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Abstract We study N -particle systems in R
d whose interactions are governed by a

hypersingular Riesz potential |x − y|−s , s > d, and subject to an external field. We
provide bothmacroscopic results as well asmicroscopic results in the limit as N → ∞
for random point configurations with respect to the associatedGibbsmeasure at scaled
inverse temperature β. We show that a large deviation principle holds with a rate
function of the form ‘β-Energy + Entropy’, yielding that the microscopic behavior
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(on the scale N−1/d ) of such N -point systems is asymptotically determined by the
minimizers of this rate function. In contrast to the asymptotic behavior in the integrable
case s < d, where on the macroscopic scale N -point empirical measures have limiting
density independent of β, the limiting density for s > d is strongly β-dependent.

Keywords Riesz gases · Gibbs measure · Large deviation principle · Empirical
measures · Minimal energy

Mathematics Subject Classification Primary 82D10 · 82B05; Secondary 31C20 ·
28A78

1 Introduction and Main Results

1.1 Hypersingular Riesz Gases

Let d ≥ 1 and s be a real number with s > d. We consider a system of N points in
the Euclidean space R

d with hypersingular Riesz pairwise interactions, in an external
field V . The particles are assumed to live in a confinement set � ⊆ R

d . The energy
HN (XN ) of the system in a given state XN = (x1, . . . , xN ) ∈ (Rd)N is defined to be

HN (XN ) :=
∑

1≤i �= j≤N

1

|xi − x j |s + Ns/d
N∑

i=1

V (xi ). (1.1)

The external fieldV is a confiningpotential, growing at infinity, onwhichwe shallmake
assumptions later. The term hypersingular corresponds to the fact that the singularity
of the kernel |x − y|−s is nonintegrable with respect to the Lebesgue measure on R

d .
For any β > 0, the canonical Gibbs measure associated with (1.1) at inverse

temperature β and for particles living on � is given by

dPN ,β(XN ) = 1

ZN ,β

exp
(
−βN−s/dHN (XN )

)
1�N (XN )dXN , (1.2)

where dXN is the Lebesgue measure on (Rd)N , 1�N (XN ) is the indicatrix function
of �N , and ZN ,β is the “partition function”; i.e., the normalizing factor

ZN ,β :=
∫

�N
exp

(
−βN−s/dHN (XN )

)
dXN . (1.3)

We will call the statistical physics system described by (1.1) and (1.2) a hypersin-
gular Riesz gas.

For Riesz potentials in the case s > d, ground state configurations (or Riesz energy
minimizers) of N -particle systems (with or without the external field V ) have been
extensively studied in the large N limit, see [13,14,16] and the references therein.
Furthermore, for the case of positive temperature, the statistical mechanics of Riesz
gases have been investigated in [18] but for a different range of the parameter s,
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namely max(d − 2, 0) ≤ s < d. In that paper, a large deviation principle for the
empirical process (which encodes the microsopic behavior of the particles at scale
N−1/d , averaged in a certain way) was derived. The main goal of the present paper
is to extend that work to the hypersingular case. By combining the approaches of the
above mentioned papers, we obtain a large deviation principle describing macroscopic
as well as microscopic properties for hypersingular Riesz gases.

Studying Riesz interactions for the whole range of s from 0 to infinity is of interest
in approximation theory and coding theory, as it connects logarithmic interactions,
Coulomb interactions, and (in the limit s → ∞) packing problems, see [13,25].
Investigating such systems with temperature is also a natural question for statistical
mechanics, as it improves our understanding of the behavior of systems with long-
range vs. short-range interactions (see, for instance, [4,6,9] where the interest of such
questions is stressed and [2] and [22, Section 4.2] for additional results). Analyzing
the case s > d is also a first step toward the study of physically more relevant
interactions, such as the Lennard–Jones potential.

The hypersingular Riesz case s > d and the integrable Riesz case s < d have
important differences. For s < d (which can be thought of as long-range) and, more
generally, for integrable interaction kernels g (which includes regular interactions) the
global, macroscopic behavior can be studied using classical potential theory. Namely,
the empirical measure 1

N

∑N
i=1 δxi is found to converge rapidly to some equilibrium

measure determined uniquely by � and V and obtained as the unique minimizer of
the potential-theoretic functional

∫∫

Rd×Rd
g(x − y)dμ(x)dμ(y) +

∫

Rd
V dμ,

which can be seen as a mean-field energy with a nonlocal term. We refer, e.g., to [26]
or [27, Chap. 2] for a treatment of this question (among others).

In these integrable cases, if temperature is scaled in the same way as here, the
macroscopic behavior is governed by the equilibriummeasure and thus is independent
of the temperature so that no knowledge of the microscopic distribution of points is
necessary to determine themacroscopic distribution.At the next order in energy,which
governs themicroscopic distribution of the points, a dependency on β appears. As seen
in [18], in the Coulomb and potential Riesz cases (it is important in the method that the
interaction kernel be reducible to the kernel of a local operator, which is known only
for these particular interactions), the microscopic distribution around a point is given
by a problem in a whole space with a neutralizing background, fixing the local density
as equal to that of the equilibrium measure at that point. The microscopic distribution
is found to minimize the sum of a (renormalized) Riesz energy term and a relative
entropy term. A crucial ingredient in the proof is a “screening” construction showing
that energy can be computed additively over large disjoint microscopic boxes; i.e.,
interactions between configurations in different largemicroscopic boxes are negligible
to this order.

The hypersingular case can be seen as more delicate than the integrable case
due to the absence of an equilibrium measure. The limit of the empirical measure has
to be identified differently. In the case of ground state configurations (minimizers),
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this was done in [16]. For positive temperature, in contrast with the above described
integrable case, we shall show that the empirical limit measure is obtained as a
by-product of the study at the microscopic scale and depends on β in quite an indirect
way (see Theorem 1.3). The microscopic profiles minimize a full-space version of
the problem, giving an energy that depends on the local density. The macroscopic
distribution can then be found by a local density approximation, by minimizing the
sum of its energy and that due to the confinement potential. Since the energy is
easily seen to scale like N 1+s/d , the choice of the temperature scaling βN−s/d is
made so that the energy and the entropy for the microscopic distributions carry the
same weight of order N . Other choices of temperature scalings are possible, but
would lead to degenerate versions of the situation we are examining, with either all
the entropy terms asymptotically disappearing for small temperatures, or the effect
of the energy altogether disappearing for large temperatures. Note that going to the
microscopic scale in order to derive the behavior at the macroscopic scale was already
the approach needed in [19] for the case of the “two-component plasma”, a system of
two-dimensional particles of positive and negative charges interacting logarithmically
for which no a priori knowledge of the equilibrium measure can be found.

On the other hand, the hypersingular case is also easier in the sense that the inter-
actions decay faster at infinity, implying that long-range interactions between large
microscopic “boxes” are negligible and do not require any sophisticated screening
procedures . Our proofs will make crucial use of this “self-screening” property.

To describe the system at the microscopic scale, we define a Riesz energy Ws

(see Sect. 2.3.5) for infinite random point configurations that is the counterpart of
the renormalized energy of [17,18,23] (defined for s < d). It is conjectured to be
minimized by lattices for certain lowdimensions, but this is a completely open problem
with the exception of dimension 1 (see [1] and the discussion following (2.15)).

With any sequence of configurations {XN }N , we associate an “empirical process”
whose limit (a random tagged point process) describes the point configurations XN at
scale N−1/d . Ourmain result will be that there is a LargeDeviation Principle (LDP) for
the law of this empirical process with rate function equal to (a variant of) the energy
βWs plus the relative entropy of the empirical process with respect to the Poisson
point process.

For minimizers of the Riesz energy HN , we show that the limiting empirical pro-
cesses must minimize Ws , thus describing their microscopic structure.

The question of treating more general interactions than the Riesz ones remains
widely open. The fact that the interaction has a precise homogeneity under rescaling
is crucial for the hypersingular case treated here. On the other hand, in the integrable
case, we do not know how to circumvent the need for expressing the energy via the
potential generated by the points, i.e., the need for the Caffarelli–Silvestre represen-
tation of the interaction as the kernel of a local operator (achieved by adding a space
dimension).
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1.2 Assumptions and Notation

1.2.1 Assumptions

In the rest of the paper, we assume that � ⊂ R
d is closed with positive d-dimensional

Lebesgue measure and that

∂� is C1, (1.4)

V is a continuous, non-negative real valued function on �. (1.5)

Furthermore, if � is unbounded, we assume that

lim|x |→∞ V (x) = +∞, (1.6)

∃M > 0 such that
∫

exp (−MV (x)) dx < +∞. (1.7)

The assumption (1.4) on the regularity of ∂� is mostly technical, and we believe
that it could be relaxed to, e.g., ∂� is locally the graph of, say, a Hölder function inR

d .
However, it is unclear to us what the minimal assumption could be (e.g., is it enough
to assume that ∂� has zero measure?). An interesting direction would be to study the
case where � is a p-rectifiable set in R

d with p < d (see, e.g., [3,16]).
Assumption (1.5) is quitemild (in comparison, e.g., with the corresponding assump-

tion in the s < d case, where one wants to ensure some regularity of the so-called
equilibrium measure, which is essentially two orders lower than that for V ), and we
believe it to be sharp for our purposes. Assumption (1.6) is an additional confinement
assumption, and (1.7) ensures that the partition function ZN ,β , defined in (1.3), is
finite (at least for N large enough). Indeed, the interaction energy is non-negative,
hence for N large enough (1.7) ensures that the integral defining the partition function
is convergent.

1.2.2 General Notation

We let X be the space of point configurations in R
d (see Sect. 2.1 for a precise

definition). If X is some measurable space and x ∈ X , we denote by δx , the Dirac
mass at x .

1.2.3 Empirical Measure and Empirical Processes

Let XN = (x1, . . . , xN ) in �N be fixed.

• We define the empirical measure emp(XN ) as

emp(XN ) := 1

N

N∑

i=1

δxi . (1.8)
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It is a probability measure on �.
• We define X′

N as the finite configuration rescaled by a factor N 1/d

X′
N :=

N∑

i=1

δN1/d xi . (1.9)

It is a point configuration (an element of X ), which represents the N -tuple of
particles XN seen at microscopic scale.

• We define the tagged empirical process EmpN (XN ) as

EmpN (XN ) :=
∫

�

δ(
x, θN1/d x ·X′

N

)dx, (1.10)

where θx denotes the translation by −x . It is a positive measure on � × X .

Let us now briefly explain the meaning of the last definition (1.10). For any x ∈ �,
θN1/d x · X′

N is an element of X that represents the N -tuple of particles XN centered at
x and seen at microscopic scale (or, equivalently, seen at microscopic scale and then
centered at N 1/d x). In particular, any information about this point configuration in
a given ball (around the origin) translates to an information about X′

N around x . We
may thus think of θN1/d x · X′

N as encoding the behavior of X′
N around x .

The measure

∫

�

δθN1/d x ·X′
N
dx (1.11)

is a measure on X that encodes the behavior of X′
N around each point x ∈ �. We

may think of it as the “averaged” microscopic behavior (although it is not, in general,
a probability measure, and its mass can be infinite). The measure defined by (1.11)
would correspond to what is called the “empirical field”.

The tagged empirical process EmpN (XN ) is a finer object, because for each x ∈ �

we keep track of the centering point x as well as of the microscopic information
θN1/d x · X′

N around x . It yields a measure on � × X whose first marginal is the
Lebesgue measure on � and whose second marginal is the (non-tagged) empirical
process defined above in (1.11). Keeping track of this additional information allows
one to test EmpN (XN ) against functions F(x, C) ∈ C0(� ×X ) which may be of the
form

F(x, C) = χ(x)F̃(C),

where χ is a smooth function localized in a small neighborhood of a given point of
�, and F̃(C) is a continuous function on the space of point configurations. Using such
test functions, we may thus study the microsopic behavior of the system after a small
average (on a small domain of �), whereas the empirical process only allows one to
study the microscopic behavior after averaging over the whole �.

123



Constr Approx (2018) 48:61–100 67

The study of empirical processes, or empirical fields, as natural quantities to encode
the averagedmicroscopic behavior appear, e.g., in [11] for particleswithout interaction
or [12] in the interacting case.

1.2.4 Large Deviation Principle

Let us recall that an sequence {μN }N of probability measures on a metric space X
is said to satisfy an LDP at speed rN with rate function I : X → [0,+∞] if the
following holds for any Borel set A ⊂ X :

− inf
Å

I ≤ lim inf
N→∞

1

rN
logμN (A) ≤ lim sup

N→∞
1

rN
logμN (A) ≤ − inf

Ā
I,

where Å (resp. Ā) denotes the interior (resp. the closure) of A. The functional I is said
to be a good rate function if it is lower semi-continuous and has compact sub-level
sets. We refer to [10] and [28] for detailed treatments of the theory of large deviations
and to [24] for an introduction to the applications of LDP’s in the statistical physics
setting.

Roughly speaking, an LDP at speed rN with rate function I expresses the following
fact: the probability measuresμN concentrate around the points where I vanishes, and
any point x ∈ X such that I (x) > 0 is not “seen” with probability 1− exp(−N I (x)).

1.3 Main Results

1.3.1 Large Deviations of the Empirical Processes

We letPN ,β be the push-forward of the Gibbs measure PN ,β (defined in (1.2)) by the

map EmpN defined in (1.10). In other words,PN ,β is the law of the random variable
“tagged empirical process” when XN is distributed following PN ,β .

The following theorem,which is themain result of this paper, involves the functional
Fβ = Fβ,s defined in (2.26). It is a free energy functional of the type “β Energy +
Entropy” (see Sect. 2.2, 2.3, and 2.4 for precise definitions). The theorem expresses
the fact that the microscopic behavior of the system of particles is determined by
the minimization of the functional Fβ and that configurations XN having empirical
processes Emp(XN ) far from a minimizer of Fβ have negligible probability of order
exp(−N ).

Theorem 1.1 For any β > 0, the sequence {PN ,β}N satisfies a large deviation prin-

ciple at speed N with good rate function Fβ − minFβ .

Corollary 1.2 The first-order expansion of log ZN ,β as N → ∞ is

log ZN ,β = −N minFβ + o(N ).
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1.3.2 Large Deviations of the Empirical Measure

As a by-product of our microscopic study, we derive a large deviation principle that
governs the asymptotics of the empirical measure (which is a macroscropic quan-
tity). Let us denote by empN ,β the law of the random variable emp(XN ) when XN is
distributed according to PN ,β . The rate function Iβ = Iβ,s , defined in Sect. 2.4 (see
(2.28)), has the form

Iβ(ρ) =
∫

�

fβ(ρ(x))ρ(x) dx + β

∫

�

V (x)ρ(x) dx +
∫

�

ρ(x) log ρ(x) dx

(1.12)

and is a local density approximation. The function fβ in this expression is determined
by a minimization problem over the microscopic empirical processes.

Theorem 1.3 For any β > 0, the sequence {empN ,β}N obeys a large deviation prin-
ciple at speed N with good rate function Iβ − min Iβ . In particular, the empirical
measure converges almost surely to the unique minimizer of Iβ .

The rate function Iβ is quite complicated to study in general. However, thanks
to the convexity of fβ and elementary properties of the standard entropy, we may
characterize its minimizer in some particular cases (see Sect. 5 for the proof) :

Proposition 1.4 Let μV,β be the unique minimizer of Iβ .

1. If V = 0 and � is bounded, then μV,β is the uniform probability measure on �

for any β > 0.
2. If V is arbitrary and � is bounded, μV,β converges to the uniform probability

measure on � as β → 0.
3. If V is arbitrary, μV,β converges to μV,∞ as β → +∞, where μV,∞ is the limit

empirical measure for energy minimizers as defined in the paragraph below.

1.3.3 The Case of Minimizers

Our remaining results deal with energy minimizers (in statistical physics, this corre-
sponds to setting β = +∞). Let {XN }N be a sequence of point configurations in �

such that for any N ≥ 1, XN has N points and minimizes HN on �N .
The macroscopic behavior is known from [16]: there is a unique minimizer μV,∞

(the notation differs from [16]) of the functional

Cs,d

∫

�

ρ(x)1+s/d dx +
∫

�

V (x)ρ(x) dx (1.13)

among probability densities ρ over � (Cs,d is a constant depending on s, d defined in
(2.10)), and the empirical measure emp(XN ) converges toμV,∞ as N → ∞. See (5.4)
for an explicit formula for μV,∞. Note that the formula (1.13) is what one obtains
when letting formally β → ∞ in the definition of Iβ , and resembles some of the terms
arising in Thomas–Fermi theory (cf. [21] and [20]).
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The notation for the next statement is given in Sects. 2.1 and 2.3. Let us simply say
that Ws (resp. Ws) is an energy functional defined for a random point configuration
(resp. a point configuration), and that Mstat,1(X ) (resp. XμV,∞(x)) is some particu-
lar subset of random point configurations (resp. of point configurations in R

d ). The
intensity measure of a random tagged point configuration is defined in Sect. 2.1.7.

Proposition 1.5 We have:

1. {Emp(XN )}N converges weakly (up to extraction of a subsequence) to some min-
imizer P of Ws over Mstat,1(X ).

2. The intensity measure of P coincides with μV,∞.
3. For P-almost every (x, C), the point configuration C minimizesWs(C) within the

class XμV,∞(x).

The first point expresses the fact that the tagged empirical processes associated with
minimizers converge with minimizers of the “infinite-volume” energy functional Ws .
The second point is a rephrasing of the global result cited above, to which the third
point adds some microscopic information.

The problem of minimizing the energy functionals Ws , Ws , or Ws is hard in
general. In dimension 1, however, it is not too difficult to show that the “crystallization
conjecture” holds, namely that the microscopic structure of minimizers is ordered and
converges to a lattice:

Proposition 1.6 Assume d = 1. The unique stationary minimizer of Ws is the law of
u + Z, where u is a uniform choice of the origin in [0, 1].
In dimension 2, it would be expected that minimizers are given by the triangular (or
Abrikosov) lattice; we refer to [1] for a recent review of such conjectures. In large
dimensions, it is not expected that lattices are minimizers.

1.4 Outline of the Method

Our LDP result is phrased in terms of the empirical processes associated with point
configurations, as in [18], and thus the objects we consider and the overall aproach
are quite similar to [18]. It is however quite simplified by the fact that, because the
interaction is short-range andwe are in the nonpotential case, we do not need to express
the energy in terms of the “electric potential” generated by the point configuration. The
definition of the limiting microscopic interaction energy Ws(C) is thus significantly
simpler than in [18]; it suffices to take, for C an infinite configuration of points in the
whole space,

Ws(C) = lim inf
R→∞

∑

p,q∈C∩KR ,p �=q

1

|p − q|s ,

where KR is the cube of sidelength R centered at the origin. When considering this
quantity, there is however no implicit knowledge of the average density of points, in
contrast to the situation of [18]. This is then easily extended to an energy for point
processes Ws by taking expectations.
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As in [18], the starting point of the LDP proof is a Sanov-type result that states that
the logarithm of the volume of configurations whose empirical processes lie in a small
ball around a given tagged point process P can be expressed as (−N ) times an entropy
denoted ent(P|	). As we shall show, N−1−s/dHN (XN ) ≈ Ws(P) + V(P) for a
sufficiently large set of configurationsXN near P , whereV(P) is a term corresponding
to the external potential V . Then this will suffice to obtain the LDP since the logarithm
of the probability of the empirical field being close to P is nearly N times

−β(Ws(P) + V(P)) − ent(P|	),

up to an additive constant. The entropy can be expressed in terms of P
x
(the process

centered at x) as

ent(P|	) =
∫

(ent(P
x |	) − 1) dx + 1, (1.14)

where ent(P|	) is a “specific relative entropy” with respect to the Poisson point
process 	. Assuming that P

x
has an intensity ρ(x), then the scaling properties of the

energy Ws (the fact that the energy scales like ρ1+s/d where ρ is the density) and of
the specific relative entropy ent allow one to transform this into

−
∫

�

(
βρs/d

Ws(P
x
) + ent(σρ(x)(P

x
)|	) + βV (x)

)
ρ(x) dx

−
∫

�

ρ(x) log ρ(x) dx,

which is the desired rate function. Minimizing over P’s of intensity ρ allows one to
obtain the rate function Iβ of (2.27).

To run through this argument, we encounter the same difficulties as in [18], i.e.,
the difficulty in replacingHN by Ws due to the fact thatHN is not continuous for the
topology on empirical processes that we are considering. The lack of continuity of the
interaction near the origin is dealt with by a truncation and regularization argument,
similarly as in [18]. The lack of continuity due to the locality of the topology is
handled thanks to the short-range nature of the Riesz interaction, by showing that large
microscopic boxes effectively do not interact, the “self-screening” property alluded to
before, via a shrinking procedure borrowed from [14]. We refer to Sect. 4 for more
detail.

2 General Definitions

All the hypercubes considered will have their sides parallel to some fixed choice of
axes in R

d . For R > 0 we let KR be the hypercube of center 0 and sidelength R. If
A ⊂ R

d is a Borel set, we denote by |A| its Lebesgue measure, and if A is a finite set,
we denote by |A| its cardinal.
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2.1 (Random) (tagged) Point Configurations

2.1.1 Point Configurations

We refer to [8] for further details and proofs of the claims.

• If A ⊂ R
d , we denote byX (A) the set of locally finite point configurations in A or

equivalently the set of non-negative, purely atomic Radon measures on A giving
an integer mass to singletons. We abbreviate X (Rd) as X .

• For C ∈ X , we will often write C for the Radon measure
∑

p∈C δp.
• The sets X (A) are endowed with the topology induced by the weak convergence
of Radon measures (also known as vague convergence). These topological spaces
are Polish, and we fix a distance dX on X which is compatible with the topology
on X (and whose restriction on X (A) is also compatible with the topology on
X (A)).

• For x ∈ R
d and C ∈ X , we denote by θx · C “the configuration C centered at x”

(or “translated by −x”), namely

θx · C :=
∑

p∈C
δp−x . (2.1)

We will use the same notation for the action of R
d on Borel sets: if A ⊂ R

d , we
denote by θx · A the translation of A by the vector −x .

2.1.2 Tagged Point Configurations

• When � ⊂ R
d is fixed, we define X := � × X as the set of “tagged” point

configurations with tags in �.
• We endow X with the product topology and a compatible distance dX .

Tagged objects will usually be denoted with bars (e.g., P , W, …).

2.1.3 Random Point Configurations

• We denote by P(X ) the space of probability measures on X , i.e., the set of laws
of random point configurations.

• The set P(X ) is endowed with the topology of weak convergence of probability
measures (with respect to the topology on X ), see [18, Remark 2.7].

• We say that P in P(X ) is stationary (and we write P ∈ Pstat (X )) if its law is
invariant by the action of R

d on X as defined in (2.1).

2.1.4 Random Tagged Point Configurations

• When � ⊂ R
d is fixed, we define M(X ) as the space of measures P on X such

that
1. The first marginal of P is the Lebesgue measure on �.
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2. For almost every x ∈ �, the disintegration measure P
x
is an element ofP(X ).

• We say that P in M(X ) is stationary (and we write P ∈ Mstat (X )) if P
x
is in

Pstat (X ) for almost every x ∈ �.

Let us emphasize that, in general, the elements ofM(X ) are not probability measures
on X (e.g., the first marginal is the Lebesgue measure on �).

2.1.5 Density of a Point Configuration

• For C ∈ X , we define Dens(C) (the density of C) as

Dens(C) := lim inf
R→∞

|C ∩ KR |
Rd

. (2.2)

• For m ∈ [0,+∞], we denote by Xm the set of point configurations with density
m.

• For m ∈ (0,+∞), the scaling map

σm : C �→ m1/dC (2.3)

is a bijection of Xm onto X1, with inverse σ1/m .

2.1.6 Intensity of a Random Point Configuration

• For P ∈ Pstat (X ), we define Intens(P) (the intensity of P) as

Intens(P) := EP [Dens(C)] .

• We denote by Pstat,m(X ) the set of laws of random point configurations P ∈
P(X ) that are stationary and such that Intens(P) = m. For P ∈ Pstat,m(X ), the
stationarity assumption implies the formula

EP

[∫

Rd
ϕ dC

]
= m

∫

Rd
ϕ(x) dx, for any ϕ ∈ C0

c (R
d).

2.1.7 Intensity Measure of a Random Tagged Point Configuration

• For P inMstat (X ), we define Intens(P) (the intensity measure of P) as

Intens(P)(x) = Intens(P
x
),

which really should, in general, be understood in a dual sense: for any f ∈ Cc(R
d),

∫
f dIntens(P) :=

∫

�

f (x)Intens(P
x
)dx .
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• We denote by Mstat,1(X ) the set of laws of random tagged point configurations
P inM(X ) that are stationary and such that

∫

�

Intens(P)(x) dx = 1.

• If P has intensitymeasure ρ, we denote by σρ(P) the element ofM(X ) satisfying

(
σρ(P)

)x = σρ(x)

(
P
x
)

, for all x ∈ �, (2.4)

where σ is as in (2.3).

2.2 Specific Relative Entropy

• Let P be in Pstat (X ). The specific relative entropy ent[P|	] of P with respect
to 	, the law of the Poisson point process of uniform intensity 1, is given by

ent[P|	] := lim
R→∞

1

|KR |Ent
(
P|KR |	|KR

)
, (2.5)

where P|KR denotes the process induced on (the point configurations in) KR , and
Ent(·|·) denotes the usual relative entropy (or Kullbak–Leibler divergence) of two
probability measures defined on the same probability space.

• It is known (see, e.g., [24]) that the limit (2.5) exists as soon as P is stationary,
and also that the functional P �→ ent[P|	] is affine lower semi-continuous with
compact sub-level sets (it is a good rate function).

• Let us observe that the empty point process has specific relative entropy 1 with
respect to 	.

• If P is in Pstat,m(X ), we have (see [18, Lemma 4.2.])

ent[P|	] = ent[σm(P)|	]m + m logm + 1 − m, (2.6)

where σm(P) denotes the push-forward of P by (2.3).

2.3 Riesz Energy of (random) (tagged) Point Configurations

2.3.1 Riesz Interaction

We will use the notation Int (as “interaction”) in two slightly different ways:

• If C1, C2 are some fixed point configurations, we let Int[C1, C2] be the Riesz inter-
action between C1 and C2.

Int[C1, C2] :=
∑

p∈C1, q∈C2,p �=q

1

|p − q|s .
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• If C is a fixed point configuration and A, B are two subsets of R
d , we let

Int[A, B](C) be the Riesz interaction between C ∩ A and C ∩ B; i.e.,

Int[A, B](C) := Int[C ∩ A, C ∩ B] =
∑

p∈C∩A,q∈C∩B,p �=q

1

|p − q|s .

• Finally, if τ > 0, we let Intτ be the truncation of the Riesz interaction at distances
less than τ ; i.e.,

Intτ [C1, C2] :=
∑

p∈C1,q∈C2,|p−q|≥τ

1

|p − q|s . (2.7)

2.3.2 Riesz Energy of a Finite Point Configuration

• Let ωN = (x1, . . . , xN ) be in (Rd)N . We define its Riesz s-energy as

Es(ωN ) := Int[ωN , ωN ] =
∑

1≤i �= j≤N

1

|xi − x j |s . (2.8)

• For A ⊂ R
d , we consider the N -point minimal s-energy

Es(A, N ) := inf
ωN∈AN

Es(ωN ). (2.9)

• The asymptotic minimal energy Cs,d is defined as

Cs,d := lim
N→∞

Es(K1, N )

N 1+s/d
. (2.10)

The limit in (2.10) exists as a positive real number (see [13,14]).
• By scaling properties of the s-energy, it follows that

lim
N→∞

Es(KR, N )

N 1+s/d
= Cs,d R

−s . (2.11)

2.3.3 Riesz Energy of Periodic Point Configurations

We first extend the definition of the Riesz energy to the case of periodic point config-
urations.

• We say that � ⊂ R
d is a d-dimensional Bravais lattice if � = UZ

d , for some
nonsingular d × d real matrixU . A fundamental domain for � is given by D� :=
U [− 1

2 ,
1
2 )

d , and the co-volume of � is |�| := vol(D�) = | detU |.
• If C is a point configuration (finite or infinite) and � a lattice, we denote by C +�

the configuration {p+λ | p ∈ C, λ ∈ �}.We say that C is�-periodic if C+� = C.
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• If C is �-periodic, it is easy to see that C = (C ∩ D�) + �. The density of C is
thus given by

Dens(C) = |C ∩ D�|
|�| .

Let � be a lattice and ωN = {x1, . . . , xN } ⊂ D�.

• We define, as in [15] for s > d, the �-periodic s-energy of ωN as

Es,�(ωN ) :=
∑

x∈ωN

∑

y∈ωN+�
y �=x

1

|x − y|s . (2.12)

• It follows (cf. [15]) that Es,�(ωN ) can be re-written as

Es,�(ωN ) = Nζ�(s) +
∑

x �=y∈ωN

ζ�(s, x − y), (2.13)

where

ζ�(s) :=
∑

0 �=v∈�

|v|−s

denotes the Epstein zeta function and

ζ�(s, x) :=
∑

v∈�

|x + v|−s

denotes the Epstein–Hurwitz zeta function for the lattice �.
• Denoting the minimum �-periodic s-energy by

Es,�(N ) := min
ωN∈DN

�

Es,�(ωN ), (2.14)

it is shown in [15] that

lim
N→∞

Es,�(N )

N 1+s/d
= Cs,d |�|−s/d , (2.15)

where Cs,d is as in (2.10).

The constant Cs,d for s > d appearing in (2.10) and (2.15) is known only in the
case d = 1, where Cs,1 = ζZ(s) = 2ζ(s) and ζ(s) denotes the classical Riemann
zeta function. For dimensions d = 2, 4, 8, and 24, it has been conjectured (cf. [5,7]
and references therein) that Cs,d for s > d is also given by an Epstein zeta function,
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specifically, that Cs,d = ζ�d (s) for �d denoting the equilateral triangular (or hexag-
onal) lattice, the D4 lattice, the E8 lattice, and the Leech lattice (all scaled to have
co-volume 1) in the dimensions d = 2, 4, 8, and 24, respectively1.

2.3.4 Riesz Energy of an Infinite Point Configuration

• Let C in X be an (infinite) point configuration. We define its Riesz s-energy as

Ws(C) := lim inf
R→∞

1

Rd

∑

p �=q∈C∩KR

1

|p − q|s = lim inf
R→∞

1

Rd
Int[KR, KR](C). (2.16)

If C = ∅, we define Ws(C) = 0. The s-energy is non-negative and can be +∞.
• We have, for any C in X and any m ∈ (0,+∞),

Ws(σmC) = m−(1+s/d)Ws(C). (2.17)

It is not difficult to verify (cf. [7, Lemma 9.1]), that if � is a lattice and ωN is a
N -tuple of points in D�, we have

Ws(ωN + �) = 1

|�| Es,�(ωN ). (2.18)

In particular, we have (in view of (2.13))

Ws(�) = |�|−1ζ�(s). (2.19)

2.3.5 Riesz Energy for Laws of Random Point Configurations

• Let P be in P(X ); we define its Riesz s-energy as

Ws(P) := lim inf
R→∞

1

Rd
EP [Int[KR, KR](C)] . (2.20)

• Let P be inM(X ); we define its Riesz s-energy as

Ws(P) :=
∫

�

Ws(P
x
) dx . (2.21)

• Let P be in M(X ) with intensity measure ρ. It follows from (2.17), (2.21), and
definition (2.4) that

Ws
(
P
) =

∫

�

ρ(x)1+s/d
Ws

((
σρ(P)

)x)
dx . (2.22)

1 At an April 2018 ICERM workshop, S. Miller announced that, together with H. Cohn, A. Kumar, D.
Radchenko and M. Viazovska, the E8 and Leech lattices are universally optimal, which together with (3.1)
verifies the conjecture for d = 8 and d = 24.
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Let us emphasize that we defineWs as in (2.20) and not byEP [Ws]. Fatou’s lemma
easily implies that

EP [Ws] ≤ Ws(P), (2.23)

and in fact, in the stationary case, we may show that equality holds (see Corollary 3.4).

2.3.6 Expression in Terms of the Two-Point Correlation Function

Let P be in P(X ), and let us assume that the two-point correlation function of P ,
denoted by ρ2,P , exists in some distributional sense. We may easily express the Riesz
energy of P in terms of ρ2,P as follows:

Ws(P) = lim inf
R→∞

1

Rd

∫

KR×KR

1

|x − y|s ρ2,P (x, y)dxdy. (2.24)

If P is stationary, the expression can be simplified as

Ws(P) = lim inf
R→∞

∫

[−R,R]d
1

|v|s ρ2,P (v)

d∏

i=1

(
1 − |vi |

R

)
dv , (2.25)

where ρ2,P (v) = ρ2,P (0, v) (we abuse notation and view ρ2,P as a function of one
variable, by stationarity) and v = (v1, . . . , vd). Both (2.24) and (2.25) follow from
the definitions and easy manipulations; proofs (in a slightly different context) can be
found in [17]. Let us emphasize that the integral in the right-hand side of (2.24) is
on two variables, whereas the one in (2.25) is a single integral, obtained by using

stationarity and applying Fubini’s formula, which gives the weight
∏d

i=1

(
1 − |vi |

R

)
.

2.4 The Rate Functions

2.4.1 Definitions

• For P inM(X ), we define

V(P) :=
∫

V (x)d
(
Intens(P)

)
(x).

This is the energy contribution of the potential V .
• For P inMstat,1(X ), we define

Fβ(P) := β
(
Ws(P) + V(P)

)
+

∫

�

(
ent[Px |	] − 1

)
dx + 1. (2.26)

It is a free energy functional, the sum of an energy term Ws(P) + V(P) weighted
by the inverse temperature β and an entropy term.
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• If ρ is a probability density, we define Iβ(ρ) as

Iβ(ρ) :=
∫

�

inf
P∈Pstat,ρ(x)(X )

(βWs(P) + ent[P|	] − 1) dx

+β

∫

�

ρ(x)V (x) dx + 1, (2.27)

which can be written as

Iβ(ρ) =
∫

�

ρ(x) inf
P∈Pstat,1(X )

(
βρ(x)s/dWs(P) + ent[P|	]

)
dx

+β

∫

�

ρ(x)V (x) dx +
∫

�

ρ(x) log ρ(x) dx . (2.28)

This last equation may seem more complicated, but note that the inf inside the
integral is taken on a fixed set, independent of ρ. The rate function Iβ is obtained
in Sect. 4.5 as a contraction (in the language of large deviation theory, see, e.g.,
[24, Section 3.1]) of the functional Fβ , and (2.28) follows from (2.27) by scaling
properties of Ws and ent[·|	].

2.4.2 Properties

Proposition 2.1 For all β > 0, the functionals Fβ and Iβ are good rate functions.
Moreover, Iβ is strictly convex.

Proof It is proved in Proposition 3.3 thatWs is lower semi-continuous onMstat,1(X ).
As for V, we may observe that, if P ∈ Mstat,1(X ),

V(P) =
∫

�×X
(V (x)|C ∩ K1|) dP(x, C),

and that (x, C) �→ V (x)|C ∩ K1| is lower semi-continuous on X . Thus V is lower
semi-continuous on Mstat,1(X ); moreover, it is known that ent[·|	] is lower semi-
continuous (see Sect. 2.2). Thus Fβ is lower semi-continuous. Since Ws and V are
bounded below, the sub-level sets of Fβ are included in those of ent[·|	], which are
known to be compact (see again Sect. 2.2). Thus Fβ is a good rate function.

The functional Iβ is easily seen to be lower semi-continuous, and since Ws , ent
and V are bounded below, the sub-level sets of Iβ are included into those of

∫
�

ρ log ρ

which are known to be compact; thus Iβ is a good rate function.
To prove that Iβ is strictly convex in ρ, it is enough to prove that the first term in

the right-hand side of (2.28) is convex (the second one is clearly affine, and the last
one is well known to be strictly convex). We may observe that the map

ρ �→ βρ1+s/d
Ws(P) + ρ ent[P|	] − ρ
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is convex for all P (because Ws(P) is non-negative), and the infimum of a family of
convex functions is also convex; thus

ρ �→ inf
P∈Pstat,1(X )

(
βρ1+s/d

Ws(P) + ρ ent[P|	]
)

is convex in ρ, which concludes the proof. ��

3 Preliminaries on the Energy

3.1 General Properties

3.1.1 Minimal Energy of Infinite Point Configurations

In this section, we connect theminimization ofWs (defined at the level of infinite point
configurations) with the asymptotics of the N -point minimal energy as presented in
Sect. 2.3.2. Let us recall that the class Xm of point configurations with mean density
m has been defined in Sect. 2.1.5.

Proposition 3.1 We have

inf
C∈X1

Ws(C) = min
C∈X1

Ws(C) = Cs,d , (3.1)

where Cs,d is as in (2.10). Moreover, for any d-dimensional Bravais lattice � of co-
volume 1, there exists a minimizing sequence {CN }N for Ws over X1 such that CN is
N 1/d�-periodic for N ≥ 1.

Proof Let � be a d-dimensional Bravais lattice � of co-volume 1, and for any N let
ωN be a N -point configuration minimizing Es,�. We define

CN := N 1/d (ωN + �) .

By construction, CN is a N 1/d�-periodic point configuration of density 1. Using the
scaling property (2.17) and (2.18), we have

Ws(CN ) = Ws (ωN + �)

N 1+s/d
= Es,�(ωN )

N 1+s/d
.

On the other hand, we have by assumption Es,�(ωN ) = Es,�(N ). Taking the limit
N → ∞ yields, in light of (2.15), limN→∞ Ws(CN ) = Cs,d . In particular, we have

inf
C∈X1

Ws(C) ≤ Cs,d . (3.2)
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To prove the converse inequality, let us consider an arbitrary C in X1. We have by
definition (see (2.8) and (2.16)) and the scaling properties of Es ,

Ws(C) = lim inf
R→∞

Es (C ∩ KR)

Rd
= lim inf

R→∞
1

Rd+s
Es

(
1

R
C ∩ K1

)
,

and, again by definition (see (2.9)),

Es

(
1

R
C ∩ K1

)
≥ Es (K1, |C ∩ KR |) .

We thus obtain

Ws(C) ≥ lim inf
R→∞

Es (K1, |C ∩ KR |)
|C ∩ KR |1+s/d

( |C ∩ KR |
Rd

)1+s/d

.

Using the definition (2.10) of Cs,d we have

lim inf
R→∞

Es (K1, |C ∩ KR |)
|C ∩ KR |1+s/d

≥ Cs,d ,

and by the definition of density, since C is in X1, we have

lim inf
R→∞

( |C ∩ KR |
Rd

)1+s/d

= 1.

This yields Ws(C) ≥ Cs,d , and so (in view of (3.2))

inf
C∈A1

Ws(C) = Cs,d . (3.3)

It remains to prove that the infimum is achieved. Let us start with a sequence
{ωM }M≥1 such that ωM is a Md -point configuration in KM satisfying

lim
M→∞

Es(ωM )

Md
= Cs,d . (3.4)

Such a sequence of point configurations exists by definition of Cs,d as in (2.10), and
by the scaling properties of Es . We define a configuration C inductively as follows:

• Let r1, c1, s1 = 1, and let us set C ∩ Kr1 to be ω1.
• Assume that rN , sN , cN and C ∩ KrN have been defined. We let

sN+1 = �cN+1rN + (cN+1rN )
1
2 �, (3.5)

with cN+1 > 1 to be chosen later. We also let rN+1 be a multiple of sN+1 large
enough, to be chosen later. We tile KrN+1 by hypercubes of sidelength sN+1, and
we define C ∩ KrN+1 as follows:
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– In the central hypercube of sidelength sN+1, we already have the points of
C ∩ KrN (because rN ≤ sN+1), and we do not add any points. In particular,
this ensures that each step of our construction is compatible with the previous
ones.

– In all the other hypercubes, we paste a copy of ωcN+1rN “centered” in the
hypercube in such a way that

all the points are at distance ≥ (cN+1rN )
1
2 from the boundary. (3.6)

This is always possible because ωcN+1rN lives, by definition, in a hypercube of
sidelength cN+1rN and because we have chosen sN+1 as in (3.5).

We claim that the number of points in KrN+1 is always less than r
d
N+1 (as can easily

be checked by induction) and is bounded below by

((
rN+1

sN+1

)d

− 1

)
(cN+1rN )d .

Thus it is easy to see that if cN+1 is chosen large enough and if rN+1 is a large
enough multiple of sN+1, then

the number of points in rN+1 is r
d
N+1(1 − oN (1)). (3.7)

Let us now give an upper bound on the interaction energy Int[KrN+1 , KrN+1 ](C).
We recall that we have tiled KrN+1 by hypercubes of sidelength sN+1.
– Each hypercube has a self-interaction energy given by Es(ωcN+1rN ), except
the central one, whose self-interaction energy is bounded by O(rdN ) (as can be
seen by induction).

– The interaction of a given hypercube with the union of all the others can be
controlled because, by construction (see (3.6)) the configurations pasted in two
disjoint hypercubes are far way from each other. We can compare it to

∫ +∞

r=(cN+1rN )
1
2

1

rs
sdN+1r

d−1dr,

and an elementary computation shows that it is negligible with respect to sdN+1
(because d < s).

We thus have

Int[KrN+1 , KrN+1 ](C) ≤
((

rN+1

sN+1

)d

− 1

)
Es(ωcN+1rN ) + O(rdN )

+
(
rN+1

sN+1

)d

oN
(
sdN+1

)
.
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We may now use (3.4) and get that

1

rdN+1

Int[KrN+1 , KrN+1 ](C) ≤ Cs,d + oN (1). (3.8)

Let C be the point configuration constructed as above. Taking the limit as N → ∞ in
(3.7) shows that C is in X1, and (3.8) implies thatWs(C) ≤ Cs,d , which concludes the
proof of (3.1). ��

3.1.2 Energy of Random Point Configurations

In the following lemma, we prove that for stationary P the lim inf defining Ws(P)

as in (2.20) is actually a limit, and that the convergence is uniform of sublevel sets of
Ws (which will be useful for proving lower semi-continuity).

Lemma 3.2 Let P be in Pstat (X ). The following limit exists in [0,+∞]:

Ws(P) := lim
R→∞

1

Rd
EP [Int[KR, KR]] . (3.9)

Moreover, we have as R → ∞,

∣∣∣∣Ws(P) − 1

Rd
EP [Int[KR, KR]]

∣∣∣∣ ≤ C
(
Ws(P)

2
1+s/d + Ws(P)

)
oR(1), (3.10)

with oR(1) depending only on s, d.

Proof We begin by showing that the quantity

1

nd
EP [Int[Kn, Kn](C)]

is nondecreasing for integer values of n.
For n ≥ 1, let {K̃v}v∈Zd∩Kn

be a tiling of Kn by unit hypercubes, indexed by the
centers v ∈ Z

d ∩ Kn of the hypercubes, and let us split Int[Kn, Kn] as

Int[Kn, Kn] =
∑

v,v′∈Zd∩Kn

Int[K̃v, K̃v′ ].

Using the stationarity assumption and writing v = (v1, . . . , vd) and |v| := maxi |vi |,
we obtain

EP

⎡

⎣
∑

v,v′∈Zd∩Kn

Int[K̃v, K̃v′ ]
⎤

⎦ =
∑

v∈Zd∩K2n

EP

[
Int[K̃0, K̃v]

] d∏

i=1

(n − |vi |).
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We thus get

1

nd
EP [Int[Kn, Kn]] =

∑

v∈Zd∩K2n

EP

[
Int[K̃0, K̃v]

] d∏

i=1

(
1 − |vi |

n

)
, (3.11)

and it is clear that this quantity is nondecreasing in n; in particular, the limit as n → ∞
exists in [0,+∞]. We may also observe that R �→ Int[KR, KR] is nondecreasing in
R. It is then easy to conclude that the limit of (3.9) exists in [0,+∞].

Let us now quantify the speed of convergence. First, we observe that for |v| ≥ 2,
we have

EP

[
Int[K̃0, K̃v]

]
≤ O

(
1

|v − 1|s
)

EP [N0Nv],

where N0, Nv denotes the number of points in K̃0, K̃v . Indeed, the points of K̃0 and
K̃v are at distance at least |v − 1| from each other (up to a multiplicative constant
depending only on d).

On the other hand, Hölder’s inequality and the stationarity of P imply

‖N0Nv‖L1(P) ≤ ‖N0‖L1+s/d (P)‖Nv‖L1+s/d (P) = ‖N0‖2L1+s/d (P)
,

and thus we have EP [N0Nv] ≤ EP [N0]
2

1+s/d . On the other hand, it is easy to check
that for P stationary,

EP [N 1+s/d
0 ] ≤ CWs(P)

for some constantC depending on d, s. Indeed, the interaction energy in the hypercube
K̃0 is bounded below by some constant times N 1+s/d

0 , and (3.11) shows that

Ws(P) ≥ EP

[
Int[K̃0, K̃0]

]
.

We thus get

Ws(P) −
∑

v∈Zd∩K2n

EP

[
Int[K̃0, K̃v]

] d∏

i=1

(
1 − |vi |

n

)

≤ Ws(P)
2

1+s/d

⎛

⎝
∑

v∈Zd∩K2n ,|v|≥2

1

|v − 1|s
(
1 −

d∏

i=1

(
1 − |vi |

n

))
+

∑

|v|≥2n

1

|v|s

⎞

⎠

+1

n

∑

|v|=1

EP

[
Int[K̃0, K̃v]

]
.

123



84 Constr Approx (2018) 48:61–100

It is not hard to see that the parenthesis in the right-hand side goes to zero as n → ∞.
On the other hand, we have

∑

|v|=1

EP

[
Int[K̃0, K̃v]

]
≤ Ws(P).

Thus we obtain

Ws(P) − 1

nd
EP [Int[Kn, Kn]] ≤

(
Ws(P)

2
1+s/d + Ws(P)

)
on(1),

with a on(1) depending only on d, s, and it is then not hard to get (3.10). ��
For any R > 0, the quantity Int[KR, KR] is continuous and bounded below on X ;

thus the map

P �→ 1

Rd
EP [Int[KR, KR]]

is lower semi-continuous on P(X ). The second part of Lemma 3.2 shows that we
may approximate Ws(P) by 1

Rd EP [Int[KR, KR]] up to an error oR(1), uniformly on
sub-level sets of Ws . The next proposition follows easily.

Proposition 3.3 1. The functional Ws is lower semi-continuous on Pstat,1(X ).
2. The functional Ws is lower semi-continuous on Mstat,1(X ).

We may also prove the following equality (which settles a question raised in
Sect. 2.3.5).

Corollary 3.4 Let P be in Pstat,1(X ). Then we have

Ws(P) = lim
R→∞

1

Rd
EP [Int[KR, KR](C)] = EP

[
lim inf
R→∞

1

Rd
Int[KR, KR](C)

]
.

Proof As was observed in (2.23), Fatou’s lemma implies that

EP

[
lim inf
R→∞

1

Rd
Int[KR, KR](C)

]
≤ lim

R→∞
1

Rd
EP [Int[KR, KR](C)] = Ws(P)

(the last equality is by definition). On the other hand, with the notation of the proof of
Lemma 3.2, we have for any integer n and any C in X ,

1

nd
Int[Kn, Kn](C) = 1

nd
∑

v,v′∈Zd∩KR

Int[K̃v, K̃v′ ],

and the right-hand side is dominated under P (as observed in the previous proof); thus
the dominated convergence theorem applies. ��
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3.2 Derivation of the Infinite-Volume Limit of the Energy

The following result is central in our analysis. It connects the asymptotics of the
N -point interaction energy {HN (XN )}N with the infinite-volume energy Ws(P)

of an infinite-volume object: the limit point P of the tagged empirical processes
{EmpN (XN )}N .
Proposition 3.5 For any N ≥ 1, let XN = (x1, . . . , xN ) be in �N , let μN be the
empirical measure and PN be the tagged empirical process associated with XN ; i.e.,

μN := emp(XN ), PN := EmpN (XN ),

as defined in (1.8) and (1.10). Let us assume that

lim inf
N→∞

HN (XN )

N 1+s/d
< +∞.

Then, up to extraction of a subsequence,

• {μN }N converges weakly to some μ inM(�),
• {PN }N converges weakly to some P inMstat,1(X ),
• Intens(P) = μ.

Moreover, we have

lim inf
N→∞

HN (x1, . . . , xN )

N 1+s/d
≥ Ws(P) + V(P). (3.12)

Proof Up to extracting a subsequence, we may assume thatHN (XN ) = O(N 1+s/d).
First, by positivity of the Riesz interaction, we have for N ≥ 1,

∫

�

V dμN ≤ HN (XN )

N 1+s/d
,

and thus
∫
�
V dμN is bounded. By (1.5) and (1.6) we know that V is bounded below

and has compact sub-level sets. An easy application ofMarkov’s inequality shows that
{μN }N is tight, and thus it converges (up to another extraction). It is not hard to check
that {PN }N converges (up to extraction) to some P in M(X ) (indeed, the average
number of points per unit volume is constant, which implies tightness, see, e.g., [18,
Lemma 4.1]) whose stationarity is clear (see again, e.g., [18]).

Let ρ̄ be the intensity measure of P (in the sense of Sect. 2.1.7). We want to prove
that ρ̄ = μ (which will in particular imply that P is inMstat,1(X )). It is a general fact
that ρ̄ ≤ μ (see, e.g., [19, Lemma 3.7]), but it could happen that a positive fraction
of the points cluster together, resulting in the existence of a singular part in μ that is
missed by ρ̄ so that ρ̄ < μ. However, in the present case, we can easily bound the
moment (under PN ) of order 1+s/d of the number of points in a given hypercube KR .
Indeed, let {K̃i }i∈I be a covering of � by disjoint hypercubes of sidelength RN−1/d ,

and let ni := NμN

(
K̃i

)
denote the number of points from XN in K̃i . We have, by

positivity of the Riesz interaction,
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HN (XN ) ≥
∑

i∈I
Int[K̃i , K̃i ] ≥ C

∑

i∈I

n1+s/d
i Ns/d

Rs

for some constant C > 0 (depending only on s and d) because the minimal interac-

tion energy of n points in K̃i is proportional to n1+s/d Ns/d

Rs (see (2.10), (2.11)). Since

HN (XN ) = O(N 1+s/d) by assumption, we get that
∑

i∈I n
1+s/d
i = O(N ), with an

implicit constant depending only on R. This implies that x �→ NμN
(
B(x, RN−1/d)

)

is uniformly (in N ) locally integrable on � for all R > 0, and arguing as in [19,
Lemma 3.7], we deduce that ρ̄ = μ.

We now turn to proving (3.12). Using the positivity and scaling properties of the
Riesz interaction and a Fubini-type argument, we may write, for any R > 0,

Int[�,�](XN ) ≥ N 1+s/d
∫

�×X
1

Rd
Int[KR, KR](C) dPN (x, C).

Of course we have, for any M > 0,
∫

�×X
1

Rd
Int[KR, KR](C) dPN (x, C) ≥

∫

�×X
1

Rd
(Int[KR, KR](C) ∧ M) dPN (x, C),

and thus the weak convergence of PN to P ensures that

∫

�×X
1

Rd
Int[KR, KR](C) dPN (x, C)

≥
∫

�×X
1

Rd (Int[KR, KR](C) ∧ M) dP(x, C) + oN (1).

Since this is true for all M , we obtain

lim inf
N→∞

Int[�,�](XN )

N 1+s/d
≥

∫

�×X
1

Rd (Int[KR, KR](C)) dP(x, C).

Sending R to +∞ and using Proposition 3.1, we get

lim inf
N→∞

Int[�, �](XN )

N1+s/d
≥ lim inf

R→∞

∫

�×X
1

Rd
(Int[KR, KR](C)) dP(x, C) =: Ws(P).

(3.13)

On the other hand, the weak convergence of μN to μ and Assumption 1.5 ensure that

lim inf
N→∞

∫

�

V dμN ≥
∫

�

V dμ. (3.14)

Combining (3.13) and (3.14) gives (3.12). ��
Proposition 3.5 can be viewed as a �-lim inf result (in the language of �-

convergence). We will prove later (e.g., in Proposition 4.5, which is in fact a much
stronger statement) the corresponding �-lim sup.
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4 Proof of the Large Deviation Principles

As in [18], the main obstacle to proving Theorem 1.1 is to deal with the lack of upper
semi-continuity of the interaction, namely that there is no upper bound of the type

HN (XN ) � N 1+s/d
(
Ws(P) + V(P)

)

that holds in general under the mere condition that EmpN (XN ) ≈ P (cf. (1.10) for
a definition of the tagged empirical process). This yields a problem for proving the
large deviation lower bound (in contrast, lower semi-continuity holds, and the proof
of the large deviations upper bound is quite simple). Let us briefly explain why.

Firstly, due its singularity at 0, the interaction is not uniformly continuous with
respect to the topology on the configurations. Indeed, a pair of points at distance
ε yields a ε−s energy, but a pair of points at distance 2ε has energy (2ε)−s , with
|ε−s − (2ε)−s | → ∞, although these two point configurations are very close for the
topology on X .

Secondly, the energy is nonadditive: we have in general

Int[C1 ∪ C2, C1 ∪ C2] �= Int[C1, C1] + Int[C2, C2].

Yet the knowledge of EmpN (through the fact that EmpN (XN ) ∈ B(P, ε)) yields
only local information on XN and does not allow one to reconstruct XN globally.
Roughly speaking, it is like partitioning� into hypercubes and having a family of point
configurations, each belonging to some hypercube, but without knowing the precise
configuration-hypercube pairing. Since the energy is nonadditive (there are nontrivial
hypercube-hypercube interactions in addition to the hypercubes’ self-interactions), we
cannot (in general) deduceHN (XN ) from the mere knowledge of the tagged empirical
process.

In Sect. 4.3, the singularity problem is dealt with by using a regularization procedure
similar to that of [18], while the nonadditivity is shown to be negligible due to the
short-range nature of the Riesz potential for s > d.

4.1 An LDP for the Reference Measure

Let Leb�N be the Lebesgue measure on �N , and let Q̄N be the push-forward of
Leb�N by the “tagged empirical process” map EmpN defined in (1.10). Let us recall
that � is not necessarily bounded; hence Leb�N may have an infinite mass, and thus
there is no natural way of making Q̄N a probability measure.

Proposition 4.1 Let P be inMstat,1(X ). We have

lim
ε→0

lim inf
N→∞

1

N
log Q̄N

(
B(P, ε)

) = lim
ε→0

lim sup
N→∞

1

N
log Q̄N

(
B(P, ε)

)

= −
∫

�

(
ent[Px |	] − 1

)
dx − 1. (4.1)
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We recall that P
x
is the disintegration measure of P at the point x , or the “fiber at x”

(which is a measure on X ) of P (which is a measure on � × X ), see Sect. 2.1.4.

Proof If � is bounded, Proposition 4.1 follows from the analysis of [18, Section 7.2];
see in particular [18, Lemma 7.8]. The only difference is that the Lebesgue measure
on� used in [18] is normalized, which yields an additional factor of log |�| in the rate
function. The proof extends readily to a nonbounded � because the topology of weak
convergence on M(X ) is defined with respect to test functions that are compactly
supported on �. ��

4.2 An LDP Upper Bound

Proposition 4.2 Let P be inMstat,1(X ). We have

lim
ε→0

lim sup
N→∞

1

N
logPN ,β(B(P, ε)) ≤ −Fβ(P) + lim sup

N→∞

(
− log ZN ,β

N

)
. (4.2)

Proof Using the definition of PN ,β as the push-forward of PN ,β by EmpN , we may
write

PN ,β(B(P, ε)) = 1

ZN ,β

∫

�N∩{EmpN (XN )∈B(P,ε)}
exp

(
−βN−s/dHN (XN )

)
dXN .

From Propositions 3.5 and 3.3, we know that for any sequence XN such that
EmpN (XN ) ∈ B(P, ε), we have

lim inf
N→∞

HN (XN )

N 1+s/d
≥ Ws(P) + V(P) + oε(1).

We may thus write

lim sup
N→∞

1

N
logPN ,β(B(P, ε)) ≤ −β

(
Ws(P) + V(P)

)

+ lim sup
N→∞

∫

�N∩{EmpN (XN )∈B(P,ε)}
dXN + lim sup

N→∞

(
− log ZN ,β

N

)
+ oε(1).

Using Proposition 4.1, we know that

lim sup
N→∞

1

N
log

∫

�N∩{EmpN (XN )∈B(P,ε)}
dXN = −

∫

�

(
ent[Px |	] − 1

)
− 1 + oε(1).
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We thus obtain, sending ε → 0,

lim sup
N→∞

1

N
logPN ,β (B(P, ε)) ≤ −β

(
Ws(P) + V(P)

)
−

∫

�

(
ent[Px |	] − 1

)
− 1

+ lim sup
N→∞

(
− log ZN ,β

N

)
,

which, in view of the definition of Fβ as in (2.26), yields (4.2). ��

4.3 An LDP Lower Bound

The goal of the present section is to prove a matching LDP lower bound:

Proposition 4.3 Let P be inMstat,1(X ). We have

lim
ε→0

lim inf
N→∞

1

N
logPN ,β(B(P, ε)) ≥ −Fβ(P) + lim inf

N→∞

(
− log ZN ,β

N

)
. (4.3)

For N ≥ 1 and δ > 0, let us define the set TN ,δ(P) as

TN ,δ(P) =
{

XN | HN (XN )

N 1+s/d
≤ Fβ(P) + δ

}
. (4.4)

We will rely on the following result:

Proposition 4.4 Let P be inMstat,1(X ). For all ε, δ > 0, we have

lim inf
N→∞

1

N
logLeb�N

({
EmpN (XN ) ∈ B(P, ε)

} ∩ TN ,δ(P)
)

≥ −
∫

�

(
ent[Px |	] − 1

)
dx − 1.

(4.5)

Proof Wemay assume that� is compact and that the intensity measure of P , denoted
by ρ̄, is continuous, compactly supported, and bounded below. Indeed, we can always
approximate P by random point processes satisfying these additional assumptions.
For any N ≥ 1, we let ρ̄N (x) := ρ̄(xN−1/d) and we let �N := N 1/d�.

In fact, for simplicity wewill assume that� is some large hypercube. The argument
below readily extends to the case where � can be tiled by small hypercubes, and any
C1 domain can be tiled by small hypercubes up to some “boundary parts” that are
negligible for our concerns (a precise argument is given, e.g., in [18, Section 6]).

For R > 0, we let {K̃i }i∈I be a partition of �N by hypercubes of sidelength R. For
R, M , we denote by PR,M the restriction2 to KR of P , conditioned to the event

{
|C ∩ KR | ≤ MRd

}
. (4.6)

2 That is, PR,M ∈ M(� × X [KR ]).

123



90 Constr Approx (2018) 48:61–100

Step 1. Generating microstates.
For any ε > 0, for any M, R > 0, for any ν > 0, for any N ≥ 1, there exists a family
A = A(ε, M, R, ν, N ) of point configurations C such that:

1. C = ∑
i∈I Ci , where Ci is a point configuration in K̃i .

2. |C| = N .
3. The “discretized” empirical process is close to PR,M :

Pd(C) := 1

|I |
∑

i∈I
δ(N−1/d xi , θxi ·Ci ) belongs to B(PR,M , ν), (4.7)

where xi denotes the center of K̃i .
4. The associated empirical process is close to P

Pc(C) :=
∫

�

δ(x, θN1/d x ·C) dx belongs to B(P, ε). (4.8)

Note that Pc(C) = EmpN (N−1/dC).
5. The volume of A satisfies, for any ε > 0,

lim inf
M→∞ lim inf

R→∞
1

Rd
lim
ν→0

lim
N→∞

1

|I | logLeb
�N

N
(A) ≥ −

∫

�

(
ent[Px |	] − 1

)
− 1.

(4.9)

This is essentially [18, Lemma 6.3] with minor modifications (e.g., the Lebesgue
measure in [18] is normalized, which yields an additional logarithmic factor in the
formulas).

We will make the following assumption on A:

|Ci | ≤ 2MRd for all i ∈ I. (4.10)

Indeed, for fixed M , when Pd is close to PR,M (for which (4.6) holds), the fraction of
hypercubes on which (4.10) fails to hold as well as the ratio of excess points over the
total number of points (namely N ) are both small. We may then “redistribute” these
excess points among the other hypercubes without affecting (4.8) and changing the
energy estimates below only by a negligible quantity.

Step 2. First energy estimate.
For any R, M, τ > 0, the map defined by

C ∈ X (KR) : −→ Intτ [C, C] ∧ (2MRd)2

τ s

(where Intτ is as in (2.7)) is continuous on X (KR) and bounded (this is precisely the
reason for requiring that the number of points are bounded). We may thus write, in
view of (4.6), (4.7), and (4.10),
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∫

�×X (KR)

Intτ dPd =
∫

�×X (KR)

Intτ ∧ (2MRd)2

τ s
dPd

=
∫

�×X (KR)

Intτ ∧ (2MRd)2

τ s
dPR,M + oν(1) =

∫

�×X (KR)

Intτ dPR,M + oν(1).

Moreover, we have

lim
M→∞ lim

R→∞
1

Rd

∫

�×X (KR)

IntτdPR,M = Ws(P) + oτ (1);

thus we see that, with (4.7),

lim
M→∞,R→∞ lim

ν→0
lim

N→∞
1

N

∑

i∈I
Intτ [Ci , Ci ] = Ws(P) + oτ (1). (4.11)

Step 3. Regularization.
In order to deal with the short-scale interactions that are not captured in Intτ , we
apply the regularization procedure of [18, Lemma 5.11]. Let us briefly present this
procedure:

1. We partition �N by small hypercubes of sidelength 6τ .
2. If one of these hypercubesK contains more than one point or if it contains a point

and one of the adjacent hypercubes also contains a point, we replace the point
configuration in K by one with the same number of points but confined in the
central, smaller hypercubeK′ ⊂ K of side length 3τ and that lives on a lattice (the
spacing of the lattice depends on the initial number of points in K).

This allows us to control the difference Int − Intτ in terms of the number of points in
the modified hypercubes.

In particular, we replace A by a new family of point configurations, such that

1

N

∑

i∈I
(Int − Intτ ) [Ci , Ci ]≤Cτ−s−dEPd

[(
(|C ∩ K12τ |)2+s/d − 1

)

+

]
. (4.12)

The right-hand side of (4.12) should be understood as follows: any group of points
that were too close to each other (without any precise control) have been replaced
by a group of points with the same cardinality but whose interaction energy is now
similar to that of a lattice. The energy of n points in a lattice of spacing τ

n1/d
scales like

n2+s/dτ−s , and taking the average over all small hypercubes, is similar to computing
1
τ d

EPd
.

As ν → 0, we may then compare the right-hand side of (4.12) with the same
quantity for P , namely

τ−s−dEP

[(
(|C ∩ K12τ |)2+s/d − 1

)

+

]
,

which can be shown to be oτ (1) (following the argument of [18, Section 6.3.3]),
because it is in turn of the same order as
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EP [(Int − Intτ ) [K1, K1]] ,

which goes to zero as τ → 0 by dominated convergence.
We obtain

lim
τ→0

lim
M,R→∞ lim

ν→0

1

N

∑

i∈I
(Int − Intτ ) [Ci , Ci ] = 0, (4.13)

and combining (4.13) with (4.11), we get that

lim
τ→0

lim
M→∞,R→∞ lim

ν→0
lim

N→∞
1

N

∑

i∈I
Int[Ci , Ci ] ≤ Ws(P). (4.14)

Step 4. Shrinking the configurations. This procedure is borrowed from [14]. It
rescales the configuration by a factor less than one (but very close to 1), effectively
shrinking it and creating an empty boundary layer around each cube. Thus points
belonging to different cubes are sufficientlywell-separated so that interactions between
the cubes are negligible–a much simpler approach to screening than that in the long-
range case.

For R > 0, we let R′ := R
√
d/s .

It is not true in general that Int[C, C] can be split as the sum
∑

i∈I Int[Ci , Ci ].
However, since the Riesz interaction decays fast at infinity, it is approximately true
if the configurations Ci are separated by a large enough distance. To ensure that, we
“shrink” every configuration Ci in K̃i ; namely, we rescale them by a factor 1− R′

R . This
operation affects the discrete average (4.7) but not the empirical process; i.e., for any
ε > 0, if M, R are large enough and ν small enough, we may still assume that (4.8)

holds. The interaction energy in each hypercube K̃i is multiplied by
(
1 − R′

R

)−s =
1 + oR(1), but the configurations in two distinct hypercubes are now separated by a
distance at least R′. Since (4.10) holds, an elementary computation implies that we
have, for any i in I ,

Int[Ci ,
∑

j �=i

C j ] = M2Rd Rd

R′s O(1),

with a O(1) depending only on d, s. We thus get

Int[C, C] =
∑

i∈I
Int[Ci , Ci ] + NM2 R

d

R′s O(1),

but Rd

R′s = oR(1) by the choice of R′ (and the fact that d < s), and thus (in view of
(4.14) and the effect of the scaling on the energy)

lim
τ→0

lim
M→∞,R→∞ lim

ν→0
lim

N→∞
1

N
Int[C, C] ≤ Ws(P). (4.15)
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We have thus constructed a large enough (see (4.9)) volume of point configurations in
�N whose associated empirical processes converge to P and such that

1

N
Int[C, C] ≤ Ws(P) + o(1).

We may view these configurations at the original scale by applying a homothety of
factor N−1/d ; this way we obtain point configurations XN in � such that

1

N 1+s/d
Es(XN ) ≤ Ws(P) + o(1).

It is not hard to see that the associated empirical measureμN converges to the intensity
measure of P , and since V is continuous, we also have

1

N

∫

R

V dμN = V(P) + o(1).

This concludes the proof of Proposition 4.4.
��

We may now prove the LDP lower bound.

Proof of Proposition 4.3 Proposition 4.4 implies (4.3); indeed, we have

PN ,β(B(P, ε)) = 1

ZN ,β

∫

�N∩{EmpN (XN )∈B(P,ε)}
exp

(
−βN−s/dHN (XN )

)
dXN

≥ 1

ZN ,β

∫

�N∩{EmpN (XN )∈B(P,ε)}∩TN ,δ(P)

exp
(
−βN−s/dHN (XN )

)
dXN

≥ 1

ZN ,β

exp
(−βN

(Fβ(P) + δ
)) ∫

�N∩{EmpN (XN )∈B(P,ε)}∩TN ,δ(P)

dXN ,

and (4.5) allows us to bound below the last integral as

lim inf
δ→0,ε→0,N→∞

1

N
log

∫

�N∩{EmpN (XN )∈B(P,ε)}∩TN ,δ(P)

dXN

≥ −
∫

�

(
ent[Px |	] − 1

)
− 1.

��

4.4 Proof of Theorem 1.1 and Corollary 1.2

From Propositions 4.2 and 4.3, the proof of Theorem 1.1 is standard. Exponential
tightness of PN ,β comes for free (see, e.g., [18, Section 4.1]) because the average
number of points is fixed, and wemay thus improve the weak large deviation estimates
(4.2), into the following: for any A ⊂ Mstat,1(X ), we have
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− inf
Å
Fβ + lim inf

N→∞

(
− log ZN ,β

N

)

≤ lim inf
N→∞

1

N
logPN ,β(A) ≤ lim sup

N→∞
1

N
logPN ,β(A)

≤ − inf
A
Fβ lim sup

N→∞

(
− log ZN ,β

N

)
.

We easily deduce that

lim
N→∞

log ZN ,β

N
= − min

Mstat,1(X )

Fβ,

which proves Corollary 1.2, and that the LDP forPN ,β holds as stated in Theorem 1.1.

4.5 Proof of Theorem 1.3

Proof Theorem 1.3 follows from an application of the “contraction principle” (see,
e.g., [24, Section 3.1]). Let us consider the map M(X ) → M(�) defined by

Ĩntens : P �→
∫

�

δxEP
x [C ∩ K1].

It is continuous onMstat (X ) and coincides with Intens. By the contraction principle,

the law of Ĩntens(Emp(XN )) obeys a large deviation principle governed by

ρ �→ inf
Intens(P)=ρ

Fβ(P),

which is easily seen to be equal to Iβ(ρ) as defined in (2.27).
For technical reasons (a boundary effect), it is not true in general that

Ĩntens(Emp(XN )) = emp(XN ); however, we have

distM(�)

(
Ĩntens(Emp(XN )),Emp(XN )

)
= oN (1),

uniformly for XN ∈ �. In particular, the laws of Ĩntens(Emp(XN )) and of emp(XN )

are exponentially equivalent (in the language of large deviations); thus any LDP can
be transferred from one to the other. This proves Theorem 1.3. ��

5 Additional Proofs: Propositions 1.4, 1.5, and 1.6

5.1 Limit of the Empirical Measure

From Theorem 1.3 and the fact that Iβ is strictly convex, we deduce that emp(XN )

converges almost surely to the unique minimizer of Iβ .
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Proof of Proposition 1.4 First, if V = 0 and � is bounded, Iβ can be written as

Iβ(ρ) :=
∫

�

ρ(x) inf
P∈Pstat,1(X )

(
βρ(x)s/dWs(P) + ent[P|	]

)
dx

+
∫

�

ρ(x) log ρ(x) dx .

We claim that both terms in the right-hand side are minimized when ρ is the uniform
probability measure on � (we may assume |�| = 1 to simplify, without loss of
generality). This property is well known for the relative entropy term

∫
�

ρ log ρ, and
we now prove it for the energy term. First, let us observe that

α �→ inf
P∈Pstat,1(X )

(
βα1+s/d

Ws(P) + αent[P|	]
)

is convex in α since it is the infimum over a family of convex functions (recall that
α �→ α1+s/d is convex in α and that Ws is always positive). Since |�| = 1, we have,
by Jensen’s inequality,

∫

�

inf
P∈Pstat,1(X )

(
βρ(x)1+s/d

Ws(P) + ρ(x)ent[P|	]
)
dx

≥ inf
P∈Pstat,1(X )

(
β

(∫

�

ρ(x)

)1+s/d

Ws(P) +
(∫

�

ρ(x)

)
ent[P|	]

)
,

and since
∫
�

ρ = 1, we conclude that Iβ is minimal for ρ ≡ 1. Thus the empirical
measure converges almost surely to the uniform probability measure on �, which
proves the first point of Proposition 1.4.

Next, let us assume that V is arbitrary and � bounded. It is not hard to see that for
the minimizer μV,β of Iβ , we have, as β → 0,

Iβ(μV,β) ≥ Iβ(ρunif) + O(β),

where ρunif is the uniform probability measure on �. Moreover, it is also true (as
proved above) that the first term in the definition of Iβ is minimal for ρ = ρunif . We
thus get that, as β → 0,

∫

�

μV,β logμV,β −
∫

�

ρunif log ρunif = O(β);

in other words, the relative entropy of μV,β with respect to ρunif converges to 0 as
β → 0. The Csisz–Kullback–Pinsker inequality allows us to bound the square of
the total variation distance between μV,β and ρunif by the relative entropy (up to a
multiplicative constant), and thus μV,β converges (in total variation) to the uniform
probability measure on � as β → 0. This proves the second point of Proposition 1.4.
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Finally for V arbitrary, the problem of minimizing of Iβ is, as β → ∞, similar to
minimizing

β

(∫

�

ρ(x)1+s/d minWsdx +
∫

�

ρ(x)V (x)dx

)
.

Since minWs = Cs,d , we recover (up to a multiplicative constant β > 0) the mini-
mization problem studied in [16], namely the problem of minimizing

Cs,d

∫

�

ρ(x)1+s/ddx +
∫

�

ρ(x)V (x)dx,

among probability densities, whose (unique) solution is given by μV,∞.
In order to prove that μV,β converges to μV,∞ as β → ∞, we need to make that

heuristic rigorous, which requires an adaptation of [17, Section 7.3, Step 2]. We claim
that there exists a sequence {Pk}k≥1 in Pstat,1(X ) such that

lim
k→∞ Ws(Pk) = Cs,d , ∀k ≥ 1,ent[Pk |	] < +∞. (5.1)

We could think of taking Pk = P , where P is some minimizer of Ws among
Pstat,1(X ), but it might have infinite entropy (e.g., if P was the law of the stationary
process associated with a lattice, as in dimension 1). We thus need to “expand” P
(e.g., by making all the points vibrate independently in small balls as described in [17,
Section 7.3, Step 2] in the case of the one-dimensional lattice). We may then write
that, for any β > 0 and k ≥ 1,

Iβ(μV,β) ≤ Iβ(μV,∞) ≤ β

(∫

�

μV,∞(x)1+s/d
Ws(Pk) +

∫

�

μV,∞(x)V (x)dx

)

+ent[Pk |	] +
∫

�

μV,∞(x) logμV,∞(x)

≤ β

(∫

�

μV,∞(x)1+s/dCs,d +
∫

�

μV,∞(x)V (x)dx

)
+ ent[Pk |	] + βok(1),

where we have used (5.1) in the last inequality. Choosing β and k properly so that
k → ∞ as β → ∞, while assuring that the βok(1) term goes to zero, we have

Cs,d

∫

�

μV,β(x)1+s/d +
∫

�

μV,β(x)V (x) ≤ Cs,d

∫

�

μV,∞(x)1+s/ddx

+
∫

�

μV,∞(x)V (x)dx + oβ→∞(1).

By convexity, this implies that μV,β converges to μV,∞ as β → ∞. ��
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5.2 The Case of Minimizers

Proof of Proposition 1.5 Let {XN }N be a sequence of N -point configurations such
that for all N ≥ 1, XN minimizes HN . From Proposition 3.5, we know that (up to
extraction), {Emp(XN )}N converges to some P ∈ Mstat,1(X ) such that

Ws(P) + V(P) ≤ lim inf
N→∞

HN (XN )

N 1+s/d
, (5.2)

and we have, by (2.23), (3.1), and the scaling properties of Ws ,

Ws(P) + V(P) ≥ Cs,d

∫

�

ρ(x)1+s/ddx +
∫

�

V (x)ρ(x)dx, (5.3)

where ρ = Intens(P). We also know that the empirical measure emp(XN ) converges
to the intensity measure ρ = Intens(P).

On the other hand, from [16, Theorem 2.1], we know that emp(XN ) converges to
some measure μV,∞ that is defined as follows: define L to be the unique solution of

∫

�

[
L − V (x)

Cs,d(1 + s/d)

]d/s

+
dx = 1,

and then let μV,∞ be given by

μV,∞(x) :=
[

L − V (x)

Cs,d(1 + s/d)

]d/s

+
(x ∈ �). (5.4)

It is proved in [16] that μV,∞ minimizes the quantity

Cs,d

∫

�

ρ(x)1+s/d dx +
∫

V (x)ρ(x) dx, (5.5)

among all probability density functions ρ supported on �. It is also proved that

lim
N→∞

HN (XN )

N 1+s/d
= Cs,d

∫

�

μV,∞(x)1+s/d dx +
∫

V (x)μV,∞(x) dx . (5.6)

By unicity of the limit, we have ρ := Intens(P) = μV,∞. In view of (5.2), (5.3),
(5.6), and by the fact that μV,∞ minimizes (5.5), we get that

Ws(P) + V(P) = Cs,d

∫

�

μV,∞(x)1+s/ddx +
∫

�

V (x)μV,∞(x)dx

and that P is in fact a minimizer of Ws + V. We must also have

Ws(P) = Cs,d

∫

�

μV,∞(x)1+s/d dx;
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hence (in view of (2.23)) we get

Ws(C) = Cs,dμV,∞(x)1+s/d = min
XμV,∞(x)

Ws, for P − a.e. (x, C),

which concludes the proof. ��

5.3 The One-Dimensional Case

Proposition 1.6 is very similar to the first statement of [17, Theorem 3], and we sketch
its proof here.

Proof of Proposition 1.6 First, we use the expression of Ws in terms of the two-point
correlation function, as presented in (2.25):

Ws(P) = lim inf
R→∞

∫

[−R,R]d
1

|v|s ρ2,P (v)

(
1 − |v|

R

)
dv.

Then, we split ρ2,P as the sum

ρ2,P =
+∞∑

k=1

ρ
(k)
2,P ,

where ρ
(k)
2,P is the correlation function of the k-th neighbor (which makes sense only

in dimension 1). It is not hard to check that
∫

ρ
(k)
2,P (x) = 1 and

∫
xρ(k)

2,P (x) = k

(the last identity holds because P has intensity 1 and is stationary). Using the convexity
of

v �→ 1

|v|s
(
1 − |v|

R

)
,

we obtain that for any k ≥ 1, the following holds:

∫
1

|v|s
(
1 − |v|

R

)
ρ

(k)
2,Pdv ≥

∫
1

|v|s
(
1 − |v|

R

)
δk(v)dv

=
∫

1

|v|s
(
1 − |v|

R

)
ρ

(k)
2,PZ

(v)dv,

where PZ = u + Z (with u uniform in [0, 1]). Thus we have
Ws(P) ≥ Ws(PZ),

which proves that Ws is minimal at PZ. ��
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