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Abstract
This paper is devoted to discretization of integral norms of functions from a given
finite dimensional subspace. This problem is very important in applications, but there
is no systematic study of it. We present here a new technique, which works well for
discretization of the integral norm. It is a combination of probabilistic technique, based
on chaining, and results on the entropy numbers in the uniform norm.
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1 Introduction

Discretization is a very important step in making a continuous problem computation-
ally feasible. The problem of construction of good sets of points in a multidimensional
domain is a fundamental problem of mathematics and computational mathematics. A
prominent example of a classical discretization problem is a problem ofmetric entropy
(covering numbers, entropy numbers). Bounds for the entropy numbers of function
classes are important by themselves and also have important connections to other fun-
damental problems (see, for instance, [15, Ch. 3] and [3, Ch. 6]). Another prominent
example of a discretization problem is the problemof numerical integration.Numerical
integration in the mixed smoothness classes requires deep number theoretical results
for constructing optimal (in the sense of order) cubature formulas (see, for instance,
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[3, Ch. 8]). A typical approach to solving a continuous problem numerically—the
Galerkin method—suggests looking for an approximate solution from a given finite
dimensional subspace. A standard way to measure an error of approximation is an
appropriate Lq norm, 1 ≤ q ≤ ∞. Thus, the problem of discretization of the Lq

norms of functions from a given finite dimensional subspace arises in a very natural
way.

The main goal of this paper is to study the discretization problem for a finite
dimensional subspace XN of a Banach space X . We are interested in discretizing the
Lq , 1 ≤ q ≤ ∞, norm of elements of XN . We call such results the Marcinkiewicz-
type discretization theorems because the first result in this direction was obtained
by Marcinkiewicz (see [23, Ch.10, §7]). He proved the following inequalities for
the univariate trigonometric polynomials f of degree n: for 1 < q < ∞ there are
two positive constants C1(q) and C2(q) such that for the Lq norm ‖ f ‖q of these
polynomials, we have

C1(q)‖ f ‖qq ≤ 1

2n + 1

2n+1∑

ν=1

∣∣∣∣ f
(

2πν

2n + 1

)∣∣∣∣
q

≤ C2(q)‖ f ‖qq .

There are different settings and different ingredients that play important roles in this
problem. We now discuss these issues.

Marcinkiewicz Problem Let � be a compact subset of Rd with the probability mea-
sure μ. We say that a linear subspace XN of the Lq(�) := Lq(�,μ), 1 ≤ q < ∞,
admits theMarcinkiewicz-type discretization theoremwith parametersm andq if there
exist a set {ξν ∈ �, ν = 1, . . . ,m} and two positive constants C j (d, q), j = 1, 2,
such that for any f ∈ XN , we have

C1(d, q)‖ f ‖qq ≤ 1

m

m∑

ν=1

| f (ξν)|q ≤ C2(d, q)‖ f ‖qq . (1.1)

In the case q = ∞, we define L∞ as the space of continuous on � functions and
require

C1(d)‖ f ‖∞ ≤ max
1≤ν≤m

| f (ξν)| ≤ ‖ f ‖∞. (1.2)

We will also use a brief way to express the above property: the M(m, q) theorem
holds for a subspace XN or XN ∈ M(m, q).

Numerical Integration Problem In the case 1 ≤ q < ∞, the above problem can be
reformulated as a problem on numerical integration of special classes of functions.
Define a class |XN |q := {| f |q : f ∈ XN , ‖ f ‖q ≤ 1}, and consider the numerical
integration problem: for a given ε > 0, find m = m(N , q, ε) such that

inf
ξ1,...,ξm

sup
f ∈XN ,‖ f ‖q≤1

∣∣∣∣∣
1

m

m∑

ν=1

| f (ξν)|q − ‖ f ‖qq
∣∣∣∣∣ ≤ ε. (1.3)
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In (1.3) we limit our search for good numerical integration methods to cubature for-
mulas with equal weights 1/m. These special kinds of cubature formulas are called
Quasi-MonteCarlomethods. In numerical integration, general cubature formulas (with
weights) are also very important. In this case the above problem (1.3) is reformulated
as follows:

inf
ξ1,...,ξm ;λ1,...,λm

sup
f ∈XN ,‖ f ‖q≤1

∣∣∣∣∣

m∑

ν=1

λν | f (ξν)|q − ‖ f ‖qq
∣∣∣∣∣ ≤ ε. (1.4)

Thus, in this case we are optimizing both over the knots ξ1, . . . , ξm and over the
weights λ1, . . . , λm .

Marcinkiewicz Problem with Weights The above remark on numerical integration
encourages us to consider the following variant of the Marcinkiewicz problem. We
say that a linear subspace XN of the Lq(�), 1 ≤ q < ∞, admits the weighted
Marcinkiewicz-type discretization theorem with parameters m and q if there exist a
set of knots {ξν ∈ �}, a set of weights {λν}, ν = 1, . . . ,m, and two positive constants
C j (d, q), j = 1, 2, such that for any f ∈ XN , we have

C1(d, q)‖ f ‖qq ≤
m∑

ν=1

λν | f (ξν)|q ≤ C2(d, q)‖ f ‖qq . (1.5)

Then we also say that the Mw(m, q) theorem holds for a subspace XN or XN ∈
Mw(m, q). Obviously, XN ∈ M(m, q) implies that XN ∈ Mw(m, q).

Marcinkiewicz Problem with ε We write XN ∈ M(m, q, ε) if (1.1) holds with
C1(d, q) = 1 − ε and C2(d, q) = 1 + ε. Respectively, we write XN ∈ Mw(m, q, ε)

if (1.5) holds with C1(d, q) = 1 − ε and C2(d, q) = 1 + ε. We note that the most
powerful results are for M(m, q, 0), when the Lq norm of f ∈ XN is discretized
exactly by the formula with equal weights 1/m.

In this paperwemostly concentrate on theMarcinkiewicz problem and on its variant
with ε. Ourmain results are for q = 1.We nowmake some general remarks for the case
q = 2 that illustrate the problem. We discuss the case q = 2 in more detail in Sect. 6.
We describe the properties of the subspace XN in terms of a system UN := {ui }Ni=1 of
functions such that XN = span{ui , i = 1, . . . , N }. In the case XN ⊂ L2, we assume
that the system is orthonormal on � with respect to measure μ. In the case of real
functions we associate with x ∈ � the matrix G(x) := [ui (x)u j (x)]Ni, j=1. Clearly,
G(x) is a symmetric positive semi-definite matrix of rank 1. It is easy to see that for
a set of points ξ k ∈ �, k = 1, . . . ,m, and f = ∑N

i=1 biui , we have

m∑

k=1

λk f (ξ
k)2 −

∫

�

f (x)2dμ = bT
(

m∑

k=1

λkG(ξ k) − I

)
b,
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where b = (b1, . . . , bN )T is the column vector and I is the identity matrix. Therefore,
theMw(m, 2) problem is closely connected to a problem of approximation (represen-
tation) of the identity matrix I by an m-term approximant with respect to the system
{G(x)}x∈�. It is easy to understand that under our assumptions on the system UN ,
there exist a set of knots {ξ k}mk=1 and a set of weights {λk}mk=1, with m ≤ N 2, such
that

I =
m∑

k=1

λkG(ξ k),

and, therefore, we have for any XN ⊂ L2 that

XN ∈ Mw(N 2, 2, 0). (1.6)

However, we do not know a characterization of those XN for which XN ∈
M(N 2, 2, 0).

In the above formulations of the problemsweonly ask about existence of either good
{ξν} or good {ξν, λν}. Certainly, it is important to have either explicit constructions
of good {ξν} ({ξν, λν}) or deterministic ways to construct good {ξν} ({ξν, λν}). Thus,
the Marcinkiewicz-type problem can be split into the following four problems: Under
some assumptions on XN ,

(I) Find a condition on m for XN ∈ M(m, q);
(II) Find a condition on m for XN ∈ Mw(m, q);
(III) Find a condition on m such that there exists a deterministic construction of

{ξν}mν=1 satisfying (1.1) for all f ∈ XN ;
(IV) Find a condition on m such that there exists a deterministic construction of

{ξν, λν}mν=1 satisfying (1.5) for all f ∈ XN .

The main results of this paper address the problem (I) in the case q = 1. Our method
is probabilistic.

We impose the following assumptions on the system {ui }Ni=1 of real functions:

A. There exist α > 0, β, and K1 such that for all i ∈ [1, N ], we have

|ui (x) − ui (y)| ≤ K1N
β‖x − y‖α∞, x, y ∈ �. (1.7)

B. There exists a constant K2 such that ‖ui‖2∞ ≤ K2, i = 1, . . . , N .
C. Define XN := span(u1, . . . , uN ). There exist two constants K3 and K4 such
that the following Nikol’skii-type inequality holds for all f ∈ XN :

‖ f ‖∞ ≤ K3N
K4/p‖ f ‖p, p ∈ [2,∞). (1.8)

The main result of this paper is the following theorem (see Theorem 5.9).

Theorem 1.1 Suppose that a real orthonormal system {ui }Ni=1 satisfies conditions A,
B, and C. Then for large enough C1 = C(d, K1, K2, K3, K4,�, α, β), there exists a
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set of m ≤ C1N (log N )7/2 points ξ j ∈ �, j = 1, . . . ,m, such that for any f ∈ XN ,
we have

1

2
‖ f ‖1 ≤ 1

m

m∑

j=1

| f (ξ j )| ≤ 3

2
‖ f ‖1.

An important particular case for application of Theorem 1.1 is the case when XN

is a subspace of trigonometric polynomials. For a finite Q ⊂ Z
d , set

T (Q) :=
⎧
⎨

⎩ f : f (x) =
∑

k∈Q
cke

i(k,x)

⎫
⎬

⎭ .

The hyperbolic cross polynomials T (Qn) are of special interest (see, for instance,
[3]): let s ∈ Z

d+,

Qn := ∪‖s‖1≤nρ(s),

and

ρ(s) := {k = (k1, . . . , kd) ∈ Z
d+ : [2s j−1] ≤ |k j | < 2s j , j = 1, . . . , d},

where [a] denotes the integer part of a number a.
The following two theorems were proved in [21]. Denote by Td the d-dimensional

torus.

Theorem 1.2 Let d = 2. For any n ∈ N and large enough absolute constant C1, there
exists a set of m ≤ C1|Qn|n7/2 points ξ j ∈ T

2, j = 1, . . . ,m such that for any
f ∈ T (Qn), we have

C2‖ f ‖1 ≤ 1

m

m∑

j=1

| f (ξ j )| ≤ C3‖ f ‖1.

Theorem 1.3 For any d ∈ N and n ∈ N for large enough absolute constant C1(d),
there exists a set of m ≤ C1(d)|Qn|nd/2+3 points ξ j ∈ T

d , j = 1, . . . ,m such that
for any f ∈ T (Qn), we have

C2‖ f ‖1 ≤ 1

m

m∑

j=1

| f (ξ j )| ≤ C3‖ f ‖1.

Theorem 1.2 addresses the case d = 2, and Theorem 1.3 extends Theorem 1.2 to
the case of all d. We point out that for d = 2, Theorem 1.3 is weaker than Theorem
1.2. Theorem 1.1 gives Theorem 1.2 and improves Theorem 1.3 by replacing an extra
factor nd/2+3 by n7/2 in the bound for m. The technique for proving Theorem 1.1
presented in this paper is a development of a technique from [21]. It is a combination
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of probabilistic technique, based on chaining, and results on the entropy numbers.
We present this technique in the following way. In Sect. 2 we prove a conditional
theorem (Theorem 2.1), which provides XN ∈ M(m, 1) with an appropriate m under
conditions on the entropy numbers of the L1 ball X1

N := { f ∈ XN : ‖ f ‖1 ≤ 1}.
The proof of this conditional theorem is based on the chaining technique. In Sect. 3
we discuss new elements of a method that gives good upper bounds for the entropy
numbers of the unit L1 ball T (Q)1 in the L∞ norm. In Sect. 4 we present results on
the Marcinkiewicz-type theorems for the trigonometric polynomials. In Sect. 5 we
show how the technique developed in Sect. 3 for the trigonometric polynomials can
be generalized for subspaces XN satisfying conditions A, B, and C. The main results
of the paper are in Sects. 2–5. They are about discretization theorems in L1. In Sect. 6
we give some comments on the discretization theorems in L2. This case (the L2 case)
is much better understood than the L1 case, and it has nice connections to recent strong
results on submatrices of orthogonal matrices and on random matrices.

2 Conditional Theorem

We begin with the definition of the entropy numbers. Let X be a Banach space, and
let BX denote the unit ball of X with the center at 0. Denote by BX (y, r) a ball with
center y and radius r : {x ∈ X : ‖x − y‖ ≤ r}. For a compact set A and a positive
number ε, we define the covering number Nε(A) as follows:

Nε(A) := Nε(A, X) := min
{
n : ∃y1, . . . , yn, y j ∈ A : A ⊆ ∪n

j=1BX (y j , ε)
}

.

It is convenient to consider along with the entropy Hε(A, X) := log2 Nε(A, X) the
entropy numbers εk(A, X):

εk(A, X) := inf
{
ε : ∃y1, . . . , y2k ∈ A : A ⊆ ∪2k

j=1BX (y j , ε)
}

.

In our definition of Nε(A) and εk(A, X) we require y j ∈ A. In a standard definition
of Nε(A) and εk(A, X) this restriction is not imposed. However, it is well known (see
[15, p. 208]) that these characteristics may differ at most by a factor of 2.

Theorem 2.1 Suppose that a subspace XN satisfies the condition (B ≥ 1)

εk(X
1
N , L∞) ≤ B

{
N/k, k ≤ N ,

2−k/N , k ≥ N .

Then for large enough absolute constant C, there exists a set of

m ≤ CN B(log2(2N log2(8B)))2
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points ξ j ∈ �, j = 1, . . . ,m, such that for any f ∈ XN , we have

1

2
‖ f ‖1 ≤ 1

m

m∑

j=1

| f (ξ j )| ≤ 3

2
‖ f ‖1.

Proof Our proof uses the chaining technique and proceeds along the lines of the proof
of Theorem 3.1 from [21]. We use the following results from [21]. Lemma 2.1 is from
[2].

Lemma 2.1 Let {g j }mj=1 be independent random variables with Eg j = 0, j =
1, . . . ,m, which satisfy

‖g j‖1 ≤ 2, ‖g j‖∞ ≤ M, j = 1, . . . ,m.

Then for any η ∈ (0, 1), we have the following bound on the probability:

P

⎧
⎨

⎩

∣∣∣∣∣∣

m∑

j=1

g j

∣∣∣∣∣∣
≥ mη

⎫
⎬

⎭ < 2 exp

(
−mη2

8M

)
.

We now consider measurable functions f (x), x ∈ �. For 1 ≤ q < ∞, define

Lq
z ( f ) := 1

m

m∑

j=1

| f (x j )|q − ‖ f ‖qq , z := (x1, . . . , xm).

Letμ be a probabilistic measure on�. Denote byμm := μ×· · ·×μ the probabilistic
measure on �m := � × · · · × �. We will need the following inequality, which is a
corollary of Lemma 2.1 (see [21]).

Proposition 2.1 Let f j ∈ L1(�) be such that

‖ f j‖1 ≤ 1/2, j = 1, 2; ‖ f1 − f2‖∞ ≤ δ.

Then

μm
{
z :

∣∣∣L1
z( f1) − L1

z( f2)
∣∣∣ ≥ η

}
< 2 exp

(
−mη2

16δ

)
. (2.1)

We consider the case where X is C(�) the space of functions continuous on a
compact subset � of Rd with the norm

‖ f ‖∞ := sup
x∈�

| f (x)|.

Sometimes we write L∞ instead of C for the space of continuous functions. We use
the abbreviated notation

εn(W ) := εn(W , C).

123



344 Constructive Approximation (2018) 48:337–369

In our case,
W := {t ∈ XN : ‖t‖1 = 1/2}. (2.2)

Set

εk := B

2

{
N/k, k ≤ N ,

2−k/N , k ≥ N .

Specify η = 1/4. Define δ j := ε2 j , j = 0, 1, . . . , and consider minimal δ j -nets
N j ⊂ W of W in C(�). We use the notation N j := |N j |. Let J := J (N , B) be the
minimal j satisfying δ j ≤ 1/16. For j = 1, . . . , J , we define a mapping A j that
associates with a function f ∈ W a function A j ( f ) ∈ N j closest to f in the C norm.
Then, clearly,

‖ f − A j ( f )‖∞ ≤ δ j .

Weuse themappings A j , j = 1, . . . , J , to associatewith a function f ∈ W a sequence
(a chain) of functions f J , f J−1, . . . , f1 in the following way:

f J := AJ ( f ), f j := A j ( f j+1), j = J − 1, . . . , 1.

Let us find an upper bound for J , defined above. Our assumption that B ≥ 1 and the
definition of J imply that 2J ≥ N and

B2−2J−1/N ≥ 1/8. (2.3)

We derive from (2.3),

2J ≤ 2N log(8B), J ≤ log(2N log(8B)). (2.4)

Set

η j := 1

8J
, j = 1, . . . , J .

We now proceed to the estimate of μm{z : sup f ∈W |L1
z( f )| ≥ 1/4}. First of all,

by the following simple Proposition 2.2, the assumption δJ ≤ 1/16 implies that if
|L1

z( f )| ≥ 1/4, then |L1
z( f J )| ≥ 1/8.

Proposition 2.2 If ‖ f1 − f2‖∞ ≤ δ, then

∣∣∣L1
z( f1) − L1

z( f2)
∣∣∣ ≤ 2δ.

Rewriting

L1
z( f J ) = L1

z( f J ) − L1
z( f J−1) + · · · + L1

z( f2) − L1
z( f1) + L1

z( f1),
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we conclude that if |L1
z( f )| ≥ 1/4, then at least one of the following events occurs:

∣∣∣L1
z( f j ) − L1

z( f j−1)

∣∣∣ ≥ η j for some j ∈ (1, J ] or
∣∣∣L1

z( f1)
∣∣∣ ≥ η1.

Therefore,

μm

{
z : sup

f ∈W

∣∣∣L1
z( f )

∣∣∣ ≥ 1/4

}
≤ μm

{
z : sup

f ∈N1

∣∣∣L1
z( f )

∣∣∣ ≥ η1

}

+
∑

j∈(1,J ]

∑

f ∈N j

μm
{
z :

∣∣∣L1
z( f ) − L1

z(A j−1( f ))
∣∣∣ ≥ η j

}

≤ μm

{
z : sup

f ∈N1

∣∣∣L1
z( f )

∣∣∣ ≥ η1

}

+
∑

j∈(1,J ]
N j sup

f ∈W
μm

{
z :

∣∣∣L1
z( f ) − L1

z(A j−1( f ))
∣∣∣ ≥ η j

}
. (2.5)

Applying Proposition 2.1, we obtain

sup
f ∈W

μm
{
z :

∣∣∣L1
z( f ) − L1

z(A j−1( f ))
∣∣∣ ≥ η j

}
≤ 2 exp

(
− mη2j

16δ j−1

)
.

We nowmake further estimates for a specificm ≥ C1N BJ 2 with large enough C1.
For j such that 2 j ≤ N , we obtain from the definition of δ j ,

mη2j

δ j−1
≥ C1N BJ 22 j−1

32J 2BN
≥ C1

64
2 j .

By our choice of δ j = ε2 j , we get N j ≤ 22
j
< e2

j
and, therefore,

2N j exp

(
− mη2j

16δ j−1

)
≤ exp(−2 j ) (2.6)

for sufficiently large C1.
In the case 2 j ∈ (N , 2J ], we have

mη2j

δ j−1
≥ C1N BJ 2

32J 2B2−2 j−1/N
≥ C1

C ′ 2
j

and

2N j exp

(
− mη2j

16δ j−1

)
≤ exp(−2 j ) (2.7)

for sufficiently large C1.
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We now estimate μm{z : sup f ∈N1
|L1

z( f )| ≥ η1}. We use Lemma 2.1 with
g j (z) = | f (x j )| − ‖ f ‖1. To estimate ‖g j‖∞, we use that by our assumption,
ε1 := ε1(X1

N , C) ≤ BN . This means that there exist two points y1 and y2 in X1
N

such that X1
N ⊂ BC(y1, ε1) ∪ BC(y2, ε1). This implies that the 0 element belongs to

one of these balls, say, BC(y1, ε1), and, therefore, ‖y1‖∞ ≤ ε1. Next, (y1 + y2)/2
belongs to one of those balls, and, therefore, ‖y1 − y2‖∞ ≤ 2ε1. Thus, ‖yi‖∞ ≤ 3ε1,
i = 1, 2. This implies that for any f ∈ W , we have

‖ f ‖∞ ≤ 1

2
(4ε1) ≤ 2N B.

Then Lemma 2.1 gives

μm

{
z : sup

f ∈N1

∣∣∣L1
z( f )

∣∣∣ ≥ η1

}
≤ N1 exp

(
− mη21

CN B

)
≤ 1/4

for sufficiently large C1. Substituting the above estimates into (2.5), we obtain

μm

{
z : sup

f ∈W

∣∣∣L1
z( f )

∣∣∣ ≥ 1/4

}
< 1.

Therefore, there exists z0 = (ξ1, . . . , ξm) such that for any f ∈ W , we have

∣∣∣L1
z0( f )

∣∣∣ ≤ 1/4.

Taking into account that ‖ f ‖1 = 1/2, for f ∈ W we obtain the statement of Theorem
4.1 with C2 = 1/2, C3 = 3/2. �


In the above proof of Theorem 2.1, we specified η = 1/4. We can carry out that
proof for η ∈ (0, 1/4]. In this case we define J := J (N , B, η) to be the minimal
j satisfying δ j ≤ η/4 and set η j := η

2J , j = 1, . . . , J . Then under assumptions
η ≥ 2−N and log(2B) ≤ N , we obtain the following bound on J :

J ≤ 2 log(2N )

instead of (2.4). Further, we make the estimates for m ≥ C1N BJ 2η−2. This modifi-
cation of Theorem 2.1 gives the following version of Theorem 2.1.

Theorem 2.2 Suppose that a subspace XN satisfies the condition (B ≥ 1)

εk(X
1
N , L∞) ≤ B

{
N/k, k ≤ N ,

2−k/N , k ≥ N .

Then for large enough absolute constant C and for ε ∈ (0, 1), there exists a set of

m ≤ CN B(log(2N ))2ε−2
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points ξ j ∈ �, j = 1, . . . ,m, such that for any f ∈ XN , we have

(1 − ε)‖ f ‖1 ≤ 1

m

m∑

j=1

| f (ξ j )| ≤ (1 + ε)‖ f ‖1.

3 The Entropy Numbers of T (Q)1

We use the technique developed in [20], which is based on the following two-step
strategy. In the first step, we obtain bounds of the best m-term approximations with
respect to a dictionary. In the second step, we use general inequalities relating the
entropy numbers to the bestm-term approximations. We begin the detailed discussion
with the second step of the above strategy. Let D = {g j }Nj=1 be a system of elements
of cardinality |D| = N in a Banach space X . Consider best m-term approximations
of f with respect to D,

σm( f ,D)X := inf
{c j };�:|�|=m

‖ f −
∑

j∈�

c j g j‖.

For a function class F , set

σm(F,D)X := sup
f ∈F

σm( f ,D)X .

The following results are from [16].

Theorem 3.1 Let a compact F ⊂ X be such that there exists a system D, |D| = N,
and a number r > 0 such that

σm(F,D)X ≤ m−r , m ≤ N .

Then for k ≤ N,

εk(F, X) ≤ C(r)

(
log(2N/k)

k

)r

. (3.1)

Remark 3.1 Suppose that a compact F fromTheorem3.1 belongs to an N -dimensional
subspace XN := span(D). Then in addition to (3.1) we have for k ≥ N ,

εk(F, X) ≤ C(r)N−r2−k/(2N ). (3.2)

We point out that Remark 3.1 is formulated for a complex Banach space X . In the
case of real Banach space X , we have 2−k/N instead of 2−k/(2N ) in (3.2).

We begin with the best m-term approximation of elements of T (Q)1 := { f ∈
T (Q) : ‖ f ‖1 ≤ 1} in L2 with respect to a special dictionaryD1 := D1(Q) associated
with Q. Define

DQ(x) :=
∑

k∈Q
ei(k,x), wQ := |Q|−1/2DQ .
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Then ‖wQ‖2 = 1. Consider the dictionary

D1 := D1(Q) := {wQ(x − y)}y∈Td .

For a dictionary D in a Hilbert space H with an inner product 〈·, ·〉, denote by A1(D)

the closure of the convex hull of the dictionary D. In the case of a complex Hilbert
space, define the symmetrized dictionary Ds := {eiθg : g ∈ D, θ ∈ [0, 2π ]}. We use
the weak orthogonal greedy algorithm (weak orthogonal matching pursuit) form-term
approximation.We recall the corresponding definition and formulate the known result,
which we will use.

WeakOrthogonal GreedyAlgorithm (WOGA)Let t ∈ (0, 1] be a weakness param-
eter. We define f o,t0 := f . Then for each m ≥ 1, we inductively define:

(1) ϕ
o,t
m ∈ D is any element satisfying

∣∣〈 f o,tm−1, ϕ
o,t
m

〉∣∣ ≥ t sup
g∈D

∣∣〈 f o,tm−1, g
〉∣∣ .

(2) Let Ht
m := span(ϕo,t

1 , . . . , ϕ
o,t
m ), and let PHt

m
( f ) denote an operator of orthogonal

projection onto Ht
m . Define

Go,t
m ( f ,D) := PHt

m
( f ).

(3) Define the residual after mth iteration of the algorithm

f o,tm := f − Go,t
m ( f ,D).

In the case t = 1, the WOGA is called the orthogonal greedy algorithm (OGA). The
following theorem is from [12] (see also [15, Ch. 2]).

Theorem 3.2 Let D be an arbitrary dictionary in H. Then for each f ∈ A1(Ds), we
have ∥∥ f − Go,t

m ( f ,D)
∥∥ ≤ (1 + mt2)−1/2. (3.3)

We now prove the following assertion.

Theorem 3.3 For any finite Q ⊂ Z
d , we have

σm(T (Q)1,D1(Q))2 ≤ (|Q|/m)−1/2.

Proof Each f ∈ T (Q)1 has a representation

f (x) = (2π)−d
∫

Td
f (y)DQ(x − y)dy = |Q|1/2(2π)−d

∫

Td
f (y)wQ(x − y)dy.

(3.4)
It follows from ‖ f ‖1 ≤ 1 and (3.4) that f |Q|−1/2 ∈ A1((D1)s). Therefore, by
Theorem 3.2 we get the required bound. �
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Dictionary D1(Q) is an infinite dictionary. In our further applications we would
like to have a finite dictionary. Here we consider Q ⊂ �(N) with N = (2n, . . . , 2n),
where �(N) := [−N1, N1] × · · · × [−Nd , Nd ], N = (N1, . . . , Nd). We write

P(N) := {
n = (n1, . . . , nd), n j—are nonnegative integers,

0 ≤ n j ≤ 2N j , j = 1, . . . , d
}
,

and set

xn :=
(

2πn1
2N1 + 1

, . . . ,
2πnd

2Nd + 1

)
, n ∈ P(N).

Then for any t ∈ T (�(N)) (see [23, Ch. 10]),

ϑ(N)−1
∑

n∈P(N)

∣∣t(xn)
∣∣ ≤ C(d)‖t‖1, (3.5)

where ϑ(N) := ∏d
j=1(2N j + 1) = dim T (�(N)). Specify N := (2n, . . . , 2n) and

define

D2 := D2(Q) := {
wQ(x − xn)

}
n∈P(N)

.

Then, clearly, |D2(Q)| = ϑ(N) = (2n+1 + 1)d . Also, it is well known that for
f ∈ T (�(N)), one has

f (x) = ϑ(N)−1
∑

n∈P(N)

f (xn)D�(N)(x − xn), (3.6)

and, therefore, for f ∈ T (Q), Q ⊂ �(N),

f (x) = ϑ(N)−1
∑

n∈P(N)

f (xn)DQ(x − xn). (3.7)

In particular, (3.5) and (3.7) imply that there exists C(d) > 0 such that for every f ∈
T (Q)1, we have C(d)−1|Q|−1/2 f ∈ A1((D2)s). Therefore, we have the following
version of Theorem 3.3.

Theorem 3.4 For any Q ⊂ �(N) with N = (2n, . . . , 2n), we have

σm(T (Q)1,D2(Q))2 ≤ C(d)(|Q|/m)−1/2

and |D2(Q)| ≤ C ′(d)2nd .

Theorems 3.3 and 3.4 provide bounds for the best m-term approximation of ele-
ments of T (Q)1 in the L2 norm. For applications in the Marcinkiewicz discretization
theorem, we need bounds for the entropy numbers in the L∞ norm. As we explained
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above, we derive appropriate bounds for the entropy numbers from the corresponding
bounds on the best m-term approximations with the help of Theorem 3.1. Thus we
need bounds on the best m-term approximations in the L∞ norm. We proceed in the
same way as in [20] and use the following dictionary:

DT := DT (Q) := {ei(k,x) : k ∈ Q}.

In order to obtain the bounds in the L∞ norm, we use the following theorem from
[20], which in turn is a corollary of the corresponding result from [18].

Theorem 3.5 Let � ⊂ �(N), with N j = 2n, j = 1, . . . , d. There exist constructive
greedy-type approximation methods G∞

m (·) that provide m-term polynomials with
respect to T d with the following properties:
for f ∈ T (�), we have G∞

m ( f ) ∈ T (�) and

∥∥ f − G∞
m ( f )

∥∥∞ ≤ C3(d)(m̄)−1/2n1/2|�|1/2‖ f ‖2, m̄ := max(m, 1).

We now consider a dictionary

D3 := D3(Q) := D2(Q) ∪ DT (Q).

Lemma 3.1 For any Q ⊂ �(N), with N = (2n, . . . , 2n), we have

σm

(
T (Q)1,D3(Q)

)

∞ ≤ C(d)n1/2|Q|/m

and |D3(Q)| ≤ C ′(d)2nd .

Proof Take f ∈ T (Q)1. Applying first Theorem 3.4 with [m/2] and then applying
Theorem 3.5 with � = Q and [m/2], we obtain

σm( f ,D3(Q))∞ � n1/2(|Q|/m)‖ f ‖1,

which proves the lemma. �

Lemma 3.1, Theorem 3.1, and Remark 3.1 imply the following result on the entropy

numbers.

Theorem 3.6 For any Q ⊂ �(N) with N = (2n, . . . , 2n), we have

εk(T (Q)1, L∞) �
{
n3/2(|Q|/k), k ≤ 2|Q|,
n3/22−k/(2|Q|), k ≥ 2|Q|.

The above theorem with Q = Qn can be used for proving the upper bounds for
the entropy numbers of the mixed smoothness classes. We define the classes that were
studied in [19,20].
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Let s = (s1, . . . , sd) be a vector with non-negative integer coordinates (s ∈ Z
d+)

and, as above,

ρ(s) :=
{
k = (k1, . . . , kd) ∈ Z

d+ : [2s j−1] ≤ |k j | < 2s j , j = 1, . . . , d
}

,

where [a] denotes the integer part of a number a. Define for f ∈ L1,

δs( f ) :=
∑

k∈ρ(s)

f̂ (k)ei(k,x)

and

fl :=
∑

‖s‖1=l

δs( f ), l ∈ N0, N0 := N ∪ {0}.

Consider the class (see [19])

Wa,b
q :=

{
f : ‖ fl‖q ≤ 2−al(l̄)(d−1)b

}
, l̄ := max(l, 1).

Define

‖ f ‖Wa,b
q

:= sup
l

‖ fl‖q2al(l̄)−(d−1)b.

Here is one more class, which is equivalent toWa,b
q in the case 1 < q < ∞ (see [19]).

Consider a class W̄a,b
q , which consists of functions f with a representation

f =
∞∑

n=1

tn, tn ∈ T (Qn), ‖tn‖q ≤ 2−annb(d−1).

In the case q = 1, classes W̄a,b
1 are wider than Wa,b

1 .
The following theorem was proved in [20].

Theorem 3.7 Let d = 2 and a > 1. Then

εk

(
Wa,b

1 , L∞
)

� εk

(
W̄a,b

1 , L∞
)

� k−a(log k)a+b+1/2. (3.8)

We prove here an extension of Theorem 3.7 to all d. We note that this extension—
Theorem 3.8—is weaker than Theorem 3.7 in the case d = 2.

Theorem 3.8 Let a > 1. Then

εk

(
Wa,b

1 , L∞
)

≤ εk

(
W̄a,b

1 , L∞
)

� k−a(log k)(a+b)(d−1)+3/2. (3.9)
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Proof The proof is based on the following general result from [20]. Let X and Y be
two Banach spaces. We discuss a problem of estimating the entropy numbers of an
approximation class, defined in the space X , in the norm of the space Y . Suppose a
sequence of finite dimensional subspaces Xn ⊂ X , n = 1, . . . , is given. Define the
following class:

W̄a,b
X := W̄a,b

X {Xn} :=
{
f ∈ X : f =

∞∑

n=1

fn, fn ∈ Xn,

‖ fn‖X ≤ 2−annb, n = 1, 2, . . .
}

.

In particular,

W̄a,b
q = W̄a,b(d−1)

Lq
{T (Qn)}.

Set Dn := dim Xn , and assume that for the unit balls B(Xn) := { f ∈ Xn : ‖ f ‖X ≤ 1},
we have the following upper bounds for the entropy numbers: there exist real α and
non-negative γ and β ∈ (0, 1] such that

εk(B(Xn),Y ) � nα

{
(Dn/(k + 1))β(log(4Dn/(k + 1)))γ , k ≤ 2Dn,

2−k/(2Dn), k ≥ 2Dn .
(3.10)

Theorem 3.9 Assume Dn � 2nnc, c ≥ 0, a > β, and subspaces {Xn} satisfy (3.10).
Then

εk

(
W̄a,b

X {Xn},Y
)

� k−a(log k)ac+b+α. (3.11)

Theorem 3.6 with Q = Qn yields (3.10) with α = 3/2, β = 1, γ = 0. It remains
to apply Theorem 3.9 with Xn = T (Qn) and c = d − 1. �


4 TheMarcinkiewicz-Type Discretization Theorem for the
Trigonometric Polynomials

In this section we improve Theorem 1.3 from the introduction, which was proved in
[21], in two directions. We prove the Marcinkiewicz-type discretization theorem for
T (Q) instead of T (Qn) for a rather general Q. Also, even in a more general situation,
we improve the bound from m ≤ C1(d)|Qn|nd/2+3 to m ≤ C1(d)|Qn|n7/2 similar to
that in Theorem 1.2. Our proof is based on the conditional Theorems 2.1 and 3.6.

We now prove the Marcinkiewicz-type theorem for discretization of the L1 norm
of polynomials from T (Q).

Theorem 4.1 There is a large enough constant C1(d) with the property: For any Q ⊂
�(N) with N = (2n, . . . , 2n), there exists a set of m ≤ C1(d)|Q|n7/2 points ξ j ∈ T

d ,
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j = 1, . . . ,m such that for any f ∈ T (Q), we have

C2‖ f ‖1 ≤ 1

m

m∑

j=1

| f (ξ j )| ≤ C3‖ f ‖1.

Proof We use Theorem 3.6, proved in Sect. 3. We formulate it here for the reader’s
convenience. We stress that Theorem 4.2 is the only result on the specific features of
the T (Q) that we use in the proof of Theorem 4.1.

Theorem 4.2 For any Q ⊂ �(N) with N = (2n, . . . , 2n), we have

εk(T (Q)1, L∞) ≤ C4(d)

{
n3/2(|Q|/k), k ≤ 2|Q|,
n3/22−k/(2|Q|), k ≥ 2|Q|.

We now apply Theorem 2.1 with N = 2|Q| and B = C4(d)n3/2. This completes the
proof. �


In the above proof of Theorem 2.1, we specified η = 1/4. If instead we take
η ∈ [2−2nd/2

, 1/4], define J (η) to be the minimal j satisfying δ j ≤ η/4, and set

η j := η

4nd
,

then we obtain the following generalization of Theorem 4.1.

Theorem 4.3 For any Q ⊂ �(N) with N = (2n, . . . , 2n) and ε ∈ [21−2nd/2
, 1/2],

there exists a set of m ≤ C1(d)|Q|n7/2ε−2 points ξ j ∈ T
d , j = 1, . . . ,m, such that

for any f ∈ T (Q), we have

(1 − ε)‖ f ‖1 ≤ 1

m

m∑

j=1

| f (ξ j )| ≤ (1 + ε)‖ f ‖1.

5 SomeMarcinkiewicz-Type Discretization Theorems for General
Polynomials

In this section we extend the technique developed in Sects. 3 and 4 to the case of a
general orthonormal system {ui }Ni=1 on a compact � ⊂ R

d , which satisfies conditions
A,B, andC from the introduction. Letμ be a probabilitymeasure on�. It is convenient
for us to assume that ui , i = 1, . . . , N , are real functions and set

〈u, v〉 :=
∫

�

u(x)v(x)dμ, ‖u‖2 := 〈u, u〉1/2.

Denote the unit L p ball in XN by

X p
N := { f ∈ XN : ‖ f ‖p ≤ 1}.
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We begin with the estimates of the entropy numbers εk(X1
N , L∞). We use the same

strategy as above: first we get bounds on m-term approximations for X1
N in L2 with

respect to a dictionaryD1, secondwe obtain bounds onm-term approximations for X2
N

in L∞ with respect to a dictionaryD2, third we get bounds onm-term approximations
for X1

N in L∞ with respect to a dictionaryD3 = D1∪D2. Then we apply Theorem 3.1
to obtain the entropy numbers estimates.

5.1 Sparse Approximation in L2

We begin with the study of m-term approximations with respect to the dictionary

D0 := {gy(x)}y∈�, gy(x) := (K2N )−1/2DN (·, y),

where

DN (x, y) :=
N∑

i=1

ui (x)ui (y)

is the Dirichlet kernel for the system {ui }Ni=1. Then assumption B guarantees that
‖gy‖2 ≤ 1. We now use the following greedy-type algorithm (see [15, p. 82]).

Relaxed Greedy Algorithm (RGA) Let f r0 := f and Gr
0( f ) := 0. For a function

h from a real Hilbert space H , let g = g(h) denote the function from D± := {±g :
g ∈ D} that maximizes 〈h, g〉 (we assume the existence of such an element). Then,
for each m ≥ 1, we inductively define

Gr
m( f ) :=

(
1 − 1

m

)
Gr

m−1( f ) + 1

m
g

(
f rm−1

)
, f rm := f − Gr

m( f ).

We use the following known result (see [15, p. 90]).

Theorem 5.1 For the relaxed greedy algorithm, we have, for each f ∈ A1(D±), the
estimate

∥∥ f − Gr
m( f )

∥∥ ≤ 2√
m

, m ≥ 1.

In our application of the above RGA, the Hilbert space H is the XN with the L2
norm and the dictionary D is the D0 defined above. Using the representation

f (x) =
∫

�

f (y)DN (x, y)dμ(y), (5.1)

we see that the search for g ∈ (D0)± maximizing 〈h, g〉, h ∈ XN , is equivalent to
the search for y ∈ � maximizing |h(y)|. A function h from XN is continuous on the
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compact �, and therefore such a maximizing ymax exists. This means that we can run
the RGA.

For f ∈ X1
N , by representation (5.1) we obtain

f (x) =
∫

�

f (y)DN (x, y)dμ(y)

= (K2N )1/2
∫

�

f (y)(K2N )−1/2DN (x, y)dμ(y).

Therefore,

(K2N )−1/2 f ∈ A1((D0)±) or f ∈ A1((D0)±, (K2N )1/2).

Applying Theorem 5.1, we get the following result.

Theorem 5.2 For the relaxed greedy algorithm with respect to D0, we have, for each
f ∈ X1

N , the estimate

‖ f − Gr
m( f )‖ ≤ 2(K2N/m)1/2, m ≥ 1.

We need an analog of Theorem 5.2 for a discrete version of D0. Take a δ > 0 and let
{y1, . . . , yM }, M = M(δ), be a δ-net of points in �, which means that for any y ∈ �,
there is a y j from the net such that ‖y − y j‖∞ ≤ δ. It is clear that

M(δ) ≤ (C(�)/δ)d . (5.2)

It follows from the definition of the RGA that Gr
m( f ) ∈ A1(D±) provided f ∈

A1(D±). Let f ∈ X1
N , and let Gr

m( f ) be its approximant from Theorem 5.2. Then

Gr
m( f ) =

m∑

k=1

ckgy(k),
m∑

k=1

|ck | ≤ (K2N )1/2. (5.3)

For each y(k), find y j(k) from the net such that ‖y(k) − y j(k)‖∞ ≤ δ. Then, using
assumption A, we get

‖gy(k) − gy j(k)‖22 = (K2N )−1
N∑

i=1

|ui (y(k)) − ui (y j(k))|2

≤ (K2N )−1K 2
1 N

1+2βδ2α. (5.4)

Let

tm( f ) :=
m∑

k=1

ckgy j(k) .
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Combining (5.3) and (5.4), we obtain

‖Gr
m( f ) − tm( f )‖2 ≤ (K2N )1/2K−1/2

2 K1N
βδα. (5.5)

Choosing δ such that

δα
0 = K−1

1 N−1/2−β,

we obtain by Theorem 5.2 and (5.5) that for f ∈ X1
N ,

‖ f − tm( f )‖2 ≤ 3(K2N/m)1/2, m ≤ N . (5.6)

Inequality (5.2) gives
M(δ0) ≤ C(K1,�, d)Nc(α,β,d). (5.7)

Define the dictionary D1 as follows:

D1 := {gy j }Mj=1.

Relation (5.6) gives us the following theorem.

Theorem 5.3 We have

σm(X1
N ,D1)2 ≤ 3(K2N/m)1/2.

5.2 Sparse Approximation in L∞

In this subsection we study m-term approximations of f ∈ X2
N in the L∞ norm with

respect to the following dictionary:

D2 := {±gi }Ni=1, gi := ui K
−1/2
2 .

Then by property B, for all p we have ‖gi‖p ≤ 1.
In this subsection we use greedy algorithms in Banach spaces. We recall some

notation from the theory of greedy approximation in Banach spaces. The reader can
find a systematic presentation of this theory in [15, Chapter 6]. Let X be a Banach
spacewith norm ‖·‖.We say that a set of elements (functions)D from X is a dictionary
if each g ∈ D has norm less than or equal to one (‖g‖ ≤ 1) and the closure of spanD
coincides with X . We note that in [13] we required in the definition of a dictionary
normalization of its elements (‖g‖ = 1). However, it is pointed out in [14] that it is
easy to check that the arguments from [13] work under assumption ‖g‖ ≤ 1 instead of
‖g‖ = 1. In applications it is more convenient for us to have an assumption ‖g‖ ≤ 1
than normalization of a dictionary.

For an element f ∈ X , we denote by Ff a norming (peak) functional for f :

‖Ff ‖ = 1, Ff ( f ) = ‖ f ‖.
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The existence of such a functional is guaranteed by the Hahn–Banach theorem.
We proceed to the incremental greedy algorithm (see [14] and [15, Chapter 6]). Let

ε = {εn}∞n=1, εn > 0, n = 1, 2, . . . . For a Banach space X and a dictionary D, define
the following algorithm IA(ε) := IA(ε, X ,D).

Incremental Algorithmwith Schedule ε (IA(ε, X,D)) Set f i,ε0 := f andGi,ε
0 := 0.

Then, for each m ≥ 1, we have the following inductive definition:

(1) ϕ
i,ε
m ∈ D is any element satisfying

Ff i,εm−1

(
ϕi,ε
m − f

)
≥ −εm .

(2) Define

Gi,ε
m := (1 − 1/m)Gi,ε

m−1 + ϕi,ε
m /m.

(3) Let

f i,εm := f − Gi,ε
m .

We consider here approximation in uniformly smooth Banach spaces. For a
Banach space X , we define the modulus of smoothness

ρ(u) := sup
‖x‖=‖y‖=1

(
1

2
(‖x + uy‖ + ‖x − uy‖) − 1

)
.

The uniformly smooth Banach space is the one with the property

lim
u→0

ρ(u)/u = 0.

It is well known (see for instance [4, Lemma B.1]) that in the case X = L p,
1 ≤ p < ∞, we have

ρ(u) ≤
{
u p/p if 1 ≤ p ≤ 2,

(p − 1)u2/2 if 2 ≤ p < ∞.
(5.8)

Denote by A1(D) := A1(D)(X) the closure in X of the convex hull of D. In order
to be able to run the IA(ε) for all iterations, we need the existence of an element
ϕ
i,ε
m ∈ D at the step (1) of the algorithm for all m. It is clear that the following condi-

tion guarantees such existence (see [17]).

Condition B We say that for a given dictionary D, an element f satisfies Condition
B if for all F ∈ X∗, we have

F( f ) ≤ sup
g∈D

F(g).
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It is well known (see, for instance, [15, p. 343]) that any f ∈ A1(D) satisfies
Condition B. For completeness we give this simple argument here. Take any f ∈
A1(D). Then for any ε > 0, there exist gε

1, . . . , g
ε
N ∈ D and numbers aε

1, . . . , a
ε
N

such that aε
i > 0, aε

1 + · · · + aε
N = 1 and

‖ f −
N∑

i=1

aε
i g

ε
i ‖ ≤ ε.

Thus

F( f ) ≤ ‖F‖ε + F

(
N∑

i=1

aε
i g

ε
i

)
≤ ε‖F‖ + sup

g∈D
F(g),

which proves Condition B.
We note that Condition B is equivalent to the property f ∈ A1(D). Indeed, as

we showed above, the property f ∈ A1(D) implies Condition B. Let us show that
Condition B implies that f ∈ A1(D). Assuming the contrary, f /∈ A1(D), by the
separation theorem for convex bodies, we find F ∈ X∗ such that

F( f ) > sup
φ∈A1(D)

F(φ) ≥ sup
g∈D

F(g),

which contradicts Condition B.
We formulate results on the IA(ε) in termsofConditionBbecause in the applications

it is easy to check Condition B.

Theorem 5.4 Let X be a uniformly smooth Banach space with modulus of smoothness
ρ(u) ≤ γ uq , 1 < q ≤ 2. Define

εn := βγ 1/qn−1/p, p = q

q − 1
, n = 1, 2, . . . .

Then, for every f satisfying Condition B, we have

‖ f i,εm ‖ ≤ C(β)γ 1/qm−1/p, m = 1, 2 . . . .

In the case f ∈ A1(D), this theorem is proved in [14] (see also [15, Chapter 6]).
As we mentioned above, Condition B is equivalent to f ∈ A1(D).

For f ∈ XN , write f = ∑N
i=1 ci gi and define

‖ f ‖A :=
N∑

i=1

|ci |.
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Theorem 5.5 Assume that XN satisfies C. For any t ∈ XN the IA(ε, XN ∩ L p,D2)
with an appropriate p and schedule ε applied to f := t/‖t‖A yields, after m itera-
tions, anm-term polynomial Gm(t) := Gi,ε

m ( f )‖t‖A with the following approximation
property:

‖t − Gm(t)‖∞ ≤ Cm−1/2(ln N )1/2‖t‖A, ‖Gm(t)‖A = ‖t‖A,

with a constant C = C(K3, K4).

Proof It is clear that it is sufficient to prove Theorem 5.5 for t ∈ XN with ‖t‖A = 1.
Then t ∈ A1(D2)(XN ∩ L p) for all p ∈ [2,∞). Applying the IA(ε) to f with respect
to D2, we obtain by Theorem 5.4 after m iterations

∥∥∥∥∥∥
t −

∑

j∈�

a j

m
g j

∥∥∥∥∥∥
p

≤ Cγ 1/2m−1/2,
∑

j∈�

a j = m, (5.9)

where
∑

j∈�

a j
m g j is the G

i,ε
m (t). By (5.8) we find γ ≤ p/2. Next, by the Nikol’skii

inequality from assumption C we get from (5.9),

∥∥∥∥∥∥
t −

∑

j∈�

a j

m
g j

∥∥∥∥∥∥∞
≤ K3N

K4/p‖t −
∑

j∈�

a j

m
g j‖p ≤ Cp1/2K3N

K4/pm−1/2.

Choosing p � ln N , we obtain the bound desired in Theorem 5.5. �

Using the following simple relations:

‖ f ‖22 =
∥∥∥∥∥

N∑

i=1

ci gi

∥∥∥∥∥

2

2

=
∥∥∥∥∥K

−1/2
2

N∑

i=1

ciui

∥∥∥∥∥

2

2

= K−1
2

N∑

i=1

|ci |2,

N∑

i=1

|ci | ≤ N 1/2

(
N∑

i=1

|ci |2
)1/2

= (K2N )1/2‖ f ‖2,

we obtain from Theorem 5.5 the following estimates.

Theorem 5.6 We have

σm

(
X2
N ,D2

)

∞ � (N/m)1/2(ln N )1/2.

Combining Theorems 5.3 and 5.6, we obtain:

Theorem 5.7 We have

σm

(
X1
N ,D1 ∪ D2

)

∞ � (N/m)(ln N )1/2.
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5.3 The Entropy Numbers

By our construction (see (5.7)), we obtain

|D1 ∪ D2| � Nc(α,β,d).

Theorem 5.7, Theorem 3.1, and Remark 3.1 (its version for the real case) imply the
following result on the entropy numbers.

Theorem 5.8 Suppose that a real orthonormal system {ui }Ni=1 satisfies conditions A,
B, and C. Then we have

εk(X
1
N , L∞) �

{
(log N )3/2(N/k), k ≤ N ,

(log N )3/22−k/N , k ≥ N .

In the same way that Theorem 4.1 was derived from Theorems 3.6 and 2.1, the
following Theorem 5.9 can be derived from Theorems 5.8 and 2.1.

Theorem 5.9 Suppose that a real orthonormal system {ui }Ni=1 satisfies conditions A,
B, andC. Then there exists a set of m ≤ C1N (log N )7/2 points ξ j ∈ �, j = 1, . . . ,m,
C1 = C(d, K1, K2, K3, K4,�, α, β), such that for any f ∈ XN , we have

C2‖ f ‖1 ≤ 1

m

m∑

j=1

| f (ξ j )| ≤ C3‖ f ‖1.

The following analog of Theorem 4.3 holds for general systems.

Theorem 5.10 Suppose that a real orthonormal system {ui }Ni=1 satisfies conditionsA,
B, and C. Then for ε ∈ [2−N , 1/2], there exists a set of m ≤ C1N (log N )7/2ε−2

points ξ j ∈ �, j = 1, . . . ,m, C1 = C(d, K1, K2, K3, K4,�, α, β), such that for
any f ∈ XN , we have

(1 − ε)‖ f ‖1 ≤ 1

m

m∑

j=1

| f (ξ j )| ≤ (1 + ε)‖ f ‖1.

6 TheMarcinkiewicz-Type Theorem in L2

In this section we discuss some known results directly connected to the discretization
theorems and demonstrate how recent results on randommatrices can be used to obtain
theMarcinkiewicz-type theorem in L2.We begin with the formulation of the Rudelson
result from [11]. In [11], it is formulated in terms of submatrices of an orthogonal
matrix. We reformulate it in our notation. Let �M = {x j }Mj=1 be a discrete set with

the probability measure μ(x j ) = 1/M , j = 1, . . . , M . Assume that {ui (x)}Ni=1 is a
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real orthonormal on �M system satisfying the following condition: for all j ,

N∑

i=1

ui (x
j )2 ≤ Nt2, (6.1)

with some t ≥ 1. Then for every ε > 0, there exists a set J ⊂ {1, . . . , M} of indices
with cardinality

m := |J | ≤ C
t2

ε2
N log

Nt2

ε2
(6.2)

such that for any f = ∑N
i=1 ciui , we have

(1 − ε)‖ f ‖22 ≤ 1

m

∑

j∈J

f (x j )2 ≤ (1 + ε)‖ f ‖22.

In particular, the above result implies that for any orthonormal system {ui }Ni=1 on�M ,
satisfying (6.1), we have

UN := span(u1, . . . , uN ) ∈ M(m, 2) provided m ≥ CN log N ,

with large enough C . We note that (6.1) is satisfied if the system {ui }Ni=1 is uniformly
bounded: ‖ui‖∞ ≤ t , i = 1, . . . , N .

We first demonstrate how the Bernstein-type concentration inequality for matrices
can be used to prove an analog of Rudelson’s result above for a general�. Our proof is
based on a different idea than Rudelson’s proof. Let {ui }Ni=1 be an orthonormal system
on �, satisfying the condition

D. For x ∈ �, we have

w(x) :=
N∑

i=1

ui (x)
2 = N . (6.3)

With each x ∈ � we associate the matrix G(x) := [ui (x)u j (x)]Ni, j=1. Clearly, G(x)

is a symmetric matrix. We will also need the matrix G(x)2. We have for the (k, l)
element of G(x)2,

(G(x)2)k,l =
N∑

j=1

uk(x)u j (x)u j (x)ul(x) = w(x)uk(x)ul(x).

Therefore,
G(x)2 = w(x)G(x) and ‖G(x)‖ = w(x). (6.4)

We use the following Bernstein-type concentration inequality for matrices (see [22]).
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Theorem 6.1 Let {Tk}nk=1 be a sequence of independent random symmetric N × N
matrices. Assume that each Tk satisfies:

E(Tk) = 0 and ‖Tk‖ ≤ R almost surely.

Then for all η ≥ 0,

P

{∥∥∥∥∥

n∑

k=1

Tk

∥∥∥∥∥ ≥ η

}
≤ N exp

(
− η2

2σ 2 + (2/3)Rη

)
,

where σ 2 := ∥∥∑n
k=1 E(T 2

k )
∥∥.

Wenowconsider a sequenceTk := G(xk)−I , k = 1, . . . ,m of independent random
symmetric matrices. Orthonormality of the system {ui }Ni=1 implies that E(Tk) = 0 for
all k. Relation (6.4) and our assumption D imply for all k,

‖Tk‖ ≤ ‖G(xk)‖ + 1 = N + 1 =: R. (6.5)

Define T (x) := G(x) − I , and, using (6.3) and (6.4), we can write

T (x)2 = G(x)2 − 2G(x) + I = (N − 2)G(x) + I .

Then by the orthonormality of the system {ui }Ni=1, we get

E(T (x)2) = (N − 1)I ,

and, therefore, we obtain
‖E(T 2)‖ ≤ N − 1. (6.6)

Thus, by Theorem 6.1 we obtain for η ≤ 1,

P

{∥∥∥∥∥

n∑

k=1

(G(xk) − I )

∥∥∥∥∥ ≥ nη

}
≤ N exp

(
−nη2

cN

)
, (6.7)

with an absolute constant c.
For a set of points ξ k ∈ �, k = 1, . . . ,m, and f = ∑N

i=1 biui , we have

1

m

m∑

k=1

f (ξ k)2 −
∫

�

f (x)2dμ = bT
(
1

m

m∑

k=1

G(ξ k) − I

)
b,

where b = (b1, . . . , bN )T is the column vector. Therefore,

∣∣∣∣∣
1

m

m∑

k=1

f (ξ k)2 −
∫

�

f (x)2dμ

∣∣∣∣∣ ≤
∥∥∥∥∥
1

m

m∑

k=1

G(ξ k) − I

∥∥∥∥∥ ‖b‖22. (6.8)
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We now make m = [CNη−2 log N ] with large enough C . Then, using (6.7) with
n = m, we get the corresponding probability< 1. Thus, we have proved the following
theorem.

Theorem 6.2 Let {ui }Ni=1 be an orthonormal system, satisfying condition D. Then for
every ε ∈ (0, 1), there exists a set {ξ j }mj=1 ⊂ � with

m ≤ Cε−2N log N

such that for any f = ∑N
i=1 ciui , we have

(1 − ε)‖ f ‖22 ≤ 1

m

m∑

j=1

f (ξ j )2 ≤ (1 + ε)‖ f ‖22.

Wenote thatTheorem6.2 treats a special case,when (6.3) insteadof (6.1) is satisfied.
This is the case, for instance, for the trigonometric and the Walsh systems. In this spe-
cial case, Theorem 6.2 ismore general and slightly stronger than the Rudelson theorem
discussed in the beginning of this section. Theorem 6.2 yields the Marcinkiewicz-type
discretization theorem for a general domain � instead of a discrete set �M . Also, in
Theorem 6.2 we have an extra log N instead of log Nt2

ε2
in (6.2).

In [21] we showed how to derive the following result from the recent paper by
Nitzan et al. [10], which in turn is based on the paper of Marcus et al. [9].

Theorem 6.3 Let �M = {x j }Mj=1 be a discrete set with the probability measure

μ(x j ) = 1/M, j = 1, . . . , M. Assume that {ui (x)}Ni=1 is an orthonormal on �M

system (real or complex). Assume in addition that this system has the following prop-
erty: for all j = 1, . . . , M, we have

N∑

i=1

∣∣∣ui (x j )

∣∣∣
2 = N . (6.9)

Then there is an absolute constant C1 such that there exists a subset J ⊂ {1, 2, . . . , M}
with the property: m := |J | ≤ C1N, and for any f ∈ XN := span{u1, . . . , uN }, we
have

C2‖ f ‖22 ≤ 1

m

∑

j∈J

| f (x j )|2 ≤ C3‖ f ‖22,

where C2 and C3 are absolute positive constants.

Theorem 6.3 is based on the following lemma from [10].

Lemma 6.1 Let a system of vectors v1, . . . , vM fromC
N have the following properties:

for all w ∈ C
N ,

M∑

j=1

|〈w, v j 〉|2 = ‖w‖22 (6.10)
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and
‖v j‖22 = N/M, j = 1, . . . , M . (6.11)

Then there is a subset J ⊂ {1, 2, . . . , M} such that for all w ∈ C
N ,

c0‖w‖22 ≤ M

N

∑

j∈J

|〈w, v j 〉|2 ≤ C0‖w‖22, (6.12)

where c0 and C0 are some absolute positive constants.

The above Lemma 6.1 was derived from the following theorem from Marcus et al.
[9], which solved the Kadison–Singer problem.

Theorem 6.4 Let a system of vectors v1, . . . , vM from C
N have the following proper-

ties: for all w ∈ C
N , we have

M∑

j=1

|〈w, v j 〉|2 = ‖w‖22

and ‖v j‖22 ≤ ε.
Then there exists a partition of {1, . . . , M} into two sets S1 and S2, such that for

each i = 1, 2, we have for all w ∈ C
N ,

∑

j∈Si
|〈w, v j 〉|2 ≤ (1 + √

2ε)2

2
‖w‖22.

Second, we demonstrate a method of proof that is different from the above proof of
Theorem 6.2 and that allows us to replace condition D by the following more general
condition E that is similar to (6.1).

E. There exists a constant t such that

w(x) :=
N∑

i=1

ui (x)
2 ≤ Nt2. (6.13)

The new proof method uses the fact that the matrix G(x) is a semi-definite matrix.
It is based on the following result (see [22, Theorem 1.1]) on random matrices.

Theorem 6.5 Consider a finite sequence {Tk}mk=1 of independent, random, self-adjoint
matrices with dimension N. Assume that each random matrix is semi-positive and
satisfies

λmax(Tk) ≤ R almost surely.
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Define

smin := λmin

(
m∑

k=1

E(Tk)

)
and smax := λmax

(
m∑

k=1

E(Tk)

)
.

Then

P

{
λmin

(
m∑

k=1

Tk

)
≤ (1 − η)smin

}
≤ N

(
e−η

(1 − η)1−η

)smin/R

for η ∈ [0, 1), and for η ≥ 0,

P

{
λmax

(
m∑

k=1

Tk

)
≥ (1 + η)smax

}
≤ N

(
eη

(1 + η)1+η

)smax/R

.

As above, we consider the matrix G(x) := [ui (x)u j (x)]Ni, j=1. Clearly, G(x) is

a symmetric matrix. Consider a sequence Tk := G(xk), k = 1, . . . ,m, of indepen-
dent random symmetric matrices. It is easy to see that Tk are semi-positive definite.
Orthonormality of the system {ui }Ni=1 implies that E(Tk) = I for all k. This implies
that smin = smax = m. Relation (6.4) shows that we can take R := Nt2. Then Theorem
6.5 implies for η ≤ 1,

P

{∥∥∥∥∥

m∑

k=1

(G(xk) − I )

∥∥∥∥∥ ≥ mη

}
≤ N exp

(
− mη2

ct2N

)
, (6.14)

with an absolute constant c (we can take c = 2/ ln 2).Using inequality (6.8),whichwas
used in the above proof of Theorem 6.2, we derive from here the following theorem.

Theorem 6.6 Let {ui }Ni=1 be an orthonormal system satisfying condition E. Then for
every ε > 0, there exists a set {ξ j }mj=1 ⊂ � with

m ≤ C
t2

ε2
N log N

such that for any f = ∑N
i=1 ciui , we have

(1 − ε)‖ f ‖22 ≤ 1

m

m∑

j=1

f (ξ j )2 ≤ (1 + ε)‖ f ‖22.

We note that Theorem 6.6 is more general and slightly stronger than the Rudel-
son theorem discussed in the beginning of this section. Theorem 6.6 yields the
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Marcinkiewicz-type discretization theorem for a general domain � instead of a dis-
crete set �M . Also, in Theorem 6.6 we have an extra log N instead of log Nt2

ε2
in (6.2).

The Marcinkiewicz Theorem and Sparse Approximation Our above argument, in
particular, inequality (6.8), shows that the Marcinkiewicz-type discretization theorem
in L2 is closely related to approximation of the identity matrix I by anm-term approx-
imant of the form 1

m

∑m
k=1 G(ξ k) in the operator norm from �N2 to �N2 (spectral norm).

Therefore, we can consider the following sparse approximation problem. Assume that
the system {ui (x)}Ni=1 satisfies (6.13), and consider the dictionary

Du := {gx }x∈�, gx := G(x)(Nt2)−1, G(x) := [ui (x)u j (x)]Ni, j=1.

Then condition (6.13) guarantees that for the Frobenius norm of gx , we have

‖gx‖F = w(x)(Nt2)−1 ≤ 1. (6.15)

Our assumption on the orthonormality of the system {ui }Ni=1 gives

I =
∫

�

G(x)dμ = Nt2
∫

�

gxdμ,

which implies that I ∈ A1(Du, Nt2). Consider the Hilbert space H to be a closure
in the Frobenius norm of span{gx , x ∈ �} with the inner product generated by the
Frobenius norm: for A = [ai, j ]Ni, j=1 and B = [bi, j ]Ni, j=1,

〈A, B〉 =
N∑

i, j=1

ai, j bi, j

in the case of real matrices (with standard modification in the case of complex matri-
ces).

By Theorem 5.1, for any m ∈ N, we constructively find (by the RGA) points
ξ1, . . . , ξm such that

∥∥∥∥∥
1

m

m∑

k=1

G(ξ k) − I

∥∥∥∥∥
F

≤ 2Nt2m−1/2. (6.16)

Taking into account the inequality ‖A‖ ≤ ‖A‖F , we get from here and from (6.8) the
following proposition.

Proposition 6.1 Let {ui }Ni=1 be an orthonormal system satisfying condition E. Then
there exists a constructive set {ξ j }mj=1 ⊂ � with m ≤ C(t)N 2 such that for any
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f = ∑N
i=1 ciui , we have

1

2
‖ f ‖22 ≤ 1

m

m∑

j=1

f (ξ j )2 ≤ 3

2
‖ f ‖22.

The Marcinkiewicz-Type Theorem with Weights We now comment on a recent
breakthrough result by Batson et al. [1]. We formulate their result in our notation. Let,
as above,�M = {x j }Mj=1 be a discrete set with the probability measureμ(x j ) = 1/M ,

j = 1, . . . , M . Assume that {ui (x)}Ni=1 is a real orthonormal system on �M . Then for
any number d > 1, there exist a set of weightsw j ≥ 0 such that |{ j : w j �= 0}| ≤ dN ,
so that for any f ∈ span{u1, . . . , uN }, we have

‖ f ‖22 ≤
M∑

j=1

w j f (x
j )2 ≤ d + 1 + 2

√
d

d + 1 − 2
√
d

‖ f ‖22.

The proof of this result is based on a delicate study of the m-term approximation
of the identity matrix I with respect to the system D := {G(x)}x∈�, G(x) :=
[ui (x)u j (x)]Ni, j=1 in the spectral norm. The authors of [1] control the change of the
maximal and minimal eigenvalues of a matrix, when they add a rank one matrix of the
form wG(x). Their proof provides an algorithm for construction of the weights {w j }.
In particular, this implies that

XN (�M ) ∈ Mw(m, 2, ε) provided m ≥ CNε−2,

with large enough C .
In this section we discussed two deep general results—the Rudelson theorem and

theBatson–Spielman–Srivastava theorem—about submatrices of orthogonalmatrices,
which provide very good Marcinkiewicz-type discretization theorems for L2. The
reader can find corresponding historical comments in [11]. We also refer the reader
to the paper [5] for a discussion of a recent outstanding progress on the theory of
submatrices of orthogonal matrices.

7 Discussion

As we pointed out in the introduction, the main results of this paper are on the
Marcinkiewicz-type discretization theorems in L1. We proved here that under cer-
tain conditions on an N -dimensional subspace XN we can get the corresponding
discretization theorems with the number of knots m � N (log N )7/2. This result is
only off from the ideal case m = N by the (log N )7/2 factor. We point out that the
situation with the discretization theorems in the L∞ case is fundamentally different. A
very nontrivial surprising negative result was proved for the L∞ case (see [6–8]). The
authors proved that the necessary condition for T (Qn) ∈ M(m,∞) is m � |Qn|1+c

with absolute constant c > 0.
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Theorem 2.1 shows that an important ingredient of our technique of proving the
Marcinkiewicz discretization theorems in L1 consists in the study of the entropy
numbers εk(X1

N , L∞). We note that this problem is a nontrivial problem by itself. We
demonstrate this on the example of the trigonometric polynomials. It is proved in [20]
that in the case d = 2, we have

εk(T (Qn)1, L∞) � n1/2
{

(|Qn|/k) log(4|Qn|/k), k ≤ 2|Qn|,
2−k/(2|Qn |), k ≥ 2|Qn|. (7.1)

The proof of estimate (7.1) is based on an analog of the small ball inequality for the
trigonometric system proved for thewavelet type system (see [20]). This proof uses the
two-dimensional specific features of the problem, and we do not know how to extend
this proof to the case d > 2. Estimate (7.1) is used in the proof of the upper bounds in
Theorem 3.7. Theorem 3.7 gives the right order of the entropy numbers for the classes
of mixed smoothness. This means that (7.1) cannot be substantially improved. The
trivial inequality log(4|Qn|/k) � n shows that (7.1) implies the following estimate:

εk(T (Qn)1, L∞) � n3/2
{ |Qn|/k, k ≤ 2|Qn|,
2−k/(2|Qn |), k ≥ 2|Qn|. (7.2)

Estimate (7.2) is not as good as (7.1) in application for proving the upper bounds
of the entropy numbers of smoothness classes. For instance, instead of the bound in
Theorem 3.7, use of (7.2) will give

εk(W
a,b
1 , L∞) � k−a(log k)a+b+3/2.

However, it turns out that in application to the Marcinkiewicz-type discretization
theorems, estimates (7.1) and (7.2) give the same bounds on the number of knots
m � |Qn|n7/2 (see Theorems 1.2 and 4.1).

As we pointed out above, we do not have an extension of (7.1) to the case d > 2. A
somewhat straightforward technique presented in [21] gives the following result for
all d:

εk(T (Qn)1, L∞) � nd/2
{

(|Qn|/k) log(4|Qn|/k), k ≤ 2|Qn|,
2−k/(2|Qn |), k ≥ 2|Qn|. (7.3)

This result is used in [21] to prove Theorem 1.3. An interesting contribution of this
paper is the proof of (7.2) for all d and for rather general sets T (Q)1 instead of
T (Qn)1. An important new ingredient here is the use of dictionaryD2(Q), consisting
of shifts of normalizedDirichlet kernels associatedwith Q, inm-term approximations.
Certainly, it would be nice to understand, even in the special case of the hyperbolic
cross polynomials T (Qn), whether the embedding T (Qn) ∈ M(m, 1)withm � |Qn|
holds. Results of this paper only show that the above embedding holds with m �
|Qn|n7/2. We got the extra factor n7/2 as a result of using (7.2), which contributed
n3/2, and of using the chaining technique, which contributed n2.
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