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Abstract We prove that the spherical mean value of the Dunkl-type generalized trans-
lation operator 77 is a positive L?-bounded generalized translation operator 77. As
applications, we prove the Young inequality for a convolution defined by T°, the L?-
boundedness of ¥ on radial functions for p > 2, the LP-boundedness of the Riesz
potential for the Dunkl transform, and direct and inverse theorems of approximation
theory in L?-spaces with the Dunkl weight.
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1 Introduction

During the last three decades, many important elements of harmonic analysis with
Dunkl weight on R¢ and S?~! were proved; see, e.g., the papers by Dunkl [14—16],
Rosler [40-43], de Jeu [24,25], Trimeche [52,53], Xu [54,55], and the recent works
[1,11,12,19,20].

Yet there are still several gaps in our knowledge of Dunkl harmonic analysis. In
particular, Young’s convolution inequality, several important polynomial inequalities,
and basic approximation estimates are not established in the general case. One of the
main reasons is the lack of tools related to the translation operator. Needless to say,
the standard translation operator f — f(- + y) plays a crucial role both in classical
approximation theory and harmonic analysis, in particular, by introducing several
smoothness characteristics of f. In Dunkl analysis, its analogue is the generalized
translation operator t” defined by Rosler [40]. Unfortunately, the L?”-boundedness of
77 is not obtained in general.

To overcome this difficulty, the spherical mean value of the translation operator
77 was introduced in [28] and was studied in [42], where, in particular, its positivity
was shown. Our main goal in this paper is to prove that this operator is a positive
LP?-bounded operator T, which may be considered as a generalized translation oper-
ator. It is worth mentioning that this operator can be applied to problems where it is
essential to deal with radial multipliers. This is because by virtue of 7! we can define
the convolution operator that coincides with the known convolution introduced by
Thangavelu and Xu in [48] using the operator 77~.

For this convolution, we prove the Young inequality and, subsequently, an L”-
boundedness of the operator t¥ on radial functions for p > 2. For 1 < p < 2 it was
proved in [48].

Let us mention here two applications of the operator 7. The first one is the Riesz
potential defined in [49], where its boundedness properties were obtained for the
reflection group Zg. For the general case see [21]. Using the L”-boundedness of
the operator 7' allows us to give a different simple proof, which follows ideas of
Thangavelu and Xu [49]. Another application is basic inequalities of approximation
theory in the weighted L? spaces. With the help of the operator 77 one can define
moduli of smoothness, which are equivalent to the K -functionals, and prove the direct
and inverse approximation theorems. For the reflection group Zg, basic approximation
inequalities were studied in [11,12].

The paper is organized as follows. In the next section, we give some basic notation
and facts of Dunkl harmonic analysis. In Sect. 3, we study the operator 7', define a
convolution operator, and prove the Young inequality. As a consequence, we obtain an
LP-boundedness of the operator t¥ on radial functions. The weighted Riesz potential
is studied in Sect. 4. Section 5 consists of a study of interrelation between several
classes of entire functions. We also obtain multidimensional weighted analogues of
Plancherel-Polya—Boas inequalities, which are of their own interest. In Sect. 6, we
introduce moduli of smoothness and the K -functional, associated to the Dunkl weight,
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and prove equivalence between them as well as the Jackson inequality. Section 7
consists of weighted analogues of Nikol’skii, Bernstein, and Boas inequalities for
entire functions of exponential type. In Sect. 8, we obtain that moduli of smoothness
are equivalent to the realization of the K -functional. We conclude with Sect. 9, where
we prove the inverse theorems in L”-spaces with the Dunkl weight.

2 Notation

In this section, we recall the basic notation and results of Dunkl harmonic analysis,
see, e.g., [43].

Throughout the paper, (x, y) denotes the standard Euclidean scalar product in d-
dimensional Euclidean space R, d € N, equipped with a norm |x| = /{x, x). For
r > 0 we write B, = {x € R?: |x| < r}. Define the following function spaces:

o C (Rd) the space of continuous functions,

Cp(RY) the space of bounded continuous functions with the norm | f|lc =
supga | f1,

Co(R%) the space of continuous functions that vanish at infinity,

C>®(R?) the space of infinitely differentiable functions,

S(R?) the Schwartz space,

S'(R¥) the space of tempered distributions,

X (Ry) the space of even functions from X (R), where X is one of the spaces
above,

o Xaa(RY) the subspace of X (R consisting of radial functions f(x) = fo(|x|).

Let a finite subset R C R? \ {0} be a root system; R a positive subsystem of R;
G(R) C O(d) the finite reflection group, generated by reflections {0, : a € R}, where
o, is a reflection with respect to hyperplane (a, x) = 0; k: R — R4 a G-invariant
multiplicity function. Recall that a finite subset R € R? \ {0} is called a root system
if

RNRa ={a, —a} and o,R =R foralla € R.

Let

ve) = [ la, x)*@

aeRy

be the Dunkl weight,

o =/ e WPy ey dx,  dpg () = crog (x) d,
]Rd
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and L?(R?, dug), 0 < p < o0, be the space of complex-valued Lebesgue measurable
functions f for which

1/p
e = (/ |f|pdﬂk> < 0.
Rd

We also assume that L>° = Cp, and || fllco,dp; = Il flloo-

Example Iftherootsystem Ris{=*eq, ..., Zes}, where{eq, ..., e4}is an orthonormal
basis of R?, then vr(x) = ]_[7:1 |xj|2kf, ki >0,G = Zg’_

Let

Djf(x)= af()f) + Y k(a)(a. e)) M, ji=1,....d,

ax] <a7-x>

aeR

be differential-differences Dunkl operators and Ay = 27:1 D? be the Dunkl Lapla-
cian. The Dunkl kernel ex (x, y) = Ej(x, iy) is a unique solution of the system

and it plays the role of a generalized exponential function. Its properties are similar
to those of the classical exponential function ¢! *¥). Several basic properties follow
from an integral representation [41]:

e(x, y) = / N duk ),
Rd

where u’; is a probability Borel measure, whose support is contained in

co({gx: g € G(R)}),

the convex hull of the G-orbit of x in R?. In particular, |ex (x, y)| < 1.
For f € L'(R?, duu;), the Dunkl transform is defined by the equality

Fe(HHy) = /Rd f@er(x, y) dug (x).

For k = 0, Fy is the classical Fourier transform . We also note that Fj (e ~!" |2/2)(y) =
e 2 and FL(f) () = Fi(f)(—x). Let

A= {f € L'® dp) N Co®D: Fi(f) € '@ dup}. @)
Let us now list several basic properties of the Dunkl transform.
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Proposition 2.1 (1) For f € L'(R?, duy), Fi(f) € Co(RY).
(2) If f € Ag, we have the pointwise inversion formula

fx) = /Rd Fr(fHymer(x, y) dpi(y).

(3) The Dunkl transform leaves the Schwartz space S(RY) invariant.
(4) The Dunkl transform extends to a unitary operator in L*(R?, duy).

Let A > —1/2 and J, (¢) be the classical Bessel function of degree A and
) =2 T+ Dt (1)
be the normalized Bessel function. Set

o0
b =/ e 224 g — AP 4 1), dvi(r) = bt dr, e Ry
0

The norm in L? (R4, dv;), 1 < p < 00, is given by

1/p
1Nl p.av, = (/ If(t)lpdVA(t)> :
Ry

Define || f lloc = esssup;cg, | /()]
The Hankel transform is defined as follows:

HL()() :/R J@ ) dvi@), reRy.
+

It is a unitary operator in L2(R+, dv;) and H;l = H, [2, Chap. 7].

Note that if A = d/2 — 1, the Hankel transform is a restriction of the Fourier
transform on radial functions, and if A = Ay =d/2 — 1+ ZaeR+ k(a), of the Dunkl
transform.

Let S9! = {x’ € R?: |x/| = 1} be the Euclidean sphere and doy(x') =
ay v (x") dx’ be the probability measure on S“~!. We have

oo
/ f ) dpr(x) = / / f@x") dog(x') dvy, (1). 2.2
Rd 0 Jsd-
We need the following partial case of the Funk—Hecke formula [55]
/Sd_l ex(x, ty") dog(y") = Jja, (t1x]). 2.3)

Throughout the paper, we will assume that A < B means that A < CB with a
constant C depending only on nonessential parameters.
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3 Generalized Translation Operators and Convolutions

Let y € R? be given. Rosler [40] defined a generalized translation operator 77 in
L2(RY, duy) by the equation

Fie(t? (@) = ex(y, D) Fi(f)(@).

Since |ex (v, z)| < 1, we have || t7]2—2 < 1. If f € Ay (recall that Ay is given by
(2.1)), then, for any x, y € RY,

™ f(x) = /Rd ex(y, ek (x, 2) Fi(f)(z) duk (2). 3.1

Note that S(RY) ¢ Ay € L*(R?, duy). Triméche [53] extended the operator 7 on
C®[RY).

The explicit expression of t¥ f is known only in the case of the reflection group
Zg. In particular, in this case t¥ f is not a positive operator [39]. Note that in the case
of symmetric group S, the operator 7¥ f is also not positive [48].

It remains an open question whether ¥ f is an L” bounded operator on S(R?) for
p # 2. Itis known [39,48] only for G = Zg. Note that a positive answer would follow
from the L'-boundedness.

Let

mo=d/2—1+ Y k).

a€R+

We have Ay > —1/2 and, moreover, .y = —1/2 only if d = | and k = 0. In what
follows, we assume that Ay > —1/2.

Define another generalized translation operator 77 : LZ(RY, duy) — L*(R?, duy),
t € R, by the relation

Fi(T" H)(3) = ja AlyDFe(HH ).

Since |y, ()| < 1, it is a bounded operator such that || 77|2—.2 < 1 and
T'f(x) = fR By Der(x N F(HG) dur (),
This gives T! = T~'. If f € A, then from (2.3) and (3.1) we have (pointwise)
T'f(x) = /Rd Jre @lyDex(x, »)Fi(f)(y) duk(y) = /Sd_l o f(x)dor(y). (32)
Note that the operator 7" is self-adjoint. Indeed, if f, g € Ay, then

/T’f(x)g(X)duk(X)=/ / T @y Dex e, M)Fe () () duk (y) g () dpag (x)
R4 Rd JRd
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= '/R" T EYDFe (YO Fre(g)(—y) dpr (v)
= /Rd I YD Fe(@ M Fi(f)(=y) dir (y)

= /Rd F ) T'g(x) dpg (x).

Rosler [42] proved that the spherical mean (with respect to the Dunkl weight) of
the operator t”, i.e., de_l r’y/f(x) dox(y'), is a positive operator on C*®(R?) and
obtained its integral representation. This implies that 77 is a positive operator on
COO(Rd ) and, moreover, forany r € R, x € R4,

T'f(x) = /R @ dof, (2), (3.3)

where o¥

«.; 18 a probability Borel measure,

suppa;, C U{Z eRY: |z —gx| <1} (3.4)
geG

and the mapping (x, 1) — o)f

probability measures.

The representation (3.3) gives a natural extension of the operator 7' on Cj, (Rd);
namely, for f € Cp, (R?) we define T* f (x) € C(R x R?) by (3.3), and, moreover, the
estimate || 77 flloo < |l flloo holds.

Note that for k = 0, T? is the usual spherical mean

¢+ 1s continuous with respect to the weak topology on

T =S1w= [ ) dao). (35)

Theorem 3.1 If 1 < p < oo, then, foranyt € Rand f € S(R?),

”th”p,dp,k = ||f||p,duk~ 3.6)

Remark 3.2 (i) The inequality |77 fll p.au < cll fllp.du, Was proved in [48] for
G =174.
(i) S(RY)is densein L?(R?, duy), 1 < p < oo, so for any ¢ € R the operator T
can be defined on L? (R4, duy) and estimate (3.6) holds.
(i) Ifd =1, v (x) = |x|2)‘+1, A > —1/2, inequality (3.6) was proved in [7]. In this
case the integral representation of 7" is of the form

T'f(x) = %fo {f(AA + B) + f(—A)(1 — B)}sin* ¢ dg,
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where, for (x, t) # (0, 0),

e+
/AT (A +1/2)°

X —tcose

Az\/x2+t2—2xtcosgo, B = 1

e . 37

Ifr=—1/2ie,k=0,then T' f(x) = S(f(x +1) + f(x —1)).

Proof Let t € Ry be given and the operator 7! be defined on S(R?) by (3.3). Using
(3.2), we have

sup{I7" fll2: f € SR, I flla <1} <1,

and T can be extended to the space L? (Rd, dug) with preservation of norm; moreover,
this extension coincides with (3.2). Furthermore, (3.3) yields

sup{lI7" flloo: f € SRY), | flloo < 1} < 1. (3.8)
Since the operator T is self-adjoint, by (3.8),

sup{I 7" fll1 s £ € SR, N fldue < 1)

= S“P{/R,, T'f gducs f,8 € SED. Iflau < 1. glloe <

A

A
Nl

A

=SUP{/Rdthgdllki f.8 € SE. g < 1. gl < 1}

= sup{lIT glloo: & € SRY), llgllos <1} < 1.

Hence, T! can be extended to L!(RY, duy) with preservation of the norm such that
this extension coincides with (3.2) on L' (R9, duuy) N L2(R?, dpy).
By the Riesz—Thorin interpolation theorem we obtain

sup{I 7" fll p.ape s £ € SR, N fllpape <1} <1, 1<p=2.
Let2 < p <oo,1/p+1/p’' =1.Asfor p =1, we get
sup{I 7" fllp.ape s £ € SR, N fllpaape < 1)
= sup{I 7' gll pr.aus : 8 € SRY), lIgllprapy, <13 < 1.
[m}

Forany fy € LP(Ry,dvy), 1 < p < o0, A > —1/2, let us define the Gegenbauer-
type translation operator (see, e.g., [34,35])

T
R' fo(r) = c; /0 fo <\/r2 +1t2 —2rtcos gp) sin?* ¢ dg,
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where c; is defined by (3.7). We have that |R"||,—., < 1 and Hy(R' fo)(r) =
J.(trYHy (fo)(r), where fy € S(R,). Taking into account (2.3) and (3.2), we note
that for A = A4 the operator R’ is a restriction of T’ on radial functions; that is, for
f() € LP(R-Fv dv}nk)a

T’ fo(lx]) = R' fo(r), r=|x].

We also mention the following useful properties of the generalized translation oper-
ator T'.

Lemma 3.3 Lett € R.

(1) If f € LYRY, dpg), then [ T' f dig = [ga f dir.
() Letr >0, f € LP(R?, duy), 1 < p < oo. If supp f C By, then supp T' f C
Bty If supp f C RY\ B, r > |t|, then supp T' f C RY\ B,_yy.

Proof Due to the LP-boundedness of T’ and the density of S(RY) in LP(RY, duuy),
we can assume that f € S(RY).

(1) Lets > 0. By integral representation of jj, (z) (see, e.g., [2, Sect. 7.12]) we have

Tt(é'isl.‘z)(x) — Rt(efs(~)2)(|x|) =c, /'TT efs(\x|2+1272|x|tCOS(p) Sin2)\.k (,Od(p
0
2412 T o - 020,
— e—s(lxl +t )C)»k/ e Alx\tcosgosm & (pd(p
0
= WP j o Qisx|r),
and, in particular,
T’(e‘""z)(x) < oSl sl — p=s(xl=0% <
Using the self-adjointness of 77, we obtain
Cle2 2
/ T'f(x)e ! duk<x>=/ ST (e ) () dps (x).
R4 R4
Since forany t € R, x € Rd,
lim e~ = fim T (e~ %) (x) = 1,
s—0 s—0

by Lebesgue’s dominated convergence theorem we derive (1).
(2) Ifsupp f C B, and |x| > r+|t], then, in light of (3.4) and (3.3), for z € supp af’[
and g € G, we have that

lz| > lgx| — |z —gx| = |x| — |z —gx| > r

and f(z) = 0, which yields T’ f (x) = 0.
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If supp f € R¢\ B,, |x| < r —|t], then, for z € suppaf’t and g € G, we similarly
obtain |z| < |gx|+|z—gx| =|x|+|z—gx| <r, f(2) =0,and T' f(x) =0. O

Let g be aradial function, g(y) = go(|y|), where go(#) is defined on R... Note that
by virtue of (2.2),

&1l p.due = lgollp.avy, > Fi(8)(¥) = Ha (g0)(I¥D. (3.9)

By means of operators T and 77, define two convolution operators:

(f #, 80)(x) :/o T' f(x)go(t) dvy, (1), (3.10)

(f % g)(x) = /R PR dua). 3.11)

Note that operator (3.10) was defined in [48], while (3.11) was investigated in [48,53].
Thangavelu and Xu [48] proved that if f € L”(Rd,d,uk), 1 < p < oo, and
ge Ll (R duy), then

rad
IS % @ p.dpe < WS pdps 1811 dpu s (3.12)

andifl <p<2,ge Lgd(Rd, duy), then, for any y € R?,
72l p.apme < N8llp.du- (3.13)

Lemma 3.4 If f € A, go € L'(Ry, dvy,), g(v) = go(ly|), then, forany x, y € R4,
(f 9y 80)(x) = (f % g)(x) = A;{d TV f(0)g(y) i (y), (3.14)

Fi(f *y 80) () = Fi(f # £)(y) = Fi (S Fi(g) (). (3.15)

Proof Using (3.2) and (3.9), we get
(f 20000 = | T P 0g0(r) dvy ()
= /000 ./Rd T @y Dex(x, ) Fie(f)(y) dr(y)go(2) dvy, (7)
= /R e TN T (@) () dpie (),
which gives
Fi(f #, 80) () = Fr (I Fi(g)(y).
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If g € Ag, then, by (3.1),

(f % &) = fRd fO)t'g(=y) dur(y)
=/ f()’)/ ex(—y, 2)ex(x, 2) Fr(g)(z) dpg (z) duk (y)
Rd R4

= /Rd ex(x, 2)Fi(f) (@) Fr(g)(z) duk (2),

and hence the first equality in (3.14) and the second equality in (3.15) are valid for
g € Ap.

Assuming that gg € L'(R4, dvy), (g.)o € SR), gn — g in L' (R4, duy), and
taking into account (3.8)—(3.11) and (3.13), we arrive at

|(f %, 80) () = (f 5% )| < [(f %, (80 = (€0 (X)| + I(f # (¢ — gn)) ()]
<2l flloo 18 — gnll1.dps-

Thus, the first equality in (3.14) holds.
Finally, using (3.1), we get

/ T 08 () duk () = / ¢ / e (=, Dex (. DF ()@ dptg(2) dpag ()
R4 R4 R4
= fRd er(x, D) Fr(f) () Fr(g)(z) dux(z),

and the second part in (3.14) is valid. O

Lety € R? be given. Rosler [42] proved that the operator 7? is positive on Coy RY),
i.e., 77 > 0, and moreover, for any x € RY,

)= fRd f@dps (). (3.16)

where ,of, y is a radial probability Borel measure such that supp p)’g, y C Bix|+]y|-

Theorem 3.5 If 1 < p < oo, then, for any x € R? and f € S(R?),
1/p
1T f O pav,, = <fR ITff(x)l'”dvx(t)> <1 fllp.du- (3.17)
+

Proof Let x € R? be given. Let an operator B* be defined on S(R?) as follows (cf.
(3.2) and (3.3)): for f € S(RY),

B f() =T f(x) = /R D DFEC ) d(y) = /R @k, 0.
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Let p = 2. We have

T'f(x) =f0 Jrtr) /Sd_l ex (e, 1y ) Fie(f)(ry") dow (y') dvy (r)

and

ek x, rYNFr(f)(ry") dok ().

Hy (T' f))(r) = /
sd

This, Holder’s inequality, and the fact that the operators H;, and Fj are unitary imply

1T F @B, = WM (T F GO,
* 2
- /0 ‘/Sdl e (x, ”y/)fk(f)(ry/) d(Tk(y/) dvkk )

o0
=< / / () ry)? dor(y') dvy, ()
0 §d—1
= 1 F(O5a0, = £ 130,
which yields inequality (3.17) for p = 2. Moreover, B* can be extended to the space

L? (R4, dv;, ) with preservation of norm, and, moreover, this extension coincides with
(3.2).

Let p = 1. By (3.14) and (3.16), we obtain

1T f ()l = sup {/O T f(x)go(1) dvi (1) g0 € SRy, lIgolloc < l}

P UR FOIT g(=9) dik(»): g € Seaa®D), liglloo < 1}

IA

1/ 509 {17 8= oo & € Saa®?), Nlgllow < 1]

< W flh,dp

which is the desired inequality (3.17) for p = 1. Moreover, B* can be extended to
L'R,, dvy, ) with preservation of norm such that the extension coincides with (3.2)
on L' (R, dvy,) N L2(Ry, dvy,).

By the Riesz—Thorin interpolation theorem we obtain (3.17) for 1 < p < 2.

If2 < p<oo,1/p+1/p’ =1, then by (3.14) and (3.13),

I f (O p,av,, = sup {/o T' f(x)go(t) dvy, (1) : go € S(R+), lgollpravy, = 1}

sup {fRd FOT (=) dpr(»): g € Srad R, NIgllprapy < 1}

A

= ”f”p,d//.k Sup{”'fxg(_}’)”p’,duk: 8 € Srad(Rd)’ ”g“p/,duk <1}
< S N p.dpu-

Finally, for p = oo, (3.17) follows from representation (3.3). O
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We are now in a position to prove the Young inequality for the convolutions (3.10)
and (3.11).

Theorem 3.6 Let 1 < p,q < oo, % + % > 1, and% = % + % — 1. We have that, for
any f € SR?), go € S(Ry), and g € Sraa(RY),

ICf %y 80 Mlravy, = I 1 p.aul180lg.dvy, - (3.18)

I s O rdpe < W padpe 1€ llg,dpas- (3.19)

Proof Since for g(y) = go(]y|) we have

I f ik gO)”r,dv)Lk = I(f g)”r,duka ||gO||q,dv;k = ”g”q,dp.k’

it is enough to show inequality (3.18). The proof is straightforward using Holder’s
inequality and estimates (3.6) and (3.17). For the sake of completeness, we give it

1 1 _ 1 1 1_ 1 1 1 1,11
h.ere.Letl—L=——;and;=§—;,thenﬁ 20,; zO,and;—i—l—l—i—;: 1. In
virtue of (3.17), we have

o0 00 1/r
‘/0 T' f(x)go(t) dvy, (1)| < (/0 1T f(x)|P|go(0)| dm@))

00 1/ 00 1/v
X(/() IT'f(X)Ipdv/\k(t)> (/o Igo(t)lqdv)xk(t)>

o] 1/r
5(/0 |T’f(x>|ﬁ|go(r>|qdmm) 11 Mol -

Using (3.6), this gives

o0 l/r
1C o 80, < ( /Hé ) /0 |th(x)|p|go(l‘)|qdw\k(f)duk(x)>

" v
X I g 1800 sy, < 1 e 180l g -

Theorem 3.7 Let 1 < p < oo and g € Spaa(R?). We have that, for any y € RY,

”Tyg”p,duk < lgllpdu- (3.20)

Remark 3.8 Since S(RY) is dense in L?(R¥, dug), 1 < p < oo, the operator t7 can
be defined on Lﬁ;d (R4, dug) so that (3.20) holds.

Proof Inthe case 1 < p < 2, this result was proved in [48]. The case p = oo follows
from (3.16).
Let2 < p < oo. Since Fi(g) is a radial function and

Vg(—x) = /R e, D, DFR) (D ik 2)
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_ /R ek, Der(x, DFR) (@) dp() = g (),

using (3.19) for r = 00, ¢ = p, we obtain

IlT™"gllp,du = sup {/Rd () f () dur(x): f € SRY), NI fllprapy < 1}
< sup{[|(f % M llooduy s £ € SR, I lprame < 1 < 11811 p.ayug-

O

Now we give an analogue of Lemma 3.4 for the case when f € L”.

Lemma 3.9 Let1 < p < oo, f € LP(RY, duy) N Cp(RY) N C®(RY), go € S(R,),
and g(y) = go(|y|). Then, for any x € RY,

(f 5, 80)(xX) = (f % g)(x) € LP(R?, dup) N CoRH NCPRY), (32D
and, in the sense of tempered distributions,

Fi(f %, 80) = Fi(f % &) = Fi()Fr(g). (3.22)

Proof First, in light of (3.6) and (3.18), we note that the convolution (3.10) belongs
to LP (R4, duy). Moreover, (3.3) implies that it is in Cj,(RY).
Taking into account that g € S(RY) and (—Ap) ex (-, z) = |z|* ex (-, z), we have

(AR (f % 8)(x) = '/Rd F) /Rd ex(x, D)ex(—y, DIzl Fi(g) () dur (2) dur ().
Let us show that the integral converges uniformly in x. We have
A;{d ex(x, Der(—y. DIz Fi(@) (@) dur(z) = TG (—y),

where G € Spaq(R?) is such that F; (G)(z) = |z|* Fi(g)(z). Using Holder’s inequal-
ity and (3.20), we get

‘/ f(y)/ ex(x, 2)er(—y, 2)|z1¥ Fi()(2) dpe (z) dug ()
R4 R4
= ‘/Rd fOTG(=y)duk M| < 1 fllp.aw TGl awe < NN p.di IGN 7 dpug -

Thus, convolution (3.11) belongs to C(RY).

By Lemma 3.4, the equality in (3.21) holds for any function f € S (RY.If f €
LP(RY, dup), fn € S(RY),and f, — finLP(RY, du), then Minkowski’s inequality
and (3.6) give

ICCF = fn) %y 8 podpe = ILF = Sl page 1180111,dvs, » (3.23)
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while Holder’s inequality and (3.20) imply

I((f = ) % O = I = fullpap 18117 dpug-

By (3.23), there is a subsequence {n,} such that (fy,, %, go)(x) = (f %, go)(x) a.e.,
therefore the relation (f #;, go)(x) = (f * g)(x) holds almost everywhere. Since
both convolutions are continuous, it holds everywhere.

To prove the second equation of the lemma, we first remark that Lemma 3.4
implies that (3.22) holds pointwise for any f € S(R?). In the general case, since
f e LP(RY, dup), (f %, go) € LP(RY, duy), and Fi(g) € S(RY), the left- and
right-hand sides of (3.22) are tempered distributions. Recall that the Dunkl transform
of tempered distribution is defined by

(Fr(f). @) = (f. Fi(@)), feS®RY, ¢eSRY.
Let f, € SRY) and f, — f in LP(RY, duy), ¢ € S(RY). Then

(Fi((f = fn) %5, 80), ) = (((f = fu) %, 80)» Fr(@)),
(Fi@Fi(f = fa)s @) = ((f = fu)s Fa(Fr(8)9))

and
KFr((f = fa) #2800 )| < f = full paapus 8011wy, 1FR (O pr e
K Fe@Fi(f = fu)s @) < 1 f = Sallpdwe 1 F&(Fr(QO pr dpy -
Thus, the proof of (3.22) is now complete. O

4 Boundedness of the Riesz Potential

Recall that Ay =d/2 — 1 + ZaeR+ k(a). For 0 < o < 21 + 2, the weighted Riesz
potential Ilfj f is defined on S(R?) (see [49]) by

- 1
Iif ) = ()™ /R T O S ).

where d} = 27 M1+ (0 /2) /T (A + 1 — a/2). We have, in the sense of tempered
distributions,

FeIEHG) = 1y Fe(HH).
Using (2.2) and (3.2), we obtain

_ © 1
Ié‘f(x) = (d]?‘) 1 /(; th(x)m dU)\.k(t)‘ “.1)
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To estimate the L”-norm of this operator, we use the maximal function defined for
f € S(RY) as follows [48]:

[(f * xB,)(X)]
M = qup —— Lol
S

where xp, is the characteristic function of the Euclidean ball B, of radius r centered
at 0.
Using (2.2), (3.2), and (3.14), we get

r t
Mif ) = sup 0 LT 0O
r>0 fo dV}Lk

It is proved in [48] that the maximal function is bounded on LP(RY, dur), 1 <
p S m’
”Mkf”p,d/tk ,S ”f”p,d/xks (4-2)

and it is of weak type (1, 1); that is,

/ duk < [FATE T (4.3)
{x: My f(x)>a)} a
Theorem4.1 If1 <p<g <00, 0<a <2kk+2,%—$:ﬁ,then

X Fllg.am S Uflpaue. € S®RY. (4.4)

The mapping f — Iolff is of weak type (1, q); that is,

q
f dug < <|If||1,dﬂk) _ @.5)
{x: [1K £ (0)]>a} a

Remark 4.2 In the case k = 0, inequality (4.4) was proved by Soboleff [44] and
Thorin [50] and the weighted inequality was studied by Stein and Weiss [46]. For
the reflection group G = Zg, Theorem 4.1 was proved in [49]. The general case was
obtained in [21]. We give another simple proof based on the L”-boundedness of T
given in Theorem 3.5 and follow the proof given in [49] for G = Z’zi.

Remark 4.3 In Theorem 4.1, dealing with (4.4), we may assume that f €
LP(RY, dug), 1 < p < oo, while proving (4.5), we may assume that f €
L'(RY, dup).

Proof Let R > 0 be fixed. We write (4.1) as sum of two terms,
k -1 R t 1
Iy f(x) = (df) /0 T f(x)md\)xk(f)
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o
_ 1
+ (d;{x) ! L th(x)m dVAk([) = J] + .12. (46)

Integrating J; by parts, we obtain

R t
de gy = / t—mk”—a)d( / T‘Yf(X)dvxk(S)>
0 0

R
= R%. R~M+D) / T f(x) dvy, (s)
0
R t
+ QM +2—a) / ¢~ @htD) / T f(x)dvy, (s) 1% dr. (4.7
0 0
Here we have used that

&
lim &% . g~ P2 / T* f(x) dvy, (s) = 0,
£—0+0 0

since

€ it
o« —Qt2) < % sup o T I;(X)dvxk(t)| _
>0 fO dvy,

& My f (x).

/0 T° f(x)dvy(s)

In light of (4.7), we have

R
V1] S R* My f (x) +f My f ()%~ dr S R My f (). (4.8)
0

. . — . . 1 1« .
To estimate J,, we use Holder’s inequality, the relation T = T2 and (3.17):

—1 o0 ’ 1r
|12| < (dF) ( / ¢~ Grtamer dvmt)) IT* £ OOl p.avs,
R

SR™PHEDUY £
This, (4.6) and (4.8) yield

15 FOO1 S REMcf(x) + R™PHFDDY £l 40,

—q/(2r+2)

for any R > 0. Choosing R = (Mkf(x)/||f||p,dﬂk) implies the inequality

15 F OO S (M f NP9 F Il pag) P/ (4.9)

for any 1 < p < ¢q. Integrating (4.9) and using (4.2), we have
1—
MIE Fllg.ame S IMeFUDE NPT S0 lp s > 1.
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Finally, we use inequality (4.3) for the maximal function and inequality (4.9) with
p = 1to obtain

q
/ de 5/ dﬂk § (”f”l,duk)
{(x: Ik f(0)|>a) (x: (Mg fONVa(flnap)' 14 Za) a

]

5 Entire Functions of Exponential Type and
Plancherel-Polya—-Boas-Type Inequalities

Let C? be the complex Euclidean space of d dimensions. Let also z = (21, ...,24) €

C? Imz=(Amz,...,Imzy),and ¢ > 0.

In this section, we define several classes of entire functions of exponential type
and study their interrelations. Moreover, we prove the Plancherel-Polya—Boas-type
estimates and the Paley—Wiener-type theorems. These classes will be used later to
study the approximation of functions on R¥ by entire functions of exponential type.

First, we define two classes of entire functions: B;’ rand BZ, ¢ We say thata function

f e B; (if fel? (R, dyuz) is such that its analytic continuation to C¢ satisfies

If ()] < etk Ve >0, vz eC.

The smallest o = o in this inequality is called a spherical type of f. In other words,
the class B;, « 18 the collection of all entire functions of spherical type at most o.

We say that a function f € Eg 1ff € LP(R?, duy) is such that its analytic

continuation to C¥ satisfies
If @) < cre®™mil vz e

Historically, functions from B bk were basic objects in the Dunkl harmonic analysis.

It is clear that B® ok C BZ Moreover if k = 0, then both classes coincide (see, e.g.,

[29]). Indeed, if f € Bp 0» 1 < p < 00, then Nikol’skii’s inequality [31, 3.3.5]

I £lloe < 29011 £ 1l p.auo
and the inequality [31, 3.2.6]
IFC+ il < e flloo. ¥ € RY,
imply that, for z = x + iy € C?,
£ @1 <2907 fll p.apee” ™,

. no
ie., f € Bp’0

@ Springer



Constr Approx (2019) 49:555-605 573

In fact, the classes Bg ¢ and E; « coincide in the weighted case (k # 0) as well. To
see that, it is enough to show that functions from B;’ ¢ are bounded on R4,

Theorem 5.1 [f0 < p < oo, then BY , = §Z,k~
We will actually prove the more general statement. Let m € Z,, o!,...,a™ €
R4\ {0}, ko > 0, ki, ..., ky > 0, and

v(x) =[x [ e/, x) 1 (5.1)
j=I

be the power weight. The Dunkl weight is a particular case of such weighted functions.
The weighted function (5.1) arises in the study of the generalized Fourier transform
(see, e.g., [3]).

Let LPP(R?),0 < p < oo, be the space of complex-valued Lebesgue measurable
functions f for which

1/p
||f||p,v=</ If(x)l"’v(x)dx) .
Rd

Leto = (01,...,04),01,...,04 > 0.

Again, let us define three anisotropic classes of entire functions: B?, Bg »» and
RO
B .

We say that a function f defined on R? belongs to B if its analytic continuation
to C? satisfies

|f(2)] < cpe@rtOlalt+atallzal e 5 0 vz e C9.

We say that a function f € Bg’v if f e LP(R?, duy) is such that its analytic contin-

uation to C¢ belongs to B®.

We say that a function f € B

oo if f e LP(RY, duy) is such that its analytic

continuation to C¢ satisfies
|f(Z)| < Cfeal\Imzll+---+o,1|1mzd|’ Vz e (Cd.

We will use the notation L”(R?), || | P> Bg, and E; in the case of the unit weight,
ie,v=1.
Theorem 5.2 If0 < p < oo, then

o (o2
(1) B?v C E(’;
@ By, =53,
(3) By, = B .

Remark 5.3 (i) Part (3) of Theorem 5.2 implies Theorem 5.1.
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(i1) Note that in some particular cases (kg = 0 and p > 1) a similar result was
discussed in [23].

Parts (2) and (3) of Theorem 5.2 follow from (1). Indeed, the embedding in (1)
implies that B , C By C BZ,.Hence, afunction f* € By , is bounded on R? and then
f e Bp »» Which gives (2). Further, B v C B“ holds, where ¢ = (0, ...,0) € Rd
since |z| < |z1| 4+ -+ - + |za|. Hence, 51mllar to the above, we have B‘7 C BY, and
(3) follows. Thus, to prove Theorem 5.2, it is sufficient to verify part (1)

The main difficulty to prove Theorem 5.2 is that the weight v(x) vanishes. In order to
overcome this problem, we will first prove two-sided estimates of the L norm of entire
functions in terms of the weighted /,, norm, (3", v(k("))|f(k(”))|p)l/p, 0<p<oo,
where v does not vanish at {1V} c R¢.

Such estimates are of their own interest. They generalize the Plancherel-Polya
inequality [33], [6, Chapt. 6, 6.7.15]

S F G0N = .0, p)/ F@IPdx, 0<p <o,

keZ

where A is an increasing sequence such that A1 — Ay > 6 > 0, and f is an entire
function of exponential type at most o; and the Boas inequality [5], [6, Chapt. 10,
10.6.8],

| ez ce Lo Il 0<p<ce (52

- keZ

where, additionally, |A; — % k| < L and the type of f is < 0.

We write ¢’ = (0],...,0)) < ¢ = (01,...,09) if 0] < 01,...,0) < o4.
Letn = (ny,...,ng) € Z4 and A : 74 — R4 In what follows, we consider the
sequences of the following type:

A = (i), A (nina), . da(n, L ng)), (5.3)
where )Lf") = Ai(n1, ..., n;) are sequences increasing with respectton;,i = 1,...,d
for fixedny, ..., n;_1.

Definition 5.4 We say that the sequence A" satisfies the separation condition
Qsepld], 8 > 0, if, for any n € Z4,

)\‘i(nly"'sni—l9ni + 1) _)\‘i(nlv"'sni—lvni) Z 8, i = 11 "'1d'
Note that if the sequence 21 satisfies the separation condition 2sep[48], then it also

satisfies the condition inf,,z, |A™ — 1™ | > 0.
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Definition 5.5 We say that the sequence A" satisfies the close-lattice condition
Qiala, L, a= (a1, ...,aq) > 0, L > 0, if, forany n € Z4,

Tn;
)"l'(nlv "°7ni) -
a

i

<L, i=1,...,d.

We start with the Plancherel-Polya-type inequality.

Theorem 5.6 Assume that A" satisfies the condition inf, 2, A — 10| > 0. Then
for f € BS,0 < p < o0, we have

(n)
IR Sfdlf(x)l”dx.

nezd R

Proof For simplicity, we prove this result for d = 2. The proof in the general case is
similar.

The function | f (z)|? is plurisubharmonic, and therefore for any x = (x1, x2) € R2,
one has [38]

1
(2m)?

2 2
[ f(x1, x2)|P < / / | f(x1 4 p1e', x2 + pre'®|P d61d6s,
o Jo

where p1, p2 > 0. Following [31, 3.2.5], for§ > Oand & +in = (&1 +iny, & +in2),
we obtain that

1 § ) X148 x2+8

G m)l? < —— [ / / / £ (& +in)l? déy dga diy dina. (5.4)
(7@69)* J_s J—s Jxi=5 Jxy—s

The separation condition implies that for some § > 0, the boxes [)»Yl) -6, Ai") + 6] x

[ké") -4, A(zn) + 8] do not overlap for any n.
Since

O
@

fatin=)
keZ?%
where %) is a partial derivative f of order k = (ki, k2), k! = k! k»!, and (iy)* =

(iy1 Yk (iyz)kz, by applying Bernstein’s inequality (see [31, 3.2.2 and 3.3.5] and [37]),
we derive that

If G+ i, S emthiiroabal g,

Using this and (5.4), we derive that

1 ) § 00 00
dIFaMr < ) /5/5/ / |f (& +in)|” d& d& dny iy
ez? TOMTO YT T

@ Springer



576 Constr Approx (2019) 49:555-605

b k) o) 00
< / f eP@imitozin) 4y, dp, f / )17 d&y dé
—§ J—6 —00 J —00

5/ [fol” dx.
R2

O
Theorem 5.7 Let the sequence A" of form (5.3) satisfy the conditions Qgepld] and

Qialo, L). Assume that | € B, ¢’ < o, is such that D nezd [fF(AM)P < oo,
0 < p <oo. Then f € LP(R?) and

[ e s 3 e

neZd

Remark 5.8 For p > 1, a similar two-sided Plancherel-Polya—Boas-type inequality
was obtained from [32].

Proof For simplicity, we consider the case d = 2. Integrating | f (x1, x2)|” at x; and
applying inequality (5.2), we get, for any x7,

/ |f G )P der S ) 1 (Bim), x2)I”.

- niez

Since by (5.2), for any n,

/ |fBi(n), x)I” dxa S Y 1f (Bi(nn), Ba(nr, ma))I?,

- anZ

we then have

[ f If(xl,xz)l”dxldszZf £ (Bi(n1), x2)|7 dxa

nIEZ -

<O DB, Balny no)|P < o0

ni€Znyel

Using Theorems 5.6 and 5.7 we arrive at the following statement:

Theorem 5.9 Let the sequence {1} of form (5.3) satisfy the conditions Qsepld] and
Qualo, L1 If f € B, ¢ <o, then, for0 < p < o0,

@ Springer



Constr Approx (2019) 49:555-605 577

SO Irae 5/

neZd R

(n)
@IS Y 1R

nezd

We will need the weighted version of the Plancherel-Polya—Boas equivalence. We
start with three auxiliary lemmas.

Lemma 5.10 [18]Ify > —1/2, thenthere exists an even entire function w, (z), z € C,
of exponential type 2 such that, uniformly in x € Ry,

( ) x2k+2’ 0 <x< 1’
wy(X) X
v X2 x> 1,

where k = [y + 1/2] and [a] is the integral part of a. In particular, we can take

jk—y(Z+i)jk—y(Z_i)-
Lemma5.11 Letm € N, j = 1,...,m, b/ = (b],..., b)) € RY\ (0}, and either

|bl.j| > 1, or bl.j =0,i=1,...,d. Then there exists a sequence {p"™} C 7%\ {0} of
the form (5.3) such that, forany j = 1,...,mandi =1,...,d,

loi(ni, ... ni) —ni| <m, (5.5)
(b7, p")| = 1/2. (5.6)

Proof To construct a desired sequence

o™ = (p1(n1), p2(n1,n2), ..., pa(ni, ..., ng)) € Z,

we will use the following simple remark. If we throw out m points from Z, then the
rest can be numbered such that the obtained sequence will be increasing and (5.5)
holds. ' _ ‘

Let J; = {j: b] #0, by =--- =b} =0} If J; = @, then we set p;(n]) = nj.
If J1 # O, then p1(n1) is an increasing sequence formed from Z \ {0}. In both cases
(5.5) is valid, and, moreover, for j € Ji and any p2(ny, n2), ..., pa(ny, ..., ng), one
has (5.6) since |(b/, p™)| = |b] p1(n1)] > 1.

Let J, = {j: b} #0,b} = --- = b} =0}, n € Z.If J, = @, then we set
pa(ny,np) =ny. Let J, 2 @.If j € J, and b{pl(nl) +bétj =0,thent; =1; +¢;j,
lj € Z, |ej| < 1/2. Here [ is the nearest integer to ;. Note that if oo # [}, then
bl p1(n1) + b3 pa| = by (02 — 1j — &) = 1/2.

Let p2(n1, n2) be an increasing sequence at ny formed from Z\{l;: j € J»}. For
this sequence (5.5) holds and, for j € J; and any p3(n1, n2, n3), ..., pa(ny, ..., nq),
one has

(b7, 0| = |b] p1 (1) + b3 pa(n1, n2)| = 1/2;
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that is, (5.6) holds as well.

Assume that we have constructed the sets Ji,...,Jy—1, and the sequence
(p1(n1), p2(n1,n2), ..., pa—1(ni, ..., ng—1)) € z4-1

Let J; = {j: b(Ji #* 0}, (ny,...,nq—1) € 741 If J; = @, then we set
pd(ny, ..., ng—1,nq4) = ng. Assume now that J; #= &.If j € J; and

b p1(ny) + -+ b pa—1(n1. ..., ng—1) + bt =0,

thent; =1; +¢j, |ej| < 1/2. Note thatif pg # [}, then

b pr(n1) + -+ + By pa—1 (a1, . na) + by pal = |BY(pa — 1j — &) = 1/2.

Let pg(n1, ..., ng) be an increasing sequence in ng formed from Z\ {l;: j € Ju},
p(”) = (p1(n1), p2(n1,n2), ..., pa(ny,...,ng)). For the sequence py(ny,...,nq4),
inequality (5.5) holds, and, for j € Jy, one has |(b7, p™)| > 1/2.

Thus, we construct the desired sequence since, for any j € {1, ..., m} and some
ie{l,...,d}, bl e J; holds. o

An important ingredient of the proof of Theorem 5.2 is the following corollary of
Lemma 5.11:

Lemma 5.12 [fa > 0, al, .. o™ e R4 \ {0}, then there exists a sequence A0 of
the form (5.3) such that for some §, L > 0 the conditions Qsep[d], Quala, L], and
gj(M")) >46,j=0,1,....,mne€ 74 hold, where

Eo(x) = Ixl, &)=/, x), j=1,....,m. (5.7)

Indeed, for m > 1, it is enough to define

AW = (), Ay, n2), s ha(n, . ng))
_ (7mpi1(n1) mp2(ny, ny) wpa(ny, ..., nq) 5.8)
o o ” . -

where p™ is the sequence defined in Lemma 5.11. For m = 0 in (5.8), we can take
{p™} =74\ {0}.

We are now in a position to state the Plancherel-Polya—Boas inequalities with
weights.

Theorem 5.13 Ler f € B° and 1" be the sequence satisfying all conditions of
Lemma 5.12 with some a > . Then, for 0 < p < oo,

> w0 S f

nezd R

() ()
JF @I de S Y7 vGIF GO

neZd
Proof Recall that v(x) = HT:O v;j(x), where v;(x) = éfj (x),j=0,1,...,m (see

(5.1) and (5.7)).
By Lemma 5.10, we construct an entire function of exponential type
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w@ =[] w,@,
j=0

where wo(2) = @y (12]), w;(2) = @y, (@’ 2)), j = 1,...,m, and
ki 1 0.1
= — = =0,1,...,m.
YVica, 2/
Forj:O,l,...,m,wehavewjeBz“j,where

0 d j j
wWO=(,.. .. 1)eRr? w:((a{(,...,

aé‘), j=1,...,m,

andw € B, pn = Z;"ZO w/. Moreover, forany j =0, 1, ..., m,

wf(x) Svjx), xeR?

p (5.9)
w’; (x) Zvj(x) 21, for &(x)>8>0.

Let f € Bp w0 < p < o000 < a,and 1™ be the sequence satisfying all
conditions of Lemma 5.12. Then, for some s > 0 such that ¢ + 2sp. < a, we have
that f(x)w(sx) € Bot2®,

Using Theorem 5.6 and properties (5.9), we derive

D VGG L YA W)

nezd nezd

§/ If(x)w(X)I”de/ | £ (x)|Pv(x)dx.
R4 R4

Leté6 >0,J CJ, ={0,1,....m}orJ =0
Es(J)={x e RY: £;(x) =8, jeJand&;(x) <6, j € Ju \ J}.

Since f(x) Hje/ w;(sx) € Bot2% using Theorems 5.6 and 5.7 and properties
(5.9) for § from Lemma 5.12, we obtain

f £ ()IPu(x) dy = Z/ @) IPuG) dx S Z/ £GP T vy de

jeJ
<2/ f(x)l_[wj(sx) dx<2/ f(x)l_[wj(sx) dx
Es(J) jeJ jeJ
< Z £GP Y T whsa™) < Z 0520 P
J jeJ
S 210N ™) S 31 FOM)Pe M),
where we have assumed that [ | jeo = 1. O
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Proof of Theorem 5.2 Recall that it is enough to show that B , C B}, and the latter
follows from B, C LP(RY).

Let f € Bgyv,O < p <oo,a>o0,and A0 be the sequence satisfying all conditions
of Lemma 5.12. Using Theorem 5.6 and properties (5.9) as in Theorem 5.13, we have

L r@rar S 3 156000 S Y w6 far

neZd neZd

5/ If(X)w(x)I”dX,S/ [fC)Pv(x) dx.
R4 R4

O

By the Paley—Wiener theorem for tempered distributions (see [25,53]) and Theo-
rem 5.1, we arrive at the following result.

Theorem 5.14 A function f € B;,k’ 1 < p <oo, ifandonlyif f € LP(R?, du) N

Cy(R?) and supp Fi(f) C Bo.
The Dunkl transform F¢(f) in Theorem 5.14 is understood as a function for 1 <

p < 2 and as a tempered distribution for p > 2.
We conclude this section by presenting the concept of the best approximation. Let

Ea(f)p,duk =inf{|| f — g”p,dp.k 8 € Bg,k}

be the best approximation of a function f € LP(R?, du;) by entire functions of
spherical exponential type o. We show that the best approximation is achieved.

Theorem 5.15 For any [ € LP(Rd,duk), 1 < p < oo, there exists a function
g* € Bg’k such that Ea(f)p,duk = ”f - g*||p,duk~

Proof The proof is standard. Let g, be a sequence from Bg,k such that || f —

enllp.die — Eo(f)p,du- Since it is bounded in LP(R", duy), it is also bounded
in C;(R?). A compactness theorem for entire functions [31, 3.3.6] implies that there
exist a subsequence g,, and an entire function g* of exponential type at most o such
that

lim g, (x) = g*(x), xeR’,
k— 00
and, moreover, convergence is uniform on compact sets. Therefore, for any R > 0,
”g*XBR ”p,d;l.k = lim ”gl’lk XBg ”p,du,k <M.
k— 00
Letting R — oo, we have that g* € BZ’ - In light of
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ICf — &) xBpllpdwe = 1im [[(f = gne) XBell p.du
k— 00

< Im || f = gnllp.d = Eo(f)p.duss
k— 00
we have || f — g%l p.dj < Eo(f)p.dus- o

6 Jackson’s Inequality and Equivalence of Modulus of Smoothness and
K -Functional

6.1 Smoothness Characteristics and K -Functional

We define the r-th power of the Dunkl Laplacian as a tempered distribution:
(A fo9) = ([ (=D 9). feS R, peSRY. reN.
The Dunkl Laplacian can also be written in terms of the Dunkl transform
(=20 f = F AP Fe(f))- ©.1)
Let W[%r + be the Sobolev space, that is,
W ={f € LPRY, dpp): (=AY f € LP(RY, duy))
equipped with the Banach norm

1wz, = 1LF p.ape + (=20 fll p.ap-

Note that (—Ag)" f € S(R?) whenever f € S(RY) and S(RY) is dense in Wjjk.
Indeed, if f € ng , defining

D) =e 2 @, (x) = gleﬁ ® (g) ,
we obtain that (f % ®,) € S(R?) and (see [48])
lim |Lf = (f # Pe)llp.an, = lim (=AD" f = (=AR)" f # Pe)ll p.apy = 0.
Define the K -functional for the couple (L? (R?, duy), W;’ ) as follows:

Kor(t, f)pape = inf{l f = gllpape + 1 1(=A0) 8l pau s 8 € Wi
Note that for any f1, f2 € L”(Rd, duyg) and g € Wﬁ)’k, we have
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Il f1 — g”p,duk + t2r ||(_Ak)rg||p,du.k
<1 = &llp.am + 1 1=2"&llp.daue + I f1 = Foll pduss

and hence,
| Kor (2, [ podpe — Kor 8, 2) poapi ] < W1 — f2llpodpg- (6.2)

Iff € ng ,then K2r(t9 f)p,duk = tzr“(_Ak)rf”p,d/Lk andlimtﬁo K2r(tv f)p,duk =
0. This and (6.2) imply that, for any f € LP(R", dug),

lim Kor (t, f)p.apu =0 (6.3)
Another important property of the K -functional is

Kor (M, £)pape < max{l, A7 YKor (, ) pduy- (6.4)

Let I be an identical operator and m € N. Consider the following three differences:

AMf(x) = —TH" f(x) = ;—1)3 (T)(T’)Sf(x), (6.5)
kAm = s m S
AT f(x) = ;)(—1) <s>T Tf(x), (6.6)
kA M Zm _1 = S 2m st
A f(x) = (m) > =1y (m _S>T‘ fx). (6.7)

Differences (6.5) and (6.6) coincide with the classical difference for the translation
operator 77 f(x) = f(x + t) and correspond to the usual definition of the modulus of
smoothness of order m. Difference (6.7) can be seen as follows. Define g = (—1)* (’f),
s € Z. Then the convolution u * u is given by

2m
Vg = (ks = ) pipeys = (—1)‘< )
m—s
IeZ
Note that vy # 0 if |s| < m. Moreover, if k = 0, then
1 ¢ st 2 - st
— Y T = f@) A+ — Y veSTF) = f) = Vi f (),
i — Yo s=1
where the operator S” was given in (3.5) and the averages
2z
Vina f () = 4= D 08T f(x)
s=1

were defined by Dai and Ditzian in [9].
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Definition 6.1 The moduli of smoothness of a function f € L? (R4, duy) are defined
by

o, pdaw = sup A7 FO)p.dus (6.8)
0<t<é

*wm (, f)p,duk = OSUP‘S ”*A;nf(x)”p,dukv (6.9)
<t<

Fom(8, fpduw = sup IFAT Ol p.d- (6.10)
0<t<é

Let us mention some basic properties of these moduli of smoothness. Define by
R, (8, f)p.du, any of the three moduli in Definition 6.1. Using the triangle inequality,
estimate (3.6) reveals

Qm((sa fl + fZ)p,duk < Qm(8a fl)p,duk + Qm((sa fZ)p,dm{

and
Qi (8, f)p,duk 5 ||f||p,dll/k1

1R85 [ p.de — Ly 2)p.dug] S NS1— fall podpsy-
If f € S(RY), then, by (3.2),
Fi(AT ) = Jrem @YD Fe (),
FiCAL YD) = Ji m EYDFi(HH ), (6.12)
FeCAL O = Jog m @YD Fe (),

(6.11)

where Ay =d/2 =1+ 3 ,cp, k(a) > —1/2,

Jrm@® = 3 (=1)° (’f) () = (1 = jo, )",
s=0

j}fk,m(t) = Z(—l)s (T)jxk(st),

s=0
and

2m\ 7 & 2
JE () = (n’f) 3 (—1)S<m ’_"S>m (s1)

2m\ ' & 2 ,
=1+2<n’1"> ;(_l)s(mT)“k(”)' (6.13)

These formulas alow us to prove the following remark, which will be important further
in Theorem 6.6.

Remark 6.2 The functions jy, ,(t) and j;‘jf)m (t) have zero of order 2m at the origin,
while the function j;\“k’ (1) has zero of order m + 1 if m is odd and of order m if m is
even.
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Indeed, first we study jy, m(t) = (1 — ji, (#))". Since, for any ¢,

. L (—DFT (4 (e /2)%
=Y IES TSI (6.14)
k=0

we get ji, m(t) < 2" a5t — 0. Second, since

m
Z<—1)S<m>s2’< —0, 0<2k<m~—1,
s=0 §
(see [36, Sect. 4.2]), using (6.14), we obtain that j* , (1) < ¢2Lon+1)/2] Finally, taking

into account
i( 1y 2m _ 1/2m
= m—s)  2\m)’
m
o 2
Z(—w( m)sZkzo, k=1,....m—1,
s=1

m—s
(see [36, Sect. 4.2]) and using again (6.14), we arrive at j;‘f’m (1) < 1*™. Some of these
properties were known (see [9,34,35]).

Remark 6.3 In the paper [9], the authors obtained that jf:’m (t) > 0fort > 0.

6.2 Main Results

First we state the Jackson-type inequality.

Theorem 6.4 Leto > 0,1 < p <oo,r € Zy, m € N. We have, for any f € W;’k,

1 1
Eo(f)p,dp,k 5 o Qm <_s (_Ak)rf) s (615)
o o pduk

where 2, is any of the three moduli of smoothness (6.8)—(6.10).

Remark 6.5 (1) For radial functions, inequality (6.15) is the Jackson inequality in
L? (R4, dvy,). In this case it was obtained in [34,35] for moduli (6.8) and (6.9).
For k = 0 and the modulus of smoothness (6.10), inequality (6.15) was obtained
by Dai and Ditzian [9], see also the paper [10].

(i1) From the proof of Theorem 6.4, we will see that inequality (6.15) for moduli (6.8)
and (6.10) can be equivalently written as

1 m r
Es (f)p,dll«k S ﬁ Al/a((_Ak) ) Hp,d/Lk ’

1
Ea(f)p,dp,k S 0_2

r

RLTA(C )
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The next theorem provides an equivalence between moduli of smoothness and the
K -functional.

Theorem 6.6 If5 > 0,1 < p < oo, r € N, then for any f € LP(R?, duy),

K> (8, f)p,d;u( = wy (0, f)p,dp.k = er(& f)p,duk

(6.16)
= >I<C02;'71 (8, f)p,d,u.k = *er(‘Sv f)p,duk'

Remark 6.7 If k = 0, the equivalence between the classical modulus of smoothness
and the K-functional is well known [8,26], while the equivalence between modulus
(6.10) and the K -functional was shown in [9]. For radial functions, a partial result of
(6.16), more precisely, an equivalence of the K -functional and moduli of smoothness
(6.8) and (6.9), was proved in [34,35].

Remark 6.8 One can continue equivalence (6.16) as follows (see also Remark 6.16):

=X NAS Fllpape =< 1S Fllp,dpug -

We give the proof for the difference (6.7) and the modulus of smoothness (6.10).
We partially follow the proofs in [27,34,35], which are different from those given
in [9]. For moduli of smoothness (6.8) and (6.9), the proofs are similar and will be
omitted here (see also [34,35]). The proof makes use of radial multipliers and is based
on boundedness of the translation operator 7. Note that by (6.2) and (6.11), the K -
functional and moduli of smoothness depend continuously on a function. Moreover,
the best approximations also depend continuously on a function, and therefore one
can assume that functions belong to the Schwartz space.

6.3 Properties of the de la Vallée Poussin Type Operators

Let € Sraq(RY) be such that n(x) = 1if [x| < 1, n(x) > 0if [x| < 2,and n(x) =0
if |x| > 2. We write

I —n(x)

nr(x) = |x|2r

o M) = Fi(m) (),

where F (n,) is a tempered distribution. If t = |x|, no(¢) = n(x), and n,0(t) = n,(x),
then i (n,)(y) = Ha (1r0)(1y])-

Lemma 6.9 We have 7, € L'(R?, duy), where r > 0.

Proof It is sufficient to prove that H;, (n,0) € L'R,, dv;, ). In the case r > 1, this
was proved in [35, (4.25)]. We give the proof for any r > 0.
Letting u;(¢) = (1 + 1)~ and taking into account that

1 1 1\ X (j+r—1 1
_ — 1 — = —, t#0,
2 (122 < 1+ t2) ;( J )(1 + 12)J+r #
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we obtain, for any M € N and ¢ > 0,

o =Y (] +; )(1 — ()4 (1)

j=0
0 M—1 ,.
1 -1
-y (J +r )uj+,(t) —no() Y <J r )Mj+r(l)
20 J j=0 J
o . _ 1
+ Z (J +; >(1 = no()uj1r (1) = Y1) + P2(t) + Y3(2).
=M

For any r > 0, we have H,, (u,) € LI(R+, dvy,) (see [35, Lemma 3.2], [47,
Chapt 5, 5.3.1], [31, Chapt 8, 8.1]); therefore H;, (V1) € L! (R4, dvy, ). Because of
Y2 € S(Ry), Hy, (¥2) € L (R4, dv;, ). Thus, we are left to show that, for sufficiently
large M, H;, (¥3) € L'R,, dvy,).

Let M +r > A+ 1,¢t > 1. Since 12813 < j’_l, we have
- r—1 o0 (1+j)r—1 - 1 - 1
W/?’(t)' ~ (1 +t2)M+r JX_(:) 2] ~ (1 +[2)M+r ~ 2M+2r

and
o0 o0
/ [¥3(1)| vy, (1) < / ¢~ CMF2r=20=1) q¢ < o0,
0 1

Thus, ¥3 € L' (R, dvy,), Hy, (¥3) € C(R4), and Hy, (¥3) € L'([0, 2], dvy,).
Recall that the Bessel differential operator is defined by

> @u+Dd

By, =~
ATS t dr

Using ¥3 € C*°(R;), we have, forany s € N, Bik V3 € L1([0, 2], dvy,).
If t > 2, then (1 —no(t))ujyr(t) = ujy,(t) and

Bigjir () =40 + )G +7 = 2 jrp1(6) =40 + 1) +7 + Ditjr 2 (D).
This gives
Bayttjsr (0] < 23+ 7 4 M+ D21 jy 11 (0).
By induction on s,

B ujar (O] <25 47 425 4+ kg — D ujprps (6),
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and then, for ¢t > 2,

1 (14 j)yrt2s-t - 1 - 1
(1 +t2)M+r+s X(:) 5J ~ (1 +t2)M+r+s N~ f2M+2r+2s”
l:

1B, ¥3(0)] <

and Biklff3 e L([2, 00), dvy,). Thus, we have Bf\ktﬁg e L'(Ry, dvy,) for any s.
Choosing s > A + 1 and using the inequality

1 o 1
[Hoy (W3) (D) = —/ 1B5, 30| dva (1) S ==,
0 T

we arrive at Hy, (¥3) € L'([2, 00), dvy, ). Finally, we obtain that H;, (¥3) €
L'(Ry, dvyy). =

Form,r € Nand m > r, we set

() = Y2 AVDs g (%) == Fi(glh ) (x),

8£n,r(x) — tzr—zxk—zgm’r (;) .
Since
Emr ) = Japm (YD1 () + W n(y),
]Ak| mélryl) Co®Y), Jxk' mélryl) 1) € SEY),
and

2m\ 7 & (2 .
FeCise i) x) = (n’f) > 1y <m Ts>Témk,r<x),

s=—m
boundedness of the operator 7% in L' (R?, djuz) and Lemma 6.9 imply that

t 1 md t 2
gm,rv gm,r € L (R ’ dl’Lk)s ”gm r”l d,LLk =1 r”gm,r”l,duky

—1, t t 2r % —2r sk (6'17)
Fr @) ) = Fi(8n (V) =17 g, (0y) = I¥I77 Ji, m @YD)
Lemma 6.10 Letm,r e NN m>r,1 <p <oo,and f € S(Rd). We have
AV = (=AD" f kg, (6.18)
and
I*AY 1l papse S 2 I=20" Fllpaape- (6.19)
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Proof Combining (3.15), (6.1), (6.12), and (6.17), we obtain that

D
FeAT Y0 = DTN = P )

= Fi(=A0)" HYDFic (g, ) ()-

Then (6.18) follows from (3.11) and Lemma 3.4. Inequality (6.19) follows from
(6.17), (6.18), Lemma 3.4, and (3.12). Note that a constant in (6.19) can be taken

as |l gm.rll1,dpu- 0

Remark 6.11 Since S(R?) is dense in W;r , in light of (6.11), inequality (6.19) holds

: 2r
for any function from Wp’ e

Let f € S(RY). We set 0(x) = Fr(n)(x) and 6, (x) = 6(x/o). Then 0, 6, €
S(RY). The de la Vallée Poussin type operator is given by Py (f) = f % 6,. By
Lemma 3.4,

Fi(Po () = n(y/o) Fi(H)(¥).

Lemma 6.12 Ifo > 0,1 < p < 00, f € S(RY), then
(1) Ps(f) € Bi” and Py (g) = g forany g € B

@ 1P (Nl pape S ”f”p dues
) I = Po(Dllp.ape S Eo(F)p.au-

Remark 6.13 Property (3) in this lemma means that P, (f) is the near best approxi-
mant of fin LP (R, duy).

Proof (1) We observe that supp n(- /o) C By, and then supp Fx(Py(f)) C Bao.
Theorem 5.14 yields P, (f) € Bz” Ifg e B”k,then by Theorem 5.14, supp Fi(g) C

By and Fi(Py(8))(y) = n(y/G)fk(g)(y) Fi(g)(y). Hence, Py (g) = g.
(2) In light of (3.12),

”Pa(f)”p,duk - ”f *i 90||p,d;u{ =< ||90||1,duk”f”p,duk
= 10111,du 1 F W podpe S NN podpas-

(3) Using Theorem 5.15, there exists an entire function g* € Bg & such that || f —
8l p.dux = Eo(f)p.du,- Then using Py (g*) = g* implies

If = Po (P padpe = I1f — 8"+ Po (g = )l p.de
<If- g*”p,duk + 1P (f — g*)”p,duk N Ea(f)p,duk~

In the proof of the next lemma we will use the estimate

PN S (e + D702 e R, A= —1/2, n € Zy, (6.20)
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which follows, by induction on n, from the known properties of the Bessel function
[2, Chap. 7]

1
WOl S (el 4+ D720 i) = ——— ().
01 S (el +1) KO == ®

Lemma6.14 Ifo >0, 1<p<oo,meN,reZ,, feSRY), then
Lf = Pop2 (Dl pame S 0217000 (A )l p.ayu (6.21)

for some a = a(hg, m) > O.

Proof We have

Filf = Popp(fN) = A =nQy/o)Fif(y)

o 1 =nQy/o) " )
- Fr(FA —A
o e i iyt e (A0
=0 9y /) Fi (AL (= A0 1)), (6.22)
where | o
v = — AT (AL f) € SRY). (6.23)

Y125 Galyl)’
Setting ‘])Lk () = 1=710(t),inlight of (6.13) and (6.20), we observe that J;f* w@®) =1
as t — 00. Then we can choose a > 0 such that |7o(¢)| < 1/2 for [t] > a/2 For such
a = a(hk, m), we have that ¢(y) = 0 for |y| < 1/2, ¢(y) > 0 for |y| > 1/2, and
@ € C®(R?). Moreover, the derivatives ¢¥)(y) grow at infinity not faster than |y|%,
which yields ¢ € S'(R?).

We will use the following decomposition:

o(y) = e1(lyD) + @2(yD),

where

e1(y]) = 2%"n,(2y) ( - SN(fo(a|y|)>

1
I —1o(alyD)

and

|- =
P25) = 20, Co)SwGlalyD), 1) = B2 Sw) = 3¢

First, we show that Fi(¢1(]-])) € L'(R?, dug). Since for a radial function we
have

20k
Avo1(lyD) = o] (IyD) + ——— @1 (Iy])

+
[yl
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and, for |t| < 1/2,
1 N—-1 . 1 (N
(1—1) —;Or == =Sy =T,
then, by (6.13) and (6.20), we obtain
tor(y) = O(y|" T NHHD) y > 172, 5 € Zy.

Hence, for a fixed N > 2 4+ 2/(2A + 1), we have Ajp1(|y]) € LY (R4, dpy), where
s € Z4. Applying (6.1) we derive that

(=201 (-D)®O _ (=20 @1 DIl

|x|25 - |x|2s

| Fr@r (|- )| =

Setting s > Ag + 1 yields Fr(e1(]-])) € Ll(Rd, dug).
Second, let us show that Fy (¢2(]-)) € LY (R?, duy) for r € N. Let

w0 = Y Vs 0. Yr@) =22 Fe(nr 2 @),

s=1

m N—1
ACf) =) u T fx), BUf(x) =) (A f(0).
s=1 j=0

Boundedness of the operator T in L? (RY, duy) implies

m
1A ps p = SUDLAS | pudag = 1 N puage < 13 <Y [l
s=1
and
N—-1 ‘ m N-1
1B lpmp < D (lAllp—p) <N (1 +y |vs|> . 1<p<oo. (624
j=0

s=1

Then for p = 1, taking into account Lemma 6.9, we have

" N-1
I Fi(@2(l- Dl = || B ¥r ||1’de =N (1 + Z Ivsl) 1V ll1.d, < 00
s=1

Thus, Fr(p) € LY(RY, dug). Combining Lemma 3.4, relations (3.12), (6.22), (6.23),
and the formula || F¢ (@ (- /o) 11,di; = IFk(@)l1,du,» We obtain inequality (6.21) for
reN.
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Now let r = 0. Define the operators A and A, as follows:

Fr(A18)(y) = ¢1(Iyl/0) Fi(8)(¥)

and

Fir(A28)(y) = @2(lyl/o) Fiu(g)(y),  @2(lyD) = (1 = n2y))Sn(zo(aly])).

Since Fi(p1(]-1)) € L'(RY, dpwy),

IA1gl p.ame = 1Py, dm 181 p.ame S N8N p,dpass

6.25
1<p<oo, geSRY. (6.25)

We are left to show that

A28l pdue S NIgllpdues 1< p<o0, g€ SRY.

We have

Fi(A28)(y) = (1 —ny/o))Sn(rolalyl/o) Fr(g)(y)
= (1 —nQy/0)Fi(B" g)(y)
= Fi(B% g — Pyjn(BY7 g))(y).

Since BY/? g € S(R?), using Lemma 6.12 and inequality (6.24), we get

m N—1
1428l p,due < 1B gllpap <N (1 +y |vx|) gl p.ame S Nlp.apue-

s=1
(6.26)

Using (6.25) and (6.26) with g = *A”, _ f, we finally obtain (6.21) for r = 0. O

ajo

Lemma 6.15 Ifo > 0,1 < p<oo,meN, f e SR?), then

I(=A)" Po ()l oy S 0" A 20y [l podie (6.27)
where a = a(hy, m) > 0 is given in Lemma 6.14.
Proof We have
Y0 (y/0) Fi()()

= 0™ p(y/0)ji () Qo) Fe(£)()
" (3 /0) Fi AL e ) ()

Fie(=AR)" Ps (f N ()
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where

2m
o(y) = IyI7"n(y)

T aalyl/2)

Since j*  (alyl/2)/y[*™ > 0 for |y| > 0, we observe that ¢ € S(R?) and
Fr(p) € Ll(Rd, dur). Then estimate (6.27) follows from Lemma 3.4, Young’s
inequality (3.12), and || Fr (¢ (- /oD 1,dpe = IFk(@)ll1,dpy - O

6.4 Proofs of Theorems 6.4 and 6.6

Proof of Theorem 6.6 In connection with Lemma 6.10 and Remark 6.11, observe that,

d 2
for f e SR%) and g € Wpfk,

”**A(rsf”p,duk =< >M(Cl)r(& f)p,duk =< >k*Cl)r(s’ - g)p,duk + ", (8, g)p,duk

SF = &llp.ap + 8 1(=20)" 8l p.dyus -

Then
”% gf”p,du.k =< >M{a)r((s, f)p,duk 5 K2r(8’ f)p,d;/.k- (628)

On the other hand, P, (f) € W;,rk and

Ko, ) pape < I = Po (Ol pau + 87 1= 20" Po ()l p.au - (6.29)
In light of Lemma 6.14,
1f = Po (Ol p.am S 1AL oy [l padias-
Further, Lemma 6.15 yields
(=20 Po (Dl S 02 15A% 0y Fllpodis- (6.30)
Setting 0 = a/(26), from (6.29)—(6.30) we arrive at
Kor (8, O p.ae S IMAs fllpoame S " 0r (S, f)papy- (6.31)

Proof of Theorem 6.4 Using property (6.4) and inequalities (6.28) and (6.31), we
obtain

Eo(f)pame <N = Pop2(Dllpaue S 01000 (= A0 )l prayu
1 a 1 1
S = Kon (5. A0f) S =5 Kan (—, (—Ak)’f)
o o p.duk o o pdps
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1 1 1
S 5 17T (A0 Dllpaie S 5 “om (;, (_A’“)rf>,,dﬂ .
5 k
(6.32)

Remark 6.16 The proofs of estimates (6.31) and (6.32) for the difference (6.7) are
based on the fact that the parameter a in Lemmas 6.14 and 6.15 is the same. It is
possible due to the fact that jf}';m (t) > O fort > 0, see Remark 6.3. This estimate is
valid for the difference (6.5) as well, since ji, » (1) = (1 — j;, (£))" > 0fort > 0.

Therefore, the moduli of smoothness (6.8) and (6.10) in inequalities (6.15) and
(6.16) can be replaced by the norms of the corresponding differences (6.5) and (6.7).
For the modulus of smoothness (6.9), this observation is not valid since jfk’m(t) does
not keep its sign.

Remark 6.17 Properties (6.3) and (6.4) of the K -functional and the equivalence (6.16)
imply the following properties of moduli of smoothness:

@ hm o @m (s p.au = lirr}ro*wm(&f)p,dw =8£$0%wm(8’f)p,duk =0;

(2) O 8, £)pdue S max{l, A2™} @ (8, f)p.dyus;
3) *w; (A8, f)p,duk < max{l, Azm}*wl(S, f)p,dﬂk, [l =2m—1, 2m;

@) * 0 (A8, £)pdue S max{l, A2} *wp (8, £)pdpue-

7 Some Inequalities for Entire Functions

In this section, we study weighted analogues of the inequalities for entire functions. In
particular, we obtain Nikolskii’s inequality ([31], see Theorem 7.1 below), Bernstein’s
inequality ([31], Theorem 7.3), Nikolskii—Stechkin’s inequality ([30,45], Theorem
7.5), and Boas-type inequality ([4], Theorem 7.7).

Theorem 7.1 Ifo > 0,0 < p <g <o, f € B , then

p.k
I fllg.ap S o@FDAP=VD) 21 400, (7.1)

Remark 7.2 Observe that the obtained Nikolskii inequality is sharp, i.e., we actually
have

sup ISl g.dpe = o @D/ p=1/9)
feB“k f#0 ”f”p duk

and an extremizer can be taken as

sin?” (0|x|) o

= =, 9 = —,
Jo,m(x) |x|2m om

for sufficiently large m € N.
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Proof Let f € B;’k, p > 1,q = oo. By Theorem 5.14, we have supp Fx(f) C By,
and then

Fi(H) =n(y/0)Fi(H). n(y) = no(lyD. (1.2)

Lemma 3.9 implies

F@x) = (f %, Hu(no(-/0)))(x) = /0 T' f () Hay (no(- /o)) (@) dvy, (1),
Taking into account that

Hy (0(- o)) (1) = o T2 H;, (o) (o1),

2042

IHoy 1) @Oy e = 0 77 I Ha 10) Ol g

Holder’s inequality and Theorem 3.5 yield

£ < o FNT! £ pavy, [Hae 100 (@D g
< o PFIP 11, 0) O g | Flpaie S 02PN £l p
i.e., (7.1) holds.

Let f € B;’k, 0 < p < 1,qg = co. By Theorem 5.1, f is bounded and f € Bik.
We have

1A g = PP e < DA P oo NP Naue = 1 o0 P11 g,
Using (7.1) with p = 1 and g = oo,
1 ame S 02U I IS TAND s
which gives
1flloo S o220 £l au -

Thus, the proof of (7.1) for ¢ = oo is complete.
If0 < p < g < oo, we obtain

1 lg.ame = LI P 17 N g e < 1 lss O NA DS
< U(mk—ﬂ)(]_[]/q)/[’”f”;z,_dic/kq”f”;/ng — U(Zkk+2)(1/ﬁ—1/tI)||f||p’duk.
[}
Theorem 7.3 Ifo >0,reN, 1 <p<oo, f € B;’k, then
=20 fllpape S 021 N g (1.3)
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Proof 1t is enough to consider the case » = 1. As in the previous theorem, we use
(7.2) to obtain

Fie((=A0 )3 = IyPPn /o) Fe(H)() = o2 po(yl/a) Fi(f) (),

where ¢o(t) = *no(t) € S(R4). Combining Lemma 3.9, inequality (3.12), and
1 Fk(@o (- [/oN,de = IFk(@o(l- DI lI1,dpy > We arrive at

=20 Fllp,au < 0 1F @0 au Il p.aee S 01 N p. s

The next result follows from Lemma 6.10, Remark 6.11, and Theorem 7.3.
Corollary 74 Ifo, § >0omeN, 1 <p <oo, f € B;,k’ then

Om Sy e S @™ f Nl pdyus
018, e S @™ fllpdpes | =2m —1, 2m,

Hom (8, Ppdue S @™ 1 £l pdpue

where constants do not depend on o, §, and f.

Theorem 7.5 Ifoc >0, meN 1 <p<o00,0<t<1/Q0), f € Bg,k’ then

120" Fllp.aie S 17" 1AL f Ly (7.4)
Remark 7.6 By Remark 6.8, this inequality can be equivalently written as
1= A0" Fllpame S 17" Kom(t. f) p.au-

Proof We have

VP (/o) .

Fi((— A" = F :
(=A™ ) FNCED) Jreom @YDFR ()

Since for0 <t < 1/(20),

n(y/o) =n(y/o)n(ty),

we obtain that

Fi((=A)" HY3) = 17" 0 (/o)) jik Gy DFi(F) (),

where

2m
o) = S ¢ g,

i GY))
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Using
P DFe(f) = FiC"Ay f), ™APf e LP(RY, duy),

and

1FxmC /oD aw = IFeDdpes  1Fx(@E DI = 1Fe@ 10

and combining Lemma 3.9 and inequality (3.12), we have

H=A0" Fllpdie < 12" 1Fe0C /oD g 1Fx@E D AT £ 1|y
= 172 Fr D s N Fr @) 1y AT £ 1 -y
SET2HA Fll pdyas -

Theorem 7.7 Ifc >0,meN, 1 <p<00,0<d5<r<1/Qo), f € Bg’k, then

ST IAY flpaue S 1" AT £l p - (1.5)

Remark 7.8 Using Remark 6.8, Theorem 7.5, and taking into account that
§2M Ky (8, ) p.du 1s decreasing in § (see (6.4)), inequality (7.5) can be equiva-
lently written as

-2 -2
I(=20" fllpape = 8" IPAF fllp.apc < 17" IFAY 1l padyus

=AD" Fllpdpe = 8" Kom(S, £)pdpe =t " Kom (@, )p.dus-

Proof We have

FeC*AY £)() = i GlyDFi(f)(y)
Japm @GlyDn(ty)
By
= 07" 0(y/0) o (tY) Fi (AT ) (),

=n(y/o) FiAT ()

where 0 = (8/1)*™ € (0, 1],

_ v @y)ny)

P
90 (y) = e SRY), Y(y)= """ ¢ CORY).

v(y) |y[#"

Using Lemma 3.9 and estimate (3.12), we arrive at inequality (7.5):

2
IAS fllpduwe < 07" 1F (1, duy  max I Fie (@) 1, apu A7 £l o
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S 2m
5(;) 127" 1.

provided that the function n(0) = || Fx (o) l1,d., is continuous on [0, 1]. Let us prove
this.

Set 9 (y) = @oo(Iy]), r = [y, p = |x|. Then

n(6) = / ‘ / fpe()’)ek(X,y)de(y)‘dﬂk(x)
Rd ]Rd

dvy (p)

2
‘/0 §090(r)j)nk (pr) dv}»k (V)

0 2
=03, / ‘ / 000 (r) jay (pr)r? < dr| p?* 1 dp.
0 0

The inner integral continuously depends on 6. Let us show that the outer integral
converges uniformly in 6 € [0, 1]. Since [2, Sect. 7.2]

d /. .
dr (M"H(’w)rmwrz) = ki +2) juy (r)r?HH,

integrating by parts implies

2 2 r
./ @o0(r) oy (pr)r? 1 dr = /0 Poo(r) d (/(.) I ('OT)TWH)
0
T 2wtz

2
/ woo(r) d (j/\k+1(;0r)r2kk+2>
0
1

oo (r) . 2043
= — dr =...
2)%_'_2/0 p Jre+1(or)r r

-1

s 2
=07 | [T +29 / Obo () jasers (pryr T2 dr,
; 0
j=1

where

s1,...  d %% 1](r)
Poo (1) = dr r

This and (6.20) give

c1(Ag, m,s)

[ o oriret o] < AlLm
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and, for s > Ax + 3/2,

o0
n(0) < ca(hg, m, s)/ (14 p) =YD dp < 300, m, 5),
0

completing the proof. O

Remark 7.9 Combining (7.1) and (7.3), the following Bernstein—Nikolskii inequality
is valid:

(=AW fllgap S o> FEHARUP=VDY £l 40 1< p<q < o0
Remark 7.10 Forradial functions, Nikolskii inequality (7.1), Bernstein (7.3), Nikolski

i—Stechkin (7.4), and Boas inequality (7.5) follow from corresponding estimates in
the space L” (R, dv,) proved in [34].

8 Realization of K-Functionals and Moduli of Smoothness

In the nonweighted case (k = 0) the equivalence between the classical modulus of
smoothness and the K -functional between L? and the Sobolev space W; is well known
[8,26]: 1 < p < oo, for any integer r one has

or(t, Hrre <X K- (fit)p, 1= p=<o00,

where

Ke(f.0p = inf (I = gllp+ gl )
geWw;, P

Starting from the paper [13] (see also [17, Lemma 1.1] for the fractional case), the

following equivalence between the modulus of smoothness and the realization of the
K -functional is widely used in approximation theory:

0r(t, ury =Ryt ) =inf {I1f = gllp +118"1 |

where g is an entire function of exponential type 1/7.
Let the realization of the K-functional K>, (t, f)p,d;, be given as follows:

. 1
Rar(t, Dpa =i0f {1f = &l + 17 1(=20" 8l pae & € Bt}
and

5 P pae = 1L = & p.du + 2 1 (=20 %[l p

/

)

1/t . .
where g* € B » ! is a near best approximant.

@ Springer



Constr Approx (2019) 49:555-605 599

Theorem 8.1 If1 > 0,1 < p < o0, r € N, then for any f € LP(R?, duy),

Rar(t, f)p,dp,k = R;r(t’ f)p,d,uk = Ko (2, f)p,dp,k = w(t, f)p,duk
= er(tv f)p,dp,k = >kw2r—l(ts f)p,dp.k = *er(t, f)p,duk~

Proof By Theorem 6.6,

wy (2, f)p,duk = "o, (t, f)p,duk = Twar—1(t, f)p,duk = >kw2r(ts f)p,duk
= Ko, (2, f)p,duk < Rar(t, f)p,duk = ’R«Zr(t’ f)p,duk’

where we have used the fact that B 11)/ ,i C W2 which follows from Theorem 7.3.

s p.k
Therefore, it is enough to show that

Rﬁ,(r, f)p,dp,k < Cuw,(t, f)p,dp,k'

Indeed, for g* being the best approximant (or near best approximant), the Jackson
inequality given in Theorem 6.4 implies that

”f - g*”p,duk S El/t(f)p,duk § a)r(ta f)p,duk~ (8-1)
Using the first inequality in Theorem 7.5 and taking into account (8.1), we have

r

(=20 8" pae < t_2r||A,/2g*||p,dll«k
SNAL (" = Dllpa + 1 1A f i
N l_2r||g>,< = flp.du + l_zrwr(t/z’ Ppdu-

Using again (8.1), we arrive at
1 = & e + 12 N0 8 p.aps, S @r (s ) p.aes

completing the proof.

The next result answers the following important question (see, e.g., [22,51]): when
does the relation

n

1
o (—, f) = En(f)p.duy (3.2)
Pk

(or similar relations with concepts in Theorem 8.2) hold?

Theorem 8.2 Let 1 < p < oo and m € N. We have that (8.2) is valid if and only if

1 1
W (—, f) = Wl (—, f) . (8.3)
n p.dpig n p.dpig
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Proof We prove only the nontrivial part that (8.3) implies (8.2). Since, by (6.4), we

have wy, (nt, fpau S 2", (1, ) p,du relation (8.3) implies that

~

w41 (nt, f)p,duk 5 nznla)m-i-l(t’ f)p,duk-
This and Jackson’s inequality give
n
o G+ D2 ()
2+ 2N J8 ) p.dp
Jj=0
R 1
S o 2L G+ DX e, (— f)
20+ ,-Z=<:) J+1U )
1
5 wm—H ) f .
n p.dpg
Moreover, Theorem 9.1 below implies
1 1 In
. 2(m+1)—1
Om+1 (—,f> S 2 U+ D E;i(f)p.du
In pdie (ln)z(’”"'l) JXZ(:) k
1 1
5 Wm+1 <_, f)
[2(m+1) n Fxm
1 In
. 2>m+1)—1
+ Gz 2o U+ D TE )
j=n+1
or, in other words,
1 In
; 2(m+1)—1
o 2o U DX TE () g
j=n+1
> 2(m+1) 1 1
2z Cl Wm+1 l—,f —ops1 | = f .
n p.dpg n podut
Using again (8.4), we obtain
R 1
o 2o G DXV TE () 2 (CP = Doy (;, f) :
j=n+1 p.dpk

(8.4)

Taking into account monotonicity of £ (f) ».au, and choosing / sufficiently large, we

arrive at (8.2).

@ Springer

m}



Constr Approx (2019) 49:555-605 601

9 Inverse Theorems of Approximation Theory

Theorem 9.1 Letm,n e N, 1 < p <oo, f € L”(Rd, duy). We have

1 1 n
Kom (—, f) S 52 Y G+ DT E () pau ©.1)
n P duk j

2
n
—0

in this inequality can be equivalently
cand Yoy (3, f) 1=2m—1,2m.

Remark 9.2 By Remark 6.8, Ko (1, £)
replaced by wy, (L, f) “om (L, f)

W
Proof Let us prove (9.1) for wy, (rll f)
exists fo € By such that

p.du

p.du’ p.du P dug

. By Theorem 5.15, for any o > 0, there
p.duk

”f - fa”p,duk = Ea(f)p,duks EO(f)p,duk = ”f”p,dup

Forany s € Z,

wn(L/n, fpdu < om(1/n, f— fos1) pdu + @ (1/0, fose1) p dp
S Esti (f)p,duk + o (1/n, f23+1)p,duk-

Using Lemma 6.10,

-2
wm(l/n’ f2-?+1)p,d/1,k S, n~ " ”(_Ak)mfz-“*" ”p,d//,k

1 N
S = (120" fillpawe + D2 =A™ fain = (80" fosllp
j=0

Then Bernstein inequality (7.3) implies that

(=A™ frit1 — (=AD" foillpdue S 27"V foii1 — Foillpdu
S 22U B () pdues
(=AD" fill p.awe S Eo(f) podje-

Thus,

s
wp (1/n, f25+1)p,duk ,S EO(f)p,d,uk + Z 22m(J+I)E2.i(f)p,d/Lk

n2m
n =
Taking into account that
2J
S PE() pawe = 27"V E () pag 9.2)
[=2/-141
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we have

1
on(U/n, Fy)pan S = (B0 puaus + 2" E ()

s 2] 2
_ 1 . _
+2.2" Y PR pan | S 5 DG A DT E (D pawe
j=1 1=2i-141 j=0
Choosing s such that 2° < n < 25*! implies (9.1). i

Theorem 9.1 and Jackson’s inequality imply the following Marchaud inequality.

Corollary 9.3 Letm € N, 1 < p < oo, f € LP(R?, duuy). We have

1
_ dr
KZm(‘S’ f)p,duk 5 82m (”f”p,duk +/‘; t 2mK2m+2(ts f)p,dp.k T) .

Theorem 94 Let 1 < p < oo, f € Lp(Rd,d,uk), and r € N be such that

Z?il jzr_lEj(f)p,duk < 00. Then f € ng , and, for any m,n € N, we have

1 | N _
Kom (;, (—Ak)’f) S = 2 G+ DT (D a
j=0

p.dik
o
+ Y PTTE) pa- ©9.3)
j=n+1
Remark 9.5 We can replace Koy (L, (=AQ)" f )p 4, Dy any of moduli
On (e (A" F) s @1 (e (SO0 S) gy 204 0m (2 (A ), g 1 =
2m — 1, 2m.
Proof Let us prove (9.3) for w, (%, (_Ak)rf)p,duk' Consider
o0
(=AY fi+ Y (A faist = (=AW frr) - 94)
j=0
By Bernstein’s inequality (7.3),
2J
(=20 fairt = (A0 faillpawe S 29 By (Fpape S Y. U E() pas-
1=2/-141
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Therefore, series (9.4) converges to a function g € L” (R, duy). Let us show that
g=(—=Ap)" f,ie., f € W[i’k. Set

N
SN = (A fi+ Y (A faiet = (=AW frr) -

j=0
Then

(Fi(8). ) = (8. Fi(p)) = lim (Sn. Fi(¢))

(Fi(Sn), 0) = lim (31 Fic(foxn), @) = (151 Fi(f), 0,

lim
N—o0

where ¢ € S(R?). Hence, Fi(g)(y) = |y Fe(f)(y) and g = (—Ax)" f.
To obtain (9.3), we write

wm(1/n, (_Ak)rf)p,du.k < wn(1/n, (_Ak)rf - SN)p,d;,Lk + wn(1/n, SN)p,dka'

The first term is estimated as follows

om(1/n, (=AR)" f = SN p.ap. S =AD" f = SNl p.aus

00 o
<Y B (pan S Y PR pa
SNt [=2N+1

Moreover, by Corollary 7.4,
wm(l/n» SN)p,du,k =< wm(l/”h (_Ak)rfl)p,duk

N
+ Y om (1/n, (A0 fairt — (= A1) f))

pduk
Jj=0
1 N 4
S =5 | Bolhpaw + D2V Ey ()
Jj=0

Using (9.2) and choosing N such that 2V < n < 2N¥*! completes the proof of (9.3).
O
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