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Abstract Weprove that the spherical mean value of the Dunkl-type generalized trans-
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applications, we prove the Young inequality for a convolution defined by T t , the L p-
boundedness of τ y on radial functions for p > 2, the L p-boundedness of the Riesz
potential for the Dunkl transform, and direct and inverse theorems of approximation
theory in L p-spaces with the Dunkl weight.
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1 Introduction

During the last three decades, many important elements of harmonic analysis with
Dunkl weight on R

d and S
d−1 were proved; see, e.g., the papers by Dunkl [14–16],

Rösler [40–43], de Jeu [24,25], Trimèche [52,53], Xu [54,55], and the recent works
[1,11,12,19,20].

Yet there are still several gaps in our knowledge of Dunkl harmonic analysis. In
particular, Young’s convolution inequality, several important polynomial inequalities,
and basic approximation estimates are not established in the general case. One of the
main reasons is the lack of tools related to the translation operator. Needless to say,
the standard translation operator f �→ f ( · + y) plays a crucial role both in classical
approximation theory and harmonic analysis, in particular, by introducing several
smoothness characteristics of f . In Dunkl analysis, its analogue is the generalized
translation operator τ y defined by Rösler [40]. Unfortunately, the L p-boundedness of
τ y is not obtained in general.

To overcome this difficulty, the spherical mean value of the translation operator
τ y was introduced in [28] and was studied in [42], where, in particular, its positivity
was shown. Our main goal in this paper is to prove that this operator is a positive
L p-bounded operator T t , which may be considered as a generalized translation oper-
ator. It is worth mentioning that this operator can be applied to problems where it is
essential to deal with radial multipliers. This is because by virtue of T t we can define
the convolution operator that coincides with the known convolution introduced by
Thangavelu and Xu in [48] using the operator τ y .

For this convolution, we prove the Young inequality and, subsequently, an L p-
boundedness of the operator τ y on radial functions for p > 2. For 1 ≤ p ≤ 2 it was
proved in [48].

Let us mention here two applications of the operator T t . The first one is the Riesz
potential defined in [49], where its boundedness properties were obtained for the
reflection group Z

d
2 . For the general case see [21]. Using the L p-boundedness of

the operator T t allows us to give a different simple proof, which follows ideas of
Thangavelu and Xu [49]. Another application is basic inequalities of approximation
theory in the weighted L p spaces. With the help of the operator T t one can define
moduli of smoothness, which are equivalent to the K -functionals, and prove the direct
and inverse approximation theorems. For the reflection groupZ

d
2 , basic approximation

inequalities were studied in [11,12].
The paper is organized as follows. In the next section, we give some basic notation

and facts of Dunkl harmonic analysis. In Sect. 3, we study the operator T t , define a
convolution operator, and prove the Young inequality. As a consequence, we obtain an
L p-boundedness of the operator τ y on radial functions. The weighted Riesz potential
is studied in Sect. 4. Section 5 consists of a study of interrelation between several
classes of entire functions. We also obtain multidimensional weighted analogues of
Plancherel–Polya–Boas inequalities, which are of their own interest. In Sect. 6, we
introducemoduli of smoothness and the K -functional, associated to the Dunkl weight,

123



Constr Approx (2019) 49:555–605 557

and prove equivalence between them as well as the Jackson inequality. Section 7
consists of weighted analogues of Nikol’skiǐ, Bernstein, and Boas inequalities for
entire functions of exponential type. In Sect. 8, we obtain that moduli of smoothness
are equivalent to the realization of the K -functional. We conclude with Sect. 9, where
we prove the inverse theorems in L p-spaces with the Dunkl weight.

2 Notation

In this section, we recall the basic notation and results of Dunkl harmonic analysis,
see, e.g., [43].

Throughout the paper, 〈x, y〉 denotes the standard Euclidean scalar product in d-
dimensional Euclidean space R

d , d ∈ N, equipped with a norm |x | = √〈x, x〉. For
r > 0 we write Br = {x ∈ R

d : |x | ≤ r}. Define the following function spaces:

• C(Rd) the space of continuous functions,
• Cb(R

d) the space of bounded continuous functions with the norm ‖ f ‖∞ =
supRd | f |,

• C0(R
d) the space of continuous functions that vanish at infinity,

• C∞(Rd) the space of infinitely differentiable functions,
• S(Rd) the Schwartz space,
• S ′(Rd) the space of tempered distributions,
• X (R+) the space of even functions from X (R), where X is one of the spaces
above,

• Xrad(R
d) the subspace of X (Rd) consisting of radial functions f (x) = f0(|x |).

Let a finite subset R ⊂ R
d \ {0} be a root system; R+ a positive subsystem of R;

G(R) ⊂ O(d) the finite reflection group, generated by reflections {σa : a ∈ R}, where
σa is a reflection with respect to hyperplane 〈a, x〉 = 0; k : R → R+ a G-invariant
multiplicity function. Recall that a finite subset R ⊂ R

d \ {0} is called a root system
if

R ∩ Ra = {a,−a} and σa R = R for all a ∈ R.

Let

vk(x) =
∏

a∈R+
|〈a, x〉|2k(a)

be the Dunkl weight,

c−1
k =

∫

Rd
e−|x |2/2vk(x) dx, dμk(x) = ckvk(x) dx,
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and L p(Rd , dμk), 0 < p < ∞, be the space of complex-valued Lebesgue measurable
functions f for which

‖ f ‖p,dμk =
(∫

Rd
| f |p dμk

)1/p

< ∞.

We also assume that L∞ ≡ Cb and ‖ f ‖∞,dμk = ‖ f ‖∞.

Example If the root system R is {±e1, . . . ,±ed}, where {e1, . . . , ed} is an orthonormal
basis of R

d , then vk(x) = ∏d
j=1 |x j |2k j , k j ≥ 0, G = Z

d
2 .

Let

Dj f (x) = ∂ f (x)

∂x j
+

∑

a∈R+
k(a)〈a, e j 〉 f (x) − f (σax)

〈a, x〉 , j = 1, . . . , d,

be differential-differences Dunkl operators and �k = ∑d
j=1 D

2
j be the Dunkl Lapla-

cian. The Dunkl kernel ek(x, y) = Ek(x, iy) is a unique solution of the system

Dj f (x) = iy j f (x), j = 1, . . . , d, f (0) = 1,

and it plays the role of a generalized exponential function. Its properties are similar
to those of the classical exponential function ei〈x,y〉. Several basic properties follow
from an integral representation [41]:

ek(x, y) =
∫

Rd
ei〈ξ,y〉 dμk

x (ξ),

where μk
x is a probability Borel measure, whose support is contained in

co({gx : g ∈ G(R)}),

the convex hull of the G-orbit of x in R
d . In particular, |ek(x, y)| ≤ 1.

For f ∈ L1(Rd , dμk), the Dunkl transform is defined by the equality

Fk( f )(y) =
∫

Rd
f (x)ek(x, y) dμk(x).

For k ≡ 0, F0 is the classical Fourier transformF .We also note thatFk(e−| · |2/2)(y) =
e−|y|2/2 and F−1

k ( f )(x) = Fk( f )(−x). Let

Ak =
{
f ∈ L1(Rd , dμk) ∩ C0(R

d) : Fk( f ) ∈ L1(Rd , dμk)
}

. (2.1)

Let us now list several basic properties of the Dunkl transform.
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Proposition 2.1 (1) For f ∈ L1(Rd , dμk), Fk( f ) ∈ C0(R
d).

(2) If f ∈ Ak , we have the pointwise inversion formula

f (x) =
∫

Rd
Fk( f )(y)ek(x, y) dμk(y).

(3) The Dunkl transform leaves the Schwartz space S(Rd) invariant.
(4) The Dunkl transform extends to a unitary operator in L2(Rd , dμk).

Let λ ≥ −1/2 and Jλ(t) be the classical Bessel function of degree λ and

jλ(t) = 2λ�(λ + 1)t−λ Jλ(t)

be the normalized Bessel function. Set

b−1
λ =

∫ ∞

0
e−t2/2t2λ+1 dt = 2λ�(λ + 1), dνλ(t) = bλt

2λ+1 dt, t ∈ R+.

The norm in L p(R+, dνλ), 1 ≤ p < ∞, is given by

‖ f ‖p,dνλ =
(∫

R+
| f (t)|p dνλ(t)

)1/p

.

Define ‖ f ‖∞ = ess supt∈R+ | f (t)|.
The Hankel transform is defined as follows:

Hλ( f )(r) =
∫

R+
f (t) jλ(r t) dνλ(t), r ∈ R+.

It is a unitary operator in L2(R+, dνλ) and H−1
λ = Hλ [2, Chap. 7].

Note that if λ = d/2 − 1, the Hankel transform is a restriction of the Fourier
transform on radial functions, and if λ = λk = d/2 − 1 + ∑

a∈R+ k(a), of the Dunkl
transform.

Let S
d−1 = {x ′ ∈ R

d : |x ′| = 1} be the Euclidean sphere and dσk(x ′) =
akvk(x ′) dx ′ be the probability measure on S

d−1. We have

∫

Rd
f (x) dμk(x) =

∫ ∞

0

∫

Sd−1
f (t x ′) dσk(x ′) dνλk (t). (2.2)

We need the following partial case of the Funk–Hecke formula [55]

∫

Sd−1
ek(x, t y

′) dσk(y′) = jλk (t |x |). (2.3)

Throughout the paper, we will assume that A � B means that A ≤ CB with a
constant C depending only on nonessential parameters.
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3 Generalized Translation Operators and Convolutions

Let y ∈ R
d be given. Rösler [40] defined a generalized translation operator τ y in

L2(Rd , dμk) by the equation

Fk(τ
y f )(z) = ek(y, z)Fk( f )(z).

Since |ek(y, z)| ≤ 1, we have ‖τ y‖2→2 ≤ 1. If f ∈ Ak (recall that Ak is given by
(2.1)), then, for any x, y ∈ R

d ,

τ y f (x) =
∫

Rd
ek(y, z)ek(x, z)Fk( f )(z) dμk(z). (3.1)

Note that S(Rd) ⊂ Ak ⊂ L2(Rd , dμk). Trimèche [53] extended the operator τ y on
C∞(Rd).

The explicit expression of τ y f is known only in the case of the reflection group
Z
d
2 . In particular, in this case τ y f is not a positive operator [39]. Note that in the case

of symmetric group Sd , the operator τ y f is also not positive [48].
It remains an open question whether τ y f is an L p bounded operator on S(Rd) for

p �= 2. It is known [39,48] only forG = Z
d
2 . Note that a positive answer would follow

from the L1-boundedness.
Let

λk = d/2 − 1 +
∑

a∈R+
k(a).

We have λk ≥ −1/2 and, moreover, λk = −1/2 only if d = 1 and k ≡ 0. In what
follows, we assume that λk > −1/2.

Define another generalized translation operator T t : L2(Rd , dμk) → L2(Rd , dμk),
t ∈ R, by the relation

Fk(T
t f )(y) = jλk (t |y|)Fk( f )(y).

Since | jλk (t)| ≤ 1, it is a bounded operator such that ‖T t‖2→2 ≤ 1 and

T t f (x) =
∫

Rd
jλk (t |y|)ek(x, y)Fk( f )(y) dμk(y).

This gives T t = T−t . If f ∈ Ak , then from (2.3) and (3.1) we have (pointwise)

T t f (x) =
∫

Rd
jλk (t |y|)ek(x, y)Fk( f )(y) dμk(y) =

∫

Sd−1
τ t y

′
f (x) dσk(y

′). (3.2)

Note that the operator T t is self-adjoint. Indeed, if f, g ∈ Ak , then

∫

Rd
T t f (x) g(x) dμk(x) =

∫

Rd

∫

Rd
jλk (t |y|)ek(x, y)Fk( f )(y) dμk(y) g(x) dμk(x)
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=
∫

Rd
jλk (t |y|)Fk( f )(y)Fk(g)(−y) dμk(y)

=
∫

Rd
jλk (t |y|)Fk(g)(y)Fk( f )(−y) dμk(y)

=
∫

Rd
f (x) T t g(x) dμk(x).

Rösler [42] proved that the spherical mean (with respect to the Dunkl weight) of
the operator τ y , i.e.,

∫
Sd−1 τ t y

′
f (x) dσk(y′), is a positive operator on C∞(Rd) and

obtained its integral representation. This implies that T t is a positive operator on
C∞(Rd) and, moreover, for any t ∈ R, x ∈ R

d ,

T t f (x) =
∫

Rd
f (z) dσ k

x,t (z), (3.3)

where σ k
x,t is a probability Borel measure,

supp σ k
x,t ⊂

⋃

g∈G
{z ∈ R

d : |z − gx | ≤ t} (3.4)

and the mapping (x, t) → σ k
x,t is continuous with respect to the weak topology on

probability measures.
The representation (3.3) gives a natural extension of the operator T t on Cb(R

d);
namely, for f ∈ Cb(R

d) we define T t f (x) ∈ C(R×R
d) by (3.3), and, moreover, the

estimate ‖T t f ‖∞ ≤ ‖ f ‖∞ holds.
Note that for k ≡ 0, T t is the usual spherical mean

T t f (x) = St f (x) =
∫

Sd−1
f (x + t y′) dσ0(y′). (3.5)

Theorem 3.1 If 1 ≤ p ≤ ∞, then, for any t ∈ R and f ∈ S(Rd),

‖T t f ‖p,dμk ≤ ‖ f ‖p,dμk . (3.6)

Remark 3.2 (i) The inequality ‖T t f ‖p,dμk ≤ c‖ f ‖p,dμk was proved in [48] for
G = Z

d
2 .

(ii) S(Rd) is dense in L p(Rd , dμk), 1 ≤ p < ∞, so for any t ∈ R+ the operator T t

can be defined on L p(Rd , dμk) and estimate (3.6) holds.
(iii) If d = 1, vk(x) = |x |2λ+1, λ > −1/2, inequality (3.6) was proved in [7]. In this

case the integral representation of T t is of the form

T t f (x) = cλ

2

∫ π

0
{ f (A)(1 + B) + f (−A)(1 − B)} sin2λ ϕ dϕ,

123



562 Constr Approx (2019) 49:555–605

where, for (x, t) �= (0, 0),

cλ = �(λ + 1)√
π�(λ + 1/2)

, A =
√
x2 + t2 − 2xt cosϕ, B = x − t cosϕ

A
. (3.7)

If λ = −1/2, i.e., k ≡ 0, then T t f (x) = 1
2 ( f (x + t) + f (x − t)).

Proof Let t ∈ R+ be given and the operator T t be defined on S(Rd) by (3.3). Using
(3.2), we have

sup{‖T t f ‖2 : f ∈ S(Rd), ‖ f ‖2 ≤ 1} ≤ 1,

and T t can be extended to the space L2(Rd , dμk)with preservation of norm;moreover,
this extension coincides with (3.2). Furthermore, (3.3) yields

sup{‖T t f ‖∞ : f ∈ S(Rd), ‖ f ‖∞ ≤ 1} ≤ 1. (3.8)

Since the operator T t is self-adjoint, by (3.8),

sup{‖T t f ‖1,dμk : f ∈ S(Rd), ‖ f ‖1,dμk ≤ 1}
= sup

{∫

Rd
T t f g dμk : f, g ∈ S(Rd), ‖ f ‖1,dμk ≤ 1, ‖g‖∞ ≤ 1

}

= sup

{∫

Rd
f T t g dμk : f, g ∈ S(Rd), ‖ f ‖1,dμk ≤ 1, ‖g‖∞ ≤ 1

}

= sup{‖T t g‖∞ : g ∈ S(Rd), ‖g‖∞ ≤ 1} ≤ 1.

Hence, T t can be extended to L1(Rd , dμk) with preservation of the norm such that
this extension coincides with (3.2) on L1(Rd , dμk) ∩ L2(Rd , dμk).

By the Riesz–Thorin interpolation theorem we obtain

sup{‖T t f ‖p,dμk : f ∈ S(Rd), ‖ f ‖p,dμk ≤ 1} ≤ 1, 1 ≤ p ≤ 2.

Let 2 < p < ∞, 1/p + 1/p′ = 1. As for p = 1, we get

sup{‖T t f ‖p,dμk : f ∈ S(Rd), ‖ f ‖p,dμk ≤ 1}
= sup{‖T t g‖p′,dμk : g ∈ S(Rd), ‖g‖p′,dμk ≤ 1} ≤ 1.

��
For any f0 ∈ L p(R+, dνλ), 1 ≤ p ≤ ∞, λ > −1/2, let us define the Gegenbauer-

type translation operator (see, e.g., [34,35])

Rt f0(r) = cλ

∫ π

0
f0

(√
r2 + t2 − 2r t cosϕ

)
sin2λ ϕ dϕ,
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where cλ is defined by (3.7). We have that ‖Rt‖p→p ≤ 1 and Hλ(Rt f0)(r) =
jλ(tr)Hλ( f0)(r), where f0 ∈ S(R+). Taking into account (2.3) and (3.2), we note
that for λ = λk the operator Rt is a restriction of T t on radial functions; that is, for
f0 ∈ L p(R+, dνλk ),

T t f0(|x |) = Rt f0(r), r = |x |.
We alsomention the following useful properties of the generalized translation oper-

ator T t .

Lemma 3.3 Let t ∈ R.

(1) If f ∈ L1(Rd , dμk), then
∫

Rd T t f dμk = ∫
Rd f dμk .

(2) Let r > 0, f ∈ L p(Rd , dμk), 1 ≤ p < ∞. If supp f ⊂ Br , then supp T t f ⊂
Br+|t |. If supp f ⊂ R

d \ Br , r > |t |, then supp T t f ⊂ R
d \ Br−|t |.

Proof Due to the L p-boundedness of T t and the density of S(Rd) in L p(Rd , dμk),
we can assume that f ∈ S(Rd).

(1) Let s > 0. By integral representation of jλk (z) (see, e.g., [2, Sect. 7.12]) we have

T t (e−s| · |2)(x) = Rt (e−s(·)2)(|x |) = cλk

∫ π

0
e−s(|x |2+t2−2|x |t cosϕ) sin2λk ϕ dϕ

= e−s(|x |2+t2)cλk

∫ π

0
e2s|x |t cosϕ sin2λk ϕ dϕ

= e−s(|x |2+t2) jλk (2is|x |t),

and, in particular,

T t (e−s| · |2)(x) ≤ e−s(|x |2+t2)e2s|x |t = e−s(|x |−t)2 ≤ 1.

Using the self-adjointness of T t , we obtain

∫

Rd
T t f (x) e−s|x |2 dμk(x) =

∫

Rd
f (x)T t (e−s| · |2)(x) dμk(x).

Since for any t ∈ R, x ∈ R
d ,

lim
s→0

e−s|x |2 = lim
s→0

T t (e−s| · |2)(x) = 1,

by Lebesgue’s dominated convergence theorem we derive (1).
(2) If supp f ⊂ Br and |x | > r+|t |, then, in light of (3.4) and (3.3), for z ∈ supp σ k

x,t
and g ∈ G, we have that

|z| ≥ |gx | − |z − gx | = |x | − |z − gx | > r

and f (z) = 0, which yields T t f (x) = 0.
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If supp f ⊂ R
d \ Br , |x | < r − |t |, then, for z ∈ supp σ k

x,t and g ∈ G, we similarly
obtain |z| ≤ |gx | + |z − gx | = |x | + |z − gx | < r , f (z) = 0, and T t f (x) = 0. ��

Let g be a radial function, g(y) = g0(|y|), where g0(t) is defined on R+. Note that
by virtue of (2.2),

‖g‖p,dμk = ‖g0‖p,dνλk
, Fk(g)(y) = Hλk (g0)(|y|). (3.9)

By means of operators T t and τ y , define two convolution operators:

( f ∗λk
g0)(x) =

∫ ∞

0
T t f (x)g0(t) dνλk (t), (3.10)

( f ∗k g)(x) =
∫

Rd
f (y)τ x g(−y) dμk(y). (3.11)

Note that operator (3.10) was defined in [48], while (3.11) was investigated in [48,53].
Thangavelu and Xu [48] proved that if f ∈ L p(Rd , dμk), 1 ≤ p ≤ ∞, and

g ∈ L1
rad(R

d , dμk), then

‖( f ∗k g)‖p,dμk ≤ ‖ f ‖p,dμk‖g‖1,dμk , (3.12)

and if 1 ≤ p ≤ 2, g ∈ L p
rad(R

d , dμk), then, for any y ∈ R
d ,

‖τ yg‖p,dμk ≤ ‖g‖p,dμk . (3.13)

Lemma 3.4 If f ∈ Ak , g0 ∈ L1(R+, dνλk ), g(y) = g0(|y|), then, for any x, y ∈ R
d ,

( f ∗λk
g0)(x) = ( f ∗k g)(x) =

∫

Rd
τ−y f (x)g(y) dμk(y), (3.14)

Fk( f ∗λk
g0)(y) = Fk( f ∗k g)(y) = Fk( f )(y)Fk(g)(y). (3.15)

Proof Using (3.2) and (3.9), we get

( f ∗λk
g0)(x) =

∫ ∞

0
T t f (x)g0(t) dνλk (t)

=
∫ ∞

0

∫

Rd
jλk (t |y|)ek(x, y)Fk( f )(y) dμk(y)g0(t) dνλk (t)

=
∫

Rd
ek(x, y)Fk( f )(y)Fk(g)(y) dμk(y),

which gives

Fk( f ∗λk
g0)(y) = Fk( f )(y)Fk(g)(y).
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If g ∈ Ak , then, by (3.1),

( f ∗k g)(x) =
∫

Rd
f (y)τ x g(−y) dμk(y)

=
∫

Rd
f (y)

∫

Rd
ek(−y, z)ek(x, z)Fk(g)(z) dμk(z) dμk(y)

=
∫

Rd
ek(x, z)Fk( f )(z)Fk(g)(z) dμk(z),

and hence the first equality in (3.14) and the second equality in (3.15) are valid for
g ∈ Ak .

Assuming that g0 ∈ L1(R+, dνλ), (gn)0 ∈ S(R+), gn → g in L1(Rd , dμk), and
taking into account (3.8)–(3.11) and (3.13), we arrive at

∣∣( f ∗λk
g0)(x) − ( f ∗k g)(x)

∣∣ ≤ ∣∣( f ∗λk
(g0 − (gn)0))(x)

∣∣ + |( f ∗k (g − gn))(x)|
≤ 2‖ f ‖∞ ‖g − gn‖1,dμk .

Thus, the first equality in (3.14) holds.
Finally, using (3.1), we get

∫

Rd
τ−y f (x)g(y) dμk(y) =

∫

Rd
g(y)

∫

Rd
ek(−y, z)ek(x, z)Fk( f )(z) dμk(z) dμk(y)

=
∫

Rd
ek(x, z)Fk( f )(z)Fk(g)(z) dμk(z),

and the second part in (3.14) is valid. ��
Let y ∈ R

d be given. Rösler [42] proved that the operator τ y is positive onC∞
rad(R

d),
i.e., τ y ≥ 0, and moreover, for any x ∈ R

d ,

τ y f (x) =
∫

Rd
f (z) dρk

x,y(z), (3.16)

where ρk
x,y is a radial probability Borel measure such that supp ρk

x,y ⊂ B|x |+|y|.

Theorem 3.5 If 1 ≤ p ≤ ∞, then, for any x ∈ R
d and f ∈ S(Rd),

‖T t f (x)‖p,dνλk
=

(∫

R+
|T t f (x)|p dνλ(t)

)1/p

≤ ‖ f ‖p,dμk . (3.17)

Proof Let x ∈ R
d be given. Let an operator Bx be defined on S(Rd) as follows (cf.

(3.2) and (3.3)): for f ∈ S(Rd),

Bx f (t) = T t f (x) =
∫

Rd
jλk (t |y|)ek(x, y)Fk( f )(y) dμk(y) =

∫

Rd
f (z) dσ k

x,t (z).
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Let p = 2. We have

T t f (x) =
∫ ∞

0
jλk (tr)

∫

Sd−1
ek(x, r y

′)Fk( f )(r y
′) dσk(y′) dνλk (r)

and

Hλk (T
t f (x))(r) =

∫

Sd−1
ek(x, r y

′)Fk( f )(r y
′) dσk(y′).

This, Hölder’s inequality, and the fact that the operatorsHλk andFk are unitary imply

‖T t f (x)‖22,dνλk
= ‖Hλk (T

t f (x))(r)‖22,dνλk

=
∫ ∞

0

∣∣∣∣
∫

Sd−1
ek(x, r y

′)Fk( f )(r y
′) dσk(y′)

∣∣∣∣
2

dνλk (r)

≤
∫ ∞

0

∫

Sd−1
|Fk( f )(r y

′)|2 dσk(y′) dνλk (r)

= ‖Fk( f )‖22,dμk
= ‖ f ‖22,dμk

,

which yields inequality (3.17) for p = 2. Moreover, Bx can be extended to the space
L2(R+, dνλk )with preservation of norm, and, moreover, this extension coincides with
(3.2).

Let p = 1. By (3.14) and (3.16), we obtain

‖T t f (x)‖1,dνλk
= sup

{∫ ∞

0
T t f (x)g0(t) dνλk (t) : g0 ∈ S(R+), ‖g0‖∞ ≤ 1

}

= sup

{∫

Rd
f (y)τ x g(−y) dμk(y) : g ∈ Srad(R

d), ‖g‖∞ ≤ 1

}

≤ ‖ f ‖1,dμk sup
{
‖τ x g(−y)‖∞ : g ∈ Srad(R

d), ‖g‖∞ ≤ 1
}

≤ ‖ f ‖1,dμk ,

which is the desired inequality (3.17) for p = 1. Moreover, Bx can be extended to
L1(R+, dνλk ) with preservation of norm such that the extension coincides with (3.2)
on L1(R+, dνλk ) ∩ L2(R+, dνλk ).

By the Riesz–Thorin interpolation theorem we obtain (3.17) for 1 < p < 2.
If 2 < p < ∞, 1/p + 1/p′ = 1, then by (3.14) and (3.13),

‖T t f (x)‖p,dνλk
= sup

{∫ ∞

0
T t f (x)g0(t) dνλk (t) : g0 ∈ S(R+), ‖g0‖p′,dνλk

≤ 1

}

= sup

{∫

Rd
f (y)τ x g(−y) dμk(y) : g ∈ Srad(R

d), ‖g‖p′,dμk ≤ 1

}

≤ ‖ f ‖p,dμk sup{‖τ x g(−y)‖p′,dμk : g ∈ Srad(R
d), ‖g‖p′,dμk ≤ 1}

≤ ‖ f ‖p,dμk .

Finally, for p = ∞, (3.17) follows from representation (3.3). ��
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We are now in a position to prove the Young inequality for the convolutions (3.10)
and (3.11).

Theorem 3.6 Let 1 ≤ p, q ≤ ∞, 1
p + 1

q ≥ 1, and 1
r = 1

p + 1
q − 1. We have that, for

any f ∈ S(Rd), g0 ∈ S(R+), and g ∈ Srad(R
d),

‖( f ∗λk
g0)‖r,dνλk

≤ ‖ f ‖p,dμk‖g0‖q,dνλk
, (3.18)

‖( f ∗k g)‖r,dμk ≤ ‖ f ‖p,dμk‖g‖q,dμk . (3.19)

Proof Since for g(y) = g0(|y|) we have

‖( f ∗λk
g0)‖r,dνλk

= ‖( f ∗k g)‖r,dμk , ‖g0‖q,dνλk
= ‖g‖q,dμk ,

it is enough to show inequality (3.18). The proof is straightforward using Hölder’s
inequality and estimates (3.6) and (3.17). For the sake of completeness, we give it
here. Let 1

μ
= 1

p − 1
r and 1

ν
= 1

q − 1
r , then

1
μ

≥ 0, 1
ν

≥ 0, and 1
r + 1

μ
+ 1

ν
= 1. In

virtue of (3.17), we have

∣∣∣∣
∫ ∞

0
T t f (x)g0(t) dνλk (t)

∣∣∣∣ ≤
(∫ ∞

0
|T t f (x)|p|g0(t)|q dνλk (t)

)1/r

×
(∫ ∞

0
|T t f (x)|p dνλk (t)

)1/μ (∫ ∞

0
|g0(t)|q dνλk (t)

)1/ν

≤
(∫ ∞

0
|T t f (x)|p|g0(t)|q dνλk (t)

)1/r

‖ f ‖p/μ
p,dμk

‖g0‖q/ν
q,dνλk

.

Using (3.6), this gives

‖( f ∗λk
g0)‖r,dνλk

≤
(∫

Rd

∫ ∞

0
|T t f (x)|p|g0(t)|q dνλk (t) dμk(x)

)1/r

× ‖ f ‖p/μ
p,dμk

‖g0‖q/ν
q,dνλk

≤ ‖ f ‖p,dμk‖g0‖q,dνλk
.

��
Theorem 3.7 Let 1 ≤ p ≤ ∞ and g ∈ Srad(R

d). We have that, for any y ∈ R
d ,

‖τ yg‖p,dμk ≤ ‖g‖p,dμk . (3.20)

Remark 3.8 Since S(Rd) is dense in L p(Rd , dμk), 1 ≤ p < ∞, the operator τ y can
be defined on L p

rad(R
d , dμk) so that (3.20) holds.

Proof In the case 1 ≤ p ≤ 2, this result was proved in [48]. The case p = ∞ follows
from (3.16).

Let 2 < p < ∞. Since Fk(g) is a radial function and

τ yg(−x) =
∫

Rd
ek(y, z)ek(−x, z)Fk(g)(z) dμk(z)
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=
∫

Rd
ek(−y, z)ek(x, z)Fk(g)(z) dμk(z) = τ−yg(x),

using (3.19) for r = ∞, q = p, we obtain

‖τ−yg‖p,dμk = sup

{∫

Rd
τ−yg(x) f (x) dμk(x) : f ∈ S(Rd), ‖ f ‖p′,dμk ≤ 1

}

≤ sup{‖( f ∗k g)(y)‖∞,dμk : f ∈ S(Rd), ‖ f ‖p′,dμk ≤ 1} ≤ ‖g‖p,dμk .

��
Now we give an analogue of Lemma 3.4 for the case when f ∈ L p.

Lemma 3.9 Let 1 ≤ p ≤ ∞, f ∈ L p(Rd , dμk) ∩ Cb(R
d) ∩ C∞(Rd), g0 ∈ S(R+),

and g(y) = g0(|y|). Then, for any x ∈ R
d ,

( f ∗λk
g0)(x) = ( f ∗k g)(x) ∈ L p(Rd , dμk) ∩ Cb(R

d) ∩ C∞(Rd), (3.21)

and, in the sense of tempered distributions,

Fk( f ∗λk
g0) = Fk( f ∗k g) = Fk( f )Fk(g). (3.22)

Proof First, in light of (3.6) and (3.18), we note that the convolution (3.10) belongs
to L p(Rd , dμk). Moreover, (3.3) implies that it is in Cb(R

d).
Taking into account that g ∈ S(Rd) and (−�k)

r ek( · , z) = |z|2r ek( · , z), we have

(−�k)
r ( f ∗k g)(x) =

∫

Rd
f (y)

∫

Rd
ek(x, z)ek(−y, z)|z|2rFk(g)(z) dμk(z) dμk(y).

Let us show that the integral converges uniformly in x . We have

∫

Rd
ek(x, z)ek(−y, z)|z|2rFk(g)(z) dμk(z) = τ xG(−y),

where G ∈ Srad(R
d) is such that Fk(G)(z) = |z|2rFk(g)(z). Using Hölder’s inequal-

ity and (3.20), we get

∣∣∣∣
∫

Rd
f (y)

∫

Rd
ek(x, z)ek(−y, z)|z|2rFk(g)(z) dμk(z) dμk(y)

∣∣∣∣

=
∣∣∣∣
∫

Rd
f (y)τ xG(−y) dμk(y)

∣∣∣∣ ≤ ‖ f ‖p,dμk‖τ xG‖p′,dμk ≤ ‖ f ‖p,dμk‖G‖p′,dμk .

Thus, convolution (3.11) belongs to C∞(Rd).
By Lemma 3.4, the equality in (3.21) holds for any function f ∈ S(Rd). If f ∈

L p(Rd , dμk), fn ∈ S(Rd), and fn → f in L p(Rd , dμk), thenMinkowski’s inequality
and (3.6) give

‖(( f − fn) ∗λk
g0)‖p,dμk ≤ ‖ f − fn‖p,dμk ‖g0‖1,dνλk

, (3.23)
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while Hölder’s inequality and (3.20) imply

|(( f − fn) ∗k g)(x)| ≤ ‖ f − fn‖p,dμk ‖g‖p′,dμk .

By (3.23), there is a subsequence {nk} such that ( fnk ∗λk
g0)(x) → ( f ∗λk

g0)(x) a.e.,
therefore the relation ( f ∗λk

g0)(x) = ( f ∗k g)(x) holds almost everywhere. Since
both convolutions are continuous, it holds everywhere.

To prove the second equation of the lemma, we first remark that Lemma 3.4
implies that (3.22) holds pointwise for any f ∈ S(Rd). In the general case, since
f ∈ L p(Rd , dμk), ( f ∗λk

g0) ∈ L p(Rd , dμk), and Fk(g) ∈ S(Rd), the left- and
right-hand sides of (3.22) are tempered distributions. Recall that the Dunkl transform
of tempered distribution is defined by

〈Fk( f ), ϕ〉 = 〈 f,Fk(ϕ)〉, f ∈ S ′(Rd), ϕ ∈ S(Rd).

Let fn ∈ S(Rd) and fn → f in L p(Rd , dμk), ϕ ∈ S(Rd). Then

〈Fk(( f − fn) ∗λk
g0), ϕ〉 = 〈(( f − fn) ∗λk

g0),Fk(ϕ)〉,
〈Fk(g)Fk( f − fn), ϕ〉 = 〈( f − fn),Fk(Fk(g)ϕ)〉

and

|〈Fk(( f − fn) ∗λk
g0), ϕ〉| ≤ ‖ f − fn‖p,dμk ‖g0‖1,dνλk

‖Fk(ϕ)‖p′,dμk ,

|〈Fk(g)Fk( f − fn), ϕ〉| ≤ ‖ f − fn‖p,dμk ‖Fk(Fk(g)ϕ)‖p′,dμk .

Thus, the proof of (3.22) is now complete. ��

4 Boundedness of the Riesz Potential

Recall that λk = d/2 − 1 + ∑
a∈R+ k(a). For 0 < α < 2λk + 2, the weighted Riesz

potential I kα f is defined on S(Rd) (see [49]) by

I kα f (x) = (
dα
k

)−1
∫

Rd
τ−y f (x)

1

|y|2λk+2−α
dμk(y),

where dα
k = 2−λk−1+α�(α/2)/�(λk + 1 − α/2). We have, in the sense of tempered

distributions,
Fk(I

k
α f )(y) = |y|−αFk( f )(y).

Using (2.2) and (3.2), we obtain

I kα f (x) = (
dα
k

)−1
∫ ∞

0
T t f (x)

1

t2λk+2−α
dνλk (t). (4.1)
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To estimate the L p-norm of this operator, we use the maximal function defined for
f ∈ S(Rd) as follows [48]:

Mk f (x) = sup
r>0

|( f ∗k χBr )(x)|∫
Br

dμk
,

where χBr is the characteristic function of the Euclidean ball Br of radius r centered
at 0.

Using (2.2), (3.2), and (3.14), we get

Mk f (x) = sup
r>0

∣∣∫ r
0 T t f (x) dνλk (t)

∣∣
∫ r
0 dνλk

.

It is proved in [48] that the maximal function is bounded on L p(Rd , dμk), 1 <

p ≤ ∞,
‖Mk f ‖p,dμk � ‖ f ‖p,dμk , (4.2)

and it is of weak type (1, 1); that is,

∫

{x : Mk f (x)>a}
dμk � ‖ f ‖1,dμk

a
, a > 0. (4.3)

Theorem 4.1 If 1 < p < q < ∞, 0 < α < 2λk + 2, 1
p − 1

q = α
2λk+2 , then

‖I kα f ‖q,dμk � ‖ f ‖p,dμk , f ∈ S(Rd). (4.4)

The mapping f �→ I kα f is of weak type (1, q); that is,

∫

{x : |I kα f (x)|>a}
dμk �

(‖ f ‖1,dμk

a

)q

. (4.5)

Remark 4.2 In the case k ≡ 0, inequality (4.4) was proved by Soboleff [44] and
Thorin [50] and the weighted inequality was studied by Stein and Weiss [46]. For
the reflection group G = Z

d
2 , Theorem 4.1 was proved in [49]. The general case was

obtained in [21]. We give another simple proof based on the L p-boundedness of T t

given in Theorem 3.5 and follow the proof given in [49] for G = Z
d
2 .

Remark 4.3 In Theorem 4.1, dealing with (4.4), we may assume that f ∈
L p(Rd , dμk), 1 < p < ∞, while proving (4.5), we may assume that f ∈
L1(Rd , dμk).

Proof Let R > 0 be fixed. We write (4.1) as sum of two terms,

I kα f (x) = (
dα
k

)−1
∫ R

0
T t f (x)

1

t2λk+2−α
dνλk (t)
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+ (
dα
k

)−1
∫ ∞

R
T t f (x)

1

t2λk+2−α
dνλk (t) = J1 + J2. (4.6)

Integrating J1 by parts, we obtain

dα
k J1 =

∫ R

0
t−(2λk+2−α) d

(∫ t

0
T s f (x) dνλk (s)

)

= Rα · R−(2λk+2)
∫ R

0
T s f (x) dνλk (s)

+ (2λk + 2 − α)

∫ R

0
t−(2λk+2)

∫ t

0
T s f (x) dνλk (s) t

α−1 dt. (4.7)

Here we have used that

lim
ε→0+0

εα · ε−(2λk+2)
∫ ε

0
T s f (x) dνλk (s) = 0,

since

εα · ε−(2λk+2)
∣∣∣∣
∫ ε

0
T s f (x) dνλk (s)

∣∣∣∣ � εα sup
ε>0

∣∣∫ ε

0 T t f (x) dνλk (t)
∣∣

∫ ε

0 dνλk

= εαMk f (x).

In light of (4.7), we have

|J1| � RαMk f (x) +
∫ R

0
Mk f (x)t

α−1 dt � RαMk f (x). (4.8)

To estimate J2, we use Hölder’s inequality, the relation 1
p − 1

q = α
2λk+2 , and (3.17):

|J2| ≤ (
dα
k

)−1
(∫ ∞

R
t−(2λk+2−α)p′

dνλk (t)

)1/p′

‖T t f (x)‖p,dνλk

� R−(2λk+2)q‖ f ‖p,dμk .

This, (4.6) and (4.8) yield

|I kα f (x)| � RαMk f (x) + R−(2λk+2)q‖ f ‖p,dμk ,

for any R > 0. Choosing R = (
Mk f (x)/‖ f ‖p,dμk

)−q/(2λk+2) implies the inequality

|I kα f (x)| � (Mk f (x))
p/q(‖ f ‖p,dμk )

1−p/q (4.9)

for any 1 ≤ p < q. Integrating (4.9) and using (4.2), we have

‖I kα f ‖q,dμk � ‖Mk f ‖p/q
p,dμk

‖ f ‖1−p/q
p,dμk

� ‖ f ‖p,dμk , p > 1.
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Finally, we use inequality (4.3) for the maximal function and inequality (4.9) with
p = 1 to obtain

∫

{x : |I kα f (x)|>a}
dμk ≤

∫

{x : (Mk f (x))1/q (‖ f ‖1,dμk )1−1/q�a}
dμk �

(‖ f ‖1,dμk

a

)q

.

��

5 Entire Functions of Exponential Type and
Plancherel–Polya–Boas-Type Inequalities

Let C
d be the complex Euclidean space of d dimensions. Let also z = (z1, . . . , zd) ∈

C
d , Im z = (Im z1, . . . , Im zd), and σ > 0.
In this section, we define several classes of entire functions of exponential type

and study their interrelations. Moreover, we prove the Plancherel–Polya–Boas-type
estimates and the Paley–Wiener-type theorems. These classes will be used later to
study the approximation of functions on R

d by entire functions of exponential type.
First, we define two classes of entire functions: Bσ

p,k and B̃
σ
p,k .We say that a function

f ∈ Bσ
p,k if f ∈ L p(Rd , dμk) is such that its analytic continuation to C

d satisfies

| f (z)| ≤ cεe
(σ+ε)|z|, ∀ε > 0, ∀z ∈ C.

The smallest σ = σ f in this inequality is called a spherical type of f . In other words,
the class Bσ

p,k is the collection of all entire functions of spherical type at most σ .

We say that a function f ∈ B̃σ
p,k if f ∈ L p(Rd , dμk) is such that its analytic

continuation to C
d satisfies

| f (z)| ≤ c f e
σ |Im z|, ∀z ∈ C

d .

Historically, functions from B̃σ
p,k were basic objects in the Dunkl harmonic analysis.

It is clear that B̃σ
p,k ⊂ Bσ

p,k . Moreover, if k ≡ 0, then both classes coincide (see, e.g.,
[29]). Indeed, if f ∈ Bσ

p,0, 1 ≤ p < ∞, then Nikol’skii’s inequality [31, 3.3.5]

‖ f ‖∞ ≤ 2dσ d/p‖ f ‖p,dμ0

and the inequality [31, 3.2.6]

‖ f ( · + iy)‖∞ ≤ eσ |y|‖ f ‖∞, y ∈ R
d ,

imply that, for z = x + iy ∈ C
d ,

| f (z)| ≤ 2dσ d/p‖ f ‖p,dμ0e
σ |Im z|,

i.e., f ∈ B̃σ
p,0.
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In fact, the classes Bσ
p,k and B̃σ

p,k coincide in the weighted case (k �= 0) as well. To

see that, it is enough to show that functions from Bσ
p,k are bounded on R

d .

Theorem 5.1 If 0 < p < ∞, then Bσ
p,k = B̃σ

p,k .

We will actually prove the more general statement. Let m ∈ Z+, α1, . . . , αm ∈
R
d \ {0}, k0 ≥ 0, k1, . . . , km > 0, and

v(x) = |x |k0
m∏

j=1

|〈α j , x〉|k j (5.1)

be the power weight. The Dunkl weight is a particular case of such weighted functions.
The weighted function (5.1) arises in the study of the generalized Fourier transform
(see, e.g., [3]).

Let L p,v(Rd), 0 < p < ∞, be the space of complex-valued Lebesgue measurable
functions f for which

‖ f ‖p,v =
(∫

Rd
| f (x)|pv(x) dx

)1/p

< ∞.

Let σ = (σ1, . . . , σd), σ1, . . . , σd > 0.
Again, let us define three anisotropic classes of entire functions: Bσ, Bσ

p,v , and
B̃σ
p,v .
We say that a function f defined on R

d belongs to Bσ if its analytic continuation
to C

d satisfies

| f (z)| ≤ cεe
(σ1+ε)|z1|+···+(σd+ε)|zd |, ∀ε > 0, ∀z ∈ C

d .

We say that a function f ∈ Bσ
p,v if f ∈ L p(Rd , dμk) is such that its analytic contin-

uation to C
d belongs to Bσ.

We say that a function f ∈ B̃σ
p,v if f ∈ L p(Rd , dμk) is such that its analytic

continuation to C
d satisfies

| f (z)| ≤ c f e
σ1|Im z1|+···+σd |Im zd |, ∀z ∈ C

d .

We will use the notation L p(Rd), ‖· ‖p, Bσ
p , and B̃σ

p in the case of the unit weight,
i.e., v ≡ 1.

Theorem 5.2 If 0 < p < ∞, then

(1) Bσ
p,v ⊂ Bσ

p,

(2) Bσ
p,v = B̃σ

p,v ,

(3) Bσ
p,v = B̃σ

p,v .

Remark 5.3 (i) Part (3) of Theorem 5.2 implies Theorem 5.1.
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(ii) Note that in some particular cases (k0 = 0 and p ≥ 1) a similar result was
discussed in [23].

Parts (2) and (3) of Theorem 5.2 follow from (1). Indeed, the embedding in (1)
implies that Bσ

p,v ⊂ Bσ
p ⊂ Bσ∞. Hence, a function f ∈ Bσ

p,v is bounded onR
d and then

f ∈ B̃σ
p,v , which gives (2). Further, Bσ

p,v ⊂ Bσ
p,v holds, where σ = (σ, . . . , σ ) ∈ R

d+
since |z| ≤ |z1| + · · · + |zd |. Hence, similar to the above, we have Bσ

p,v ⊂ Bσ∞ and
(3) follows. Thus, to prove Theorem 5.2, it is sufficient to verify part (1).

Themain difficulty to proveTheorem5.2 is that theweight v(x) vanishes. In order to
overcome this problem,wewill first prove two-sided estimates of the L p normof entire

functions in terms of the weighted l p norm,
(∑

n v(λ(n))| f (λ(n))|p)1/p, 0 < p < ∞,
where v does not vanish at {λ(n)} ⊂ R

d .
Such estimates are of their own interest. They generalize the Plancherel–Polya

inequality [33], [6, Chapt. 6, 6.7.15]

∑

k∈Z

| f (λk)|p ≤ c(δ, σ, p)
∫ ∞

−∞
| f (x)|p dx, 0 < p < ∞,

where λk is an increasing sequence such that λk+1 − λk ≥ δ > 0, and f is an entire
function of exponential type at most σ ; and the Boas inequality [5], [6, Chapt. 10,
10.6.8],

∫ ∞

−∞
| f (x)|p dx ≤ C(δ, L , σ, p)

∑

k∈Z

| f (λk)|p, 0 < p < ∞, (5.2)

where, additionally,
∣∣λk − π

σ
k
∣∣ ≤ L and the type of f is < σ .

We write σ′ = (σ ′
1, . . . , σ

′
d) < σ = (σ1, . . . , σd) if σ ′

1 < σ1, . . . , σ
′
d < σd .

Let n = (n1, . . . , nd) ∈ Z
d and λ(n) : Z

d → R
d . In what follows, we consider the

sequences of the following type:

λ(n) = (λ1(n1), λ2(n1, n2), . . . , λd(n1, . . . , nd)), (5.3)

where λ
(n)
i = λi (n1, . . . , ni ) are sequences increasing with respect to ni , i = 1, . . . , d

for fixed n1, . . . , ni−1.

Definition 5.4 We say that the sequence λ(n) satisfies the separation condition
�sep[δ], δ > 0, if, for any n ∈ Z

d ,

λi (n1, . . . , ni−1, ni + 1) − λi (n1, . . . , ni−1, ni ) ≥ δ, i = 1, . . . , d.

Note that if the sequence λ(n) satisfies the separation condition �sep[δ], then it also
satisfies the condition infn �=m |λ(n) − λ(m)| > 0.
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Definition 5.5 We say that the sequence λ(n) satisfies the close-lattice condition
�lat[a, L], a = (a1, . . . , ad) > 0, L > 0, if, for any n ∈ Z

d ,

∣∣∣∣λi (n1, . . . , ni ) − πni
ai

∣∣∣∣ ≤ L , i = 1, . . . , d.

We start with the Plancherel–Polya-type inequality.

Theorem 5.6 Assume that λ(n) satisfies the condition infn �=m |λ(n) −λ(m)| > 0. Then
for f ∈ Bσ

p, 0 < p < ∞, we have

∑

n∈Zd

| f (λ(n))|p �
∫

Rd
| f (x)|p dx .

Proof For simplicity, we prove this result for d = 2. The proof in the general case is
similar.

The function | f (z)|p is plurisubharmonic, and therefore for any x = (x1, x2) ∈ R
2,

one has [38]

| f (x1, x2)|p ≤ 1

(2π)2

∫ 2π

0

∫ 2π

0
| f (x1 + ρ1e

iθ1 , x2 + ρ2e
iθ2 |p dθ1dθ2,

where ρ1, ρ2 > 0. Following [31, 3.2.5], for δ > 0 and ξ + iη = (ξ1 + iη1, ξ2 + iη2),
we obtain that

| f (x1, x2)|p ≤ 1

(πδ2)2

∫ δ

−δ

∫ δ

−δ

∫ x1+δ

x1−δ

∫ x2+δ

x2−δ

| f (ξ + iη)|p dξ1 dξ2 dη1 dη2. (5.4)

The separation condition implies that for some δ > 0, the boxes [λ(n)
1 − δ, λ

(n)
1 + δ]×

[λ(n)
2 − δ, λ

(n)
2 + δ] do not overlap for any n.

Since

f (x + iy) =
∑

k∈Z
2+

f (k)(x)

k! (iy)k,

where f (k) is a partial derivative f of order k = (k1, k2), k! = k1! k2!, and (iy)k =
(iy1)k1(iy2)k2 , by applying Bernstein’s inequality (see [31, 3.2.2 and 3.3.5] and [37]),
we derive that

‖ f ( · + iy)‖p � eσ1|y1|+σ2|y2|‖ f ‖p.

Using this and (5.4), we derive that

∑

n∈Z2

| f (λ(n))|p ≤ 1

(πδ2)2

∫ δ

−δ

∫ δ

−δ

∫ ∞

−∞

∫ ∞

−∞
| f (ξ + iη)|p dξ1 dξ2 dη1 dη2
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�
∫ δ

−δ

∫ δ

−δ

ep(σ1|η1|+σ2|ηd |) dη1 dη2
∫ ∞

−∞

∫ ∞

−∞
| f (ξ)|p dξ1 dξ2

�
∫

R2
| f (x)|p dx .

��

Theorem 5.7 Let the sequence λ(n) of form (5.3) satisfy the conditions �sep[δ] and
�lat[σ, L]. Assume that f ∈ Bσ′

, σ′ < σ, is such that
∑

n∈Zd | f (λ(n))|p < ∞,
0 < p < ∞. Then f ∈ L p(Rd) and

∫

Rd
| f (x)|p dx �

∑

n∈Zd

| f (λ(n))|p.

Remark 5.8 For p ≥ 1, a similar two-sided Plancherel–Polya–Boas-type inequality
was obtained from [32].

Proof For simplicity, we consider the case d = 2. Integrating | f (x1, x2)|p at x1 and
applying inequality (5.2), we get, for any x2,

∫ ∞

−∞
| f (x1, x2)|p dx1 �

∑

n1∈Z

| f (β1(n1), x2)|p.

Since by (5.2), for any n1,

∫ ∞

−∞
| f (β1(n1), x2)|p dx2 �

∑

n2∈Z

| f (β1(n1), β2(n1, n2))|p,

we then have

∫ ∞

−∞

∫ ∞

−∞
| f (x1, x2)|p dx1 dx2 �

∑

n1∈Z

∫ ∞

−∞
| f (β1(n1), x2)|p dx2

�
∑

n1∈Z

∑

n2∈Z

| f (β1(n1), β2(n1, n2))|p < ∞.

��

Using Theorems 5.6 and 5.7 we arrive at the following statement:

Theorem 5.9 Let the sequence {λ(n)} of form (5.3) satisfy the conditions �sep[δ] and
�lat[σ, L]. If f ∈ Bσ′

, σ′ < σ, then, for 0 < p < ∞,
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∑

n∈Zd

| f (λ(n))|p �
∫

Rd
| f (x)|p dx �

∑

n∈Zd

| f (λ(n))|p.

We will need the weighted version of the Plancherel–Polya–Boas equivalence. We
start with three auxiliary lemmas.

Lemma 5.10 [18] If γ ≥ −1/2, then there exists an even entire functionωγ (z), z ∈ C,
of exponential type 2 such that, uniformly in x ∈ R+,

ωγ (x) �
{
x2k+2, 0 ≤ x ≤ 1,

x2γ+1, x ≥ 1,

where k = [γ + 1/2] and [a] is the integral part of a. In particular, we can take

ω(z) = z2k+2 jk−γ (z + i) jk−γ (z − i).

Lemma 5.11 Let m ∈ N, j = 1, . . . ,m, b j = (b j
1 , . . . , b

j
d) ∈ R

d \ {0}, and either

|b j
i | ≥ 1, or b j

i = 0, i = 1, . . . , d. Then there exists a sequence {ρ(n)} ⊂ Z
d \ {0} of

the form (5.3) such that, for any j = 1, . . . ,m and i = 1, . . . , d,

|ρi (n1, . . . , ni ) − ni | ≤ m, (5.5)

|〈b j , ρ(n)〉| ≥ 1/2. (5.6)

Proof To construct a desired sequence

ρ(n) = (ρ1(n1), ρ2(n1, n2), . . . , ρd(n1, . . . , nd)) ∈ Z
d ,

we will use the following simple remark. If we throw out m points from Z, then the
rest can be numbered such that the obtained sequence will be increasing and (5.5)
holds.

Let J1 = { j : b j
1 �= 0, b j

2 = · · · = b j
d = 0}. If J1 = ∅, then we set ρ1(n1) = n1.

If J1 �= ∅, then ρ1(n1) is an increasing sequence formed from Z \ {0}. In both cases
(5.5) is valid, and, moreover, for j ∈ J1 and any ρ2(n1, n2), . . . , ρd(n1, . . . , nd), one
has (5.6) since |〈b j , ρ(n)〉| = |b j

1ρ1(n1)| ≥ 1.

Let J2 = { j : b j
2 �= 0, b j

3 = · · · = b j
d = 0}, n1 ∈ Z. If J2 = ∅, then we set

ρ2(n1, n2) = n2. Let J2 �= ∅. If j ∈ J2 and b j
1ρ1(n1) + b j

2 t j = 0, then t j = l j + ε j ,
l j ∈ Z, |ε j | ≤ 1/2. Here l j is the nearest integer to t j . Note that if ρ2 �= l j , then

|b j
1ρ1(n1) + b j

2ρ2| = |b j
2(ρ2 − l j − ε j )| ≥ 1/2.

Let ρ2(n1, n2) be an increasing sequence at n2 formed from Z\{l j : j ∈ J2}. For
this sequence (5.5) holds and, for j ∈ J2 and any ρ3(n1, n2, n3), . . . , ρd(n1, . . . , nd),
one has

|〈b j , ρ(n)〉| = |b j
1ρ1(n1) + b j

2ρ2(n1, n2)| ≥ 1/2;
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that is, (5.6) holds as well.
Assume that we have constructed the sets J1, . . . , Jd−1, and the sequence

(ρ1(n1), ρ2(n1, n2), . . . , ρd−1(n1, . . . , nd−1)) ∈ Z
d−1.

Let Jd = { j : b j
d �= 0}, (n1, . . . , nd−1) ∈ Z

d−1. If Jd = ∅, then we set
ρd(n1, . . . , nd−1, nd) = nd . Assume now that Jd �= ∅. If j ∈ Jd and

b j
1ρ1(n1) + · · · + b j

d−1ρd−1(n1, . . . , nd−1) + b j
d t j = 0,

then t j = l j + ε j , |ε j | ≤ 1/2. Note that if ρd �= l j , then

|b j
1ρ1(n1) + · · · + b j

d−1ρd−1(n1, . . . , nd−1) + b j
dρd | = |b j

d(ρd − l j − ε j )| ≥ 1/2.

Let ρd(n1, . . . , nd) be an increasing sequence in nd formed from Z \ {l j : j ∈ Jd},
ρ(n) = (ρ1(n1), ρ2(n1, n2), . . . , ρd(n1, . . . , nd)). For the sequence ρd(n1, . . . , nd),
inequality (5.5) holds, and, for j ∈ Jd , one has |〈b j , ρ(n)〉| ≥ 1/2.

Thus, we construct the desired sequence since, for any j ∈ {1, . . . ,m} and some
i ∈ {1, . . . , d}, b j ∈ Ji holds. ��

An important ingredient of the proof of Theorem 5.2 is the following corollary of
Lemma 5.11:

Lemma 5.12 If a > 0, α1, . . . , αm ∈ R
d \ {0}, then there exists a sequence λ(n) of

the form (5.3) such that for some δ, L > 0 the conditions �sep[δ], �lat[a, L], and
ξ j (λ

(n)) ≥ δ, j = 0, 1, . . . ,m, n ∈ Z
d , hold, where

ξ0(x) = |x |, ξ j (x) = |〈α j , x〉|, j = 1, . . . ,m. (5.7)

Indeed, for m ≥ 1, it is enough to define

λ(n) = (λ1(n1), λ2(n1, n2), . . . , λd(n1, . . . , nd))

:=
(

πρ1(n1)

a1
,
πρ2(n1, n2)

a2
, . . . ,

πρd(n1, . . . , nd)

ad

)
, (5.8)

where ρ(n) is the sequence defined in Lemma 5.11. For m = 0 in (5.8), we can take
{ρ(n)} = Z

d \ {0}.
We are now in a position to state the Plancherel–Polya–Boas inequalities with

weights.

Theorem 5.13 Let f ∈ Bσ and λ(n) be the sequence satisfying all conditions of
Lemma 5.12 with some a > σ. Then, for 0 < p < ∞,

∑

n∈Zd

v(λ(n))| f (λ(n))|p �
∫

Rd
| f (x)|pv(x) dx �

∑

n∈Zd

v(λ(n))| f (λ(n))|p.

Proof Recall that v(x) = ∏m
j=0 v j (x), where v j (x) = ξ

k j
j (x), j = 0, 1, . . . ,m (see

(5.1) and (5.7)).
By Lemma 5.10, we construct an entire function of exponential type
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w(z) =
m∏

j=0

w j (z),

where w0(z) = ωγ0(|z|), w j (z) = ωγ j (〈α j , z〉), j = 1, . . . ,m, and

γ j = k j
2p

− 1

2
, j = 0, 1, . . . ,m.

For j = 0, 1, . . . ,m, we have w j ∈ B2μ j
, where

μ0 = (1, . . . , 1) ∈ R
d , μ j =

(∣∣∣α j
1

∣∣∣ , . . . ,
∣∣∣α j

d

∣∣∣
)

, j = 1, . . . ,m,

and w ∈ B2μ, μ = ∑m
j=0 μ j . Moreover, for any j = 0, 1, . . . ,m,

w
p
j (x) � v j (x), x ∈ R

d ,

w
p
j (x) � v j (x) � 1, for ξ j (x) ≥ δ > 0.

(5.9)

Let f ∈ Bσ
p,v , 0 < p < ∞, σ < a, and λ(n) be the sequence satisfying all

conditions of Lemma 5.12. Then, for some s > 0 such that σ + 2sμ < a, we have
that f (x)w(sx) ∈ Bσ+2sμ.

Using Theorem 5.6 and properties (5.9), we derive
∑

n∈Zd

v(λ(n))| f (λ(n))|p �
∑

n∈Zd

| f (λ(n))w(λ(n))|p

�
∫

Rd
| f (x)w(x)|p dx �

∫

Rd
| f (x)|pv(x) dx .

Let δ > 0, J ⊂ Jm := {0, 1, . . . ,m} or J = ∅,

Eδ(J ) = {x ∈ R
d : ξ j (x) ≥ δ, j ∈ J and ξ j (x) ≤ δ, j ∈ Jm \ J }.

Since f (x)
∏

j∈J w j (sx) ∈ Bσ+2sμ, using Theorems 5.6 and 5.7 and properties
(5.9) for δ from Lemma 5.12, we obtain

∫

Rd
| f (x)|pv(x) dx =

∑

J

∫

Eδ(J )
| f (x)|pv(x) dx �

∑

J

∫

Eδ(J )
| f (x)|p

∏

j∈J

v j (sx) dx

�
∑

J

∫

Eδ(J )

∣∣∣∣∣∣
f (x)

∏

j∈J

w j (sx)

∣∣∣∣∣∣

p

dx �
∑

J

∫

Rd

∣∣∣∣∣∣
f (x)

∏

j∈J

w j (sx)

∣∣∣∣∣∣

p

dx

�
∑

n
| f (λ(n))|p

∑

J

∏

j∈J

w
p
j (sλ

(n)) �
∑

n
| f (λ(n))w(sλ(n))|p

�
∑

n
| f (λ(n))|pv(sλ(n)) �

∑

n
| f (λ(n))|pv(λ(n)),

where we have assumed that
∏

j∈∅
= 1. ��
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Proof of Theorem 5.2 Recall that it is enough to show that Bσ
p,v ⊂ Bσ

p , and the latter
follows from Bσ

p,v ⊂ L p(Rd).

Let f ∈ Bσ
p,v , 0 < p < ∞, a > σ, andλ(n) be the sequence satisfying all conditions

of Lemma 5.12. Using Theorem 5.6 and properties (5.9) as in Theorem 5.13, we have

∫

Rd
| f (x)|p dx �

∑

n∈Zd

| f (λ(n))|p �
∑

n∈Zd

|w(λ(n)) f (λ(n))|p

�
∫

Rd
| f (x)w(x)|p dx �

∫

Rd
| f (x)|pv(x) dx .

��
By the Paley–Wiener theorem for tempered distributions (see [25,53]) and Theo-

rem 5.1, we arrive at the following result.

Theorem 5.14 A function f ∈ Bσ
p,k , 1 ≤ p < ∞, if and only if f ∈ L p(Rd , dμk) ∩

Cb(R
d) and suppFk( f ) ⊂ Bσ .

The Dunkl transform Fk( f ) in Theorem 5.14 is understood as a function for 1 ≤
p ≤ 2 and as a tempered distribution for p > 2.

We conclude this section by presenting the concept of the best approximation. Let

Eσ ( f )p,dμk = inf{‖ f − g‖p,dμk : g ∈ Bσ
p,k}

be the best approximation of a function f ∈ L p(Rd , dμk) by entire functions of
spherical exponential type σ . We show that the best approximation is achieved.

Theorem 5.15 For any f ∈ L p(Rd , dμk), 1 ≤ p ≤ ∞, there exists a function
g∗ ∈ Bσ

p,k such that Eσ ( f )p,dμk = ‖ f − g∗‖p,dμk .

Proof The proof is standard. Let gn be a sequence from Bσ
p,k such that ‖ f −

gn‖p,dμk → Eσ ( f )p,dμk . Since it is bounded in L p(Rd , dμk), it is also bounded
in Cb(R

d). A compactness theorem for entire functions [31, 3.3.6] implies that there
exist a subsequence gnk and an entire function g∗ of exponential type at most σ such
that

lim
k→∞ gnk (x) = g∗(x), x ∈ R

d ,

and, moreover, convergence is uniform on compact sets. Therefore, for any R > 0,

‖g∗χBR‖p,dμk = lim
k→∞ ‖gnkχBR‖p,dμk ≤ M.

Letting R → ∞, we have that g∗ ∈ Bσ
p,k . In light of
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‖( f − g∗)χBR‖p,dμk = lim
k→∞ ‖( f − gnk )χBR‖p,dμk

≤ lim
k→∞ ‖ f − gnk‖p,dμk = Eσ ( f )p,dμk ,

we have ‖ f − g∗‖p,dμk ≤ Eσ ( f )p,dμk . ��

6 Jackson’s Inequality and Equivalence of Modulus of Smoothness and
K -Functional

6.1 Smoothness Characteristics and K -Functional

We define the r -th power of the Dunkl Laplacian as a tempered distribution:

〈(−�k)
r f, ϕ〉 = 〈 f, (−�k)

rϕ〉, f ∈ S ′(Rd), ϕ ∈ S(Rd), r ∈ N.

The Dunkl Laplacian can also be written in terms of the Dunkl transform

(−�k)
r f = F−1

k (| · |2rFk( f )). (6.1)

Let W 2r
p,k be the Sobolev space, that is,

W 2r
p,k = { f ∈ L p(Rd , dμk) : (−�k)

r f ∈ L p(Rd , dμk)}

equipped with the Banach norm

‖ f ‖W 2r
p,k

= ‖ f ‖p,dμk + ‖(−�k)
r f ‖p,dμk .

Note that (−�k)
r f ∈ S(Rd) whenever f ∈ S(Rd) and S(Rd) is dense in W 2r

p,k .

Indeed, if f ∈ W 2r
p,k , defining

�(x) = e−|x |2/2, �ε(x) = 1

ε2λk+2 �
( x

ε

)
,

we obtain that ( f ∗k �ε) ∈ S(Rd) and (see [48])

lim
ε→0

‖ f − ( f ∗k �ε)‖p,dμk = lim
ε→0

‖(−�k)
r f − ((−�k)

r f ∗k �ε)‖p,dμk = 0.

Define the K -functional for the couple (L p(Rd , dμk),W 2r
p,k) as follows:

K2r (t, f )p,dμk = inf{‖ f − g‖p,dμk + t2r‖(−�k)
r g‖p,dμk : g ∈ W 2r

p,k}.

Note that for any f1, f2 ∈ L p(Rd , dμk) and g ∈ W 2r
p,k , we have
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‖ f1 − g‖p,dμk + t2r‖(−�k)
r g‖p,dμk

≤ ‖ f2 − g‖p,dμk + t2r‖(−�k)
r g‖p,dμk + ‖ f1 − f2‖p,dμk ,

and hence,
|K2r (t, f1)p,dμk − K2r (t, f2)p,dμk | ≤ ‖ f1 − f2‖p,dμk . (6.2)

If f ∈ W 2r
p,k , then K2r (t, f )p,dμk ≤ t2r‖(−�k)

r f ‖p,dμk and limt→0 K2r (t, f )p,dμk =
0. This and (6.2) imply that, for any f ∈ L p(Rd , dμk),

lim
t→0

K2r (t, f )p,dμk = 0. (6.3)

Another important property of the K -functional is

K2r (λt, f )p,dμk ≤ max{1, λ2r }K2r (t, f )p,dμk . (6.4)

Let I be an identical operator andm ∈ N. Consider the following three differences:

Δm
t f (x) = (I − T t )m f (x) =

m∑

s=0

(−1)s
(
m

s

)
(T t )s f (x), (6.5)

∗Δm
t f (x) =

m∑

s=0

(−1)s
(
m

s

)
T st f (x), (6.6)

∗∗Δm
t f (x) =

(
2m

m

)−1 m∑

s=−m

(−1)s
(

2m

m − s

)
T st f (x). (6.7)

Differences (6.5) and (6.6) coincide with the classical difference for the translation
operator T t f (x) = f (x + t) and correspond to the usual definition of the modulus of
smoothness of orderm.Difference (6.7) canbe seen as follows.Defineμs = (−1)s

(m
s

)
,

s ∈ Z. Then the convolution μ ∗ μ is given by

νs := (μ ∗ μ)s =
∑

l∈Z

μlμs+l = (−1)s
(

2m

m − s

)
.

Note that νs �= 0 if |s| ≤ m. Moreover, if k ≡ 0, then

1

ν0

m∑

s=−m

νsT
st f (x) = f (x) + 2

ν0

m∑

s=1

νs S
st f (x) = f (x) − Vm,t f (x),

where the operator St was given in (3.5) and the averages

Vm,t f (x) = −2

ν0

m∑

s=1

νs S
st f (x)

were defined by Dai and Ditzian in [9].

123



Constr Approx (2019) 49:555–605 583

Definition 6.1 The moduli of smoothness of a function f ∈ L p(Rd , dμk) are defined
by

ωm(δ, f )p,dμk = sup
0<t≤δ

‖Δm
t f (x)‖p,dμk , (6.8)

∗ωm(δ, f )p,dμk = sup
0<t≤δ

‖∗Δm
t f (x)‖p,dμk , (6.9)

∗∗ωm(δ, f )p,dμk = sup
0<t≤δ

‖∗∗Δm
t f (x)‖p,dμk . (6.10)

Let us mention some basic properties of these moduli of smoothness. Define by
�m(δ, f )p,dμk any of the three moduli in Definition 6.1. Using the triangle inequality,
estimate (3.6) reveals

�m(δ, f1 + f2)p,dμk ≤ �m(δ, f1)p,dμk + �m(δ, f2)p,dμk

and
�m(δ, f )p,dμk � ‖ f ‖p,dμk ,

|�m(δ, f1)p,dμk − �m(δ, f2)p,dμk | � ‖ f1 − f2‖p,dμk .
(6.11)

If f ∈ S(Rd), then, by (3.2),

Fk(Δ
m
t f )(y) = jλk ,m(t |y|)Fk( f )(y),

Fk(
∗Δr

t f )(y) = j∗λk ,m(t |y|)Fk( f )(y),

Fk(
∗∗Δm

t f )(y) = j∗∗λk ,m(t |y|)Fk( f )(y),

(6.12)

where λk = d/2 − 1 + ∑
a∈R+ k(a) > −1/2,

jλk ,m(t) =
m∑

s=0

(−1)s
(
m

s

) (
jλk (t)

)s = (1 − jλk (t))
m,

j∗λk ,m(t) =
m∑

s=0

(−1)s
(
m

s

)
jλk (st),

and

j∗∗λk ,m(t) =
(
2m

m

)−1 m∑

s=−m

(−1)s
(

2m

m − s

)
jλk (st)

= 1 + 2

(
2m

m

)−1 m∑

s=1

(−1)s
(

2m

m − s

)
jλk (st). (6.13)

These formulas alow us to prove the following remark, which will be important further
in Theorem 6.6.

Remark 6.2 The functions jλk ,m(t) and j∗∗λk ,m(t) have zero of order 2m at the origin,
while the function j∗λk ,m(t) has zero of order m + 1 if m is odd and of order m if m is
even.
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Indeed, first we study jλk ,m(t) = (1 − jλk (t))
m . Since, for any t ,

jλ(t) =
∞∑

k=0

(−1)k�(λ + 1)(t/2)2k

k! �(k + λ + 1)
, (6.14)

we get jλk ,m(t) � t2m as t → 0. Second, since

m∑

s=0

(−1)s
(
m

s

)
s2k = 0, 0 ≤ 2k ≤ m − 1,

(see [36, Sect. 4.2]), using (6.14), we obtain that j∗λk ,m(t) � t2[(m+1)/2]. Finally, taking
into account

m∑

s=1

(−1)s
(

2m

m − s

)
= −1

2

(
2m

m

)
,

m∑

s=1

(−1)s
(

2m

m − s

)
s2k = 0, k = 1, . . . ,m − 1,

(see [36, Sect. 4.2]) and using again (6.14), we arrive at j∗∗λk ,m(t) � t2m . Some of these
properties were known (see [9,34,35]).

Remark 6.3 In the paper [9], the authors obtained that j∗∗λk ,m(t) > 0 for t > 0.

6.2 Main Results

First we state the Jackson-type inequality.

Theorem 6.4 Let σ > 0, 1 ≤ p ≤ ∞, r ∈ Z+, m ∈ N. We have, for any f ∈ W 2r
p,k ,

Eσ ( f )p,dμk � 1

σ 2r �m

(
1

σ
, (−�k)

r f

)

p,dμk

, (6.15)

where �m is any of the three moduli of smoothness (6.8)–(6.10).

Remark 6.5 (i) For radial functions, inequality (6.15) is the Jackson inequality in
L p(R+, dνλk ). In this case it was obtained in [34,35] for moduli (6.8) and (6.9).
For k ≡ 0 and the modulus of smoothness (6.10), inequality (6.15) was obtained
by Dai and Ditzian [9], see also the paper [10].

(ii) From the proof of Theorem 6.4, we will see that inequality (6.15) for moduli (6.8)
and (6.10) can be equivalently written as

Eσ ( f )p,dμk � 1

σ 2r

∥∥∥Δm
1/σ ((−�k)

r f )
∥∥∥
p,dμk

,

Eσ ( f )p,dμk � 1

σ 2r

∥∥∥∗∗Δm
1/σ ((−�k)

r f )
∥∥∥
p,dμk

.
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The next theorem provides an equivalence between moduli of smoothness and the
K -functional.

Theorem 6.6 If δ > 0, 1 ≤ p ≤ ∞, r ∈ N, then for any f ∈ L p(Rd , dμk),

K2r (δ, f )p,dμk � ωr (δ, f )p,dμk � ∗∗ωr (δ, f )p,dμk

� ∗ω2r−1(δ, f )p,dμk � ∗ω2r (δ, f )p,dμk .
(6.16)

Remark 6.7 If k ≡ 0, the equivalence between the classical modulus of smoothness
and the K -functional is well known [8,26], while the equivalence between modulus
(6.10) and the K -functional was shown in [9]. For radial functions, a partial result of
(6.16), more precisely, an equivalence of the K -functional and moduli of smoothness
(6.8) and (6.9), was proved in [34,35].

Remark 6.8 One can continue equivalence (6.16) as follows (see also Remark 6.16):

. . . � ‖Δr
δ f ‖p,dμk � ‖∗∗Δr

δ f ‖p,dμk .

We give the proof for the difference (6.7) and the modulus of smoothness (6.10).
We partially follow the proofs in [27,34,35], which are different from those given
in [9]. For moduli of smoothness (6.8) and (6.9), the proofs are similar and will be
omitted here (see also [34,35]). The proof makes use of radial multipliers and is based
on boundedness of the translation operator T t . Note that by (6.2) and (6.11), the K -
functional and moduli of smoothness depend continuously on a function. Moreover,
the best approximations also depend continuously on a function, and therefore one
can assume that functions belong to the Schwartz space.

6.3 Properties of the de la Vallée Poussin Type Operators

Let η ∈ Srad(R
d) be such that η(x) = 1 if |x | ≤ 1, η(x) > 0 if |x | < 2, and η(x) = 0

if |x | ≥ 2. We write

ηr (x) = 1 − η(x)

|x |2r , η̂k,r (y) = Fk(ηr )(y),

whereFk(ηr ) is a tempered distribution. If t = |x |, η0(t) = η(x), and ηr0(t) = ηr (x),
then Fk(ηr )(y) = Hλk (ηr0)(|y|).
Lemma 6.9 We have η̂k,r ∈ L1(Rd , dμk), where r > 0.

Proof It is sufficient to prove that Hλk (ηr0) ∈ L1(R+, dνλk ). In the case r ≥ 1, this
was proved in [35, (4.25)]. We give the proof for any r > 0.

Letting u j (t) = (1 + t2)− j and taking into account that

1

t2r
= 1

(1 + t2)r

(
1 − 1

1 + t2

)−r

=
∞∑

j=0

(
j + r − 1

j

)
1

(1 + t2) j+r
, t �= 0,
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we obtain, for any M ∈ N and t ≥ 0,

ηr0(t) =
∞∑

j=0

(
j + r − 1

j

)
(1 − η0(t))u j+r (t)

=
M−1∑

j=0

(
j + r − 1

j

)
u j+r (t) − η0(t)

M−1∑

j=0

(
j + r − 1

j

)
u j+r (t)

+
∞∑

j=M

(
j + r − 1

j

)
(1 − η0(t))u j+r (t) =: ψ1(t) + ψ2(t) + ψ3(t).

For any r > 0, we have Hλk (ur ) ∈ L1(R+, dνλk ) (see [35, Lemma 3.2], [47,
Chapt 5, 5.3.1], [31, Chapt 8, 8.1]); therefore Hλk (ψ1) ∈ L1(R+, dνλk ). Because of
ψ2 ∈ S(R+),Hλk (ψ2) ∈ L1(R+, dνλk ). Thus, we are left to show that, for sufficiently
large M ,Hλk (ψ3) ∈ L1(R+, dνλk ).

Let M + r > λk + 1, t ≥ 1. Since �( j+r)
�( j+1) � jr−1, we have

|ψ3(t)| ≤ Mr−1

(1 + t2)M+r

∞∑

j=0

(1 + j)r−1

2 j
� 1

(1 + t2)M+r
� 1

t2M+2r ,

and

∫ ∞

0
|ψ3(t)| dνλk (t) �

∫ ∞

1
t−(2M+2r−2λk−1) dt < ∞.

Thus, ψ3 ∈ L1(R+, dνλk ), Hλk (ψ3) ∈ C(R+), and Hλk (ψ3) ∈ L1([0, 2], dνλk ).
Recall that the Bessel differential operator is defined by

Bλk = d2

dt2
+ (2λk + 1)

t

d

dt
.

Using ψ3 ∈ C∞(R+), we have, for any s ∈ N, Bs
λk

ψ3 ∈ L1([0, 2], dνλk ).
If t ≥ 2, then (1 − η0(t))u j+r (t) = u j+r (t) and

Bλk u j+r (t) = 4( j + r)( j + r − λk)u j+r+1(t) − 4( j + r)( j + r + 1)u j+r+2(t).

This gives

|Bλk u j+r (t)| ≤ 23( j + r + λk + 1)2u j+r+1(t).

By induction on s,

|Bs
λk
u j+r (t)| ≤ 23s( j + r + 2s + λk − 1)2su j+r+s(t),
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and then, for t ≥ 2,

|Bs
λk

ψ3(t)| � 1

(1 + t2)M+r+s

∞∑

j=0

(1 + j)r+2s−1

5 j
� 1

(1 + t2)M+r+s
� 1

t2M+2r+2s ,

and Bs
λk

ψ3 ∈ L1([2,∞), dνλk ). Thus, we have Bs
λk

ψ3 ∈ L1(R+, dνλk ) for any s.
Choosing s > λk + 1 and using the inequality

|Hλk (ψ3)(τ )| ≤ 1

τ 2s

∫ ∞

0
|Bs

λk
ψ3(t)| dνλk (t) � 1

τ 2s
,

we arrive at Hλk (ψ3) ∈ L1([2,∞), dνλk ). Finally, we obtain that Hλk (ψ3) ∈
L1(R+, dνλk ). ��

For m, r ∈ N and m ≥ r , we set

g∗
m,r (y) := |y|−2r j∗∗λk ,m(|y|), gm,r (x) := Fk(g

∗
m,r )(x),

gtm,r (x) := t2r−2λk−2gm,r

( x
t

)
.

Since

g∗
m,r (y) = j∗∗λk ,m(|y|)ηr (y) + j∗∗λk ,m(|y|)

|y|2r η(y),

j∗∗λk ,m(|y|)
|y|2r ∈ C∞(Rd),

j∗∗λk ,m(|y|)
|y|2r η(y) ∈ S(Rd),

and

Fk( j
∗∗
λk ,mηr )(x) =

(
2m

m

)−1 m∑

s=−m

(−1)s
(

2m

m − s

)
T s η̂λk ,r (x),

boundedness of the operator T s in L1(Rd , dμk) and Lemma 6.9 imply that

gm,r , g
t
m,r ∈ L1(Rd , dμk), ‖gtm,r‖1,dμk = t2r‖gm,r‖1,dμk ,

F−1
k (gtm,r )(y) = Fk(g

t
m,r )(y) = t2r g∗

m,r (t y) = |y|−2r j∗∗λk ,m(t |y|). (6.17)

Lemma 6.10 Let m, r ∈ N, m ≥ r , 1 ≤ p ≤ ∞, and f ∈ S(Rd). We have

∗∗Δm
t f = (−�k)

r f ∗k gtm,r (6.18)

and
‖∗∗Δm

t f ‖p,dμk � t2r‖(−�k)
r f ‖p,dμk . (6.19)
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Proof Combining (3.15), (6.1), (6.12), and (6.17), we obtain that

Fk(
∗∗Δm

t f )(y) = j∗∗λk ,m(t |y|)Fk( f )(y) = |y|2rFk( f )(y)
j∗∗λk ,m(t |y|)

|y|2r
= Fk((−�k)

r f )(y)Fk(g
t
m,r )(y).

Then (6.18) follows from (3.11) and Lemma 3.4. Inequality (6.19) follows from
(6.17), (6.18), Lemma 3.4, and (3.12). Note that a constant in (6.19) can be taken
as ‖gm,r‖1,dμk . ��
Remark 6.11 Since S(Rd) is dense inW 2r

p,k , in light of (6.11), inequality (6.19) holds

for any function from W 2r
p,k .

Let f ∈ S(Rd). We set θ(x) = Fk(η)(x) and θσ (x) = θ(x/σ). Then θ , θσ ∈
S(Rd). The de la Vallée Poussin type operator is given by Pσ ( f ) = f ∗k θσ . By
Lemma 3.4,

Fk(Pσ ( f ))(y) = η(y/σ)Fk( f )(y).

Lemma 6.12 If σ > 0, 1 ≤ p ≤ ∞, f ∈ S(Rd), then

(1) Pσ ( f ) ∈ B2σ
p,k and Pσ (g) = g for any g ∈ Bσ

p,k;
(2) ‖Pσ ( f )‖p,dμk � ‖ f ‖p,dμk ;
(3) ‖ f − Pσ ( f )‖p,dμk � Eσ ( f )p,dμk .

Remark 6.13 Property (3) in this lemma means that Pσ ( f ) is the near best approxi-
mant of f in L p(Rd , dμk).

Proof (1) We observe that supp η( ·/σ) ⊂ B2σ and then suppFk(Pσ ( f )) ⊂ B2σ .
Theorem 5.14 yields Pσ ( f ) ∈ B2σ

p,k . If g ∈ Bσ
p,k , then by Theorem 5.14, suppFk(g) ⊂

Bσ and Fk(Pσ (g))(y) = η(y/σ)Fk(g)(y) = Fk(g)(y). Hence, Pσ (g) = g.
(2) In light of (3.12),

‖Pσ ( f )‖p,dμk = ‖ f ∗k θσ ‖p,dμk ≤ ‖θσ ‖1,dμk‖ f ‖p,dμk

= ‖θ‖1,dμk‖ f ‖p,dμk � ‖ f ‖p,dμk .

(3) Using Theorem 5.15, there exists an entire function g∗ ∈ Bσ
p,k such that ‖ f −

g∗‖p,dμk = Eσ ( f )p,dμk . Then using Pσ (g∗) = g∗ implies

‖ f − Pσ ( f )‖p,dμk = ‖ f − g∗ + Pσ (g∗ − f )‖p,dμk

≤ ‖ f − g∗‖p,dμk + ‖Pσ ( f − g∗)‖p,dμk � Eσ ( f )p,dμk .

��
In the proof of the next lemma we will use the estimate

| j (n)
λ (t)| � (|t | + 1)−(λ+1/2), t ∈ R, λ ≥ −1/2, n ∈ Z+, (6.20)
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which follows, by induction on n, from the known properties of the Bessel function
[2, Chap. 7]

| jλ(t)| � (|t | + 1)−(λ+1/2), j ′λ(t) = − t

2(λ + 1)
jλ+1(t).

Lemma 6.14 If σ > 0, 1 ≤ p ≤ ∞, m ∈ N, r ∈ Z+, f ∈ S(Rd), then

‖ f − Pσ/2( f )‖p,dμk � σ−2r‖∗∗Δm
a/σ ((−�k)

r f )‖p,dμk (6.21)

for some a = a(λk,m) > 0.

Proof We have

Fk( f − Pσ/2( f ))(y) = (1 − η(2y/σ))Fk f (y)

= σ−2r 1 − η(2y/σ)

(|y|/σ)2r j∗∗λk ,m(a|y|/σ)
Fk(

∗∗Δm
a/σ ((−�k)

r f ))(y)

= σ−2rϕ(y/σ)Fk(
∗∗Δm

a/σ ((−�k)
r f ))(y), (6.22)

where

ϕ(y) = 1 − η(2y)

|y|2r j∗∗λk ,m(a|y|) ,
∗∗Δm

a/σ ((−�k)
r f ) ∈ S(Rd). (6.23)

Setting j∗∗λk ,m(t) = 1−τ0(t), in light of (6.13) and (6.20),we observe that j∗∗λk ,m(t) → 1
as t → ∞. Then we can choose a > 0 such that |τ0(t)| ≤ 1/2 for |t | ≥ a/2. For such
a = a(λk,m), we have that ϕ(y) = 0 for |y| ≤ 1/2, ϕ(y) > 0 for |y| > 1/2, and
ϕ ∈ C∞(Rd). Moreover, the derivatives ϕ(k)(y) grow at infinity not faster than |y|ak ,
which yields ϕ ∈ S ′(Rd).

We will use the following decomposition:

ϕ(y) = ϕ1(|y|) + ϕ2(|y|),

where

ϕ1(|y|) = 22rηr (2y)

(
1

1 − τ0(a|y|) − SN (τ0(a|y|)
)

and

ϕ2(|y|) = 22rηr (2y)SN (τ0(a|y|)), ηr (y) = 1 − η(y)

|y|2r , SN (t) =
N−1∑

j=0

t j .

First, we show that Fk(ϕ1(| · |)) ∈ L1(Rd , dμk). Since for a radial function we
have

�kϕ1(|y|) = ϕ′′
1 (|y|) + 2λk + 1

|y| ϕ′
1(|y|)
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and, for |t | ≤ 1/2,

(1 − t)−1 −
N−1∑

j=0

t j = (1 − t)−1 − SN (t) = t N

1 − t
,

then, by (6.13) and (6.20), we obtain

�s
kϕ1(|y|) = O(|y|−2r−N (λk+1/2)), |y| ≥ 1/2, s ∈ Z+.

Hence, for a fixed N ≥ 2 + 2/(2λk + 1), we have �s
kϕ1(|y|) ∈ L1(Rd , dμk), where

s ∈ Z+. Applying (6.1) we derive that

|Fk(ϕ1(| · |))(x)| = |Fk((−�k)
sϕ1(| · |))(x)|

|x |2s ≤ ‖(−�k)
sϕ1(| · |)‖1,dμk

|x |2s .

Setting s > λk + 1 yields Fk(ϕ1(| · |)) ∈ L1(Rd , dμk).
Second, let us show that Fk(ϕ2(| · |)) ∈ L1(Rd , dμk) for r ∈ N. Let

τ0(t) =
m∑

s=1

νs jλk (st), ψr (x) = 22rFk(ηr (2 ·))(x),

Aa f (x) =
m∑

s=1

νsT
as f (x), Ba f (x) =

N−1∑

j=0

(Aa) j f (x).

Boundedness of the operator T t in L p(Rd , dμk) implies

‖Aa‖p→p = sup{‖A f ‖p,dμk : ‖ f ‖p,dμk ≤ 1} ≤
m∑

s=1

|νs |

and

‖Ba‖p→p ≤
N−1∑

j=0

(‖A‖p→p)
j ≤ N

(
1 +

m∑

s=1

|νs |
)N−1

, 1 ≤ p < ∞. (6.24)

Then for p = 1, taking into account Lemma 6.9, we have

‖Fk(ϕ2(| · |))‖1,dμk = ∥∥Baψr
∥∥
1,dμk

≤ N

(
1 +

m∑

s=1

|νs |
)N−1

‖ψr‖1,dμk < ∞.

Thus, Fk(ϕ) ∈ L1(Rd , dμk). Combining Lemma 3.4, relations (3.12), (6.22), (6.23),
and the formula ‖Fk(ϕ( ·/σ))‖1,dμk = ‖Fk(ϕ)‖1,dμk , we obtain inequality (6.21) for
r ∈ N.
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Now let r = 0. Define the operators A1 and A2 as follows:

Fk(A1g)(y) = ϕ1(|y|/σ)Fk(g)(y)

and

Fk(A2g)(y) = ϕ2(|y|/σ)Fk(g)(y), ϕ2(|y|) = (1 − η(2y))SN (τ0(a|y|)).

Since Fk(ϕ1(| · |)) ∈ L1(Rd , dμk),

‖A1g‖p,dμk ≤ ‖Fk(ϕ1(|y|))‖1,dμk ‖g‖p,dμk � ‖g‖p,dμk ,

1 ≤ p ≤ ∞, g ∈ S(Rd).
(6.25)

We are left to show that

‖A2g‖p,dμk � ‖g‖p,dμk , 1 ≤ p ≤ ∞, g ∈ S(Rd).

We have

Fk(A2g)(y) = (1 − η(2y/σ))SN (τ0(a|y|/σ))Fk(g)(y)

= (1 − η(2y/σ))Fk(B
a/σ g)(y)

= Fk(B
a/σ g − Pσ/2(B

a/σ g))(y).

Since Ba/σ g ∈ S(Rd), using Lemma 6.12 and inequality (6.24), we get

‖A2g‖p,dμk ≤ ‖Ba/σ g‖p,dμk ≤ N

(
1 +

m∑

s=1

|νs |
)N−1

‖g‖p,dμk � ‖g‖p,dμk .

(6.26)
Using (6.25) and (6.26) with g = ∗∗Δm

a/σ f , we finally obtain (6.21) for r = 0. ��

Lemma 6.15 If σ > 0, 1 ≤ p ≤ ∞, m ∈ N, f ∈ S(Rd), then

‖((−�k)
m Pσ ( f )‖p,dμk � σ 2m‖∗∗Δm

a/(2σ) f ‖p,dμk , (6.27)

where a = a(λk,m) > 0 is given in Lemma 6.14.

Proof We have

Fk(((−�k)
m Pσ ( f ))(y) = |y|2mη(y/σ)Fk( f )(y)

= σ 2mϕ(y/σ) j∗∗λk ,m(a/(2σ))Fk( f )(y)

= σ 2mϕ(y/σ)Fk(
∗∗Δm

a/(2σ) f )(y),
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where

ϕ(y) = |y|2mη(y)

j∗∗λk ,m(a|y|/2) .

Since j∗∗λk ,m(a|y|/2)/|y|2m > 0 for |y| > 0, we observe that ϕ ∈ S(Rd) and

Fk(ϕ) ∈ L1(Rd , dμk). Then estimate (6.27) follows from Lemma 3.4, Young’s
inequality (3.12), and ‖Fk(ϕ( ·/σ))‖1,dμk = ‖Fk(ϕ)‖1,dμk . ��

6.4 Proofs of Theorems 6.4 and 6.6

Proof of Theorem 6.6 In connection with Lemma 6.10 and Remark 6.11, observe that,
for f ∈ S(Rd) and g ∈ W 2r

p,k ,

‖∗∗Δr
δ f ‖p,dμk ≤ ∗∗ωr (δ, f )p,dμk ≤ ∗∗ωr (δ, f − g)p,dμk + ∗∗ωr (δ, g)p,dμk

� ‖ f − g‖p,dμk + δ2r‖(−�k)
r g‖p,dμk .

Then
‖∗∗Δr

δ f ‖p,dμk ≤ ∗∗ωr (δ, f )p,dμk � K2r (δ, f )p,dμk . (6.28)

On the other hand, Pσ ( f ) ∈ W 2r
p,k and

K2r (δ, f )p,dμk ≤ ‖ f − Pσ ( f )‖p,dμk + δ2r‖(−�k)
r Pσ ( f )‖p,dμk . (6.29)

In light of Lemma 6.14,

‖ f − Pσ ( f )‖p,dμk � ‖∗∗Δr
a/(2σ) f ‖p,dμk .

Further, Lemma 6.15 yields

‖((−�k)
r Pσ ( f )‖p,dμk � σ 2r‖∗∗Δr

a/(2σ) f ‖p,dμk . (6.30)

Setting σ = a/(2δ), from (6.29)–(6.30) we arrive at

K2r (δ, f )p,dμk � ‖∗∗Δr
δ f ‖p,dμk � ∗∗ωr (δ, f )p,dμk . (6.31)

Proof of Theorem 6.4 Using property (6.4) and inequalities (6.28) and (6.31), we
obtain

Eσ ( f )p,dμk ≤ ‖ f − Pσ/2( f )‖p,dμk � σ−2r‖∗∗Δm
a/σ ((−�k)

r f )‖p,dμk

� 1

σ 2r K2m

( a

σ
, (−�k)

r f
)

p,dμk

� 1

σ 2r K2m

(
1

σ
, (−�k)

r f

)

p,dμk
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� 1

σ 2r ‖∗∗Δm
1/σ ((−�k)

r f )‖p,dμk � 1

σ 2r
∗∗ωm

(
1

σ
, (−�k)

r f

)

p,dμk

.

(6.32)

Remark 6.16 The proofs of estimates (6.31) and (6.32) for the difference (6.7) are
based on the fact that the parameter a in Lemmas 6.14 and 6.15 is the same. It is
possible due to the fact that j∗∗λk ,m(t) > 0 for t > 0, see Remark 6.3. This estimate is
valid for the difference (6.5) as well, since jλk ,m(t) = (1 − jλk (t))

m > 0 for t > 0.
Therefore, the moduli of smoothness (6.8) and (6.10) in inequalities (6.15) and

(6.16) can be replaced by the norms of the corresponding differences (6.5) and (6.7).
For the modulus of smoothness (6.9), this observation is not valid since j∗λk ,m(t) does
not keep its sign.

Remark 6.17 Properties (6.3) and (6.4) of the K -functional and the equivalence (6.16)
imply the following properties of moduli of smoothness:

(1) lim
δ→0+0

ωm(δ, f )p,dμk = lim
δ→0+0

∗ωm(δ, f )p,dμk = lim
δ→0+0

∗∗ωm(δ, f )p,dμk = 0;
(2) ωm(λδ, f )p,dμk � max{1, λ2m} ωm(δ, f )p,dμk ;
(3) ∗ωl(λδ, f )p,dμk � max{1, λ2m} ∗ωl(δ, f )p,dμk , l = 2m − 1, 2m;
(4) ∗∗ωm(λδ, f )p,dμk � max{1, λ2m} ∗∗ωm(δ, f )p,dμk .

7 Some Inequalities for Entire Functions

In this section, we study weighted analogues of the inequalities for entire functions. In
particular, we obtain Nikolskii’s inequality ([31], see Theorem 7.1 below), Bernstein’s
inequality ([31], Theorem 7.3), Nikolskii–Stechkin’s inequality ([30,45], Theorem
7.5), and Boas-type inequality ([4], Theorem 7.7).

Theorem 7.1 If σ > 0, 0 < p ≤ q ≤ ∞, f ∈ Bσ
p,k , then

‖ f ‖q,dμk � σ (2λk+2)(1/p−1/q)‖ f ‖p,dμk . (7.1)

Remark 7.2 Observe that the obtained Nikolskii inequality is sharp, i.e., we actually
have

sup
f ∈Bσ

p,k , f �=0

‖ f ‖q,dμk

‖ f ‖p,dμk

� σ (2λk+2)(1/p−1/q),

and an extremizer can be taken as

fσ,m(x) = sin2m(θ |x |)
|x |2m , θ = σ

2m
,

for sufficiently large m ∈ N.
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Proof Let f ∈ Bσ
p,k , p ≥ 1, q = ∞. By Theorem 5.14, we have suppFk( f ) ⊂ Bσ ,

and then
Fk( f )(y) = η(y/σ)Fk( f )(y), η(y) = η0(|y|). (7.2)

Lemma 3.9 implies

f (x) = ( f ∗λk
Hλk (η0( ·/σ)))(x) =

∫ ∞

0
T t f (x)Hλk (η0( ·/σ))(t) dνλk (t).

Taking into account that

Hλk (η0( ·/σ))(t) = σ 2λk+2Hλk (η0)(σ t),

‖Hλk (η0)(σ t)‖p′,dμk = σ
− 2λk+2

p′ ‖Hλk (η0)(t)‖p′,dμk ,

Hölder’s inequality and Theorem 3.5 yield

| f (x)| ≤ σ 2λk+2‖T t f (x)‖p,dνλk
‖Hλk (η0)(σ t)‖p′,dμk

≤ σ (2λk+2)/p‖Hλk (η0)(t)‖p′,dμk‖ f ‖p,dμk � σ (2λk+2)/p‖ f ‖p,dμk ,

i.e., (7.1) holds.
Let f ∈ Bσ

p,k , 0 < p < 1, q = ∞. By Theorem 5.1, f is bounded and f ∈ Bσ
1,k .

We have

‖ f ‖1,dμk = ‖| f |1−p| f |p‖1,dμk ≤ ‖| f |1−p‖∞‖| f |p‖1,dμk = ‖ f ‖1−p∞ ‖ f ‖p
p,dμk

.

Using (7.1) with p = 1 and q = ∞,

‖ f ‖1,dμk � σ 2λk+2‖ f ‖1,dμk‖ f ‖−p∞ ‖ f ‖p
p,dμk

,

which gives

‖ f ‖∞ � σ (2λk+2)/p‖ f ‖p,dμk .

Thus, the proof of (7.1) for q = ∞ is complete.
If 0 < p ≤ q < ∞, we obtain

‖ f ‖q,dμk = ‖| f |1−p/q | f |p/q‖q,dμk ≤ ‖ f ‖1−p/q∞ ‖ f ‖p/q
p,dμk

≤ σ (2λk+2)(1−p/q)/p‖ f ‖1−p/q
p,dμk

‖ f ‖p/q
p,dμk

= σ (2λk+2)(1/p−1/q)‖ f ‖p,dμk .

��
Theorem 7.3 If σ > 0, r ∈ N, 1 ≤ p ≤ ∞, f ∈ Bσ

p,k , then

‖(−�k)
r f ‖p,dμk � σ 2r‖ f ‖p,dμk . (7.3)
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Proof It is enough to consider the case r = 1. As in the previous theorem, we use
(7.2) to obtain

Fk((−�k) f )(y) = |y|2η(y/σ)Fk( f )(y) = σ 2ϕ0(|y|/σ)Fk( f )(y),

where ϕ0(t) = t2η0(t) ∈ S(R+). Combining Lemma 3.9, inequality (3.12), and
‖Fk(ϕ0(| · |/σ))‖1,dμk = ‖Fk(ϕ0(| · |))‖1,dμk , we arrive at

‖(−�k) f ‖p,dμk ≤ σ 2‖Fk(ϕ0(| · |))‖1,dμk‖ f ‖p,dμk � σ 2‖ f ‖p,dμk .

��
The next result follows from Lemma 6.10, Remark 6.11, and Theorem 7.3.

Corollary 7.4 If σ, δ > 0, m ∈ N, 1 ≤ p ≤ ∞, f ∈ Bσ
p,k , then

ωm(δ, f )p,dμk � (σδ)2m‖ f ‖p,dμk ,

∗ωl(δ, f )p,dμk � (σδ)2m‖ f ‖p,dμk , l = 2m − 1, 2m,

∗∗ωm(δ, f )p,dμk � (σδ)2m‖ f ‖p,dμk ,

where constants do not depend on σ, δ, and f .

Theorem 7.5 If σ > 0, m ∈ N, 1 ≤ p ≤ ∞, 0 < t ≤ 1/(2σ), f ∈ Bσ
p,k , then

‖(−�k)
m f ‖p,dμk � t−2m‖∗∗Δm

t f ‖p,dμk . (7.4)

Remark 7.6 By Remark 6.8, this inequality can be equivalently written as

‖(−�k)
m f ‖p,dμk � t−2mK2m(t, f )p,dμk .

Proof We have

Fk((−�k)
m f )(y) = |y|2mη(y/σ)

j∗∗λk ,m(t |y|) j∗∗λk ,m(t |y|)Fk( f )(y).

Since for 0 < t ≤ 1/(2σ),

η(y/σ) = η(y/σ)η(t y),

we obtain that

Fk((−�k)
m f )(y) = t−2mη(y/σ)ϕ(t y) j∗∗λk ,m(t |y|)Fk( f )(y),

where

ϕ(y) = |y|2mη(y)

j∗∗λk ,m(|y|) ∈ S(Rd).
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Using

j∗∗λk ,m(t | · |)Fk( f ) = Fk(
∗∗Δm

t f ), ∗∗Δm
t f ∈ L p(Rd , dμk),

and

‖Fk(η( ·/σ))‖1,dμk = ‖Fk(η)‖1,dμk , ‖Fk(ϕ(t ·))‖1,dμk = ‖Fk(ϕ)‖1,dμk ,

and combining Lemma 3.9 and inequality (3.12), we have

‖(−�k)
m f ‖p,dμk ≤ t−2m‖Fk(η( ·/σ))‖1,dμk‖Fk(ϕ(t ·))‖1,dμk‖∗∗Δm

t f ‖p,dμk

= t−2m‖Fk(η)‖1,dμk‖Fk(ϕ)‖1,dμk‖∗∗Δm
t f ‖p,dμk

� t−2m‖∗∗Δm
t f ‖p,dμk .

��
Theorem 7.7 If σ > 0, m ∈ N, 1 ≤ p ≤ ∞, 0 < δ ≤ t ≤ 1/(2σ), f ∈ Bσ

p,k , then

δ−2m‖∗∗Δm
δ f ‖p,dμk � t−2m‖∗∗Δm

t f ‖p,dμk . (7.5)

Remark 7.8 Using Remark 6.8, Theorem 7.5, and taking into account that
δ−2mK2m(δ, f )p,dμk is decreasing in δ (see (6.4)), inequality (7.5) can be equiva-
lently written as

‖(−�k)
m f ‖p,dμk � δ−2m‖∗∗Δm

δ f ‖p,dμk � t−2m‖∗∗Δm
t f ‖p,dμk ,

‖(−�k)
m f ‖p,dμk � δ−2mK2m(δ, f )p,dμk � t−2mK2m(t, f )p,dμk .

Proof We have

Fk(
∗∗Δm

δ f )(y) = j∗∗λk ,m(δ|y|)Fk( f )(y)

= η(y/σ)
j∗∗λk ,m(δ|y|)η(t y)

j∗∗λk ,m(t |y|) Fk(
∗∗Δm

t f )(y)

= θ2mη(y/σ)ϕθ (t y)Fk(
∗∗Δm

t f )(y),

where θ = (δ/t)2m ∈ (0, 1],

ϕθ (y) = ψ(θy)η(y)

ψ(y)
∈ S(Rd), ψ(y) = j∗∗λk ,m(|y|)

|y|2m ∈ C∞(Rd).

Using Lemma 3.9 and estimate (3.12), we arrive at inequality (7.5):

‖∗∗Δm
δ f ‖p,dμk ≤ θ2m‖Fk(η)‖1,dμk max

0≤θ≤1
‖Fk(ϕθ )‖1,dμk‖∗∗Δm

t f ‖p,dμk
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�
(

δ

t

)2m

‖∗∗Δm
t f ‖p,dμk ,

provided that the function n(θ) = ‖Fk(ϕθ )‖1,dμk is continuous on [0, 1]. Let us prove
this.

Set ϕθ (y) = ϕθ0(|y|), r = |y|, ρ = |x |. Then

n(θ) =
∫

Rd

∣∣∣∣
∫

Rd
ϕθ (y)ek(x, y) dμk(y)

∣∣∣∣ dμk(x)

=
∫ ∞

0

∣∣∣∣
∫ 2

0
ϕθ0(r) jλk (ρr) dνλk (r)

∣∣∣∣ dνλk (ρ)

= b2λk

∫ ∞

0

∣∣∣∣
∫ 2

0
ϕθ0(r) jλk (ρr)r

2λk+1 dr

∣∣∣∣ ρ
2λk+1 dρ.

The inner integral continuously depends on θ . Let us show that the outer integral
converges uniformly in θ ∈ [0, 1]. Since [2, Sect. 7.2]

d

dr

(
jλk+1(ρr)r

2λk+2
)

= (2λk + 2) jλk (ρr)r
2λk+1,

integrating by parts implies

∫ 2

0
ϕθ0(r) jλk (ρr)r

2λk+1 dr =
∫ 2

0
ϕθ0(r) d

(∫ r

0
jλk (ρτ)τ 2λk+1

)

= 1

2λk + 2

∫ 2

0
ϕθ0(r) d

(
jλk+1(ρr)r

2λk+2
)

= − 1

2λk + 2

∫ 2

0

ϕθ0(r)

r
jλk+1(ρr)r

2λk+3 dr = . . .

= (−1)s

⎛

⎝
s∏

j=1

(2λk + 2s)

⎞

⎠
−1 ∫ 2

0
ϕ

[s]
θ0 (r) jλk+s(ρr)r

2λk+2s+1 dr,

where

ϕ
[s]
θ0 (r) := d

dr

(
ϕ

[s−1]
θ0 (r)

r

)
.

This and (6.20) give

∣∣∣∣
∫ 2

0
ϕθ0(r) jλk (ρr)r

2λk+1 dr

∣∣∣∣ ≤ c1(λk,m, s)

(ρ + 1)λk+s+1/2
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and, for s > λk + 3/2,

n(θ) ≤ c2(λk,m, s)
∫ ∞

0
(1 + ρ)−(s−λk−1/2) dρ ≤ c3(λk,m, s),

completing the proof. ��
Remark 7.9 Combining (7.1) and (7.3), the following Bernstein–Nikolskii inequality
is valid:

‖(−�k)
r f ‖q,dμk � σ 2r+(2λk+2)(1/p−1/q)‖ f ‖p,dμk , 1 ≤ p ≤ q ≤ ∞.

Remark 7.10 For radial functions, Nikolskii inequality (7.1), Bernstein (7.3), Nikolski
i–Stechkin (7.4), and Boas inequality (7.5) follow from corresponding estimates in
the space L p(R+, dνλ) proved in [34].

8 Realization of K -Functionals and Moduli of Smoothness

In the nonweighted case (k ≡ 0) the equivalence between the classical modulus of
smoothness and the K -functional between L p and the Sobolev spaceWr

p is well known
[8,26]: 1 ≤ p ≤ ∞, for any integer r one has

ωr (t, f )L p(R) � Kr ( f, t)p, 1 ≤ p ≤ ∞,

where

Kr ( f, t)p := inf
g∈Ẇ r

p

(
‖ f − g‖p + tr‖g‖Ẇ r

p

)
.

Starting from the paper [13] (see also [17, Lemma 1.1] for the fractional case), the
following equivalence between the modulus of smoothness and the realization of the
K -functional is widely used in approximation theory:

ωr (t, f )L p(R) � Rr (t, f )p = inf
g

{
‖ f − g‖p + tr‖g(r)‖p

}
,

where g is an entire function of exponential type 1/t.
Let the realization of the K -functional K2r (t, f )p,dμk be given as follows:

R2r (t, f )p,dμk = inf
{
‖ f − g‖p,dμk + t2r‖(−�k)

r g‖p,dμk : g ∈ B1/t
p,k

}

and

R∗
2r (t, f )p,dμk = ‖ f − g∗‖p,dμk + t2r‖(−�k)

r g∗‖p,dμk ,

where g∗ ∈ B1/t
p,k is a near best approximant.
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Theorem 8.1 If t > 0, 1 ≤ p ≤ ∞, r ∈ N, then for any f ∈ L p(Rd , dμk),

R2r (t, f )p,dμk � R∗
2r (t, f )p,dμk � K2r (t, f )p,dμk � ωr (t, f )p,dμk

� ∗∗ωr (t, f )p,dμk � ∗ω2r−1(t, f )p,dμk � ∗ω2r (t, f )p,dμk .

Proof By Theorem 6.6,

ωr (t, f )p,dμk � ∗∗ωr (t, f )p,dμk � ∗ω2r−1(t, f )p,dμk � ∗ω2r (t, f )p,dμk

� K2r (t, f )p,dμk ≤ R2r (t, f )p,dμk ≤ R∗
2r (t, f )p,dμk ,

where we have used the fact that B1/t
p,k ⊂ W 2r

p,k , which follows from Theorem 7.3.
Therefore, it is enough to show that

R∗
2r (t, f )p,dμk ≤ Cωr (t, f )p,dμk .

Indeed, for g∗ being the best approximant (or near best approximant), the Jackson
inequality given in Theorem 6.4 implies that

‖ f − g∗‖p,dμk � E1/t ( f )p,dμk � ωr (t, f )p,dμk . (8.1)

Using the first inequality in Theorem 7.5 and taking into account (8.1), we have

‖(−�k)
r g∗‖p,dμk � t−2r‖Δr

t/2g
∗‖p,dμk

� t−2r‖Δr
t/2(g

∗ − f )‖p,dμk + t−2r‖Δr
t/2 f ‖p,dμk

� t−2r‖g∗ − f ‖p,dμk + t−2rωr (t/2, f )p,dμk .

Using again (8.1), we arrive at

‖ f − g∗‖p,dμk + t2r‖(−�k)
r g∗‖p,dμk � ωr (t, f )p,dμk ,

completing the proof.

The next result answers the following important question (see, e.g., [22,51]): when
does the relation

ωm

(
1

n
, f

)

p,dμk

� En( f )p,dμk (8.2)

(or similar relations with concepts in Theorem 8.2) hold?

Theorem 8.2 Let 1 ≤ p ≤ ∞ and m ∈ N. We have that (8.2) is valid if and only if

ωm

(
1

n
, f

)

p,dμk

� ωm+1

(
1

n
, f

)

p,dμk

. (8.3)
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Proof We prove only the nontrivial part that (8.3) implies (8.2). Since, by (6.4), we
have ωm(nt, f )p,dμk � n2mωm(t, f )p,dμk , relation (8.3) implies that

ωm+1(nt, f )p,dμk � n2mωm+1(t, f )p,dμk . (8.4)

This and Jackson’s inequality give

1

n2(m+1)

n∑

j=0

( j + 1)2(m+1)−1E j ( f )p,dμk

� 1

n2(m+1)

n∑

j=0

( j + 1)2(m+1)−1ωm+1

(
1

j + 1
, f

)

p,dμk

� ωm+1

(
1

n
, f

)

p,dμk

.

Moreover, Theorem 9.1 below implies

ωm+1

(
1

ln
, f

)

p,dμk

� 1

(ln)2(m+1)

ln∑

j=0

( j + 1)2(m+1)−1E j ( f )p,dμk

� 1

l2(m+1)
ωm+1

(
1

n
, f

)

p,dμk

+ 1

(ln)2(m+1)

ln∑

j=n+1

( j + 1)2(m+1)−1E j ( f )p,dμk ,

or, in other words,

1

n2(m+1)

ln∑

j=n+1

( j + 1)2(m+1)−1E j ( f )p,dμk

� Cl2(m+1)ωm+1

(
1

ln
, f

)

p,dμk

− ωm+1

(
1

n
, f

)

p,dμk

.

Using again (8.4), we obtain

1

n2(m+1)

ln∑

j=n+1

( j + 1)2(m+1)−1E j ( f )p,dμk � (Cl2 − 1)ωm+1

(
1

n
, f

)

p,dμk

.

Taking into account monotonicity of E j ( f )p,dμk and choosing l sufficiently large, we
arrive at (8.2). ��

123



Constr Approx (2019) 49:555–605 601

9 Inverse Theorems of Approximation Theory

Theorem 9.1 Let m, n ∈ N, 1 ≤ p ≤ ∞, f ∈ L p(Rd , dμk). We have

K2m

(
1

n
, f

)

p,dμk

� 1

n2m

n∑

j=0

( j + 1)2m−1E j ( f )p,dμk . (9.1)

Remark 9.2 By Remark 6.8, K2m
( 1
n , f

)
p,dμk

in this inequality can be equivalently

replaced by ωm
( 1
n , f

)
p,dμk

, ∗∗ωm
( 1
n , f

)
p,dμk

, and ∗ωl
( 1
n , f

)
p,dμk

, l = 2m − 1, 2m.

Proof Let us prove (9.1) for ωm
( 1
n , f

)
p,dμk

. By Theorem 5.15, for any σ > 0, there
exists fσ ∈ Bσ

p,k such that

‖ f − fσ ‖p,dμk = Eσ ( f )p,dμk , E0( f )p,dμk = ‖ f ‖p,dμk .

For any s ∈ Z+,

ωm(1/n, f )p,dμk ≤ ωm(1/n, f − f2s+1)p,dμk + ωm(1/n, f2s+1)p,dμk

� E2s+1( f )p,dμk + ωm(1/n, f2s+1)p,dμk .

Using Lemma 6.10,

ωm(1/n, f2s+1)p,dμk � n−2m‖(−�k)
m f2s+1‖p,dμk

� 1

n2m

⎛

⎝‖(−�k)
m f1‖p,dμk +

s∑

j=0

‖(−�k)
m f2 j+1 − (−�k)

m f2 j ‖p,dμk

⎞

⎠ .

Then Bernstein inequality (7.3) implies that

‖(−�k)
m f2 j+1 − (−�k)

m f2 j ‖p,dμk � 22m( j+1)‖ f2 j+1 − f2 j ‖p,dμk

� 22m( j+1)E2 j ( f )p,dμk ,

‖(−�k)
m f1‖p,dμk � E0( f )p,dμk .

Thus,

ωm(1/n, f2s+1)p,dμk � 1

n2m

⎛

⎝E0( f )p,dμk +
s∑

j=0

22m( j+1)E2 j ( f )p,dμk

⎞

⎠ .

Taking into account that

2 j∑

l=2 j−1+1

l2m−1El( f )p,dμk ≥ 22m( j−1)E2 j ( f )p,dμk , (9.2)
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we have

ωm(1/n, f2s+1)p,dμk � 1

n2m

(
E0( f )p,dμk + 22mE1( f )p,dμk

+
s∑

j=1

24m
2 j∑

l=2 j−1+1

l2m−1El( f )p,dμk

⎞

⎠ � 1

n2m

2s∑

j=0

( j + 1)2m−1E j ( f )p,dμk .

Choosing s such that 2s ≤ n < 2s+1 implies (9.1). ��

Theorem 9.1 and Jackson’s inequality imply the following Marchaud inequality.

Corollary 9.3 Let m ∈ N, 1 ≤ p ≤ ∞, f ∈ L p(Rd , dμk). We have

K2m(δ, f )p,dμk � δ2m
(

‖ f ‖p,dμk +
∫ 1

δ

t−2mK2m+2(t, f )p,dμk

dt

t

)
.

Theorem 9.4 Let 1 ≤ p ≤ ∞, f ∈ L p(Rd , dμk), and r ∈ N be such that∑∞
j=1 j2r−1E j ( f )p,dμk < ∞. Then f ∈ W 2r

p,k , and, for any m, n ∈ N, we have

K2m

(
1

n
, (−�k)

r f

)

p,dμk

� 1

n2r

n∑

j=0

( j + 1)2k+2r−1E j ( f )p,dμk

+
∞∑

j=n+1

j2r−1E j ( f )p,dμk . (9.3)

Remark 9.5 We can replace K2m
( 1
n , (−�k)

r f
)
p,dμk

by any of moduli

ωm
( 1
n , (−�k)

r f
)
p,dμk

, ∗ωl
( 1
n , (−�k)

r f
)
p,dμk

, and ∗∗ωm
( 1
n , (−�k)

r f
)
p,dμk

, l =
2m − 1, 2m.

Proof Let us prove (9.3) for ωm
( 1
n , (−�k)

r f
)
p,dμk

. Consider

(−�k)
r f1 +

∞∑

j=0

(
(−�k)

r f2 j+1 − (−�k)
r f2 j

)
. (9.4)

By Bernstein’s inequality (7.3),

‖(−�k)
r f2 j+1 − (−�k)

r f2 j ‖p,dμk � 2( j+1)r E2 j ( f )p,dμk �
2 j∑

l=2 j−1+1

lr−1El( f )p,dμk .
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Therefore, series (9.4) converges to a function g ∈ L p(Rd , dμk). Let us show that
g = (−�k)

r f , i.e., f ∈ W 2r
p,k . Set

SN = (−�k)
r f1 +

N∑

j=0

(
(−�k)

r f2 j+1 − (−�k)
r f2 j

)
.

Then

〈Fk(g), ϕ〉 = 〈g,Fk(ϕ)〉 = lim
N→∞〈SN ,Fk(ϕ)〉

= lim
N→∞〈Fk(SN ), ϕ〉 = lim

N→∞〈|y|2rFk( f2N+1), ϕ〉 = 〈|y|2rFk( f ), ϕ〉,

where ϕ ∈ S(Rd). Hence, Fk(g)(y) = |y|2rFk( f )(y) and g = (−�k)
r f .

To obtain (9.3), we write

ωm(1/n, (−�k)
r f )p,dμk ≤ ωm(1/n, (−�k)

r f − SN )p,dμk + ωm(1/n, SN )p,dμk .

The first term is estimated as follows

ωm(1/n, (−�k)
r f − SN )p,dμk � ‖(−�k)

r f − SN‖p,dμk

�
∞∑

j=N+1

22r( j+1)E2 j ( f )p,dμk �
∞∑

l=2N+1

l2r−1El( f )p,dμk .

Moreover, by Corollary 7.4,

ωm(1/n, SN )p,dμk ≤ ωm(1/n, (−�k)
r f1)p,dμk

+
N∑

j=0

ωm
(
1/n, (−�k)

r f2 j+1 − (−�k)
r f2 j

)
p,dμk

� 1

n2r

⎛

⎝E0( f )p,dμk +
N∑

j=0

22(m+r)( j+1)E2 j ( f )p,dμk

⎞

⎠ .

Using (9.2) and choosing N such that 2N ≤ n < 2N+1 completes the proof of (9.3).
��
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