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Abstract We construct Monte Carlo methods for the L2-approximation in Hilbert
spaces of multivariate functions sampling not more than n function values of the target
function. Their errors catch up with the rate of convergence and the preasymptotic
behavior of the error of any algorithm sampling n pieces of arbitrary linear information,
including function values.
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1 Introduction

Assume we want to approximate an unknown real or complex-valued function on a
set D based on a finite number n of function values that may be evaluated at randomly
and adaptively chosen points. In general, these function values do not determine the
function uniquely, and so we cannot expect our approximation to be correct. We make
an approximation error, which we measure in the space L2(D,A, μ) of quadratically
integrable functions on D with respect to an arbitrary measure μ. In order to make
any meaningful statement regarding this error, we need to have additional a priori
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knowledge of the unknown function. Here, we assume structural knowledge of the
form that it is contained in the unit ball F◦ of a Hilbert space F that is compactly
embedded in L2(D,A, μ). For instance, it may be bounded with respect to some
Sobolev norm on a compact manifold D. The error of the randomized algorithm or
Monte Carlo method An is the quantity

eran(An) = sup
f ∈F◦

(
E

∫
D

| f − An( f )|2 dμ

)1/2

.

The error of an optimal randomized algorithm that asks for at most n function values
is denoted by

e(n) = inf
An

eran(An).

While it seems impossible to provide such algorithms, the optimal deterministic
algorithm evaluating n arbitrary linear functionals is well known. It is given by the
orthogonal projection Pn onto the span of the first n functions in the singular value
decomposition of the embedding T : F ↪→ L2. Its worst case error is the (n + 1)-st
largest singular value or approximation number σ(n+1) of that embedding, the square
root of the (n + 1)-st largest eigenvalue of the operator W = T ∗T .

The algorithm Pn asks for the first n coefficients of f with respect to the singular
value decomposition of the embedding T . In most applications, however, it is not
possible to sample these coefficients, and we may only make use of function values.
This leads to the following questions:

• How does the error e(n) of optimal randomized algorithms using n function values
compare to the error σ(n + 1) of the orthogonal projection Pn?

• If possible, find a randomized algorithm An whose error is close to σ(n + 1).

These are not new questions in the fields of Monte Carlo methods and information-
based complexity. There are several results for particular spaces F where e(n) behaves
similarly to the error of Pn . See, for instance, Traub, Wasilkowski and Woźniakowski
[20], Mathé [13] and Heinrich [5]. Results by Cohen, Davenport and Leviatan [2] and
Cohen and Migliorati [3] contain a similar message, see Remark 3. In 1992, Novak
[16] proved that

e(n) ≥ σ(2n)√
2

holds for arbitrary spaces F . This means that optimal randomized algorithms using n
function values are never much better than the orthogonal projection Pn . On the other
hand, Wasilkowski and Woźniakowski [23] proved in 2006 that

σ(n) � n−p(ln n)q ⇒ e(n) � n−p(ln n)q(ln ln n)p+1/2

for all p > 0 and q ≥ 0. Here, we write xn � yn if there is some C > 0 and n0 ∈ N

such that xn ≤ Cyn for all n ≥ n0. If xn � yn and yn � xn , we write xn 
 yn . This
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means that optimal randomized algorithms using function values are always almost as
good as the orthogonal projection Pn . The proof of this result is constructive. It raises
the question whether the additional power of the double logarithm is necessary or not.
In fact, Novak and Woźniakowski showed in 2012 that this is not the case for q = 0;
that is,

σ(n) � n−p ⇒ e(n) � n−p

for all p > 0. The proof of this result, however, is not constructive. Both proofs
can be found in their monograph [18, Chapter 22]. In the present paper, we prove
the corresponding statement for q > 0. More generally, we consider upper bounds
with the following property. We say that the sequence L : N → (0,∞) is regularly
decreasing if there is some r ≥ 0 such that

L(m) ≥ 2−r L(n) whenever n ≤ m ≤ 2n. (1)

If there is some n0 ∈ N such that L(n) is nonincreasing for n ≥ n0, this is equivalent
to L(2n) 
 L(n). Property (1) is satisfied if L(n)nr is nondecreasing. The sequence

L(n) = n−p (
1 + log2 n

)q

is regularly decreasing for any p > 0 and q ≥ 0. It satisfies (1) for r = p. Another
example is

L(n) = (
1 + log2 n

)−q

for any q > 0, which satisfies (1) for r = q. The sequence is not regularly decreasing
if it decays exponentially or has huge jumps. We obtain the following result.

Theorem 1 If L : N → (0,∞) is regularly decreasing, then

σ(n) � L(n) ⇒ e(n) � L(n).

This solves Open Problem 99 as posed by Novak and Woźniakowski in [18]. One
problemwith this result is that it does not provide any algorithm; it only states the exis-
tence of good algorithms. Another problem is that the error bound is only asymptotic.
The preasymptotic behavior of e(n) may, however, be very different from its asymp-
totic behavior. This is typically the case if the set D is a domain in high-dimensional
Euclidean space.

These problems are tackled by Theorem 2. In Sect. 3, we provide a randomized
algorithm Ar

n for any n ∈ N and r ≥ 0. This algorithm is a refinement of the algorithm
proposed byWasilkowski andWoźniakowski [23]. It asks for at most n function values
and satisfies the following error bound.
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Theorem 2 Assume that L : N → (0,∞) satisfies (1), and let cr = 2r�2r+3
+1.

If σ(n) ≤ L(n) for all n ∈ N,

then eran(Ar
n) ≤ cr L(n) for all n ∈ N.

The constant cr only depends on the order r . If D is a domain in d-dimensional
Euclidean space, this order is often independent of d or even strictly decreasing with
d. See Sect. 3 for the definition of this algorithm and several examples.

We find that the error of randomized algorithms using n function values of the target
function can get very close to the error of the orthogonal projection Pn and that this is
achieved by the algorithm Ar

n .
In Sect. 4, we use these algorithms for the integration of functions f in F with

respect to probability measures μ. We simply exploit the relation

∫
D

f dμ =
∫
D
Ar
n f dμ +

∫
D
( f − Ar

n f ) dμ.

Wecompute the integral of Ar
n f and use a direct simulation to approximate the integral

of ( f – Ar
n f ), which has a small variance. This technique is called variance reduction

and widely used for Monte Carlo integration. See Heinrich [5, Theorem 5.3] for
another example. Even if D is a high-dimensional domain, the resulting method can
significantly improve on the error of a sole direct simulation for a relatively small
number of samples.

These results are basedon the a priori knowledge that our target function is contained
in the unit ball of the space F . In Sect. 5, we discuss how this assumption can be
weakened.

2 The Setting

Let (D,A, μ) be a measure space and K ∈ {R,C}. The space L2 = L2(D,A, μ) is
the space of quadratically integrableK-valued functions on (D,A, μ), equipped with
the scalar product

〈 f, g〉2 =
∫
D

f · g dμ.

Let F be a second Hilbert space and F◦ be its unit ball. We assume that F is a subset
of L2 and that

T : F → L2, T f = f,

is compact. With the embedding T , we associate a positive semi-definite and compact
operatorW = T ∗T on the space F . By the spectral theorem, there is a (possibly finite)
orthogonal basisB = {b1, b2, . . . } of F , consisting of eigenvectors corresponding to a
nonincreasing zero sequence (λn)n∈N of eigenvalues ofW . Let N be the cardinality of
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B. One can easily check that B is orthogonal in L2, as well. We take the eigenvectors
bn to be normalized in L2. We call this basis the singular value decomposition of T .1

The number σ(n) = √
λn is called its n-th singular value or approximation number.

The worst case error of a deterministic algorithm A : F → L2 is the quantity

edet(A) = sup
f ∈F◦

‖ f − A( f )‖2 .

The worst case error of a measurable randomized algorithm

A : F × � → L2, ( f, ω) → Aω( f ),

where � is the sample space of some probability space (�,F ,P), is the quantity

eran(A) = sup
f ∈F◦

(
Eω

∥∥ f − Aω( f )
∥∥2
2

)1/2
.

Weusually skip theω in the notation. SeeNovak andWoźniakowski [17, Chapter 4] for
a precise definition of such algorithms. We furthermore define the following minimal
worst case errors within certain classes of algorithms.

The quantity

edet(n, T,�all) = inf
A∈Adet,all

n

edet(A)

is the minimal worst case error within the classAdet,all
n of all deterministic algorithms

evaluating at most n linear functionals of the input function.
The quantity

eran(n, T,�all) = inf
A∈Aran,all

n

eran(A)

is the minimal worst case error within the classAran,all
n of all measurable randomized

algorithms evaluating at most n linear functionals.
The quantity

edet(n, T,�std) = inf
A∈Adet,std

n

edet(A)

is the minimal worst case error within the classAdet,std
n of all deterministic algorithms

evaluating at most n function values of the input function.
The quantity

e(n) = eran(n, T,�std) = inf
A∈Aran,std

n

eran(A)

1 This term is more commonly used to refer to the representation T f = ∑
b∈B 〈 f, b〉 Tb of the compact

operator. Here, the altered terminology shall ease the notation.
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finally is the minimal worst case error within the class Aran,std
n of all measurable

randomized algorithms evaluating at most n function values. This is the error to be
analyzed. It was proved by Novak [16] that

eran(n, T,�std) ≥ eran(n, T,�all) ≥ 1√
2
edet(2n − 1, T,�all). (2)

The error edet(n, T,�all) is known to coincide with σ(n + 1). We refer to Novak and
Woźniakowski [17, Section 4.2.3]. The infimum is attained for the nonadaptive linear
algorithm

Pn : F → L2, Pn( f ) =
n∧N∑
k=1

〈 f, bk〉2 bk .

Here, log2 x denotes the logarithm of x > 0 in base 2, whereas ln x denotes its natural
logarithm. The minimum of a ∈ R and b ∈ R is denoted by a ∧ b. Recall that we
write xn � yn if there is a positive constant C and some n0 ∈ N such that xn ≤ Cyn
for all n ≥ n0. We write xn 
 yn if xn � yn and yn � xn .

3 A Method for Multivariate Approximation

Let us keep the notation of the previous section. For any m ∈ N with m ≤ N , we
define

um = 1

m

m∑
j=1

∣∣b j
∣∣2 .

This is a probability density with respect to μ. We consider the probability measure

μm : A → [0, 1], μm(E) =
∫
E
um dμ

on (D,A). In view of optimal algorithms inAdet,all
n , we introduce the following family

of algorithms in Aran,std
n .

Algorithm Let n = (n1, n2, . . . ) and m = (m1,m2, . . . ) be sequences of nonnega-
tive integers such that m is nondecreasing and bounded above by N = |B|. We define
the algorithms M (k)

n,m : L2 → L2 for k ∈ N0 as follows.

• Set M (0)
n,m = 0.

• For k ≥ 1 and f ∈ L2, let X (k)
1 , . . . , X (k)

nk be random variables with distribution
μmk that are each independent of all the other random variables, and set

M (k)
n,m f = M (k−1)

n,m f +
mk∑
j=1

⎡
⎣ 1

nk

nk∑
i=1

(
f − M (k−1)

n,m f
)
b j

umk

(
X (k)
i

)⎤
⎦ b j .
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Note that the expectation of each term in the inner sum is 〈 f − M (k−1)
n,m f, b j 〉2.

The algorithm M (k)
n,m hence approximates f in k steps. In the first step, n1 function

values of f are used for standard Monte Carlo type approximations of its m1 leading
coefficients with respect to the orthonormal system B. In the second step, n2 values of
the residue are used for standard Monte Carlo type approximations of its m2 leading
coefficients and so on. In total, M (k)

n,m uses
∑k

j=1 n j function values of f . The total
number of approximated coefficients is mk .

Algorithms of this type have already been studied by Wasilkowski and
Woźniakowski in [23]. The simple but crucial difference with the above algorithms is
the variable number n j of nodes in each approximation step. Note that this stepwise
approximation is similar to several multilevel Monte Carlo methods as introduced by
Heinrich in 1998, see [4].

The benefit from the kth step is controlled by mk and nk as follows.

Lemma 1 For all nondecreasing sequences n and m of nonnegative integers and all
k ∈ N, we have

σ(mk + 1)2 ≤ eran
(
M (k)

n,m

)2 ≤ mk

nk
eran

(
M (k−1)

n,m

)2 + σ(mk + 1)2.

Lemma 1 corresponds to Theorem 22.14 by Novak and Woźniakowski [18]. The
setting of the present paper is slightly more general, but the proof is the same. Since
Lemma 1 is essential for the following investigation, I present the proof.

Proof The lower bound holds true, since M (k)
n,m(bmk+1) is perpendicular to bmk+1. To

prove the upper bound, let f ∈ F◦. By EI we denote the expectation with respect to
the random variables X ( j)

i for j ∈ I and i = 1 . . . n j . We need to estimate

E{1...k}
∥∥∥ f − M (k)

n,m f
∥∥∥2
2

=
N∑
j=1

E{1...k}
∣∣∣〈 f − M (k)

n,m f, b j

〉
2

∣∣∣2 .

On the one hand, we have

N∑
j=mk+1

E{1...k}
∣∣∣〈 f − M (k)

n,m f, b j

〉
2

∣∣∣2 =
N∑

j=mk+1

∣∣〈 f, b j
〉
2

∣∣2 =
N∑

j=mk+1

∣∣〈 f,Wbj
〉
F

∣∣2

=
N∑

j=mk+1

∣∣〈 f, σ ( j)b j
〉
F

∣∣2 σ( j)2 ≤ σ(mk + 1)2 ‖ f ‖2F ≤ σ(mk + 1)2.

We use the abbreviation

g j =
(
f − M (k−1)

n,m f
)
b j

umk
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for each j ≤ mk . Note that umk = 0 implies b j = 0, and we set g j = 0 in this case.
We then obtain, on the other hand, for each j ≤ mk , that

E{k}
∣∣∣〈 f − M (k)

n,m f, b j

〉
2

∣∣∣2 = E{k}

∣∣∣∣∣
〈
f − M (k−1)

n,m f, b j

〉
2
− 1

nk

nk∑
i=1

g j

(
X (k)
i

)∣∣∣∣∣
2

= E{k}

∣∣∣∣∣
∫
D
g j (x) dμmk (x) − 1

nk

nk∑
i=1

g j

(
X (k)
i

)∣∣∣∣∣
2

≤ 1

nk

∫
D

∣∣g j (x)
∣∣2 dμmk (x) = 1

nk

∫
D

∣∣g j (x)
∣∣2 umk (x) dμ(x),

and hence

mk∑
j=1

E{k}
∣∣∣〈 f − M (k)

n,m f, b j

〉
2

∣∣∣2 ≤ 1

nk

∫
D

mk∑
j=1

∣∣g j (x)
∣∣2 umk (x) dμ(x)

= mk

nk

∫
D

∣∣∣( f − M (k−1)
n,m f

)
(x)

∣∣∣2 dμ(x) = mk

nk

∥∥∥ f − M (k−1)
n,m f

∥∥∥2
2
.

With Fubini’s theorem, this yields that

E{1...k}
∥∥∥ f − M (k)

n,m f
∥∥∥2
2

≤ mk

nk
E{1...k−1}

∥∥∥ f − M (k−1)
n,m f

∥∥∥2
2
+ σ(mk + 1)2,

and the upper bound is proved. ��
We now define the algorithm of Theorem 2. We consider such algorithms M (k)

n,m,
where the number of nodes n j is doubled in each step and the ratio

m j
n j

of approximated

coefficients and computed function values is constant, say 2−�. This way, the total
number mk of approximated coefficients is linear in the total number n of computed
function values. This is necessary to achieve an error of the same order as with optimal
algorithms using arbitrary linear information, which precisely compute the first n
coefficients. The algorithms by Wasilkowski and Woźniakowski [23] do not have this
property. If the ratio is small enough, Lemma 1 ensures that M (k)

n,m inherits optimal

error bounds from M (k−1)
n,m .

Algorithm Given r ≥ 0, we set �r = �2r + 1
 and define the sequences n and m by

n j =
{
0, for j ≤ �r ,

2 j−1, for j > �r ,
m j =

{
0, for j ≤ �r ,

2 j−1−�r ∧ N , for j > �r .

For n ∈ N, we choose k ∈ N0 such that 2k ≤ n < 2k+1 and set

Ar
n = M (k)

n,m.

The algorithm Ar
n obviously performs less than n function evaluations.
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Proof of Theorem 2 Let n and m be defined as above and k ∈ N0. We first show that

eran
(
M (k)

n,m

)
≤ c̄r L(2k), (3)

where c̄r = 2r(�r+1)+1. We use induction on k. If k ≤ �r , we have M (k)
n,m = 0 and

eran
(
M (k)

n,m

)
= σ(1) ≤ L(1) ≤ 2rk L(2k) ≤ c̄r L(2k).

For k > �r , we inductively obtain with Lemma 1 that

eran
(
M (k)

n,m

)2 ≤ 2−�r eran
(
M (k−1)

n,m

)2 + σ(mk + 1)2

≤ 2−�r c̄2r L
(
2k−1

)2 + L
(
2k−�r−1

)2
≤ 2−�r c̄2r 2

2r L(2k)2 + 22r(�r+1)L(2k)2

=
(
22r−�r + 2−2

)
c̄2r L(2k)2,

where the term in brackets is smaller than 1. This shows (3). For n ∈ N, we choose
k ∈ N0 with 2k ≤ n < 2k+1 and obtain

eran
(
Ar
n

) = eran
(
M (k)

n,m

)
≤ c̄r L(2k) ≤ 2r c̄r L(n) = cr L(n),

as was to be proved. ��
Note that Theorem 1 is a direct consequence of Theorem 2. Of course, the best

possible upper bound forσ(n) isσ(n) itself. Ifwe combineTheorem1 for L(n) = σ(n)

with Novak’s lower bound (2), we obtain the following statement on the order of
convergence.

Corollary 1 Assume that σ(2n) 
 σ(n). Then

eran
(
n, F ↪→ L2,�std

)

 eran

(
n, F ↪→ L2,�all

)

 edet

(
n, F ↪→ L2,�all

)
.

Note that the error edet
(
n, F ↪→ L2,�std

)
of optimal deterministic algorithms

based on function values may perform much worse, as shown by Hinrichs, Novak
and Vybíral [7], see also Novak and Woźniakowski [18, Section 26.6.1]. It is a very
interesting question whether the condition on the decay of the singular values can be
relaxed. Note that we use this condition both to prove the upper and the lower bound
of Corollary 1. On the other hand, if we combine Theorem 2 for L(n) = σ(n) and the
lower bound (2), we obtain the following optimality result.

Corollary 2 Assume that there is some r ≥ 0 such that σ(2n) ≥ 2−rσ(n) holds for
all n ∈ N. We set c̃r = 2r�2r+4
+3/2. Then we have

eran
(
Ar
n

) ≤ c̃r e
ran

(
n, T,�std

)
for all n ∈ N.
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Let us now consider some examples. In each example, we first discuss the order of
convergence of eran

(
n, F ↪→ L2,�std

)
. We then talk about explicit upper bounds.

Example 1 (Approximation of mixed order Sobolev functions on the torus). Let D be
the d-dimensional torusTd , represented by the unit cube [0, 1]d , where opposite faces
are identified. Let A be the Borel σ -algebra on T

d and μ the Lebesgue measure. Let
F be the Sobolev space of complex-valued functions on D with dominating mixed
smoothness r ∈ N, equipped with the scalar product

〈 f, g〉F =
∑

‖α‖∞≤r

〈
Dα f, Dαg

〉
2 . (4)

We know that

edet
(
n, F ↪→ L2,�all

)

 n−r lnr(d−1) n.

This classical result goes back to Babenko [1] and Mityagin [14]. Corollary 1 yields

eran
(
n, F ↪→ L2,�std

)

 n−r lnr(d−1) n.

This is a new result. The optimal order is achieved by the algorithm Ar
n and the author

does not know of any other algorithm with this property. It is still an open problem
whether the same rate can be achieved with deterministic algorithms based on function
values. So far, it is only known that

n−r lnr(d−1) n � edet
(
n, F ↪→ L2,�std

)
� n−r ln(r+1/2)(d−1) n.

The upper bound is achieved by Smolyak’s algorithm, see Sickel and Ullrich [19].
We now turn to explicit estimates. We know that there is some Cr,d > 0 such that

eran
(
n, F ↪→ L2,�std

)
≤ Cr,d n

−r lnr(d−1) n for all n ≥ 2. (5)

This upper bound is optimal as n tends to infinity. However, it is not useful to describe
the error numbers for small values of n. Simple calculus shows that the right-hand
side in (5) is increasing for n ≤ ed−1. The error numbers, on the other hand, are
decreasing. Moreover, the right-hand side attains its minimum for n = 2 if restricted
to n ≤ (d − 1)d−1 and is hence larger than eran

(
2, F ↪→ L2,�std

)
. This means that

the trivial upper bound

eran
(
n, F ↪→ L2,�std

)
≤ eran

(
2, F ↪→ L2,�std

)
for all n ≥ 2

is better than (5) for all n ≤ (d − 1)d−1 and regardless of the value of Cr,d . For these
reasons, it is important to consider different error bounds, if the dimension d is large.
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See also the paper of Kühn, Sickel, and Ullrich [12]. Based on this paper, it is shown
by the author [9] that

σ(n) ≤ (2/n)p for all n ∈ N, if p = r

2 + ln d
.

We obtain with Theorem 2 that

eran
(
Ap
n
) ≤ 2 ·

(
2�2p+4
/n

)p
for n ∈ N. (6)

Example 2 (Approximation of mixed order Sobolev functions on the cube). Now, let
D be the d-dimensional unit cube [0, 1]d with the induced topology, and let A be the
Borel σ -algebra andμ the Lebesgue measure. Let F be the Sobolev space of complex-
valued functions on [0, 1]d with dominating mixed smoothness r ∈ N, equipped with
the scalar product (4). Just like on the torus, we have

eran
(
n, F ↪→ L2,�std

)

 edet

(
n, F ↪→ L2,�all

)

 n−r lnr(d−1) n,

where the optimal rate is achieved by Ar
n . Like in Example 1, the corresponding upper

bounds are bad for n ≤ (d − 1)d−1. In this range, we need different estimates for the
approximation numbers. It is known that

σ(n) ≤ (2/n)p for n ∈ N, if p = 1.1929

2 + ln d
.

This estimate cannot be improved significantly for n ≤ 2d , even if r = ∞. See the
author’s paper [9] for more details. With Theorem 2, we obtain the upper bound

eran
(
Ap
n
) ≤ 2 · (26/n)p for n ∈ N.

Example 3 (Approximation in tensor product spaces). This example is more general
than the previous ones. By H1⊗H2 we denote the tensor product of twoHilbert spaces
H1 and H2. For j = 1 . . . d, let (Dj ,A j , ν j ) be a σ -finite measure space and Fj be a
Hilbert space of K-valued functions that is compactly embedded in L2(Dj ,A j , ν j ).
The σ -finity of the measure spaces ensures that

L2(D1,A1, ν1) ⊗ · · · ⊗ L2(Dd ,Ad , νd) = L2(D,A, μ),

where D is the Cartesian product of the sets Dj and μ is the unique product measure
of the measures ν j on the tensor product A of the σ -algebras A j . The tensor product
space

F = F1 ⊗ · · · ⊗ Fd
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is compactly embedded in L2(D,A, μ). Assuming that the approximation numbers
of the univariate embeddings Fj ↪→ L2(Dj ,A j , ν j ) are of polynomial decay, that is,

edet
(
n, Fj ↪→ L2(Dj ,A j , ν j ),�

all
)


 n−r j

for some r j > 0, it can be derived from Mityagin [14] and Nikol’skaya [15] that

edet
(
n, F ↪→ L2(D,A, μ),�all

)

 n−r lnr(d0−1) n,

where r is the minimum among all numbers r j and d0 is its multiplicity. Corollary 1
implies

eran
(
n, F ↪→ L2(D,A, μ),�std

)

 n−r lnr(d0−1) n,

where the optimal order is achieved by Ar
n . We do not discuss explicit estimates in

this abstract setting.

Example 4 (Approximation of isotropic Sobolev functions on the torus). Let D again
be the d-torus, this time represented by [0, 2π ]d . Let F be the Sobolev space of
complex-valued functions on D with isotropic smoothness r ∈ N, equipped with the
scalar product

〈 f, g〉F =
∑

‖α‖1≤r

〈
Dα f, Dαg

〉
2 .

This example is not a tensor product problem. For this classical problem, it is known
that

edet
(
n, F ↪→ L2,�std

)

 eran

(
n, F ↪→ L2,�std

)


 edet
(
n, F ↪→ L2,�all

)

 eran

(
n, F ↪→ L2,�all

)

 n−r/d

for r > d/2. In the case r ≤ d/2, where function values are only defined almost
everywhere, the last three relations stay valid. See Jerome [8], Triebel [21], Mathé
[13], and Heinrich [6]. For n ≤ 2d , however, the function n−r/d is not suited to
describe the behavior of σ(n). It has been proved by Kühn, Mayer, and Ullrich [11]
that there are positive constants br and Br that do not depend on d such that

br

(
log2

(
1 + d/ log2 n

)
log2 n

)r/2

≤ σ(n) ≤ Br

(
log2

(
1 + d/ log2 n

)
log2 n

)r/2

(7)
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for all d > 1 and n ∈ N with d ≤ n ≤ 2d . If we apply Relation (2) and Theorem 2,2

we obtain the existence of d-independent positive constants b̃r and B̃r such that

b̃r

(
log2

(
1 + d/ log2 n

)
log2 n

)r/2

≤ e(n) ≤ B̃r

(
log2

(
1 + d/ log2 n

)
log2 n

)r/2

for all d > 1 and n ∈ N with d ≤ n ≤ 2d−1. This optimal behavior is achieved by the
algorithm Ar

n .

Remark 1 (Implementation of these algorithms). The construction of the algorithms
Ar
n is completely explicit. We are able to implement these algorithms if we know

the singular value decomposition B of the embedding F ↪→ L2 and if we are able to
sample from the probability distributionsμm . This taskmay be very hard. In Example 1
and 4, however, it is not. Here,B is the Fourier basis of L2, and all the random variables
are independent and uniformly distributed on the unit cube. Also the case of general
tensor product spaces F and L2 can be handled if the singular value decompositions
B j of the univariate embeddings Fj ↪→ L2(Dj ,A j , ν j ) are known. Then, the singular
value decomposition of the embedding F ↪→ L2 is given by

B =
{
b(1) ⊗ · · · ⊗ b(d) | b( j) ∈ B j for j = 1 . . . d

}
,

and the probability measure μm is the average of m product densities; that is,

μm = 1

m

m∑
i=1

d⊗
j=1

ηi, j ,

where dηi, j = |bi, j |2dν j with some bi, j ∈ B j . A random sample x from this distri-
bution can be obtained as follows:

(1) Get i from the uniform distribution on {1, . . . ,m}.
(2) Get x1, . . . , xd independently from the probability distributions ηi,1, . . . , ηi,d .

The second step can, for example, be done by rejection sampling, if the measures ηi, j
have a bounded Lebesgue density. This way, the total sampling costs are linear in d.
Another method of sampling from μm is proposed by Cohen and Migliorati in [3,
Section 5].

2 We take L(n) as the right-hand side in (7) for d ≤ n ≤ 2d , L(n) = L(2d ) for n > 2d , and L(n) =
max {1, L(d)} for n < d. Then σ(n) ≤ L(n) for n ∈ N, and L(n)nr is nondecreasing.
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4 A Method for Multivariate Integration

In this section, we require the measure μ to be finite. This ensures that the integral
operator

I : F → K, I ( f ) =
∫
D

f dμ

is well defined and continuous on F . Let us assume that μ is a probability measure.
We want to approximate I ( f ) for an unknown function f ∈ F◦ by a randomized
algorithm Qn that evaluates at most n function values of f . The worst case error of
Qn is the quantity

eran(Qn) = sup
f ∈F◦

(
E |I ( f ) − Qn( f )|2

)1/2
.

The minimal worst case error among such algorithms is denoted by

eran(n, I,�std) = inf
Qn

eran(Qn).

Like any method for L2-approximation, the algorithm Ar
n from Sect. 3 can also be

used for numerical integration.

Algorithm For all r > 0, any n ∈ N, and f ∈ L2, let

Qr
2n( f ) = I (Ar

n f ) + 1

n

n∑
j=1

(
f − Ar

n f
)
(X j ),

where X1, . . . , Xn are random variables with distribution μ that are independent of
each other and the random variables in Ar

n .

It is easy to verify that Qr
2n is unbiased, evaluates at most 2n function values of f ,

and satisfies

E
∣∣I ( f ) − Qr

2n( f )
∣∣2 ≤ 1

n
E

∥∥ f − Ar
n f

∥∥2
2

for each f in L2. We thus obtain the following corollary.

Corollary 3 Assume that L : N → (0,∞) satisfies (1), and let cr = 2r�2r+3
+1.

If σ(n) ≤ L(n) for all n ∈ N,

then eran(Qr
2n) ≤ cr n

−1/2L(n) for all n ∈ N.
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In particular:

edet
(
n, F ↪→ L2,�all

)
� n−p lnq n

⇒ eran
(
n, I,�std

)
� n−p−1/2 lnq n.

The result on the order of convergence is quite general but not always optimal.
An example is given by integration with respect to the Lebesgue measure μ on the
Sobolev space F with dominating mixed smoothness r on the d-dimensional unit
cube, as treated by Novak and the author [10] and Ullrich [22]. In this case, we have

edet
(
n, F ↪→ L2,�all

)

 n−r lnr(d−1) n,

eran
(
n, I,�std

)

 n−r−1/2.

The main strength of Corollary 3 is that it provides us with unbiased methods for high-
dimensional integration achieving a small error with a modest number of function
values.

Example 5 (Integration of mixed order Sobolev functions on the torus). As in Exam-
ple 1, let F be the Sobolev space of dominating mixed smoothness r on the d-torus,
and letμ be the Lebesguemeasure. Among all randomized algorithms for multivariate
integration in F , the randomized Frolov algorithm Q∗

n is known to have the optimal
error rate. It is shown by Ullrich [22] that there is some constant c > 2d such that

eran
(
Q∗

n

) ≤ c n−r−1/2 for n ∈ N. (8)

However, this estimate is trivial if n is not exponentially large in d. For smaller values
of n, an error less than one is guaranteed by the direct simulation

Sn( f ) = 1

n

n∑
j=1

f (X j ),

with independent and uniformly distributed random variables X j . It satisfies

eran (Sn) ≤ n−1/2 for n ∈ N. (9)

However, this error bound converges only slowly, as n tends to infinity. It does not
reflect the smoothness of the integrands at all. The above method also guarantees
nontrivial error bounds for smaller values of n but converges faster than Sn . Relation (6)
immediately yields that

eran
(
Qp

2n

) ≤ C n−p−1/2 for n ∈ N, (10)

with p = r
2+ln d and C = 2p�2p+4
+1. For example, let d = 500 and r = 8. For one

million function values, the estimate (8) for the Frolov algorithm is larger than one,
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the estimate (9) for the direct simulation gives the error 10−3, and the estimate (10)
for our new algorithm gives an error smaller than 5 · 10−7.

Remark 2 (Implementation of these algorithms). We are able to implement the algo-
rithms Qr

2n under the following assumptions:

• We are able to implement Ar
n . This issue is discussed in Remark 1.

• We know the integrals I (b j ) of the eigenfunctions b j ∈ B for all j ≤ 2−�r n.
• We can sample from the probability distribution μ.

In the above example, the implementation is particularly easy, since B is the Fourier
basis and all the random variables are independent and uniformly distributed on the
unit cube.

5 A Weaker Type of A Priori Knowledge

In the previous sections, we assumed that the target function f is contained in the unit
ball of a Hilbert space F that is compactly embedded into L2, that is,

‖ f ‖F ≤ 1. (11)

As we have seen in Sect. 2, the space F induces a nonincreasing sequence σ , the
singular numbers

σ(1) ≥ σ(2) ≥ · · · > 0

of the embedding F ↪→ L2. This sequence is either finite or tends to zero. It also
induces a nested sequence V of subspaces

V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ L2, dim(Vm) = m,

where Vm is spanned by the first m elements of the singular value decomposition.
In turn, any such pair (σ, V ) induces a Hilbert space F that is compactly embedded

into L2. We choose bm as an element of the orthogonal complement of Vm−1 in Vm
with ‖bm‖2 = 1 and define F by its orthonormal basis {σ(1)b1, σ (2)b2, . . .}. It has
the scalar product

〈 f, g〉F =
∑

σ(k)−2 〈 f, bk〉2 〈g, bk〉2,

where we take the sum over the whole sequence σ . It is not hard to see that the
correspondence between F and the pair (σ, V ) is bijective up to the choice of the
spaces Vm for which we have σ(m + 1) = σ(m).

Let Pm denote the orthogonal projection onto Vm in L2. It is readily verified that
our assumption (11) on the target function f implies that

‖ f − Pm f ‖22 ≤ σ(m + 1)2 for all m ∈ N0. (12)
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In general, however, (12) is strictly weaker than (11). For example, if σ(k) = 1/k for
k ∈ N, the function

f =
∑

(σ (k)2 − σ(k + 1)2)1/2 bk

satisfies (12) but is not even contained in the space F . In Sect. 3, we constructed a
randomized algorithm Ar

n : L2 → Vm and proved upper bounds on the mean square

error E
∥∥ f − Ar

n( f )
∥∥2
2 for any f from (11). In fact, the same error bounds hold for

any f from (12). We state this as Theorem 3.

Theorem 3 Let (D,A, μ) be a measure space and L2 = L2(D,A, μ). For any
m ∈ N0, let Vm be an m-dimensional subspace of L2 such that Vm ⊂ Vm+1, and let
Pm : L2 → Vm be the orthogonal projection onto Vm. Assume that f ∈ L2 satisfies

‖ f − Pm f ‖22 ≤ ε(m) for all m ∈ N0, (13)

with some ε : N0 → (0,∞). Then the randomized algorithm Qm : L2 → Vm as
defined below satisfies

E ‖ f − Qm f ‖22 ≤ 2 ε(m)

for any m = 2k and k ∈ N0. The number of requested function values is at most

n (Qm) ≤ 4m · max
0≤ j≤k

⌈
ε(�2 j−1�)

ε(2 j )

⌉
. (14)

To define the algorithm Qm , we choose bn in the orthogonal complement of Vn−1
in Vn with ‖bn‖2 = 1 for all n ∈ N. For j ∈ N, we set

m j = 2 j−1 and n j = 2 j
⌈

ε(�2 j−2�)
ε(2 j−1)

⌉
.

Then the method M (k)
n,m : L2 → Vmk for k ∈ N0 can be defined as in Sect. 3. Given

m = 2k for some k ∈ N0, we define Qm = M (k+1)
n,m : L2 → Vm .

Proof We only sketch the proof since it is very similar to the proof of Theorem 2. Just
like in Lemma 1, we can show for any k ∈ N0 that

E

∥∥∥ f − M (k+1)
n,m f

∥∥∥2
2

≤ mk+1

nk+1
E

∥∥∥ f − M (k)
n,m f

∥∥∥2
2
+ ε(mk+1).

The statement follows by induction on k ∈ N0. ��
Note that we did not impose any condition on the upper bound ε : N0 → (0,∞).

If ε is regularly decreasing, the maximum in (14) is bounded by a constant that does
not depend on m. Roughly speaking, the algorithm Qm admits a mean square error of
order ε(m) with a sample size of order m for any f from (13).
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Remark 3 (Optimal approximation within a subspace). Let D be a Borel subset of
R
d with positive Lebesgue measure, A be the Borel sigma algebra on D, and μ be a

probability measure on (D,A). The best approximation of f ∈ L2(D,A, μ) within
the subspace Vm is given by Pm f . Its error is given by the number

em( f ) = inf
v∈Vm

‖ f − v‖2 = ‖ f − Pm f ‖2 .

In general, we cannot find Pm f by sampling only a finite number of function values
of f . What we can provide is a random approximation vm within Vm whose root mean
square error

(
E ‖ f − vm‖22

)1/2

is close to em( f ). If we know the numbers em( f ) for all m ∈ N (or some good upper
bound) and if they are regularly decreasing, we can choose vm as the output of the
method Qm from Theorem 3, which uses a sample size of order m. But even if we do
not know anything about f ∈ L2, we can still find an approximation vm like above.
We only need the mild assumption that Vm consists of functions defined everywhere
on D and that for each x ∈ D, there is some v ∈ Vm with v(x) �= 0. We can then
choose vm as the output of a weighted least squares method, see Cohen and Migliorati
[3, Theorem 2.1 (iv)]. The sample size of this method, however, is at least of order
m lnm. In both cases, the involved proportionality constants are independent of the
dimension of the domain D.

Acknowledgements I wish to thank Erich Novak, Robert Kunsch, Winfried Sickel, and two anonymous
referees, whose comments and questions led to the present generality of the theorems.
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