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Abstract In this paper we show that, with respect to the L2 norm, three classes of
functions in Hr (0, 1), defined by certain boundary conditions, admit optimal spline
spaces of all degrees ≥ r − 1, and all these spline spaces have uniform knots.
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1 Introduction

Recently there has been renewed interest in using splines of maximal smoothness,
i.e., of smoothness Cd−1 for splines of degree d, as finite elements for solving PDEs.
This is one of the main ideas behind isogeometric analysis [1,2,4,10]. This raises the
issue of how good these splines are at approximating functions of a certain smoothness
class, especially with respect to approximation in the L2 norm. This was answered
to some extent by Melkman and Micchelli [7], who studied the L2 approximation of
functions u in the Sobolev space

Hr = Hr (0, 1) = {u ∈ L2(0, 1) : u(α) ∈ L2(0, 1), α = 1, 2, . . . , r}
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and measured the error relative to the L2 norm of u(r). They showed that from this
point of view, there are two spaces of splines that are optimal, one of degree r − 1, the
other of degree 2r − 1. Later it was shown in [3] that these two spaces are just the first
two of a whole sequence of optimal spline spaces of degrees lr −1, l = 1, 2, 3, . . .. In
the case r = 1, there is therefore an optimal spline space of every degree, but whether
this is true for r ≥ 2 is an open question.

In this paper, we study the related problemof approximating functions in Hr subject
to certain boundary conditions. Specifically, we look at

Hr
0 = {u ∈ Hr : u(k)(0) = u(k)(1) = 0, 0 ≤ k < r, k even},

Hr
1 = {u ∈ Hr : u(k)(0) = u(k)(1) = 0, 0 ≤ k < r, k odd},

Hr
2 = {u ∈ Hr : u(k)(0) = u(l)(1) = 0, 0 ≤ k, l < r, k even, l odd}.

Our main result is to show that for all r ≥ 1, the spaces Hr
i , i = 0, 1, 2, admit

optimal spline spaces of all degrees≥ r−1. This is very similar to the numerical results
reported by Evans et al. [2] regarding the degrees of the spline spaces; however, their
paper considered other boundary conditions (periodic conditions or no conditions).

The derivations in [7] and [3] were based on the use of an integral operator K that
represents integration r times. Roughly speaking, and ignoring what happens at the
boundary of the interval, if Xn is an optimal space of splines of some degree d, then
the space K (Xn), i.e., the space generated by integrating the splines in Xn , r times, is
also an optimal space, consisting of splines of degree d + r .

In contrast, in this paper, we work only with an integral operator K that represents a
single integration. We generate optimal spline spaces for Hr

i , i = 0, 1, 2, by applying
K , i.e., one integration, both to the initial Sobolev space H1

i and its optimal spline
space, Xn , of degree 0. This approach works for Hr

i , i = 0, 1, 2, because, unlike Hr

itself, when we apply (the right) K to the functions in Hr
i , we get back a similar space,

with r increased by one.
The optimal spline spaceswe obtain have the same type of boundary conditions (odd

or even derivatives are zero at the ends of the interval) as the spaces Hr
i themselves.

The splines also have uniform knots, thus making them convenient to use in practice.
In particular, some of the spline spaces corresponding to Hr

1 are precisely the ‘reduced
spline spaces’ studied recently by Takacs and Takacs [10, Section 5] (see also the end
of Sect. 3 in this paper). They proved approximation estimates and inverse inequalities
for these spaces, with a view to constructing fast iterative methods for solving PDEs
in the framework of isogeometric analysis.

2 Kolmogorov n-Widths

Westart by formulating the concept of optimality in terms ofKolmogorov n-widths [9].
Denote the norm and inner product on L2 = L2(0, 1) by

‖ f ‖2 = ( f, f ), ( f, g) =
∫ 1

0
f (t)g(t) dt,
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for real-valued functions f and g. For a subset A of L2, and an n-dimensional subspace
Xn of L2, let

E(A, Xn) = sup
u∈A

inf
v∈Xn

‖u − v‖

be the distance to A from Xn relative to the L2 norm. Then theKolmogorov L2 n-width
of A is defined by

dn(A) = inf
Xn

E(A, Xn).

A subspace Xn is called an optimal space for A provided that

dn(A) = E(A, Xn).

Now, consider the function classes

Ar
i = {u ∈ Hr

i : ‖u(r)‖ ≤ 1}, i = 0, 1, 2. (1)

By looking at u/‖u(r)‖ for functions u ∈ Hr
i , we have for any n-dimensional subspace

Xn of L2,

‖u − Pnu‖ ≤ E(Ar
i , Xn)‖u(r)‖,

where Pn denotes the L2 projection onto Xn . Moreover, if Xn is an optimal subspace
for Ar

i , then
‖u − Pnu‖ ≤ dn(A

r
i )‖u(r)‖,

and dn(Ar
i ) is the least possible constant over all n-dimensional subspaces Xn .

3 Main Results

We first describe the n-widths for Ar
i in (1) and the optimal subspaces based on

eigenfunctions. We will show:

Theorem 1 For any integer r ≥ 1, the n-widths of Ar
i , i = 0, 1, 2, are

dn(A
r
0) = 1

(n + 1)rπr
, dn(A

r
1) = 1

(nπ)r
, dn(A

r
2) = 1

(n + 1
2 )

rπr
. (2)

Furthermore, the spaces

[sin πx, sin 2πx, . . . , sin nπx], (3)

[1, cosπx, cos 2πx, . . . , cos(n − 1)πx], (4)

[sin(1/2)πx, sin(3/2)πx, . . . , sin(n − 1/2)πx] (5)
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are optimal n-dimensional spaces for, respectively, Ar
0, A

r
1, and Ar

2.

Here, [· · · ] denotes the span of a set of functions. The result for A1
1 was shown by

Kolmogorov [6]. With r an even number, the result for Ar
0 was shown in [3]. The

remaining cases will be shown in Sects. 7 and 8.
Now, let us describe the optimal spline spaces for these sets. Suppose τ =

(τ1, . . . , τm) is a knot vector such that

0 < τ1 < · · · < τm < 1,

and let I0 = [0, τ1), I j = [τ j , τ j+1), j = 1, . . . ,m − 1, and Im = [τm, 1]. For any
d ≥ 0, let �d be the space of polynomials of degree at most d. Then we define the
spline space Sd,τ by

Sd,τ = {s ∈ Cd−1[0, 1] : s|I j ∈ �d , j = 0, 1, . . . ,m},

which has dimensionm+d +1. We now define the three n-dimensional spline spaces
Sd,i for i = 0, 1, 2, by

Sd,0 = {s ∈ Sd,τ 0 : s(k)(0) = s(k)(1) = 0, 0 ≤ k ≤ d, k even},
Sd,1 = {s ∈ Sd,τ 1 : s(k)(0) = s(k)(1) = 0, 0 ≤ k ≤ d, k odd},
Sd,2 = {s ∈ Sd,τ 2 : s(k)(0) = s(l)(1) = 0, 0 ≤ k, l ≤ d, k even, l odd},

(6)

where the knot vectors τ i for i = 0, 1, 2, are given as

τ 0 =
⎧⎨
⎩

(
1

n+1 ,
2

n+1 , . . . ,
n

n+1

)
, d odd,(

1/2
n+1 ,

3/2
n+1 , . . . ,

n+1/2
n+1

)
, d even,

τ 1 =
{(

1/2
n ,

3/2
n , . . . ,

n−1/2
n

)
, d odd,( 1

n , 2
n , . . . , n−1

n

)
, d even,

τ 2 =
⎧⎨
⎩

(
1

2n+1 ,
3

2n+1 , . . . ,
2n−1
2n+1

)
, d odd,(

2
2n+1 ,

4
2n+1 , . . . ,

2n
2n+1

)
, d even.

(7)

All these knot vectors have equidistant knots, but if we extend them to include
the endpoints of [0, 1], the first and last knot intervals of these extended knot vectors
sometimes have half the length of the interior ones. Examples of these knot vectors
are shown in Figs. 2, 3, and 4. Our main result is then the following.

Theorem 2 Suppose r ≥ 1. Then for any i = 0, 1, 2, the spline spaces Sd,i are
optimal n-dimensional spaces for the set Ar

i for any d ≥ r − 1.

The case A1
1 was shown in [3, Theorem 2]. On the other hand, the case Ar

0 is a
generalization of [3, Theorem 1] since that theorem only treated even r and spline
spaces of degrees lr − 1 for l = 1, 2, . . ., thus leaving gaps between the degrees.
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When the degree d is even, the spaces Sd,1, whose common extended knot vector
is equidistant, are the ‘reduced spline spaces’ of Takacs and Takacs [10, Section 5].
They have also derived approximation results regarding these spaces, using Fourier
analysis. We can see from Theorem 2 and (2) that, for even d, the constant

√
2 in [10,

Corollary 5.1] can be replaced by the optimal constant 1/π .

4 Sets Defined by Kernels

We need some properties of kernels, and so this section is similar to [3, Section 3].
The starting point of the analysis is to represent the lowest order function classes A1

i ,
i = 0, 1, 2, in the form

A = K (B) = {K f : ‖ f ‖ ≤ 1}, (8)

where B is the unit ball in L2 and K is the integral operator

K f (x) =
∫ 1

0
K (x, y) f (y) dy.

As in [7], we use the notation K (x, y) for the kernel of K . We only consider kernels
K (x, y) that are continuous or piecewise continuous for x, y ∈ [0, 1]. Observe that
for A in (8) and any n-dimensional subspace Xn of L2,

E(A, Xn) = sup
‖ f ‖≤1

‖(I − Pn)K f ‖ = ‖(I − Pn)K‖2, (9)

where Pn is the orthogonal projection onto Xn and ‖ · ‖2 denotes the operator norm
induced by the L2 norm for functions.

We will denote by K ∗ the adjoint, or dual, of the operator K , defined by

( f, K ∗g) = (K f, g).

The kernel of K ∗ is K ∗(x, y) = K (y, x). Similar to matrix multiplication, the kernel
of the composition of two integral operators K and L is

(K L)(x, y) = (K (x, ·), L(·, y)).

The operator K ∗K , being self-adjoint and positive semi-definite, has eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λn ≥ · · · ≥ 0, (10)

and corresponding orthogonal eigenfunctions

K ∗Kφn = λnφn, n = 1, 2, . . . . (11)
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If we further define ψn = Kφn , then

KK ∗ψn = λnψn, n = 1, 2, . . . , (12)

and theψn are also orthogonal. The square roots of the λn are known as the s-numbers
of K (or K ∗). With these definitions, we obtain [9, p. 6 or p. 65]:

Theorem 3 dn(A) = λ
1/2
n+1, and the space [ψ1, . . . , ψn] is optimal for A.

5 Totally Positive Kernels

Melkman and Micchelli [7] proved that if K is nondegenerate totally positive (NTP)
[9, p. 108], then there are in fact two other optimal subspaces for A. Specifically, if K
is NTP, it follows from a theorem of Kellogg [9, p. 109] that the eigenvalues of K ∗K
and KK ∗ in (11) and (12) are positive and simple, λ1 > λ2 > · · · > λn > · · · > 0,
and the eigenfunctions φn+1 and ψn+1 have exactly n simple zeros in (0, 1),

φn+1(ξ j ) = ψn+1(η j ) = 0, j = 1, 2, . . . , n,

0 < ξ1 < ξ2 < · · · < ξn < 1, 0 < η1 < η2 < · · · < ηn < 1.

Melkman and Micchelli [7, Theorem 2.3] then proved that the spaces

X0
n = [K (·, ξ1), . . . , K (·, ξn)],

X1
n = [(KK ∗)(·, η1), . . . , (KK ∗)(·, ηn)]

(13)

are optimal for A. Using a duality technique that we will discuss in the next section,
it was later shown in [3, Theorem 5] that, given these two optimal spaces, there is an
optimal space Xd

n for all d = 0, 1, 2, . . ., where

Xd
n =

{
[(KK ∗)i K (·, ξ1), . . . , (KK ∗)i K (·, ξn)], d = 2i,

[(KK ∗)i+1(·, η1), . . . , (KK ∗)i+1(·, ηn)], d = 2i + 1.
(14)

Melkman and Micchelli also constructed two optimal subspaces for the set A even
when K is not NTP, but for K satisfying some related properties. We will deal with
such a situation in Sect. 8.

6 Further Optimality Results

In this section, we describe how optimal subspaces for the set A in (8) can be used to
find optimal subspaces for sets of the form K ∗(A), KK ∗(A), and so on. The results
here will hold for any integral operator K .
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To ease notation, we define two function classes Ar and Ar∗ for r ≥ 1, by

Ar =
{

(KK ∗)i K (B), r = 2i + 1,

(KK ∗)i (B), r = 2i,
Ar∗ =

{
(K ∗K )i K ∗(B), r = 2i + 1,

(K ∗K )i (B), r = 2i.
(15)

Observe that both Ar and Ar∗ are defined by alternately applying the operators
K and K ∗, r times, to the unit ball B, with K always being the left-most operator
for Ar , and K ∗ always being the left-most operator for Ar∗. Since A1 = A, we will
write A∗ when referring to A1∗. As we shall see momentarily, the duality between the
operators K and K ∗ will play an important role for the sets Ar and Ar∗ and especially
their respective optimal subspaces. In some sense, their optimal subspaces could be
considered ‘dual’ to each other.

Since eigenvalues of powers of KK ∗ (and K ∗K ) are just powers of the λn in (10),
with the same corresponding eigenfunction, it follows that the n-widths of the sets Ar

and Ar∗ are given by
dn(A

r∗) = dn(A
r ) = dn(A)r , (16)

and the space [ψ1, . . . , ψn] in Theorem 3 is optimal for Ar , and the space [φ1, . . . , φn]
is optimal for Ar∗. As a tool for finding further optimal subspaces for Ar and Ar∗, with
r ≥ 2, we start with the following lemma.

Lemma 1 For any integral operator K , let L = KK ∗. If Xn and Yn are any subspaces
of L2, then

E(Ar , Li (Xn)) ≤ E(A, Xn)E(Ar−1, Li (Xn)), r = 2i + 1,

E(Ar , Li−1K (Yn)) ≤ E(A∗,Yn)E(Ar−1, Li−1K (Yn)), r = 2i,

for r ≥ 2.

Proof First assume r = 2i + 1 for i ≥ 1. From the definition of Ar , we have Ar =
Li K (B) and Ar−1 = Li (B).

Let Pn be the L2 projection onto Xn , and let Qn be L2 projection onto Li (Xn).
Then

Li PnK f ∈ Li (Xn)

for all f ∈ L2, and so

(I − Qn)L
i PnK = 0.

Thus, by using Eq. (9), we find that

E(Ar , Li (Xn)) = ‖(I − Qn)L
i K‖2 = ‖(I − Qn)L

i K − (I − Qn)L
i PnK‖2,

= ‖(I − Qn)L
i (I − Pn)K‖2 ≤ ‖(I − Qn)L

i‖2‖(I − Pn)K‖2,
= E(Ar−1, Li (Xn))E(A, Xn).
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Next, assume r = 2i for i ≥ 1. Then Ar = Li (B) and Ar−1 = Li−1K (B). In this
case, let Pn be the L2 projection onto Yn , and let Qn be L2 projection onto Li−1K (Yn).
Then, as before,

(I − Qn)L
i−1K PnK

∗ = 0,

and the result follows by an almost identical argument as in the previous case. �	
Now suppose that X0

n is an optimal n-dimensional subspace for A and Y 0
n is an

optimal n-dimensional subspace for A∗. With these two subspaces, one can generate
a whole sequence of subspaces Xd

n and Yd
n by

Xd
n = K

(
Yd−1
n

)
, Yd

n = K ∗ (
Xd−1
n

)
(17)

for all d = 1, 2, 3, . . ., and it follows from [3, Lemma 1] that all the Xd
n are optimal for

the n-width of A1 = A and all the Yd
n are optimal for the n-width of A1∗ = A∗. Note

that for d > 0, the spaces Xd
n and Yd

n could in general have dimension less than n, but
they are still optimal for the n-width problem. In fact, if Xd

n or Yd
n have dimension m,

0 ≤ m < n, then dm(A) must equal dn(A) by definition of the n-width.
Next, we consider Ar and Ar∗ for r ≥ 2.

Lemma 2 Suppose the subspace X0
n is optimal for A and Y 0

n is optimal for A∗. Then
for r ≥ 2,

E
(
Ar , Xd

n

)
≤ dn(A)E

(
Ar−1, Xd

n

)
, (18)

E
(
Ar∗,Yd

n

)
≤ dn(A)E

(
Ar−1∗ ,Yd

n

)
(19)

for all d ≥ r − 1.

Proof We start by proving inequality (18). Let L = KK ∗. First, assume r = 2i + 1
for i ≥ 1. It then follows from (17) that Xd

n = Li (Xd−r+1
n ) for d ≥ r − 1, and so the

result follows from Lemma 1, with Xn = Xd−r+1
n , since Xd−r+1

n is optimal for A.
Next, assume r = 2i for i ≥ 1. It then follows from (17) that Xd

n = Li K (Yd−r+1
n )

for d ≥ r − 1, and so the result follows from Lemma 1, with Yn = Yd−r+1
n , since

Yd−r+1
n is optimal for A∗ and dn(A∗) = dn(A).
Inequality (19) then follows from the same argument if we interchange the roles of

K and K ∗. �	
Using Lemma 2, we now obtain optimality results for Ar and Ar∗ for all r ≥ 1.

Theorem 4 Suppose the subspace X0
n is optimal for A and Y 0

n is optimal for A∗. Then
for r ≥ 1,

• the subspaces Xd
n in (17) are optimal for the n-width of Ar , and

• the subspaces Y d
n in (17) are optimal for the n-width of Ar∗

for all d ≥ r − 1.
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Fig. 1 Optimality results

Proof The case r = 1 follows from [3, Lemma 1]. For r ≥ 2 the result for the
Xd
n follows from inequality (18) in Lemma 2, Eq. (16), and induction on r , since

dn(A)r = dn(A)dn(A)r−1. Similarly, now using inequality (19) in Lemma 2, we get
the result for the Yd

n as well. �	
Wehave summarized the statement of Theorem 4 in Figure 1. Under the assumption

of Theorem 4 on X0
n and Y

0
n , all the spaces (above the line) in the two tables are optimal

for all the function classes below them. Optimality of X0
n for A

1 implies optimality of
Y 1
n for A1∗ by [3, Lemma 1], and so on along the first row (below the line) in the left

table. Then, by Lemma 2, optimality of X0
n for A

1, and Y 1
n for A1∗, imply optimality of

Y 1
n for A2∗, and so on along the second row. Optimality of X0

n for A1, and X2
n for A2,

imply optimality of X2
n for A3, and so on along the third row. The right table works

similarly.
Let us now turn back to the case where K is NTP. The subspace X0

n in (13) is
optimal for A, and since K being NTP is equivalent to K ∗ being NTP, we also have
that the subspace

Y 0
n = [K ∗(·, η1), . . . , K ∗(·, ηn)] (20)

is optimal for A∗, and so we can apply Theorem 4. The subspaces Xd
n in (17) are in

this case the same as those in Eq. (14). Since the eigenvalues (10) (and thus also the
n-widths) are strictly decreasing whenever K is NTP, the subspaces Xd

n and Yd
n are in

this case also n-dimensional for all d ≥ 0.

7 Mixed Boundary Conditions

In this section, we study the n-width problem for the function class Ar
2 in (1). Consider

the operator K given by

K f (x) =
∫ x

0
f (y)dy =

∫ 1

0
K (x, y) f (y)dy, (21)

whose kernel is

K (x, y) =
{
0 x < y,

1 x ≥ y.
(22)

Using the equality K ∗(x, y) = K (y, x), we find that

K ∗ f (x) =
∫ 1

x
f (y)dy. (23)

123



10 Constr Approx (2019) 50:1–18

Thus K represents integration from the left, while K ∗ represents integration from the
right.

From (21), we see that the set A1
2 in equation (1) can be expressed as

A1
2 =

{
u ∈ H1 : ‖u′‖ ≤ 1, u(0) = 0

}
=

{∫ x

0
f (y)dy : ‖ f ‖ ≤ 1

}
= K (B).

To see that the remaining Ar
2 can be expressed in terms of K and K ∗, it is convenient to

recognize the kernel of the composition KK ∗ as the Green’s function for a boundary
value problem, whose eigenfunctions we will need later anyway [in Eq. (27)].

Lemma 3 If u(x) = KK ∗ f (x), then u is the unique solution to the boundary value
problem

−u′′(x) = f (x), u(0) = u′(1) = 0. (24)

Proof We see from (21) and (23) that for any h,

(Kh)′(x) = h(x),

(K ∗h)′(x) = −h(x). (25)

So, if u(x) = KK ∗ f (x), then −u′′(x) = f (x). For the left boundary condition, from
(21), we find that

u(0) = (KK ∗ f )(0) = 0.

For the right boundary condition, from (25) and (23),

u′(1) = (KK ∗ f )′(1) = (K ∗ f )(1) = 0.

To see that u is unique, suppose f = 0 in (24). Then u must be a linear function, but
to satisfy the boundary conditions we must have u = 0. �	

By applying the above lemma to functions f in B and K (B), respectively, and
repeating the procedure i times, we find that

A2i
2 = (KK ∗)i (B), A2i+1

2 = (KK ∗)i K (B),

where A2i
2 and A2i+1

2 are as in equation (1). Observe that the left-most operator for
the function class Ar

2 is always K , and so Ar
2 is an instance of Ar in (15).

7.1 Proof of Theorem 1 for Ar
2

Analogously to Lemma 3, we have, for the other composition K ∗K :
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Lemma 4 If u(x) = K ∗K f (x), then u is the unique solution to the boundary value
problem

−u′′(x) = f (x), u′(0) = u(1) = 0.

From Lemma 4, we see that the eigenvalues and eigenfunctions of K ∗K are

λn = 1

(n − 1/2)2π2 , φn(x) = cos(n − 1/2)πx, n = 1, 2, . . . . (26)

From Lemma 3, the operator KK ∗ has the same eigenvalues, but the eigenfunctions
are

ψn(x) = sin(n − 1/2)πx, n = 1, 2, . . . . (27)

So, by Theorem 3, the n-width of A1
2 is as given in Eq. (2), and an optimal subspace

is as given in (5). The analogous results for Ar
2, r > 1, follow from Eq. (16).

7.2 Proof of Theorem 2 for Ar
2

We have already seen that the function class Ar
2 is the function class A

r in (15) when
K has a kernel as given in (22). Since it is well known that this choice of K is NTP [5,
p. 16], we can apply Theorem 4 to the spaces X0

n in (13) and Y 0
n in (20). All that

remains to show is that the optimal subspaces Xd
n generated as in Eq. (17) are the

spline spaces we claim.
The zeros ξ j of φn+1(x) in (26) are the knots in the even degree case for the knot

vector τ 2 in Eq. (7), and the zeros η j ofψn+1(x) in (27) are the knots in the odd degree
case. Thus, X0

n in (13), with the kernel of K as in Eq. (22), is equal to

X0
n = [K (·, ξ1), . . . , K (·, ξn)] = S0,2,

where S0,2 is the piecewise constant spline space given in Eq. (6). To find X1
n , we

perform a simple calculation to see that

KK ∗(x, y) = (K (x, ·), K (y, ·)) =
{
x, x < y,

y, x > y,

and so, X1
n = K (Y 0

n ) = [(KK ∗)(·, η1), . . . , (KK ∗)(·, ηn)] = S1,2, the piecewise
linear spline space given in Eq. (6). The remaining Xd

n , for d ≥ 2, can be found by
using the fact that Xd+2

n = KK ∗(Xd
n ) and applying Lemma 3, since the derivative of

a spline is a spline on the same knot vector of one degree lower.

Remark We note that interchanging the roles of K and K ∗ shows that the subspaces
Yd
n are optimal for the sets defined by interchanging the boundary conditions in Ar

2,
i.e., odd derivatives set to zero at the left-hand side, and even derivatives set to zero at
the right-hand side. One finds that the subspaces Yd

n are equal to their corresponding
‘dual’ subspaces Xd

n , just with interchanged boundary conditions and interchanged
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knots (i.e., replacing the even degree case for τ 2 in (7) with the odd degree case, and
vice versa).

8 Symmetric Boundary Conditions

In this section, we study the n-width problems for the remaining function classes Ar
0

and Ar
1 in (1). Let K1 be the operator given by

K1 = (I − Q)K , (28)

where Q is the orthogonal projection onto the constant functions, �0, and K is again
the operator (21). From [7], we know that the set A1

1 given in equation (1) can be
written as the orthogonal sum

A1
1 = �0 ⊕ K1(B).

It follows from [9, Chap. IV, Sec. 3.2] that the set A1
0 in Eq. (1) can be written as

A1
0 = {u ∈ H1 : ‖u′‖ ≤ 1, u(0) = u(1) = 0},

= {K ∗ f : ‖ f ‖ ≤ 1, f ⊥ 1} = K ∗(I − Q)(B) = K ∗
1 (B).

The kernel of K1K ∗
1 is the Green’s function to the boundary value problem

−u′′(x) = f (x), u′(0) = u′(1) = 0, u, f ⊥ 1 (29)

(see, e.g., [3, Lemma 4]). Using Eq. (29) i times and then adding back the constants,
we find that

A2i
1 = �0 ⊕ (K1K

∗
1 )i (B), A2i+1

1 = �0 ⊕ (K1K
∗
1 )i K1(B), (30)

where A2i
1 and A2i+1

1 are as in equation (1). The kernel of K ∗
1 K1 is theGreen’s function

to the boundary value problem

−u′′(x) = f (x), u(0) = u(1) = 0 (31)

(see, e.g., [3, Lemma 3]). Then, using Eq. (31) i times, we find that,

A2i
0 = (K ∗

1 K1)
i (B), A2i+1

0 = (K ∗
1 K1)

i K ∗
1 (B),

where A2i
0 and A2i+1

0 are as in Eq. (1). Observe that the left-most operator for the
function class Ar

0 is always K
∗
1 , and so Ar

0 is an instance of Ar∗ in (15). The function
class Ar

1, on the other hand, is not quite an instance of A
r in (15), but it is of the form

� ⊕ Ar .
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8.1 Proof of Theorem 1 for Ar
0 and Ar

1

From Eq. (31), we see that the eigenvalues and eigenfunctions of K ∗
1 K1 are

λn = 1

(nπ)2
, φn(x) = sin(nπx), n = 1, 2, . . . . (32)

The operator K1K ∗
1 has the same eigenvalues, but the eigenfunctions are

ψn(x) = cos(nπx), n = 1, 2, . . . . (33)

So, by Theorem 3, the n-widths of both A1
0 = K ∗

1 (B) and K1(B) are equal to dn(A1
0)

in Eq. (2). An optimal n-dimensional subspace for A1
0 is as given in (3), and an optimal

n-dimensional subspace for K1(B) is [cos(πx), cos(2πx), . . . , cos(nπx)]. Since this
subspace is orthogonal to�0, it follows that an optimal (n+1)-dimensional subspace
for A1

1 = �0 ⊕ K1(B) is

[1, cos(πx), cos(2πx), . . . , cos(nπx)],

thus showing that (4) is an optimal n-dimensional space and that the n-width of A1
1 is

as given in (2). Pay special attention to this index-shift caused by �0: the n-width of
K1(B) is equal to λ

1/2
n+1, but the n-width of A

1
1 is equal to λ

1/2
n in (32). As before, the

analogous results for Ar
0 and Ar

1, r > 1, follow from equation (16).

8.2 Proof of Theorem 2 for Ar
0 and Ar

1

To prove Theorem 2 for Ar
0 and Ar

1, we will use Theorem 4 with K1 playing the role
of the generic operator K . We must therefore identify the first optimal space X0

n for
K1(B) and the first optimal space Y 0

n for A1
0 = K ∗

1 (B). Unlike K in Eq. (21), K1
is not NTP (specifically, it is not totally positive), and this creates an extra challenge
compared with Sect. 7.2. Fortunately, as shown in [7,8], the operator K ∗

1 K1 is in fact
NTP, and we can make use of this and other results in [7, Section 5]. Specifically, we
have from [7, Theorem 5.1] that

X0
n = [K1(·, ξ1), . . . , K1(·, ξn)]

is an optimal subspace for the n-width of K1(B), where the ξ j , for j = 1, 2, . . . , n,
are the n zeros of φn+1(x) in (32). Observe that these ξ j ’s are the knots in the odd
degree case for the knot vector τ 0 in (7).

Now, we consider Y 0
n . First, let η j , for j = 1, 2, . . . , n + 1, be the n + 1 zeros of

ψn+1(x) in (33), which are the knots in the even degree case of τ 0 in (7). Additionally,
let J be the interpolation operator from C[0, 1] to �0 determined by interpolating at
η1, and define the operator

K 1 = (I − J )K ,

123



14 Constr Approx (2019) 50:1–18

where K still is the operator (21). If we let Y 0
n be the n-dimensional space

Y 0
n = [K ∗

1(·, η2), . . . , K ∗
1(·, ηn+1)], (34)

then the proof of [7, Theorem 5.1] (or [9, Theorem 5.11 p. 121]) contains the following
important result.

Lemma 5 If Pn is the orthogonal projection onto the space Y 0
n and λn+1 is as in (32),

then
sup

‖ f ‖≤1
‖K 1(I − Pn) f ‖ ≤ λ

1/2
n+1. (35)

Proof The operator K1 is a special case of the operator K1 in [9] (as explained on page
124). It therefore satisfies the assumptions of [9, Theorem 5.11 p. 121], and inequality
(35) is then proved on page 122. Note the shift in index; the above n + 1 corresponds
to n in [9, Theorem 5.11]. �	
Using this inequality, we can show the following.

Theorem 5 The space Y 0
n is optimal for A1

0 = K ∗
1 (B).

Proof Let Pn be the orthogonal projection onto Y 0
n in (34). To prove that Y 0

n is an
optimal subspace for A1

0, we need to show that

E(A1
0,Y

0
n ) ≤ dn(A

1
0),

or equivalently,
‖(I − Pn)K

∗
1‖2 ≤ λ

1/2
n+1,

with λn+1 as given in (32). First observe that

‖(I − Pn)K
∗
1‖2 = ‖K1(I − Pn)‖2 = ‖(I − Q)K (I − Pn)‖2.

Next, since both J and Q are projections onto the constants, �0, but only Q is the
orthogonal projection, we must have

‖(I − Q)K (I − Pn)‖2 ≤ ‖(I − J )K (I − Pn)‖2 = ‖K 1(I − Pn)‖2.

Hence, the result follows from Lemma 5. �	
Remark Melkman and Micchelli [7, Theorem 5.1] used the inequality in Lemma 5 to
directly conclude that the (n + 1)-dimensional space

�0 + [(K 1 K
∗
1)(·, η2), . . . , (K 1 K

∗
1)(·, ηn+1)]

is optimal for the set A1
1 = �0 ⊕ K1(B). On the other hand, from [3, Lemma 1] and

the above Theorem 5, it follows that K1(Y 0
n ) is an optimal space for K1(B), and so

�0 ⊕ K1(Y
0
n ) = �0 ⊕ [(K1K

∗
1)(·, η2), . . . , (K1K

∗
1)(·, ηn+1)]
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is optimal for A1
1. This is consistent with their result, since the difference

(K1K
∗
1)(·, η j ) − (K 1 K

∗
1)(·, η j )

is a constant for any j = 2, . . . , n + 1.
We now have the first optimal space X0

n for K1(B) and the first optimal space Y 0
n

for A1
0 = K ∗

1 (B), and so we can apply Theorem 4. To do this, let us express Ar
1 in

Eq. (30) as

Ar
1 = �0 ⊕ Ãr

1.

Now, if Xd
n and Yd

n are generated as in (17) with K1 playing the role of the generic K ,
then it follows from Theorem 4 that, for all r ≥ 1,

• the n-dimensional spaces Xd
n are optimal for the n-width of Ãr

1, and• the n-dimensional spaces Yd
n are optimal for the n-width of Ar

0

for all d ≥ r − 1. Note further that these spaces are all n-dimensional since the n-
widths in (2) are strictly decreasing. Moreover, since both Xd

n ⊥ �0 and Ãr
1 ⊥ �0,

we find that the (n + 1)-dimensional spaces �0 ⊕ Xd
n are optimal for Ar

1 = �0 ⊕ Ãr
1

for d ≥ r − 1.
The remaining task is to recognize the spaces �0 ⊕ Xd

n and Yd
n as spline spaces.

As already stated, the optimal spaces �0 ⊕ Xd
n were identified in [3], and we have the

equality
Sd,1 = �0 ⊕ Xd

n−1,

where Sd,1 is the n-dimensional space defined in (6). However, only the spline spaces
Yd
n when d is odd were found in [3]. In that case, we have

Sd,0 = Yd
n , (36)

with Sd,0 also as in (6). Now, using the definition of K 1, we find that the kernel
K

∗
1(x, y) = K 1(y, x) is equal to

K
∗
1(x, y) =

⎧⎪⎨
⎪⎩
0, x < η1,

1, η1 < x < y,

0, x > y,

for y > η1. The space Y 0
n in Eq. (34) is then the space of piecewise constant splines

with knots η j , j = 1, . . . , n + 1, that vanish on the intervals [0, η1) and (ηn+1, 1].
Since Y 2

n = K ∗
1 K1(Y 0

n ), and so on, we know from (31) that Eq. (36) also holds in the
case of d even. This proves Theorem 2 for Ar

0 and Ar
1.

9 Basis Functions

In this section we describe how to create a local basis for the spline spaces Sd,i ,

i = 0, 1, 2. First consider i = 1. An explanation of how to construct a local basis for
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Fig. 2 Basis functions for Sd,1

Sd,1 (with d even) is presented in [10]. The basic idea consists of three parts. Start
with our uniform knot vector τ 1 in (7), and extend it to a uniform knot vector on the
whole real line. Second, construct all the B-splines on this infinite knot vector that
have nonzero support on (0, 1). Third, identify the B-splines that cross the boundary
and add them together in pairs, chosen in such a manner that the symmetry of uniform
B-splines ensures the boundary conditions (all odd derivatives set to zero) are satisfied.
Figure 2 shows the basis functions for Sd,1 of degree 0 to 3 with knot-distance 0.2
(n = 5).

Next, we consider i = 0. Constructing a basis for Sd,0 can be done by essentially
the same procedure as for Sd,1. Instead of adding pairs of B-splines together, we take
differences. The symmetry of uniform B-splines will again ensure that the boundary
conditions (all even derivatives set to zero) are satisfied. Figure 3 shows the basis
functions for Sd,0 of degree 0 to 3 with knot-distance 0.2 (n = 4).

Regarding i = 2, adding pairs of B-splines together on the right-hand side and
subtracting on the left-hand side will give a basis for Sd,2. Figure 4 shows the basis
functions for Sd,2 of degree 0 to 3 with knot-distance 2/9 (n = 4).
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Fig. 3 Basis functions for Sd,0

Fig. 4 Basis functions for Sd,2
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