 0.
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(ii) Apply (i) to the function g : T → R, g (t) = f (t) − f (a).

�
Corollary 1 Let a ∈ T be an accumulation point of T and ϕ : T → R a continuous
function such that ϕ (t) > 0, ∀t ∈ T − {a}.
(i) If g : T → R is a continuous function such that g (a) = 0, then ∀ε > 0,

∃δε > 0 such that for any positive linear operator V : C (T ) → C (K ), we have
‖V (g)‖ ≤ ε ‖V (1)‖ + δε ‖V (ϕ)‖.

(ii) If f : T → R is a continuous function, then ∀ε > 0, ∃δε > 0 such that for any
positive linear operator V : C (T ) → C (K ), we have ‖V ( f ) − f (a) V (1)‖ ≤
ε ‖V (1)‖ + δε ‖V (ϕ)‖.

(iii) If V : C (T ) → C (K ) is a positive linear operator such that V (ϕ) = 0, then
V ( f ) = f (a) V (1), ∀ f ∈ C (T ).

Proof (i) Let ε > 0. From Lemma 1(i) there exists δε > 0 such that |g| < ε ·1+ δεϕ.
Since V is positive linear, we obtain |V (g)| ≤ V (|g|) ≤ εV (1) + δεV (ϕ) in
C (K ); that is, |V (g) (k)| ≤ εV (1) (k) + δεV (ϕ) (k) ≤ ε ‖V (1)‖ + δε ‖V (ϕ)‖,
∀k ∈ K , and thus ‖V (g)‖ ≤ ε ‖V (1)‖ + δε ‖V (ϕ)‖.

(ii) Apply (i) to the function g : T → R, g (t) = f (t) − f (a).
(iii) Let f ∈ C (T ). For every ε > 0, by (ii) ∃δε > 0 such that

‖V ( f ) − f (a) V (1)‖ ≤ ε ‖V (1)‖ + δε ‖V (ϕ)‖ ,

and since V (ϕ) = 0, we obtain ‖V ( f ) − f (a) V (1)‖ ≤ ε ‖V (1)‖. Passing to
the limit for ε → 0,weget‖V ( f ) − f (a) V (1)‖ ≤ 0,V ( f )− f (a) V (1) = 0.

�
The next result is a large extension of Theorem 1 in [7].

Theorem 1 Let a ∈ T be an accumulation point of T and ϕ : T → R a continuous
function such that ϕ (t) > 0, ∀t ∈ T − {a}. Let Vn : C (T ) → C (K ) be a sequence
of positive linear operators such that the sequence (Vn (1))n∈N is (norm) bounded in
C (K ) and lim

n→∞ Vn (ϕ) = 0 uniformly. Then:

(i) for every g ∈ C (T ) with g (a) = 0, we have lim
n→∞ Vn (g) = 0 uniformly.

(ii) for every f ∈ C (T ), we have lim
n→∞ [Vn ( f ) − f (a) Vn (1)] = 0 uniformly.

Proof (i) Let ε > 0. From Corollary 1(i) there exists δε > 0 such that

‖Vn (g)‖ ≤ ε ‖Vn (1)‖ + δε ‖Vn (ϕ)‖ ,∀n ∈ N.

Since (Vn (1))n∈N is bounded in C (K ), there exists M > 0 such that ‖Vn (1)‖ ≤
M , ∀n ∈ N . Also from lim

n→∞ Vn (ϕ) = 0 uniformly, ∃nε ∈ N such that

‖Vn (ϕ)‖ ≤ ε
δε
, ∀n ≥ nε. We deduce that ‖Vn (g)‖ ≤ ε (M + 1), ∀n ≥ nε;

that is, lim
n→∞ Vn (g) = 0 uniformly.
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(ii) Let f ∈ C (T ). Then g = f − f (a) · 1 ∈ C (T ) and g (a) = 0. We apply now (i).
�

We prove now that the result in Theorem 1 can be extended to the vector case.

Corollary 2 Let a ∈ T be an accumulation point of T and ϕ : T → R a continuous
function such that ϕ (t) > 0, ∀t ∈ T − {a}. Let Vn : C (T ) → C (K ) be a sequence
of positive linear operators such that the sequence (Vn (1))n∈N is (norm) bounded in
C (K ), lim

n→∞ Vn (ϕ) = 0 uniformly and VX ,n : C ([0, 1] , X) → C (K , X) their vector

extensions. Then for every f ∈ C (T , X), we have lim
n→∞

[
VX ,n ( f ) − Vn (1) ⊗ f (a)

]
= 0 uniformly.

Proof Let ϕ =
k∑

i=1
ϕi ⊗ xi ∈ C (T ) ⊗ X . Let also n ∈ N. Then Vn (1) ⊗ ϕ (a) =

Vn (1) ⊗
(

k∑
i=1

ϕi (a) xi

)
=

k∑
i=1

ϕi (a) Vn (1) ⊗ xi , VX ,n (ϕ) =
k∑

i=1
VX ,n (ϕi ⊗ xi ) =

k∑
i=1

Vn (ϕi )⊗xi . We get VX ,n (ϕ)−Vn (1)⊗ϕ (a) =
k∑

i=1
[Vn (ϕi ) − ϕi (a) Vn (1)]⊗xi

and

∥∥VX ,n (ϕ) − Vn (1) ⊗ ϕ (a)
∥∥ ≤

k∑
i=1

‖Vn (ϕi ) − ϕi (a) Vn (1)‖ ‖xi‖ .

From Theorem 1 and the above inequality, we simply deduce that

lim
n→∞

[
VX ,n (ϕ) − Vn (1) ⊗ ϕ (a)

] = 0 uniformly

Let f ∈ C (T , X) and ϕ =
k∑

i=1
ϕi ⊗ xi . Then for every n ∈ N,

∥∥VX ,n ( f ) − VX ,n (ϕ)
∥∥ ≤ ∥∥VX ,n

∥∥ ‖ f − ϕ‖ = ‖Vn‖ ‖ f − ϕ‖ = ‖Vn (1)‖ ‖ f − ϕ‖ .

Let us note that

∥∥VX ,n ( f ) − Vn (1) ⊗ f (a)
∥∥

≤ ∥∥VX ,n ( f ) − VX ,n (ϕ)
∥∥ + ∥∥VX ,n (ϕ) − Vn (1) ⊗ ϕ (a)

∥∥
+ ‖Vn (1) ⊗ ϕ (a) − Vn (1) ⊗ f (a)‖

≤ ‖Vn (1)‖ ‖ f − ϕ‖ + ∥∥VX ,n (ϕ) − Vn (1) ⊗ ϕ (a)
∥∥ + ‖Vn (1)‖ ‖ϕ (a) − f (a)‖

≤ 2 ‖Vn (1)‖ ‖ f − ϕ‖ + ∥∥VX ,n (ϕ) − Vn (1) ⊗ ϕ (a)
∥∥ .

There exist M > 0 such that ‖Vn (1)‖ ≤ M , ∀n ∈ N. Now let f ∈ C (T , X) and
ε > 0. Then there exists ϕ ∈ C (T ) ⊗ X such that ‖ f − ϕ‖ ≤ ε

4M . We have

∥∥VX ,n ( f ) − Vn (1) ⊗ f (a)
∥∥ ≤ ε

2
+ ∥∥VX ,n (ϕ) − Vn (1) ⊗ ϕ (a)

∥∥ , ∀n ∈ N.
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Since, by the first part, lim
n→∞

[
VX ,n (ϕ) − Vn (1) ⊗ ϕ (a)

] = 0 uniformly, there exists

nε ∈ N such that ∀n ≥ nε, we have
∥∥VX ,n (ϕ) − Vn (1) ⊗ ϕ (a)

∥∥ ≤ ε
2 . We deduce

then that ∀n ≥ nε, we have
∥∥VX ,n ( f ) − Vn (1) ⊗ f (a)

∥∥ ≤ ε. We are done. �
To end this section we give two concrete examples.

Corollary 3 Let AX ,BX : C (
[0, 1]2 , X

) → C
(
[0, 1]2 , X

)
be the operators defined

by AX ( f ) (t1, t2) = t1
∫∫

[0,1]2 f (t1x, t2y) dxdy, BX ( f ) (t1, t2) = t2
∫∫

[0,1]2 f (t1x,

t2y)dxdy. Then for every f ∈ C
(
[0, 1]2 , X

)
, we have lim

n→∞
(
n!An

X ( f ) (t1, t2)

− tn1 f (0, 0)
) = 0, lim

n→∞
(
n!Bn

X ( f ) (t1, t2) − tn2 f (0, 0)
) = 0 uniformly with respect

to (t1, t2) ∈ [0, 1]2.

Proof By induction we can prove that for every n ∈ N,

An (p1) = pn+1
1

(n + 1)! , An (p2) = pn−1
1 P

2nn! , A (1) = p1, An (1) = An−1 (p1) = pn1
n! ,

where P (t1, t2) = t1t2. Now let us observe that the function s : [0, 1]2 → [0,∞),
s (t1, t2) = t1 + t2 is continuous and s (t1, t2) > 0, ∀ (t1, t2) ∈ [0, 1]2 − {(0, 0)}.
Then An (s) = An (p1) + An (p2) = pn+1

1
(n+1)! + pn−1

1 P
2nn! and lim

n→∞
‖An(s)‖
‖An(1)‖ =

lim
n→∞

1
2nn! + 1

(n+1)!
1
n!

= 0. From Corollary 2 applied for Vn = An

‖An(1)‖ and using that

(An)X = An
X , we deduce that lim

n→∞
(An

X ( f )(t1,t2)
‖An(1)‖ − An(1)(t1,t2)‖An(1)‖ f (0, 0)

)
= 0; that is,

lim
n→∞

(
n!An

X ( f ) (t1, t2) − tn1 f (0, 0)
) = 0 uniformly with respect to (t1, t2) ∈ [0, 1]2.

Similarly, for every n ∈ N, we have

Bn (p1) = pn−1
2 P

2nn! ,Bn (p2) = pn+1
2

(n + 1)! ,B (1) = p2,Bn (1) = Bn−1 (p2) = pn2
n!

and lim
n→∞

‖Bn(s)‖
‖Bn(1)‖ = 0. We apply now Corollary 2 for Vn = Bn

‖Bn(1)‖ . �

3 The Full Asymptotic Evaluation for One Variable

In this section, K is a compact metric space and X is a real Banach space. In the next
result we give the full asymptotic evaluation for some sequences of positive linear
operators. It is a natural completion of Corollary 2.

Theorem 2 Let Vn : C [0, 1] → C (K ) be a sequence of positive linear operators,
VX ,n : C ([0, 1] , X) → C (K , X) their vector extensions, k a natural number such
that:

(i) Vn (ek) �= 0, ∀n ∈ N;
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(ii) there exists ϕk ∈ C [0, 1] with ϕk (t) > 0, ∀t ∈ [0, 1] − {0} and such that
lim
n→∞

Vn(ekϕk )‖Vn(ek )‖ = 0 uniformly. Then for every function f : [0, 1] → X that is k

-times differentiable at 0, we have

lim
n→∞

VX ,n ( f ) (t) −
k∑

i=0

Vn(ei )(t)
i ! f (i) (0)

‖Vn (ek)‖ = 0 uniformly with respect to t ∈ [0, 1] .

Moreover, if lim
n→∞

Vn(ek )‖Vn(ek )‖ = uk uniformly, then

lim
n→∞

VX ,n ( f ) (t) −
k−1∑
i=0

Vn(ei )(t)
i ! f (i) (0)

‖Vn (ek)‖ = uk (t)

k! f (k) (0)

uniformly with respect to t ∈ [0, 1].

Proof Since f is k-times differentiable at 0,

lim
t→0

f (t) −
k−1∑
i=0

t i
i ! f

(i) (0)

tk
= 1

k! · f (k) (0) ,

see [2, Theorem 1, page 21]. Thus the function g : [0, 1] → X ,

g (t) =

⎧⎪⎨
⎪⎩

f (t)−
k∑

i=0

ti
i ! f (i)(0)

tk
, t �= 0

0, t = 0
,

is continuous, and for all t ∈ [0, 1], the following relation holds: f (t) =
k∑

i=0

t i
i ! f

(i) (0)+tkg (t). Thismeans that f =
k∑

i=0

1
i !ei⊗ f (i) (0)+ek⊗g inC ([0, 1] , X).

Let n ∈ N. Since all VX ,n are linear, we have

VX ,n ( f ) =
k∑

i=0

1

i !VX ,n

(
ei ⊗ f (i) (0)

)
+ VX ,n (ek ⊗ g)

=
k∑

i=0

1

i !Vn (ei ) ⊗ f (i) (0) + VX ,n (ek ⊗ g) in C (K , X) ,

and thus

∥∥∥∥VX ,n ( f ) −
k∑

i=0

1
i !Vn (ei ) ⊗ f (i) (0)

∥∥∥∥
‖Vn (ek)‖ =

∥∥VX ,n (ek ⊗ g)
∥∥

‖Vn (ek)‖ . (1)

123



300 Constructive Approximation (2019) 50:293–321

Let Un : C [0, 1] → C (K ) be the operator defined by Un (ϕ) = Vn(ek ·ϕ)
‖Vn(ek )‖ (see

the hypothesis (i)). Then ‖Un (1)‖ = 1, ∀n ∈ N. Moreover, by the hypothesis
(ii) lim

n→∞
‖Vn(ekϕk )‖‖Vn(ek )‖ = 0; that is, lim

n→∞Un (ϕk) = 0 uniformly. From Corollary 2 it

follows that for every f ∈ C ([0, 1] , X), lim
n→∞

[
UX ,n ( f ) −Un (1) ⊗ f (0)

] = 0

uniformly. In particular, lim
n→∞

[
UX ,n (g) −Un (1) ⊗ g (0)

] = 0 uniformly; that is,

since g (0) = 0 , lim
n→∞UX ,n (g) = 0 uniformly. By Remark 1, this is equivalent to

lim
n→∞

‖VX ,n(ek⊗g)‖
‖Vn(ek )‖ = 0, which, by (1), ends the proof. �

By taking ϕk = e j in Theorem 2, we obtain:

Corollary 4 Let Vn : C [0, 1] → C (K ) be a sequence of positive linear operators,
VX ,n : C ([0, 1] , X) → C (K , X) their vector extensions, k a natural number such
that:

(i) Vn (ek) �= 0, ∀n ∈ N;

(ii) there exists j ∈ N such that lim
n→∞

‖Vn(ek+ j)‖
‖Vn(ek )‖ = 0. Then for every function f :

[0, 1] → X that is k-times differentiable at 0, we have

lim
n→∞

VX ,n ( f ) (t) −
k∑

i=0

Vn(ei )(t)
i ! f (i) (0)

‖Vn (ek)‖ = 0 uniformly with respect to t ∈ [0, 1] .

Moreover, if lim
n→∞

Vn(ek )‖Vn(ek )‖ = uk uniformly, then

lim
n→∞

VX ,n ( f ) (t) −
k−1∑
i=0

Vn(ei )(t)
i ! f (i) (0)

‖Vn (ek)‖ = uk (t)

k! · f (k) (0)

uniformly with respect to t ∈ [0, 1].

4 The Full Asymptotic Evaluations for the Cesàro and Volterra Type
Operators

In this section X is a real Banach space. As an application of Corollary 4, we indicate
the full asymptotic evaluations for the Cesàro and Volterra type operators. We begin
with a result that is a large extension of Theorem 3 in [6].

Corollary 5 Let ϕ : [0, 1] → [0,∞) be a continuous non-null function, CX ,ϕ :
C ([0, 1] , X) → C ([0, 1] , X) the Cesàro type operator defined by

CX ,ϕ f (t) =
∫ 1

0
ϕ (s) f (st) ds,
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and k a natural number. Then for every function f : [0, 1] → X that is k-times
differentiable at 0, we have

lim
n→∞

CnX ,ϕ ( f ) (t) −
k−1∑
i=0

(∫ 1
0 siϕ (s) ds

)n ti f (i)(0)
i !(∫ 1

0 skϕ (s) ds
)n = tk

k! f
(k) (0)

uniformly with respect to t ∈ [0, 1] .

Proof Let i ∈ N ∪ {0} and define λi = ∫ 1
0 siϕ (s) ds. Let us note that λi+1 < λi ,

∀i ∈ N ∪ {0}. Indeed, if λi+1 ≥ λi , that is,
∫ 1
0 si+1ϕ (s) ds ≥ ∫ 1

0 siϕ (s) ds, then∫ 1
0 si (1 − s) ϕ (s) ds ≤ 0. Since si (1 − s) ϕ (s) ≥ 0, ∀s ∈ [0, 1] (ϕ (s) ≥ 0), we have∫ 1
0 si (1 − s) ϕ (s) ds ≥ 0; that is,

∫ 1
0 si (1 − s) ϕ (s) ds = 0. A well-known property

assures us that si (1 − s) ϕ (s) = 0, ∀s ∈ [0, 1], whence ϕ (s) = 0, ∀s ∈ (0, 1). By
continuity ϕ (s) = 0, ∀s ∈ [0, 1], which is impossible. We have Cϕ (ei ) = λi ei and

by induction on n, Cnϕ (ei ) = λni ei , ∀n ∈ N. Then

∥∥∥Cn
ϕ(ei+1)

∥∥∥∥∥∥Cn
ϕ(ei )

∥∥∥ =
(

λi+1
λi

)n
and thus

lim
n→∞

∥∥∥Cn
ϕ(ei+1)

∥∥∥∥∥∥Cn
ϕ(ei )

∥∥∥ = 0. Also
Cn

ϕ(ei )∥∥∥Cn
ϕ(ei )

∥∥∥ = ei , ∀n ∈ N. From Corollary 4, we have

lim
n→∞

CnX ,ϕ ( f ) −
k−1∑
i=0

1
i !Cnϕ (ei ) ⊗ f (i) (0)

∥∥Cnϕ (ek)
∥∥ = 1

k!ek ⊗ f (k) (0) uniformly,

which after simple calculations gives us the statement. �
In the case of the Cesàro operator, that is, ϕ = e0 in Corollary 5, we get:

Corollary 6 Let CX : C ([0, 1] , X) → C ([0, 1] , X) be the Cesàro operator

CX ( f ) (t) =
{

1
t

∫ t
0 f (s) ds, t �= 0

f (0) , t = 0
=

∫ 1

0
f (st) ds

and k be a natural number. Then for every function f : [0, 1] → X that is k-times
differentiable at 0, we have

lim
n→∞ (k + 1)n

(
CnX ( f ) (t) −

k−1∑
i=0

t i f (i) (0)

(i + 1)n i !

)
= tk f (k) (0)

k!

uniformly with respect to t ∈ [0, 1].

In the case of the Volterra type operators, we have the following asymptotic evalu-
ation.
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Corollary 7 Let ϕ : [0, 1] → [0,∞) be a continuous non-null function, VX ,ϕ :
C ([0, 1] , X) → C ([0, 1] , X) the Volterra type operator defined by

VX ,ϕ f (t) = t
∫ 1

0
ϕ (s) f (st) ds,

and k a natural number. Then for every function f : [0, 1] → X that is k-times
differentiable at 0, we have

lim
n→∞

Vn
X ,ϕ ( f ) (t) −

k∑
i=0

(∫ 1
0 siϕ (s) ds

)
· · ·

(∫ 1
0 si+n−1ϕ (s) ds

)
tn+i

i ! f (i) (0)

(∫ 1
0 skϕ (s) ds

)
· · ·

(∫ 1
0 sk+n−1ϕ (s) ds

) = 0

uniformly with respect to t ∈ [0, 1] and thus

lim
n→∞

Vn
X ,ϕ ( f ) (t) −

k−1∑
i=0

(∫ 1
0 siϕ (s) ds

)
· · ·

(∫ 1
0 si+n−1ϕ (s) ds

)
tn+i

i ! f (i) (0)

(∫ 1
0 skϕ (s) ds

)
· · ·

(∫ 1
0 sk+n−1ϕ (s) ds

)

=
{
0 ift �= 1,
1
k! f

(k) (0) ift = 1.

Proof Let i ∈ N ∪ {0} and define λi = ∫ 1
0 siϕ (s) ds. We have shown in Corollary 5

that λi+1 < λi , ∀i ∈ N ∪ {0}. We have Vϕ (ei ) = λi ei+1 and by induction on n,

Vn
ϕ (ei ) = λiλi+1 · · · λi+n−1en+i , ∀n ∈ N. Then

∥∥∥Vn
ϕ (ei+1)

∥∥∥∥∥∥Vn
ϕ (ei )

∥∥∥ =
(

λi+1···λi+n
λiλi+1···λi+n−1

)n =
(

λi+n
λi

)n ≤
(

λi+1
λi

)n
and thus lim

n→∞

∥∥∥Vn
ϕ (ei+1)

∥∥∥∥∥∥Vn
ϕ (ei )

∥∥∥ = 0. From Corollary 4, we have

lim
n→∞

Vn
X ,ϕ ( f ) −

k∑
i=0

1
i !Vn

ϕ (ei ) ⊗ f (i) (0)
∥∥Vn

ϕ (ek)
∥∥ = 0 uniformly,

which after simple calculations gives us the statement. The secondpart follows from the

first, the equality
Vn

ϕ (ek )∥∥∥Vn
ϕ (ek )

∥∥∥ (t) = tn+k , ∀t ∈ [0, 1], ∀n ∈ N, and the limit lim
n→∞ tn+k =

{
0 ift �= 1,
1 ift = 1.

�
In the case of the Volterra operator, that is, ϕ = e0 in Corollary 7, we get:

Corollary 8 Let VX : C ([0, 1] , X) → C ([0, 1] , X) be the Volterra operator

VX ( f ) (t) =
∫ t

0
f (s) ds = t

∫ 1

0
f (st) ds
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and k a natural number. Then for every function f : [0, 1] → X that is k-times
differentiable at 0, we have

lim
n→∞

[
(n + k)!

(
Vn
X ( f ) (t) −

k−1∑
i=0

tn+i f (i) (0)

(n + i)!

)
− tn+k f (k) (0)

]
= 0

uniformly with respect to t ∈ [0, 1] and thus

lim
n→∞ (n + k)!

(
Vn
X ( f ) (t) −

k−1∑
i=0

tn+i f (i) (0)

(n + i)!

)
=

{
0 ift �= 1,
f (k) (0) ift = 1.

5 The Asymptotic Evaluation for Multivariate Differentiable
Functions

To avoid repetition in this section, we consider k ≥ 2 a natural number,�k ⊂ [0,∞)k

a compact set such that 0 ∈ �k and 0 is an accumulation point of �k , and D ⊂ R
k

is an open set such that �k ⊂ D. Also K is a compact metric space and X is a real
Banach space.

Theorem 3 Let Vn : C (�k) → C (K ) be a sequence of positive linear operators with
the following properties:

(i) for every i = 1, . . . , k and every n ∈ N, Vn (pi ) �= 0.
(ii) for every i = 1, . . . , k, there exist ϕi ∈ C (�k) with ϕi (t) > 0, ∀t =

(t1, . . . , tk) ∈ �k − {0} and such that lim
n→∞

Vn(pi ·ϕi )‖Vn(pi )‖ = 0 uniformly. Then for

every function f : D → X differentiable at 0, we have

lim
n→∞

VX ,n ( f ) (t) − Vn (1) (t) f (0) −
k∑

i=1
Vn (pi ) (t) ∂ f

∂xi
(0)

k∑
i=1

‖Vn (pi )‖
= 0

uniformly with respect to t = (t1, . . . , tk) ∈ �k .

Proof Since f is differentiable at 0, we have

lim
(t1,...,tk )→(0,...,0)

f (t1, . . . , tk) − f (0, . . . , 0) −
k∑

i=1

∂ f
∂ti

(0) ti

k∑
i=1

|ti |
= 0.
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Thus the function g : D → X ,

g (t1, . . . , tk) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f (t1,...,tk )− f (0,...,0)−
k∑

i=1

∂ f
∂ti

(0)ti

k∑
i=1

|ti |
, (t1, . . . , tk) �= (0, . . . , 0)

0, (t1, . . . , tk) = (0, . . . , 0)

is continuous, and for all (t1, . . . , tk) ∈ D, the following relation holds:

f (t1, . . . , tk) = f (0, . . . , 0) +
k∑

i=1

∂ f

∂ti
(0) ti +

(
k∑

i=1

|ti |
)
g (t1, . . . , tk) .

In particular, for all (t1, . . . , tk) ∈ �k(⊂ [0,∞)k), the following relation holds:

f (t1, . . . , tk) = f (0, . . . , 0) +
k∑

i=1

∂ f

∂ti
(0) ti +

(
k∑

i=1

ti

)
g (t1, . . . , tk) .

This means that f = 1 ⊗ f (0) +
k∑

i=1
pi ⊗ ∂ f

∂ti
(0) +

k∑
i=1

pi ⊗ g in C (�k, X). Let

n ∈ N. Since all VX ,n are linear, we have

VX ,n ( f ) = VX ,n (1 ⊗ f (0)) +
k∑

i=1

VX ,n

(
pi ⊗ ∂ f

∂ti
(0)

)
+

k∑
i=1

VX ,n (pi ⊗ g)

= Vn (1) ⊗ f (0) +
k∑

i=1

Vn (pi ) ⊗ ∂ f

∂ti
(0) +

k∑
i=1

VX ,n (pi ⊗ g) ,

and thus

∥∥∥∥∥VX ,n ( f ) − Vn (1) ⊗ f (0) −
k∑

i=1

Vn (pi ) ⊗ ∂ f

∂ti
(0)

∥∥∥∥∥
=

∥∥∥∥∥
k∑

i=1

VX ,n (pi ⊗ g)

∥∥∥∥∥ ≤
k∑

i=1

∥∥VX ,n (pi ⊗ g)
∥∥ . (2)

For every i = 1, . . . , k, let Un,i : C (�k) → C (K ) be the operator defined by
Un,i ( f ) = Vn(pi · f )‖Vn(pi )‖ (see the hypothesis (i)). We have

∥∥Un,i (1)
∥∥ = 1, and by the

hypothesis (ii), lim
n→∞Un,i (ϕi ) = lim

n→∞
Vn(pi ·ϕi )‖Vn(pi )‖ = 0 uniformly; From Corollary 2,

for every f ∈ C (�k, X), lim
n→∞

[
UX ,n,i ( f ) −Un,i (1) ⊗ f (0)

] = 0 uniformly.

In particular, lim
n→∞

[
UX ,n,i (g) −Un,i (1) ⊗ g (0)

] = 0 uniformly; that is, since

g (0, . . . , 0) = 0, lim
n→∞UX ,n,i (g) = 0 uniformly. By Remark 1, this is equivalent
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to lim
n→∞

‖VX ,n(pi⊗g)‖
‖Vn(pi )‖ = 0. This means that ∀ε > 0, ∃nε ∈ N such that ∀n ≥ nε,

∀i = 1, . . . , k, we have ‖VX ,n(pi⊗g)‖
‖Vn(pi )‖ < ε. From (2) we deduce that ∀ε > 0, ∃nε ∈ N

such that ∀n ≥ nε we have

∥∥∥∥∥VX ,n ( f ) − Vn (1) ⊗ f (0) −
k∑

i=1

Vn (pi ) ⊗ ∂ f

∂ti
(0)

∥∥∥∥∥ < ε

k∑
i=1

‖Vn (pi )‖ ,

which ends the proof. �
Corollary 9 Let Vn : C (�k) → C (K ) be a sequence of positive linear operators with
the following properties:

(i) for every i = 1, . . . , k and every n ∈ N, Vn (pi ) �= 0.

(ii) for every i, j = 1, . . . , k, we have lim
n→∞

‖Vn(pi ·p j)‖
‖Vn(pi )‖ = 0.

Then for every function f : D → X differentiable at 0, we have

lim
n→∞

VX ,n ( f ) (t) − Vn (1) (t) f (0) −
k∑

i=1
Vn (pi ) (t) ∂ f

∂ti
(0)

k∑
i=1

‖Vn (pi )‖
= 0

uniformly with respect to t = (t1, . . . , tk) ∈ �k .

Proof Let us note that the function s : �k → [0,∞), s (t1, . . . , tk) = t1 + · · · + tk ,
is continuous and s (t1, . . . , tk) > 0, ∀ (t1, . . . , tk) ∈ �k − {(0, . . . , 0)}. Since s =
p1 + · · · + pk , for every i = 1, . . . , k, we have Vn (pi s) =

k∑
j=1

Vn
(
pi p j

)
, ∀n ∈ N,

and from (ii) lim
n→∞

Vn(pi s)‖Vn(pi )‖ = 0 uniformly. We apply Theorem 3. �

6 The Asymptotic Evaluation for Multivariate Twice Differentiable
Functions

As in the preceding section, k ≥ 2 is a natural number, �k ⊂ [0,∞)k a compact set
such that 0 ∈ �k and 0 is an accumulation point of �k , and D ⊂ R

k is an open set
such that �k ⊂ D. Also K is a compact metric space and X is a real Banach space.

Theorem 4 Let Vn : C (�k) → C (K ) be a sequence of positive linear operators with
the following properties:

(i) for every i = 1, . . . , k and every n ∈ N, Vn
(
p2i

) �= 0.
(ii) for every i = 1, . . . , k, there exist ϕi ∈ C (�k) with ϕi (t) > 0, ∀t =

(t1, . . . , tk) ∈ �k − {0} and such that lim
n→∞

Vn
(
p2i ·ϕi

)
∥∥Vn(p2i )∥∥ = 0 uniformly.
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Then for every function f : D → X twice differentiable at 0, we have

lim
n→∞

VX ,n( f )(t)−Vn(1)(t) f (0)−
k∑

i=1
Vn(pi )(t)

∂ f
∂ti

(0)− 1
2

k∑
i, j=1

Vn(pi p j)(t)
∂2 f

∂ti ∂t j
(0)

k∑
i=1

∥∥Vn(p2i )∥∥
= 0

uniformly with respect to t = (t1, . . . , tk) ∈ �k .

Proof Since f is twice differentiable at 0,

lim
(t1,...,tk )→(0,...,0)

f (t1, . . . , tk) − f (0, . . . , 0) −
k∑

i=1
ti

∂ f
∂ti

(0) − 1
2

k∑
i, j=1

ti t j
∂2 f

∂ti ∂t j
(0)

k∑
i=1

t2i

= 0

see [3, Théorème 5.6.3, page 78]. Thus the function g : �k → X ,

g (t1, . . . , tk) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f (t1,...,tk )− f (0,...,0)−
k∑

i=1
ti

∂ f
∂ti

(0)− 1
2

k∑
i, j=1

ti t j
∂2 f

∂ti ∂t j
(0)

k∑
i=1

t2i

, (t1, . . . , tk) �= (0, . . . , 0) ,

0, (t1, . . . , tk) = (0, . . . , 0) ,

is continuous, and for all (t1, . . . , tk) ∈ �k , the following relation holds:

f (t1, . . . , tk) = f (0, . . . , 0) +
k∑

i=1

ti
∂ f

∂ti
(0) + 1

2

k∑
i, j=1

ti t j
∂2 f

∂ti∂t j
(0)

+
(

k∑
i=1

t2i

)
g (t1, . . . , tk) .

This means that

f = 1 ⊗ f (0) +
k∑

i=1

pi ⊗ ∂ f

∂ti
(0) + 1

2

k∑
i, j=1

(
pi p j

) ⊗ ∂2 f

∂ti∂t j
(0)

+
k∑

i=1

p2i ⊗ g in C (�k, X) .

Let n ∈ N. Since all VX ,n are linear, we have

VX ,n ( f ) = VX ,n (1 ⊗ f (0)) +
k∑

i=1

VX ,n

(
pi ⊗ ∂ f

∂ti
(0)

)

+ 1

2

k∑
i, j=1

VX ,n

((
pi p j

) ⊗ ∂2 f

∂ti∂t j
(0)

)
+

k∑
i=1

VX ,n

(
p2i ⊗ g

)

= Vn (1) ⊗ f (0)+
k∑

i=1

Vn (pi ) ⊗ ∂ f

∂ti
(0) +1

2

k∑
i, j=1

Vn
(
pi p j

) ⊗ ∂2 f

∂ti∂t j
(0)

123



Constructive Approximation (2019) 50:293–321 307

+
k∑

i=1

VX ,n

(
p2i ⊗ g

)
in C (K , X),

and thus∥∥∥∥VX ,n ( f ) − Vn (1) ⊗ f (0) −
k∑

i=1
Vn (pi ) ⊗ ∂ f

∂ti
(0) − 1

2

k∑
i, j=1

Vn
(
pi p j

)⊗
∂2 f

∂ti ∂t j
(0)

∥∥∥∥

=
∥∥∥∥∥

k∑
i=1

VX ,n

(
p2i ⊗ g

)∥∥∥∥∥ ≤
k∑

i=1

∥∥∥VX ,n

(
p2i ⊗ g

)∥∥∥ . (3)

For every i = 1, . . . , k, let Un,i : C (�k) → C (K ) be the operator defined

by Un,i ( f ) = Vn
(
p2i · f

)
∥∥Vn(p2i )∥∥ . We have

∥∥Un,i (1)
∥∥ = 1 (see the hypothesis (i)) and

by the hypothesis (ii), lim
n→∞Un,i (ϕi ) = lim

n→∞
Vn

(
p2i ·ϕi

)
∥∥Vn(p2i )∥∥ = 0 uniformly. Since

g (0) = 0 from Theorem 1, we deduce that lim
n→∞Un,i (g) = 0 uniformly,

or lim
n→∞

Vn
(
p2i ·g

)
∥∥Vn(p2i )∥∥ = 0 uniformly. From Corollary 2, it follows that for every

f ∈ C (�k, X), we have lim
n→∞

[
UX ,n,i ( f ) −Un,i (1) ⊗ f (0)

] = 0 uniformly.

In particular, lim
n→∞

[
UX ,n,i (g) −Un,i (1) ⊗ g (0)

] = 0 uniformly; that is, since

g (0) = 0, lim
n→∞UX ,n,i (g) = 0 uniformly. By Remark 1, this is equivalent to

lim
n→∞

∥∥VX ,n
(
p2i ⊗g

)∥∥
‖Vn(pi )‖ = 0. This means that ∀ε > 0, ∃nε ∈ N such that ∀n ≥ nε,

∀i = 1, . . . , k, we have
∥∥Vn(p2i ⊗g

)∥∥∥∥Vn(p2i )∥∥ < ε. Then from (3), we deduce that ∀ε > 0,

∃nε ∈ N such that ∀n ≥ nε, we have

∥∥∥∥∥∥VX ,n ( f ) − Vn (1) ⊗ f (0) −
k∑

i=1

Vn (pi ) ⊗ ∂ f

∂ti
(0) − 1

2

k∑
i, j=1

Vn
(
pi p j

) ⊗ ∂2 f

∂ti ∂t j
(0)

∥∥∥∥∥∥

< ε

k∑
i=1

∥∥∥Vn
(
p2i

)∥∥∥ ,

which ends the proof. �
Corollary 10 Let Vn : C (�k) → C (K ) be a sequence of positive linear operators
with the following properties:

(i) for every i = 1, . . . , k and every n ∈ N, Vn
(
p2i

) �= 0;

(ii) for every i, j = 1, . . . , k, we have lim
n→∞

∥∥Vn(p2i p j
)∥∥∥∥Vn(p2i )∥∥ = 0.
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Then for every function f : D → X twice differentiable at 0, we have

lim
n→∞

VX ,n ( f ) (t) − Vn (1) (t) f (0) −
k∑

i=1
Vn (pi ) (t) ∂ f

∂ti
(0) − 1

2

k∑
i, j=1

Vn
(
pi p j

)
(t) ∂2 f

∂ti ∂t j
(0)

k∑
i=1

∥∥∥Vn
(
p2i

)∥∥∥
= 0

uniformly with respect to t = (t1, . . . , tk) ∈ �k .

Proof The function s : �k → [0,∞), s (t1, . . . , tk) = t1 +· · ·+ tk , is continuous and
s (t1, . . . , tk) > 0,∀ (t1, . . . , tk) ∈ �k−{(0, . . . , 0)}. Since s = p1+···+ pk , for every

i = 1, . . . , k, Vn
(
p2i s

) =
n∑
j=1

Vn
(
p2i p j

)
, ∀n ∈ N, and from (ii), lim

n→∞
Vn

(
p2i s

)
∥∥Vn(p2i )∥∥ = 0

uniformly. We apply Theorem 4. �

7 The First Asymptotic Evaluation for Multivariate Cesàro and
Volterra Type Operators

To avoid repetition in this section, we consider k ≥ 2 a natural number. A typical
element in R

k will be denoted either by (t1, . . . , tk), or t; if s, t ∈ R
k , we define

st = (s1t1, . . . , sktk). In the study of the Volterra type operators will appear the
function P : Rk → R, P (t) = t1 · · · tk ; we need the relations P (st) = P (s) P (t),
pi (st) = pi (s) pi (t), ∀s, t ∈ R

k , i = 1, . . . , k. Also X is a real Banach space.
�k ⊂ [0, 1]k is a compact Jordan measurable set such that λk (�k) > 0, λk is the
Lebesgue k-dimensional measure, 0 ∈ �k , 0 is an accumulation point of �k , and
D ⊂ R

k is an open set such that �k ⊂ D. We suppose moreover that ∀s, t ∈ �k , we
have st ∈ �k . For ϕ : �k → [0,∞) a continuous function such that

∫
�k

ϕ (s) ds > 0,
we define

α =
∫

�k

ϕ (s)ds;αi =
∫

�k

siϕ (s)ds, i = 1, . . . , k;

βi j =
∫

�k

si s jϕ (s)ds, i, j = 1, . . . , k.ds = ds1 · · · dsk .

Proposition 1 Let ϕ : �k → [0,∞) be a continuous function such that
∫
�k

ϕ (s)ds >

0. Then 0 <
∫
�k

si s jϕ (s)ds <
∫
�k

siϕ (s)ds for all i, j = 1, . . . , k.

Proof Let us suppose, for example, that
∫
�k

s1s2ϕ (s) ds ≥ ∫
�k

s1ϕ (s)ds, or
∫
�k

s1 (1 − s2) ϕ (s)ds ≤ 0. Since �k ⊂ [0, 1]k , we have s1 (1 − s2) ≥ 0, ∀s ∈ �k ,
and from s1 (1 − s2) ϕ (s) ≥ 0, we get

∫
�k

s1 (1 − s2) ϕ (s)ds = 0. Then it follows
that s1 (1 − s2) ϕ (s) = 0, for λk-almost all s ∈ �k ; i.e., ϕ (s) = 0 for λk-almost all
s ∈ �k . Then (L)

∫
�k

ϕ (s) ds = 0 (the Lebesgue integral). Since ϕ is continuous,
as is well known, (L)

∫
�k

ϕ (s)ds = ∫
�k

ϕ (s)ds and thus
∫
�k

ϕ (s)ds = 0, which is
impossible. �
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Corollary 11 Let CX ,ϕ : C (�k, X) → C (�k, X) be the multivariate Cesàro type
operator defined by

CX ,ϕ ( f ) (t) =
∫

�k

ϕ (s) f (st)ds.

Then for every function f : D → X differentiable at 0, we have

lim
n→∞

CnX ,ϕ ( f ) (t) − αn f (0)

Ln
=

∑
i∈A

ti
∂ f

∂ti
(0)

uniformly with respect to t ∈ �k , where L = max
1≤i≤k

αi , A = {1 ≤ i ≤ k | αi = L}.

Proof Let β ≥ 0. For every i = 1, . . . , k, by induction on n, we can prove that

Cnϕ
(
pβ
i

)
= λniβ p

β
i , ∀n ∈ N, where λiβ = ∫

�k
sβ
i ϕ (s)ds. In particular,

Cnϕ (1) = αn , Cnϕ (pi ) = αn
i pi , Cnϕ

(
p2i

)
= βn

ii p
2
i , ∀n ∈ N.

Let i, j = 1, . . . , k. By induction on n, we can prove that Cnϕ
(
pi p j

) = βn
i j · pi p j ,

∀n ∈ N. For all n ∈ N, we have

∥∥∥Cn
ϕ(pi ·p j)

∥∥∥∥∥∥Cn
ϕ(pi )

∥∥∥ =
(

βi j
αi

)n
, and since by Proposition 1,

0 <
βi j
αi

< 1, we obtain lim
n→∞

∥∥∥Cn
ϕ(pi ·p j)

∥∥∥∥∥∥Cn
ϕ(pi )

∥∥∥ = 0. By Corollary 4, we have

lim
n→∞

CnX ,ϕ ( f ) (t) − Cnϕ (1) (t) f (0) −
k∑

i=1
Cnϕ (pi ) (t) ∂ f

∂ti
(0)

k∑
i=1

∥∥Cnϕ (pi )
∥∥

= 0

uniformly with respect to t ∈ �k ; that is,

lim
n→∞

CnX ,ϕ ( f ) (t) − αn f (0) −
k∑

i=1
αn
i ti

∂ f
∂ti

(0)

k∑
i=1

αn
i

= 0

uniformly with respect to t ∈ �k . Let us observe that for every i /∈ A, 0 < αi < L ,

which gives us that lim
n→∞

αn
i

Ln = lim
n→∞

(
αi
L

)n = 0. Then lim
n→∞

k∑
i=1

αn
i

Ln = card (A) +
lim
n→∞

∑
i /∈A

(
αi
L

)n = card (A). We deduce that

123



310 Constructive Approximation (2019) 50:293–321

lim
n→∞

CnX ,ϕ ( f ) (t) − αn f (0) −
k∑

i=1
αn
i ti

∂ f
∂ti

(0)

Ln
= 0,

uniformly with respect to t ∈ �k . Since

k∑
i=1

∂ f

∂ti
(0) αn

i pi =
∑
i∈A

∂ f

∂ti
(0) αn

i pi +
∑
i /∈A

∂ f

∂ti
(0) αn

i pi

= Ln
∑
i∈A

∂ f

∂ti
(0) pi +

∑
i /∈A

∂ f

∂ti
(0) αn

i pi ,

and, as we already observed, lim
n→∞

αn
i

Ln = 0, ∀i /∈ A, we obtain the evaluation from the

statement. �
Corollary 12 Let CX : C (

[0, 1]k , X
) → C

(
[0, 1]k , X

)
be the multivariate Cesàro

operator defined by

CX ( f ) (t) =
∫
[0,1]k

f (st)ds.

Then for every function f : D → X differentiable at 0, we have

lim
n→∞ 2n

(CnX ( f ) (t) − f (0)
) =

k∑
i=1

ti
∂ f

∂ti
(0)

uniformly with respect to t ∈ [0, 1]k .

Proof With the same notation as in Corollary 11, α = ∫
[0,1]k 1ds = 1, αi =∫

[0,1]k sids = 1
2 = L and A = {1 ≤ i ≤ k | αi = L} = {1, . . . , k}. �

Corollary 13 Let Tk = {
(s1, . . . , sk) ∈ R

k | s1 ≥ 0, . . . , sk ≥ 0, s1 + · · · + sk ≤ 1
}

and CX : C (Tk, X) → C (Tk, X) be the multivariate Cesàro operator defined by

CX ( f ) (t) =
∫
Tk

f (st)ds.

Then for every function f : D → X differentiable at 0, we have

lim
n→∞ (k + 1)n

(
(k!)n CnX ( f ) (t) − f (0)

) =
k∑

i=1

ti
∂ f

∂ti
(0)

uniformly with respect to t ∈ Tk.
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Proof We will use that if Ta,k = {
(s1, . . . , sk) ∈ R

k | s1 ≥ 0, . . . , sk ≥ 0, s1 + · · ·
+sk ≤ a}, then λk

(
Ta,k

) = ak
k! , a > 0. With the same notation as in Corol-

lary 11, α = 1
k! , αi = α1 = ∫

Tk
s1ds = ∫ 1

0 s1ds1
∫
T1−s1,k−1

ds2 · · · dsk =
1

(k−1)!
∫ 1
0 s1 (1 − s1)k−1 ds1 = 1

(k+1)! = L and A = {i | αi = L} = {1, . . . , k}. �

Corollary 14 Let S+
k = {

(s1, . . . , sk) ∈ R
k | s1 ≥ 0, . . . , sk ≥ 0, s21 + · · · + s2k ≤ 1

}
and CX : C (Sk, X) → C (Sk, X) be the multivariate Cesàro operator defined by

CX ( f ) (t) =
∫
S+
k

f (st)ds.

Then for every function f : D → X differentiable at 0, we have

lim
n→∞

(
2k−1 (k + 1) �

( k+1
2

)
π

k−1
2

)n (
CnX ( f ) (t) −

(
π

k
2

2k�
( k
2 + 1

)
)n

f (0)

)

=
k∑

i=1

ti
∂ f

∂ti
(0) uniformly with respect to t ∈ S+

k .

� is the gamma function of Euler.

Proof We will use that if a > 0, Sa,k = {
(s1, . . . , sk) ∈ R

k | s21 + · · · + s2k ≤ a2
}
,

then λk
(
Sa,k

) = π
k
2 ak

�
(
k
2+1

) and thus λk
(
S+
k

) = 1
2k

λk
(
S1,k

) = π
k
2

2k�
(
k
2+1

) . With

the same notation as in Corollary 11, α = π
k
2

2k�
(
k
2+1

) , αi = α1 = ∫
S+
k
s1ds =

∫ 1
0 s1ds1

∫
s2≥0,...,sk≥0,s22+···+s2k≤1−s21

ds2 · · · dsk = π
k−1
2

2k−1�
(
k−1
2 +1

) ∫ 1
0 s1

(
1 − s21

) k−1
2 ds1

= π
k−1
2

2k−1(k+1)�
(
k−1
2 +1

) = L . Thus A = {i | αi = L} = {1, . . . , k}. Now apply Corol-

lary 11. �
Corollary 15 Let Pir = {

(x, y, z) ∈ R
3 | x + y ≤ 1, x ≥ 0, y ≥ 0, 0 ≤ z ≤ 1

}
and

CX : C (Pir , X) → C (Pir , X) be the trivariate Cesàro operator defined by

CX ( f ) (t1, t2, t3) =
∫∫∫

x+y≤1,x≥0,y≥0,0≤z≤1
f (t1x, t2y, t3z) dxdydz.

Then for every function f : D → X differentiable at (0, 0, 0), we have

lim
n→∞ 2n

(
2nCnX ( f ) (t1, t2, t3) − f (0, 0, 0)

) = t3
∂ f

∂t3
(0, 0, 0)

uniformly with respect to (t1, t2, t3) ∈ Pir .
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Proof By taking ϕ = 1 in Corollary 11, we have

α =
∫∫∫

Pir
1dxdydz = 1

2
, α1 =

∫∫∫
Pir

xdxdydz =
∫ 1

0
x (1 − x) dx = 1

6
,

α2 =
∫∫∫

Pir
ydxdydz = 1

6
, α3 =

∫∫∫
Pir

zdxdydz = 1

4
.

In this case max
1≤i≤3

αi = 1
4 = L , A = {

1 ≤ i ≤ 3 | αi = 1
4

} = {3}. We apply

Corollary 11. �

Corollary 16 Let  = {
(x, y, z) ∈ R

3 | x2 + y2 ≤ 1, x ≥ 0, y ≥ 0, 0 ≤ z ≤ 1
}
and

CX : C (, X) → C (, X) be the trivariate Cesàro operator defined by

CX ( f ) (t1, t2, t3) =
∫∫∫

x2+y2≤1,x≥0,y≥0,0≤z≤1
f (t1x, t2y, t3z) dxdydz.

Then for every function f : D → X differentiable at (0, 0, 0), we have

lim
n→∞ 2n

((
4

π

)n

CnX ( f ) (t1, t2, t3) − f (0, 0, 0)

)
= t3

∂ f

∂t3
(0, 0, 0)

uniformly with respect to (t1, t2, t3) ∈ .

Proof By taking ϕ = 1 in Corollary 11, we have α = ∫∫∫

1dxdydz = π

4 ,

α1 =
∫∫∫


xdxdydz =

∫∫
x2+y2≤1,x≥0,y≥0

xdxdy =
∫∫

[0,1]×[
0, π

2

] ρ2 cos θdρdθ = 1

3
,

α2 =
∫∫∫


ydxdydz = 1

3
, α3 =

∫∫∫

zdxdydz = 1

2

∫∫
x2+y2≤1,x≥0,y≥0

dxdy = π

8
.

In this case max
1≤i≤3

αi = π
8 = L , A = {

i | αi = π
8

} = {3}. We apply Corollary 11. �

Corollary 17 Let VX ,ϕ : C (�k, X) → C (�k, X) be the multivariate Volterra type
operator defined by

VX ,ϕ ( f ) (t) = P (t)
∫

�k

ϕ (s) f (st) ds.
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Suppose that for every i, j = 1, . . . , k, we have lim
n→∞

n−1∏
m=0

∫
�k

si s jϕ(s)Pm (s)ds

n−1∏
m=0

∫
�k

siϕ(s)Pm (s)ds
= 0. Then

for every function f : D → X differentiable at 0, we have

lim
n→∞

Vn
X ,ϕ ( f ) (t) − Pn (t) an f (0) − Pn (t)

k∑
i=1

bni ti
∂ f
∂ti

(0)

k∑
i=1

bni

= 0

uniformly with respect to t ∈ �k , where an =
n−1∏
m=0

∫
�k

ϕ (s) Pm (s) ds, bni =
n−1∏
m=0

∫
�k

siϕ (s) Pm (s) ds, i = 1, . . . , k.

Proof By induction (on n), we can prove that for every n ∈ N, we have

Vn
ϕ (1) = an P

n,Vn
ϕ (pi ) =

n−1∏
m=0

∫
�k

siϕ (s) Pm (s) ds = bni pi P
n,

Vn
ϕ

(
pi p j

) =
(

n−1∏
m=0

∫
�k

si s jϕ (s) Pm (s) ds

)
pi p j P

n, i, j = 1, . . . , k.

Let i, j = 1, . . . , k. By the hypothesis, lim
n→∞

∥∥∥Vn
ϕ(pi ·p j)

∥∥∥∥∥∥Vn
ϕ (pi )

∥∥∥ = 0. From Corollary 9 we

obtain

lim
n→∞

Vn
X ,ϕ ( f ) (t) − Vn

ϕ (1) (t) f (0) −
k∑

i=1
Vn

ϕ (pi ) (t) ∂ f
∂ti

(0)

k∑
i=1

∥∥Vn
ϕ (pi )

∥∥
= 0

uniformlywith respect to t ∈ �k . After some simple calculations we get the statement.
�

Corollary 18 Let VX : C (
[0, 1]k , X

) → C
(
[0, 1]k , X

)
be the multivariate Volterra

operator defined by

VX ( f ) (t) = P (t)
∫
[0,1]k

f (st) ds.
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Then for every function f : D → X differentiable at 0, we have

lim
n→∞

[
(n!)k (n + 1)

(
Vn
X ( f ) (t) − Pn (t)

(n!)k f (0)

)
− Pn (t)

k∑
i=1

ti
∂ f

∂ti
(0)

]
= 0

uniformly with respect to t ∈ [0, 1]k and thus

lim
n→∞ (n!)k (n + 1)

(
Vn
X ( f ) (t) − Pn (t)

(n!)k f (0)

)
=

⎧⎨
⎩
0 if (t1, . . . , tk) �= (1, . . . , 1) ,
k∑

i=1

∂ f
∂ti

(0) if (t1, . . . , tk) = (1, . . . , 1) .

Proof With the same notation as in Corollary 17, we have
∫
[0,1]k P

m (s) ds = 1
(m+1)k

,

an = 1
(n!)k and

∫
[0,1]k si P

m (s) ds = 1
(m+1)k−1(m+2)

, bni = 1
(n!)k (n+1)

. By Corollary 17

we deduce that

lim
n→∞

Vn
X ( f ) (t) − Pn(t)

(n!)k f (0) − Pn(t)
(n!)k (n+1)

k∑
i=1

ti
∂ f
∂ti

(0)

k
(n!)k (n+1)

= 0

uniformly with respect to t ∈ [0, 1]k ; that is,

lim
n→∞

[
(n!)k (n + 1)

(
Vn
X ( f ) (t) − Pn (t)

(n!)k f (0)

)
− Pn (t)

k∑
i=1

ti
∂ f

∂ti
(0)

]
= 0

uniformly with respect to t ∈ [0, 1]k . The second part is obvious. �

8 The Second Asymptotic Evaluation for Multivariate Cesàro and
Volterra Type Operators

Corollary 19 Let CX ,ϕ : C (�k, X) → C (�k, X) be the multivariate Cesàro type
operator defined by

CX ,ϕ ( f ) (t) =
∫

�k

ϕ (s) f (st)ds.

Then for every function f : D → X twice differentiable at 0, we have

lim
n→∞

CnX ,ϕ ( f ) (t) − Pn,2 ( f ) (t)

Mn
= 0
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uniformly with respect to t ∈ �k , where M = max
1≤i≤k

βi i and

Pn,2 ( f ) (t) = αn f (0) +
k∑

i=1

αn
i ti

∂ f

∂ti
(0) + 1

2

k∑
i, j=1

βn
i j ti t j

∂2 f

∂ti∂t j
(0) .

Proof We know from the proof of Corollary 11 that

Cnϕ (1) = αn , Cnϕ (pi ) = αn
i pi , Cnϕ

(
p2i

)
= βn

ii p
2
i , Cnϕ

(
p3i

)
= λni3 p

3
i ,∀n ∈ N,

where λi3 = ∫
�k

s3i ϕ (s)ds. For i, j = 1, . . . , k, we have

Cnϕ
(
pi p j

) = βn
i j · pi p j , Cnϕ

(
p2i p j

)
= θni j · p2i p j , ∀n ∈ N,

where θi j = ∫
�k

s2i s jϕ (s)ds. For every i, j = 1, . . . , k, by Proposition 1, 0 <

θi j
βi i

< 1, and thus lim
n→∞

∥∥∥Cn
ϕ

(
p2i p j

)∥∥∥∥∥∥Cn
ϕ

(
p2i

)∥∥∥ = lim
n→∞

(
θi j
βi i

)n = 0. Then, by Corollary 10,

lim
n→∞

Cn
X ,ϕ( f )(t)−Pn,2 f (t)

k∑
i=1

∥∥∥Cn
ϕ

(
p2i

)∥∥∥
= 0 uniformly with respect to t ∈ �k , where

Pn,2 f (t) = Cn
ϕ (1) (t) f (0) +

k∑
i=1

Cn
ϕ (pi ) (t)

∂ f

∂ti
(0) + 1

2

k∑
i, j=1

Cn
ϕ

(
pi p j

)
(t)

∂2 f

∂ti∂t j
(0)

= αn f (0) +
k∑

i=1

αn
i ti

∂ f

∂ti
(0) + 1

2

k∑
i, j=1

βn
i j ti t j

∂2 f

∂ti∂t j
(0) .

Thus

lim
n→∞

CnX ,ϕ ( f ) (t) − Pn,2 f (t)
k∑

i=1
βn
ii

= 0

uniformly with respect to t ∈ �k . This gives us the statement, because lim
n→∞

k∑
i=1

βn
ii

Mn =
card (I ), where I = {1 ≤ i ≤ k | βi i = M}. �
Corollary 20 Let CX : C (

[0, 1]k , X
) → C

(
[0, 1]k , X

)
be the multivariate Cesàro

operator defined by

CX ( f ) (t) =
∫
[0,1]k

f (st)ds.
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Then for every function f : D → X twice differentiable at 0, we have

lim
n→∞ 3n

(
CnX ( f ) (t) − f (0) − 1

2n

k∑
i=1

ti
∂ f

∂ti
(0)

)
= 1

2

k∑
i=1

t2i
∂2 f

∂t2i
(0)

uniformly with respect to t ∈ [0, 1]k .

Proof For ϕ = 1 in Corollary 19, we have lim
n→∞

Cn
X ( f )(t)−Pn,2( f )(t)

Mn = 0 uniformly with

respect to t ∈ [0, 1]k , where M = max
1≤i≤k

βi i and

Pn,2 ( f ) (t) = αn f (0) +
k∑

i=1

αn
i ti

∂ f

∂ti
(0) + 1

2

k∑
i, j=1

βn
i j ti t j

∂2 f

∂ti∂t j
(0) .

In this case α = ∫
[0,1]k 1ds = 1,

αi =
∫
[0,1]k

sids = 1

2
, βi i =

∫
[0,1]k

s2i ds = 1

3
;βi j =

∫
[0,1]k

si s jds = 1

4
, i �= j .

We obtain

Pn,2 ( f ) (t) = f (0) + 1

2n

k∑
i=1

ti
∂ f

∂ti
(0) + 1

2 · 3n
k∑

i=1

t2i
∂2 f

∂t2i
(0)

+ 1

2 · 4n
k∑

i, j=1,i �= j

ti t j
∂2 f

∂ti∂t j
(0) .

From these relations we easily obtain the statement. �
Corollary 21 Let Tk = {

(s1, . . . , sk) ∈ R
k | s1 ≥ 0, . . . , sk ≥ 0, s1 + · · · + sk ≤ 1

}
and CX : C (Tk, X) → C (Tk, X) be the multivariate Cesàro operator defined by

CX ( f ) (t) =
∫
Tk

f (st)ds.

Then for every function f : D → X twice differentiable at 0, we have

lim
n→∞

(k + 1)n (k + 2)n

2n

(
(k!)n CnX ,ϕ ( f ) (t) − f (0) − 1

(k + 1)n

k∑
i=1

ti
∂ f

∂ti
(0)

)

= 1

2

k∑
i=1

t2i
∂2 f

∂t2i
(0) uniformly with respect to t ∈ Tk .
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Proof For a > 0 let Ta,k = {
(s1, . . . , sk) ∈ R

k | s1 ≥ 0, . . . , sk ≥ 0, s1 + · · · + sk ≤
a
}
. We have shown in the proof of Corollary 13 that α = 1

k! , αi = 1
(k+1)! . In addition,

βi i = β11 =
∫
Tk
s21ds =

∫ 1

0
s21ds1

∫
T1−s1,k−1

ds2 · · · dsk

= 1

(k − 1)!
∫ 1

0
s21 (1 − s1)

k−1 ds1 = 2

(k + 2)! .

Also

βi j = β12 =
∫
Tk
s1s2ds =

∫ 1

0
s1ds1

∫
T1−s1,k−1

s2ds2 · · ·

dsk = 1

k!
∫ 1

0
s1 (1 − s1)

k ds1 = 1

(k + 2)! .

We have used that
∫
Ta,k−1

s2ds2 · · · dsk =
∫ a

0
s2ds2

∫
Ta−s2,k−2

ds3 · · · dsk

= 1

(k − 2)!
∫ a

0
s2 (a − s2)

k−2 = ak

k! .

From Corollary 19 we have

lim
n→∞

CnX ,ϕ ( f ) (t) − Pn,2 ( f ) (t)

Mn
= 0

uniformly with respect to t ∈ Tk , where M = max
1≤i≤k

βi i = 2
(k+2)! and

Pn,2 ( f ) (t) = αn f (0) +
k∑

i=1

αn
i ti

∂ f

∂ti
(0)

+ 1

2

k∑
i=1

βn
ii t

2
i
∂2 f

∂t2i
(0) + 1

2

k∑
i, j=1,i �= j

βn
i j ti t j

∂2 f

∂ti∂t j
(0) .

To finish the proof, let us note that

Pn,2 ( f ) (t) = 1

(k!)n
(
f (0) + A

(k + 1)n
+ 2n B

(k+1)n (k+2)n
+ C

(k+1)n (k+2)n

)
,

where A =
k∑

i=1
ti

∂ f
∂ti

(0), B = 1
2

k∑
i=1

t2i
∂2 f
∂t2i

(0), C = 1
2

k∑
i, j=1,i �= j

ti t j
∂2 f

∂ti ∂t j
(0). �
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Corollary 22 Let VX ,ϕ : C (�k, X) → C (�k, X) be the multivariate Volterra type
operator defined by

VX ,ϕ ( f ) (t) = P (t)
∫

�k

ϕ (s) f (st) ds.

Let us suppose that lim
n→∞

n−1∏
m=1

∫
�k

s2i s jϕ(s)Pm (s)ds

n−1∏
m=0

∫
�k

s2i ϕ(s)Pm (s)ds
= 0 for every i, j = 1, . . . , k. Then

for every function f : D → X twice differentiable at 0, we have

lim
n→∞

Vn
X ,ϕ ( f ) (t) − Pn (t) an f (0) − Pn (t)

k∑
i=1

bni ti
∂ f
∂ti

(0) − Pn(t)
2

k∑
i, j=1

cni j ti t j
∂2 f

∂ti ∂t j
(0)

k∑
i=1

(∫
�k

s2i ϕ (s) ds
) (∫

�k
s2i ϕ (s) P (s) ds

)
· · ·

(∫
�k

s2i ϕ (s) Pn−1 (s) ds
) = 0

uniformly with respect to t ∈ �k , where

an =
n−1∏
m=0

∫
�k

ϕ (s) Pm (s) ds,

bni =
n−1∏
m=0

∫
�k

siϕ (s) Pm (s) ds,

cni j =
n−1∏
m=0

∫
�k

si s jϕ (s) Pm (s) ds.

Proof Let β ≥ 0. For every i = 1, . . . , k, by induction on n, we have

Vn
ϕ

(
pβ
i

)
=

(
n−1∏
m=0

∫
�k

sβ
i ϕ (s) Pm (s)

)
pβ
i P

n,

Vn
ϕ

(
p2i p j

)
=

(
n−1∏
m=1

∫
�k

s2i s jϕ (s) Pm (s) ds

)
p2i p j P

n .

Let i, j = 1, . . . , k. For every n ∈ N, we have

∥∥Vn
ϕ

(
p2i p j

)∥∥∥∥Vn
ϕ

(
p2i

)∥∥ =

n−1∏
m=1

∫
�k

s2i s jϕ (s) Pm (s) ds

n−1∏
m=0

∫
�k

s2i ϕ (s) Pm (s) ds
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and by the hypothesis, lim
n→∞

∥∥∥Vn
ϕ

(
p2i p j

)∥∥∥∥∥∥Vn
ϕ

(
p2i

)∥∥∥ = 0 . From Corollary 10, for every function

f : D → R twice differentiable at 0, we have

lim
n→∞

Vn
X ,ϕ ( f ) (t) − Sn,2 ( f ) (t)

k∑
i=1

∥∥Vn
ϕ

(
p2i

)∥∥
= 0

uniformly with respect to t ∈ �k , where

Sn,2 ( f ) (t) := Vn
ϕ (1) (t) f (0)

+
k∑

i=1

Vn
ϕ (pi ) (t)

∂ f

∂ti
(0) + 1

2

k∑
i, j=1

Vn
ϕ

(
pi p j

)
(t)

∂2 f

∂ti∂t j
(0) .

By simple calculation, we deduce that

Sn,2 ( f ) (t) = Pn (t)

⎛
⎝an f (0) +

k∑
i=1

bni ti
∂ f

∂ti
(0) + 1

2

k∑
i, j=1

cni j ti t j
∂2 f

∂ti∂t j
(0)

⎞
⎠ ,

which completes the proof. �
Corollary 23 Let VX : C (

[0, 1]k , X
) → C

(
[0, 1]k , X

)
be the multivariate Cesàro

operator defined by

VX ( f ) (t) =
∫
[0,1]k

f (st) ds.

Then for every function f : D → X twice differentiable at 0, we have

lim
n→∞

[
(n!)k (n + 1) (n + 2)

(
Vn
X ( f ) (t) − Pn (t) f (0)

(n!)k − Pn (t) A

(n!)k (n + 1)

)
− Pn (t) B

2

]
= 0

uniformly with respect to t ∈ [0, 1]k , where A =
k∑

i=1
ti

∂ f
∂ti

(0), B =
k∑

i=1
t2i

∂2 f
∂t2i

(0) and

thus lim
n→∞ (n!)k (n + 1) (n + 2)

(
Vn ( f ) (t) − f (0) (t1t2···tk )n

(n!)k −
k∑

i=1

∂ f
∂ti

(0) ti (t1t2···tk )
(n+1)(n!)k

)

=
⎧⎨
⎩
0 if (t1, . . . , tk) �= (1, . . . , 1) ,

k∑
i, j=1

∂2 f
∂t2i

(0) if (t1, . . . , tk) = (1, . . . , 1) .
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Proof Take ϕ = 1 in Corollary 22. With the same notation, we have

∫
[0,1]k

Pm (s) ds = 1

(m + 1)k
, an = 1

(n!)k ,

∫
[0,1]k

si P
m (s) ds = 1

(m + 1)k−1 (m + 2)
, bni = 1

(n!)k (n + 1)
,

and similarly,

∫
[0,1]k

s2i P
m (s) ds = 1

(m + 1)k−1 (m + 3)
, cnii = 2

(n!)k (n + 1) (n + 2)
,

(∫
[0,1]k

s2i ds
)(∫

[0,1]k
s2i P (s) ds

)
· · ·

(∫
[0,1]k

s2i P
n−1 (s) ds

)
= 2

(n!)k (n + 1)
,

and
∫
[0,1]k

si s j P
m (s) ds = 1

(m + 1)k−2 (m + 2)2
; cni j = 1

(n!)k (n + 1)2
.

From Corollary 22, we have

lim
n→∞

Vn
X ( f ) (t) − Sn,2 ( f ) (t)

2k
(n!)k (n+1)(n+2)

= 0

uniformly with respect to t ∈ [0, 1]k , where

Sn,2 ( f ) (t) = Pn (t)

(n!)k
(
f (0) + A

n + 1
+ B

(n + 1) (n + 2)
+ C

(n + 1)2 (n + 2)2

)

and A =
k∑

i=1
ti

∂ f
∂ti

(0), B =
k∑

i=1
t2i

∂2 f
∂t2i

(0), C = 1
2

k∑
i, j=1,i �= j

ti t j
∂2 f

∂ti ∂t j
(0). From these

relations, we get the first part of the conclusion. The second part is obvious. �
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