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Abstract The notion of hyperuniformity originally introduced as a measure of regu-
larity of infinite point sets in Euclidean space is generalized and extended to sequences
of finite point sets on the sphere. It is shown that hyperuniformity implies uniform
distribution. Furthermore, it is shown that Quasi-Monte Carlo design sequences with
strength at least d+1

2 and especially sequences of spherical designs of optimal growth
order are hyperuniform.
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1 Introduction

Hyperuniformity was introduced by Torquato and Stillinger [27] (cf. [21]) to describe
idealized infinite point configurations, which exhibit properties between order and
disorder. Such configurations X occur as jammed packings, in colloidal suspensions,
and as quasi-crystals. The main feature of hyperuniformity is the fact that local density
fluctuations are of smaller order than for a random (“Poissonian”) point configuration.
Alternatively, hyperuniformity can be characterized in terms of the structure factor

S(k) = lim
B→Rd

1

#(B ∩ X)

∑

x,y∈B∩X

ei〈k,x−y〉 (thermodynamic limit)

by limk→0 S(k) = 0. This thermodynamic limit is understood in the sense that
the volume B (for instance a ball of radius R) tends to the whole space R

d while
limB→Rd

#(B∩X)
vol(B)

= ρ, the density.
For a long time in the physics literature it has been observed that there are large

(ideally infinite) particle systems that exhibit structural behavior between crystalline
order and total disorder. Very prominent examples are given by quasi-crystals and
jammed sphere packings. The discovery of such physical materials that lie between
crystalline order and disordered materials has initiated research in physics as well
as in mathematics. We just mention de Bruijn’s Fourier analytic explanation for the
diffraction pattern of quasi-crystals [10] and the extensive collection of articles on
quasi-crystals [2].

Since the introduction of hyperuniformity in [27] as a concept tomeasure the occur-
rence of “intermediate” order as for quasi-crystals or jammed packings, the notion has
developed tremendously. Hyperuniformity has found applications far beyond physics:
color receptors in bird eyes exhibit hyperuniform structure [13], as do the keratin
nanostructures in bird feathers [17], as do energy minimizing point configurations,
and of course quasi-crystals [20].

The basic framework is as follows. Let X be a countable discrete subset of Rd

and � ⊂ R
d be a test set (“window”), in most cases the unit ball. Then Nx+t� =

#((x + t�) ∩ X) counts the number of points in the translated and dilated copy of �.
As a general assumption, we take that X has a density ρ, meaning that

Nx+t� ∼ ρtdvol(�)

for t → ∞, independent of x. Based on this assumption, the thermodynamic limit can
be taken to define the expectation of Nx+t� as

〈Nt�〉 = lim
R→∞

1

vol(B(0, R))

∫

B(0,R))

Nx+t� dx,

where B(0, R) denotes the ball of radius R around 0. For a random (“Poissonian”)
point pattern, the variance satisfies 〈N 2

t�〉 − 〈Nt�〉2 = 〈Nt�〉 = ρtdvol(�). For point
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sets like quasi-crystals or jammed packings, the behavior is different: the variance has
smaller order of magnitude as t → ∞, ideally

〈N 2
t�〉 − 〈Nt�〉2 = O(td−1) 
 surface(t�). (1)

Here and throughout, we use the notation f (t) 
 g(t) for f (t) = O(g(t)) and
g(t) = O( f (t)) for the indicated range of x .

Such behavior is clearly displayed by lattices and randomly distorted lattices, and
somequasi-crystals (depending onDiophantine properties of their construction param-
eters) [20]. There is numerical evidence that jammed sphere packings [14,28] also
exhibit such behavior. More generally, a point set is called hyperuniform if

〈N 2
t�〉 − 〈Nt�〉2 = o(td);

it is called strongly hyperuniform if (1) holds. It has been shown in [27] that (1) is the
best possible order that can occur.

2 Hyperuniformity on the Sphere

Complementing the extensive study of the notion of hyperuniformity in the infinite
setting, we are interested in studying an analogous property of sequences of point
sets in compact spaces. For convenience, we study the d-dimensional sphere Sd . Our
ideas immediately generalize to homogeneous spaces; further generalizations might
be more elaborate, since we rely heavily on harmonic analysis and specific properties
of special functions. Throughout this paper, σ = σd will denote the normalized surface
area measure on Sd . We suppress the dependence on d in this notation.

In order to adapt to the compact setting, we replace the infinite set X studied in
the classical notion of hyperuniformity by a sequence of finite point sets (XN )N∈A,
where we assume that #XN = N . By using an infinite set A ⊆ N as index set, we
always allow for subsequences. Furthermore, the set XN = {x(N )

1 , . . . , x(N )
N } consists

of points depending on N ; for the ease of notation, we omit this dependence throughout
the paper. We propose the Definition 3 below, which we study in further detail in this
paper.

Throughout the paper, we use the notation

C(x, φ) = {y ∈ S
d | 〈x, y〉 > cosφ}

for the spherical cap of opening angle φ with center x. The normalized surface area
of the cap is given by

σ (C(x, φ)) = γd

∫ φ

0
sin(θ)d−1dθ 
 φd as φ → 0, (2)

where

γd =
(∫ π

0
sin(θ)d−1dθ

)−1

= 	(d)

2d−1	(d/2)2
.
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Notice that γd = ωd−1
ωd

, where ωd is the surface area of Sd .
For the reader’s convenience and for later reference, we first recapitulate the defi-

nition of uniform distribution of a sequence (XN )N∈A of point sets on the sphere Sd

(see [11,16] as general references on the theory of uniform distribution).

Definition 1 (Uniform distribution) A sequence of point sets (XN )N∈A is called uni-
formly distributed on S

d if for all caps C(x, φ) (x ∈ S
d and φ ∈ [0, π ]), the relation

lim
N→∞

1

N

N∑

i=1

1C(x,φ)(xi ) = σ(C(x, φ)) (3)

holds. Here 1C denotes the indicator function of the set C .

It is known from the general theory of uniform distribution (see [16]) that (3) is
equivalent to

lim
N→∞

1

N 2

N∑

i, j=1

P(d)
n (〈xi , x j 〉) = 0 for n ≥ 1, (4)

where P(d)
n is the n th (generalized) Legendre polynomial normalized by P(d)

n (1) = 1.
These functions are the zonal spherical harmonics on Sd (see [19]). Notice that

Z(d, n)P(d)
n (x) = n + λ

λ
Cλ
n (x),

where Cλ
n is the n th Gegenbauer polynomial with index λ = d−1

2 (see [18]). We write

Z(d, n) = 2n+d−1
d−1

(n+d−2
d−2

)
for the dimension of the space of spherical harmonics of

degree n on S
d .

The spherical cap discrepancy

D∞
N (XN ) = sup

x,φ

∣∣∣∣∣

N∑

n=1

1C(x,φ)(xn) − Nσ(C(·, φ))

∣∣∣∣∣

provides a well studied quantitative measure of uniform distribution (see [4,16]).
Uniform distribution of (XN )N∈A is equivalent to

lim
N→∞

1

N
D∞

N (XN ) = 0.

In this paper, we will study the number variance.

Definition 2 (Number variance) Let (XN )N∈N be a sequence of point sets on the
sphere Sd . The number variance of the sequence for caps of opening angle φ is given
by
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V (XN , φ) := Vx# (XN ∩ C(x, φ))

=
∫

Sd

(
N∑

n=1

1C(x,φ)(xn) − Nσ(C(·, φ))

)2

dσ(x).

This quantity appears in the classical measure of uniform distribution given by the
L2-discrepancy

D2
N (XN ) =

(∫ π

0
V (XN , φ) sin(φ) dφ

) 1
2

, (5)

where uniform distribution of (XN )N∈A is also equivalent to

lim
N→∞

1

N
D2

N (XN ) = 0.

As in the Euclidean case, we define hyperuniformity by a comparison between the
behavior of the number variance of a sequence of point sets and the i.i.d case. For i.i.d
points, the variance is Nσ(C(·, φ))(1 − σ(C(·, φ))), which has order of magnitude
N , Nσ(C(·, φN )), and td , respectively, in the three cases (6), (7), and (8) listed below.

Definition 3 (Hyperuniformity) Let (XN )N∈N be a sequence of point sets on the
sphere Sd . A sequence is called

• hyperuniform for large caps if

V (XN , φ) = o (N ) as N → ∞ (6)

for all φ ∈ (0, π
2 ) ;

• hyperuniform for small caps if

V (XN , φN ) = o (Nσ(C(·, φN ))) as N → ∞ (7)

and all sequences (φN )N∈N such that
(1) limN→∞ φN = 0
(2) limN→∞ Nσ(C(·, φN )) = ∞, which is equivalent to φN N

1
d → ∞.

• hyperuniform for caps at threshold order if

lim sup
N→∞

V (XN , t N− 1
d ) = O(td−1) as t → ∞. (8)

Remark 1 The case analogous to the Euclidean definition is the third case: hype-
runiform for caps at threshold order. The limit N → ∞ is the analogue of the

thermodynamic limit by rescaling to a sphere of radius N
1
d .

In order to determine further properties of hyperuniform sequences of sets, we
derive an alternative expression for the number variance V (XN , φN ). We refer to [19]
as a general reference for spherical harmonics in arbitrary dimension and to [1,18] as
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references for the various formulas and relations between special functions, especially
orthogonal polynomials.

Recall the Laplace series for the indicator function of the spherical cap C(x, φ):

1C(x,φ)(y) = σ(C(·, φ)) +
∞∑

n=1

an(φ)Z(d, n)P(d)
n (〈x, y〉),

where the Laplace coefficients for n ≥ 1 are given by

an(φ) = γd

∫ φ

0
P(d)
n (cos(θ)) sin(θ)d−1 dθ = γd

d
sin(φ)d P(d+2)

n−1 (cos(φ)). (9)

The variance V (XN , φ) can be expressed formally as

V (XN , φ) =
∫

Sd

(
N∑

i=1

1C(xi ,φ)(x) − Nσ(C(·, φ))

)2

dσ(x)

=
N∑

i, j=1

∞∑

n=1

an(φ)2Z(d, n)P(d)
n (〈xi , x j 〉)

(10)

by interpreting the integral as a (spherical) convolution. This follows from the Funk–
Hecke formula

∫

Sd
P(d)
m (〈x, y〉)P(d)

n (〈y, z〉) dσ(y) = δm,n P
(d)
n (〈x, z〉).

We also remark here that
N∑

i, j=1

P(d)
n (〈xi , x j 〉) ≥ 0 (11)

by the positive definiteness of P(d)
n (see [22]).

Notice that the function

gφ(x) =
∞∑

n=1

an(φ)2Z(d, n)P(d)
n (x), −1 ≤ x ≤ 1, (12)

is positive definite in the sense of Schoenberg [22]. Furthermore, the estimate

∣∣∣P(d)
n (cos(φ))

∣∣∣ ≤ min

(
1,

cd

(n sin(φ))
d−1
2

)
(13)

holds for a constant cd depending only on the dimension d (see [15,26]). This gives
the estimate

an(φ)2 = O
(
sin(φ)d−1

nd+1

)
,
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which holds uniformly for φ ∈ [0, π ]. This together with Z(d, n) = O(nd−1) shows
absolute and uniform convergence of the series (12) and thus (10).

2.1 Hyperuniformity for Large Caps

Theorem 1 Let (XN )N∈N be a sequence of point sets that is hyperuniform for large
caps. Then for all n ≥ 1,

lim
N→∞

1

N

N∑

i, j=1

P(d)
n (〈xi , x j 〉) = 0. (14)

As a consequence, sequences that are hyperuniform for large caps are uniformly
distributed.

Proof Assume that (XN )N∈N is hyperuniform for large caps. Then inserting the defi-
nition into (10) gives

0 = lim
N→∞

V (XN , φ)

N
≥ Z(d, n)an(φ)2 lim sup

N→∞
1

N

N∑

i, j=1

P(d)
n (〈xi , x j 〉)

for every n and every φ ∈ (0, π
2 ), which implies (14) by the positive definiteness of

Legendre polynomials (11), positivity of the Laplace coefficients of the series, and
uniform convergence. ��
Remark 2 Of course, the uniform distribution of hyperuniform point sets is no sur-
prise, since the uniform density of points was built into the computation of variance.
Furthermore, all caps of a fixed size are used in the definition of this regime of hyper-
uniformity, similarly to the definition of uniform distribution. The extra convergence
order in (14) is the key observation in Theorem 1. Similar phenomena will occur in
Sect. 3, where the notion of a Quasi-Monte Carlo (QMC) design as defined in [9]
is exploited further and hyperuniformity of QMC designs of sufficient “strength” is
shown.

Remark 3 Notice that it does not suffice to assume that (6) holds for only one value of
φ ∈ (0, π

2 ). For values of φ for which one of the coefficients an0(φ) vanishes, nothing
can be said about the limit (14) for n = n0. There are of course only countably
many such values of φ. Furthermore, it has been conjectured by T. J. Stieltjes [3]
that the (classical) Legendre polynomials P2n(x) and P2n+1(x)/x are irreducible over
Q. An extension of this still unproved conjecture to higher dimensional Legendre
polynomials would imply that at most one coefficient an(φ) could vanish for a given
value of φ ∈ (

0, π
2

)
.

Proof We construct point sets such that (14) holds for all n �= n0 and

lim
N→∞

1

N

N∑

i, j=1

P(d)
n0 (〈xi , x j 〉) = ∞. (15)
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Take a nonzero real spherical harmonic function f of order n0 that has all values less
than 1 in modulus. Then dμ(x) = (1+ f (x)) dσ(x) is a positive measure on Sd . Then
by a result of Seymour and Zaslavsky [23], for every t there exists an N (t) such that
for every N ≥ N (t) there is a point set XN such that

1

N

N∑

i=1

p(xi ) =
∫

Sd
p(x) dμ(x) = 〈1 + f, p〉L2(Sd )

for all spherical harmonics p of degree ≤ t . Now let p(x) = P(d)
n (〈x, y〉) for fixed

y ∈ S
d . For all n �= n0 and 1 ≤ n ≤ t , we have

1

N

N∑

i=1

P(d)
n (〈xi , y〉) = 0 for every y ∈ S

d ,

from which we conclude

1

N

N∑

i, j=1

P(d)
n (〈xi , x j 〉) = 0.

This gives the desired limit relation.
For n = n0 and t ≥ n0, we have

1

N

N∑

i=1

P(d)
n0 (〈xi , y〉) =

∫

Sd
f (x)P(d)

n0 (〈x, y〉) dσ(x) for every y ∈ S
d .

Taking y = x j and summing again yields

1

N 2

N∑

i, j=1

P(d)
n0 (〈xi , x j 〉) =

∫

Sd

∫

Sd
f (x)P(d)

n0 (〈x, y〉) f (y) dσ(x) dσ(y)

=
‖ f ‖2

L2(Sd )

Z(d, n0)
�= 0,

which implies (15). ��

2.2 Hyperuniformity for Small Caps

Using the definition of hyperuniformity together with (10), we have

V (XN , φN )

Nσ(C(·, φN ))
=

∞∑

n=1

Z(d, n)
an(φN )2

σ(C(·, φN ))

1

N

N∑

i, j=1

P(d)
n (〈xi , x j 〉) → 0. (16)
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By (9) the n th Laplace coefficient of (16) behaves like

an(φN )2

σ(C(·, φN ))
=

(γd

d
P(d+2)
n−1 (cosφN )

)2 sin(φN )2d

σ(C(·, φN ))

 φd

N

for φN → 0 as assumed. Since φN is allowed to tend to 0 arbitrarily slowly and all
coefficients in (16) are positive, this implies that

lim sup
N→∞

1

N

N∑

i, j=1

P(d)
n (〈xi , x j 〉) < ∞

for all n ≥ 1.
Using the fact that (4) is equivalent to uniform distribution of (XN )N∈A, we have

proved:

Theorem 2 Let (XN )N∈N be a sequence of point sets on the sphere that is hyper-
uniform for small caps. Then (XN )N∈N is asymptotically uniformly distributed.

Motivated by the analogous definition in the Euclidean case, we call the function

s(n) = lim
N→∞

1

N

N∑

i, j=1

P(d)
n (〈xi , x j 〉)

the spherical structure factor if the limit exists for all n ≥ 1. Notice that by a diagonal
argument, we can always achieve that all such limits exist along some subsequence.

Remark 4 As opposed to the case of hyperuniformity for large caps discussed in
Remark 2, in the case of small caps, the conclusion of uniform distribution is not
directly obvious, because only “small” caps in the sense of (7) are tested for the
definition of uniform distribution.

2.3 Hyperuniformity for Caps of Threshold Order

Theorem 3 Let (XN )N∈N be a sequence of point sets on the sphere that is hyper-
uniform for caps of threshold order. Then (XN )N∈N is asymptotically uniformly
distributed.

Proof We insert the definition of hyperuniformity for caps of threshold order into (10)
to obtain

V (XN , t N− 1
d ) ≥ an

(
t N− 1

d

)2
Z(d, n)

N∑

i, j=1

P(d)
n

(〈xi , x j 〉
)
.

Then (9) and the fact that the Legendre polynomials assume value 1 at 1 yield

an
(
t N− 1

d

)2 ∼
(γd

d

)2
t2d N−2
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for fixed n ≥ 1 and fixed t > 0 and N → ∞. Now by definition (8), we have

(γd

d

)2
t2d Z(d, n) lim sup

N→∞
1

N 2

N∑

i, j=1

P(d)
n

(〈xi , x j 〉
)

≤ lim sup
N→∞

V (XN , t N− 1
d ) = O(td−1).

This relation can only hold if

lim sup
N→∞

1

N 2

N∑

i, j=1

P(d)
n

(〈xi , x j 〉
) = 0

for all n ≥ 1, which implies uniform distribution of the sequence (XN )N∈N. ��
Remark 5 Similarly to the case of hyperuniformity for small caps, the conclusion of
uniform distribution of sequences of hyperuniform points sets for caps at threshold
order is not obvious.

3 Hyperuniformity of QMC Design Sequences

A QMC method is an equal weight numerical integration formula that, in contrast to
Monte Carlo methods, approximates the exact integral I( f ) of a given continuous real
function f on S

d using a deterministic node set XN = {x1, . . . , xN } ⊂ S
d :

I( f ) :=
∫

Sd
f (x)dσd(x) ≈ 1

N

N∑

k=1

f (xk) =: Q[XN ]( f ).

The node set XN is chosen in a sensible way so as to guarantee “small” worst-case
error of numerical integration,

wce(Q[XN ];Hs(Sd)) := sup

{∣∣Q[XN ]( f ) − I( f )
∣∣
∣∣∣∣ f ∈ H

s(Sd), ‖ f ‖Hs ≤ 1

}

with respect to a Sobolev space Hs(Sd) over Sd with smoothness index s > d
2 .

Motivated by certain estimates for the worst-case error, the concept of QMC design
sequenceswas introduced in [9]. In the following,we assume that A is an infinite subset
of N. Then a QMC design sequence (XN )N∈A forHs(Sd), s > d

2 , is characterized by

|Q[XN ]( f ) − I( f )| ≤ cs,d

N
s
d

‖ f ‖Hs for all f ∈ H
s(Sd). (17)

We note that the order of N cannot be improved [9, Thm. 3]. It is shown in [9, Thm. 4]
that a QMC design sequence for Hs(Sd), s > d

2 , is also a QMC design sequence for
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H
s′(Sd) for all d

2 < s′ < s. A fundamental unresolved problem is to determine the
supremum s∗ (called the strength of the sequence) of those s for which (17) holds. We
prove the following result.

Theorem 4 A QMC design sequence for Hs(Sd) with s ≥ d+1
2 is hyperuniform for

large caps, small caps, and caps at threshold order.

It is known [9, Thm. 14] that points that maximize their sum of mutual generalized
Euclidean distances,

∑N
j,k=1

∣∣x j − xk
∣∣2τ−d , form aQMCdesign sequence (X∗

N ,τ )N∈N
for Hτ (Sd) if τ ∈ ( d

2 , d
2 + 1

)
; i.e.,

∣∣Q[X∗
N ,τ ]( f ) − I( f )

∣∣ ≤ cs,d

N
s
d

‖ f ‖Hs for all f ∈ H
s(Sd) and all

d

2
< s ≤ τ,

whereas a sequence (ZNt )t∈N of spherical t-designs with exactly the optimal order of
points, Nt 
 td , has the remarkable property [9, Thm. 6] that

∣∣Q[ZNt ]( f ) − I( f )
∣∣ ≤ cs,d

N
s
d
t

‖ f ‖Hs for all f ∈ H
s(Sd) and all s >

d

2
,

and, therefore, (ZNt )t∈N is a QMC design sequence for Hs(Sd) for every s > d
2 . As

corollaries to Theorem 4, we obtain:

Corollary 1 Let τ ∈ ( d+1
2 , d

2 + 1). A sequence (X∗
N ,τ )N∈N of N-point sets that

maximize the sum
∑N

j,k=1

∣∣x j − xk
∣∣2τ−d

is hyperuniform for large caps, small caps,
and caps at threshold order.

Corollary 2 A sequence (XN )N∈A of spherical t (N )-designs with t (N ) ≥ cd N
1
d ,

N ∈ A, for some cd > 0 is hyperuniform for large caps, small caps, and caps at
threshold order.

The Sobolev spaceHs(Sd) consists ofL2-functions on Sd with finite Sobolev norm

‖ f ‖Hs :=
√

〈 f, f 〉Hs (Sd ) =
√√√√

∞∑

n=0

‖Yn[ f ]‖2L2(Sd )

bn(s)
,

where Yn[ f ], n ∈ N, are the projections

Yn[ f ](x) :=
∫

Sd
Z(d, n)P(d)

n (〈x, y〉) f (y) dσ(y), x ∈ S
d ,

and (bn(s))n∈N can be any fixed sequence of positive real numbers satisfying

bn(s) 
 (1 + n)−2s . (18)
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Since the point-evaluation functional is a bounded operator on Hs(Sd) whenever s >
d
2 , the Riesz representation theorem assures the existence of a reproducing kernel for
H

s(Sd). It can be readily verified that the zonal kernel

K (s)(x, y) =
∞∑

n=0

bn(s)Z(d, n)P(d)
n (〈x, y〉)

has the reproducing kernel properties

K (s)(·, x) ∈ H
s(Sd), x ∈ S

d ,

〈 f, K (s)(·, x)〉Hs (Sd ) = f (x), x ∈ S
d , f ∈ H

s(Sd).

Thus, reproducing kernel Hilbert space techniques (see [12] for the case of the unit
cube) provide the means to compute the worst-case error. Standard arguments (see
[9]) yield

[
wce(Q[XN ];Hs(Sd))

]2 = 1

N 2

N∑

i, j=1

∞∑

n=1

bn(s)Z(d, n)P(d)
n (〈xi , x j 〉). (19)

We exploit the flexibility in the choice of the sequence (bn(s))n∈N defining repro-
ducing kernel, Sobolev norm, and worst-case error to connect the Laplace–Fourier
expansion of the number variance given in (10) with an appropriately chosen worst-
case error.

Lemma 1 The number variance satisfies

V (XN , φ) � (sin φ)d−1 N 2
[
wce(Q[XN ];H d+1

2 (Sd))
]2

(20)

for any N-point set XN ⊂ S
d and opening angle φ ∈ (0, π

2 ).

Proof Using the estimate (13), the coefficients in (10) satisfy the relation

an(φ)2 � (sin φ)d−1

nd+1 
 (sin φ)d−1

(1 + n)d+1 .

The positive definiteness of the kernel function (12) yields

V (XN , φ) � (sin φ)d−1
N∑

i, j=1

∞∑

n=1

(1 + n)−(d+1) Z(d, n)P(d)
n (〈xi , x j 〉).

Comparison with (19) while taking into account (18) gives the result. ��

Remark 6 It is interesting that the Sobolev space H
d+1
2 (Sd) plays such a special role:

When endowed with the reproducing kernel 1− γd
d |x−y| for x, y ∈ S

d , the worst-case
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error satisfies the following invariance principle [7] (see [5,6,8,24] for generaliza-
tions):

1

N 2

N∑

j,k=1

∣∣x j − xk
∣∣ + d

γd

[
wce(Q[XN ];Hs(Sd))

]2 =
∫

Sd

∫

Sd
|x − y| dσ(x) dσ(y),

which is equivalent [7] with Stolarsky’s invariance principle [25], where the place of
the worst-case error is taken by the L2-discrepancy given in (5). Hence, an N -point
system with maximal sum of all mutual Euclidean distances is both a node set for a
QMC method that minimizes the worst-case error in the above setting and a point set
with smallest possible L2-discrepancy among all N -point sets on S

d . A sequence of
such maximal sum-of-distance N -point sets as N → ∞ is a QMC design sequence

for at leastH
d+1
2 (Sd) with yet unknown strength s∗ and thus is hyperuniform for large

caps, small caps, and caps at threshold order (Corollary 1). For the Weyl sums, we get
(cf. Remark 7) for every fixed n ∈ N the limit relation

lim
N→∞ N−1+ 1

d −ε
N∑

i, j=1

P(d)
n (〈xi , x j 〉) = 0 for all sufficiently small ε > 0.

We are ready to prove Theorem 4.

Proof of Theorem 4 Let (XN )N∈A be a QMC design sequence for Hs(Sd) with s ≥
d+1
2 . Then, by [9, Theorem 4], it is also a QMC design sequence for H

d+1
2 (Sd); i.e.,

[
wce(Q[XN ];H d+1

2 (Sd))
]2 ≤ c N− d+1

d

for some constant c > 0. By Lemma 1,

V (XN , φ) � (sin φ)d−1 N 2 N− d+1
d = (sin φ)d−1 N 1− 1

d (21)

for the XN of the QMC design sequence (XN )N∈A and any opening angle φ ∈ (0, π
2 ).

(i) Large cap regime Let φ ∈ (0, π
2 ). Then, by (21),

1

N
V (XN , φ) � (sin φ)d−1 N− 1

d → 0 as N → ∞.

Consequently, for all φ ∈ (0, π
2 ),

V (XN , φ) = o(N ) as N → ∞,

and (XN )N∈A is hyperuniform for large caps.
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(ii) Small cap regime Let (φN )N∈A be a sequence of radii satisfying φN → 0 and
Nσ(C(·, φN )) → ∞ as N → ∞. Then, by (21) and (2),

V (XN , φN )

Nσ(C(·, φN ))
�

(
N (sin φN )d

) d−1
d

N (sin φN )d
�

(
N σ(C(·, φN ))

)− 1
d → 0 as N → ∞;

thus, (XN )N∈A is hyperuniform for small caps.

(iii) Threshold regime Suppose (φN )N∈A, φN ∈ (0, π
2 ) such that φN = t N− 1

d ,
t > 0. By (21),

V (XN , φN ) �
(
sin φN

φN

)d−1

(φN )d−1 N 1− 1
d

=
(
t N− 1

d

)d−1
N 1− 1

d

= td−1 as N → ∞.

The implied constant does not depend on t . Since t > 0 was arbitrary,

lim sup
N→∞
N∈A

V
(
XN , t N− 1

d

)
= O(td−1) as t → ∞

and (XN )N∈A is hyperuniform for caps at threshold order. ��
Remark 7 Any QMC design sequence (XN )N∈A for Hs(Sd), s ≥ d+1

2 , is hyperuni-
form for large caps and thus, by Theorem 1, satisfies the property

lim
N→∞
N∈A

1

N

N∑

i, j=1

P(d)
n (〈xi , x j 〉) = 0 for every n ∈ N.

As QMC design sequences are characterized by a bound on the worst-case error, we
can use such bounds to quantify the convergence of Weyl sums along the sequence.
More generally, let (XN )N∈A be a sequence of N -point sets on Sd with finite strength
s∗ > d

2 ; i.e.,

|Q[XN ]( f ) − I( f )| ≤ cs,d

N
s
d

‖ f ‖Hs for all f ∈ H
s(Sd) and all

d

2
< s < s∗, (22)

and this relation fails if s > s∗. Then for every fixed n ∈ N, we get the limit relation

lim
N→∞
N∈A

N−1+ 2s∗−d (1+ε)
d

N∑

i, j=1

P(d)
n (〈xi , x j 〉) = 0 (23)

for all sufficiently small ε > 0.
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This follows from the estimate combining (19) and (22): for s = s∗ − d
4 ε,

0 ≤
∞∑

n=1

bn(s) Z(d, n) N
2s∗
d −2−ε

N∑

i, j=1

P(d)
n (〈xi , x j 〉) ≤ c2s,d

N
ε
2

holds for all sufficiently small but fixed ε > 0. Thus, the critical exponent

−1 + 2s∗ − d

d

of a given sequence of N -point sets is limited by its strength. The connection between
number variance and worst-case error given in Lemma 1 indicates that sequences with
strength s∗ ≥ d+1

2 , where the critical exponent satisfies

−1 + 2s∗ − d

d
≥ −1 + 1

d
,

are of particular interest.
We conclude this remark by considering the casewhen n in (23) is not fixed.Assume

n ≤ c N
α
d �(N ), N ∈ A, for some cd > 0, α ∈ R, and � such that �(N ) → 0

and N
α
d �(N ) → ∞ as N → ∞. Then, by (18) and Z(d, n) 
 nd−1, we get for

d
2 < s < s∗,

bn(s) Z(d, n) N
2s
d −2 
 n−(2s−d+1) N−1+ 2s−d

d

� N−1− 1
d + 1−α

d (2s−d+1) (�(N ))−(2s−d+1)

and thus

N−1− 1
d + 1−α

d (2s−d+1)
N∑

i, j=1

P(d)
n (〈xi , x j 〉) = O((�(N ))2s−d+1) (24)

uniformly in n ≤ c N
α
d �(N ), N ∈ A. (The implied constant is independent of n

and N .) The function �(N ) may tend to zero arbitrarily slowly as N → ∞. The
value of α in the power N

α
d determines three regimes of growth of the bound of n. If

the bound for n does not grow too fast (i.e., α ∈ (0, 1)), the parameter s effectively
enlarges the exponent of N . A sequence of higher strength s∗ allows for larger powers
of N . The effective exponent is then strictly larger than −1− α

d . For the critical value
α = 1, the exponent of N does not depend on s at all. It is always −1 − 1

d . If the
bound for n grows too fast (i.e., α > 1), then the effective exponent of N is strictly
smaller than −1 − α

d .
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Remark 8 A sequence (ZN )N∈A with infinite strength has the property

lim
N→∞
N∈A

N−1+β
N∑

i, j=1

P(d)
n (〈zi , z j 〉) = 0 for every fixed β > 0 and fixed n ∈ N,

while relation (24), in particular, implies that

lim
N→∞
N∈A

N−1+β
N∑

i, j=1

P(d)
n (〈zi , z j 〉) = 0 for every fixed β > 0

uniformly in n ≤ c N
α
d �(N ), N ∈ A, if 0 < α < 1 and under the assumptions

�(N ) = o(1) and N
α
d �(N ) → ∞ as N → ∞.

So far (see [9]), the only example of such sequences are sequences of spherical

t (N )-designs with t (N ) 
 N
1
d .

Remark 9 As indicated in Sect. 2, we restricted this study to the sphere for ease of
computation.Most of the resultswould extendmutatismutandis to other homogeneous
spaces like the torus or the projective plane. We expect that the definition of hyperuni-
formity would carry over to compact Riemannian manifolds with considerably more
effort and technicalities in the harmonic analysis.
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