
Constr Approx (2018) 48:101–136
https://doi.org/10.1007/s00365-018-9418-6

Point Processes, Hole Events, and Large Deviations:
Random Complex Zeros and Coulomb Gases

Subhroshekhar Ghosh1 · Alon Nishry2

Received: 10 February 2017 / Revised: 12 October 2017 / Accepted: 20 October 2017 /
Published online: 7 March 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract We consider particle systems (also known as point processes) on the line
and in the plane and are particularly interested in “hole” events, when there are no
particles in a large disk (or some other domain). We survey the extensive work on
hole probabilities and the related large deviation principles (LDP), which has been
undertaken mostly in the last two decades. We mainly focus on the recent applications
of LDP-inspired techniques to the study of hole probabilities and the determination of
the most likely configurations of particles that have large holes. As an application of
this approach, we illustrate how one can confirm some of the predictions of Jancovici,
Lebowitz, and Manificat for large fluctuation in the number of points for the (two-
dimensional)β-Ginibre ensembles.We also discuss somepossible directions for future
investigations.
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1 Introduction

Random point configurations, also known as point processes, have been an object of
key interest in the last few decades - both in probability theory and in the statistical
physics literature. The most extensive results have been obtained in Euclidean spaces
of dimensions 1 and 2, although higher dimensions and other geometries have also
been studied.

A point process �, usually defined to live on a Polish space � equipped with
a regular Borel measure μ, is a probability distribution over the space of locally
finite point configurations on �. We recall here that a Polish space is a separable and
completely metrizable topological space. It is well known ([20, Chap. 9]) that, under
mild conditions, the statistical behavior of a point process is described by its various
k-point intensities (k = 1, 2, . . . ), which are roughly the joint probability densities of
having particles at k specified locations in�. For almost all interesting point processes,
these k point intensities are absolutely continuous with respect to μ⊗k (referred to as
the background measure), and the resulting Radon Nikodym derivatives are known
as the k point intensity functions. Often, in Euclidean spaces or other homogeneous
spaces, key point processes exhibit invariance, which is to say that the law of the
process is invariant under the isometries of �.

The most fundamental example of a point process is the Poisson point process.
The Poisson point process, defined on the space � with respect to the background
measure μ, is the unique point process on � that exhibits statistical independence
of its point configurations in disjoint domains, with the particle count in a domain
D ⊂ � obeying a Poisson distribution with mean μ(D). This characterizing property
of spatial independence makes many important statistical properties easy to compute,
which is the reason behind the popularity of the Poisson process as a probabilistic
model for many real-world systems ([20, Chap. 2]). At the same time, it renders the
Poisson process ineffective in modeling many natural phenomena, particularly those
involving local repulsion, like electron systems.

In this context, several natural models have emerged that embody nontrivial spatial
correlation, including local repulsion, and at the same time are amenable to analysis.
These models often have their origin in statistical physics, principal among them
being Coulomb systems. The Coulomb system of size n in dimension d and inverse
temperature β is given by the joint distribution

p(x1, . . . , xn) = Z−1
n exp

⎛
⎝1

2
β

⎡
⎣∑

i �= j

ρ(|xi − x j |) − n
n∑

i=1

V (xi )

⎤
⎦
⎞
⎠ ,

where ρ is the fundamental solution to the Laplacian in d dimensions (in particular,
the logarithm function in 2 dimensions), and V is an external field (or confining
potential). It is also of considerable interest to consider a similar system in 1D, with
ρ the logarithm function; this model (or rather its infinite particle limit) is popularly
known as the Dyson log gas.

In 1 and 2 dimensions, at inverse temperature β = 2, the Coulomb system with
logarithmic interactions (a.k.a. Dyson log gas in 1D) is known to be a determinantal
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point process, meaning that its correlation functions are given by certain determinants.
When V (x) = |x |2, these ensembles can also be described as the set of eigenvalues of
certain randommatrices - in 1 dimension it is the GaussianWigner matrix (GUE), and
in 2 dimensions theGinibre ensemble (having independent standard complexGaussian
entries). Both of these ensembles have well-defined weak limits that are determinantal
point processeswith infinitelymanyparticles. In 1dimension, the fundamental solution
to the Laplacian is f (x) = |x |, and it is natural to consider a Coulomb system with
this interaction potential. This system has been extensively studied by Aizenmann,
Lebowitz, Martin, Yalcin, and others (see, e.g., [2,3,42,47] for some of the delicate
results on this model).

Another important two-dimensional model is the zero set of the standard Gaussian
Entire Function (henceforth abbreviated as GEF). The GEF is given by the Gaussian
Taylor series

F(z) =
∞∑
k=0

ξk√
k! z

k, (1)

where the ξk-s are independent standard complex Gaussians. We mention that the
truncation of this series at degree n is called the Weyl polynomial of degree n. The
studies of the GEF and the Weyl polynomials have their origin in statistical physics,
where they have been investigated in the context of quantum chaotic dynamics ([13]).

An object of key interest in the study of point processes is the “hole” event HR ,
entailing that a large disk (or interval, according to the dimension) of radius R around
the origin does not contain any particles. Of course, this is a rare event, andP[HR] → 0
as R → ∞. The quantitative asymptotics of how this decay takes place throws light
on the statistical structure of the point process, and has been studied in fine detail for
many key processes. A closely related but much less understood question pertains to
what causes such a large “hole” to appear. This involves understanding the typical
configuration of particles outside the “hole”, and until recently such results were
available only for β = 2 Coulomb systems in 1 and 2 dimensions ([40]). Very recently,
progress has been made on this front for the GEF zeros process, as well as for holes of
general shapes for the Ginibre ensemble. This is based on large deviation techniques,
which brings us to the third key object in this paper, namely large deviation principles
(abbreviated henceforth as LDPs).

Roughly speaking, a sequence of randomvariables Xn , defined on a common Polish
space �, is said to satisfy an LDP with rate an ↑ ∞, and rate function I : � → R+,
if, for any ‘nice’ set F ⊂ �, we have

P[Xn ∈ F] � exp

(
−an inf

x∈F I (x)

)
, n → ∞.

In the above display, � is understood in the sense that logP[Xn∈F ]
an

→ − inf x∈F I (x)
as n → ∞. For us, the most interesting case is when the random variables Xn are
empricial measures of the points (that is, discrete counting measures of the points,
normalized to be probability measures), and � is a space of probability measures on
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Rd . Large deviation principles of this type have been extensively studied for various
random matrix models (see, e.g., [8,9,35,40]) in the last two decades. More recently,
large deviation principles have been understood for several randompolynomialmodels
(see, e.g., [16,32,67,68]).

In [1,33] the main ingredient of the approach to the “hole configuration” is to
consider the “hole” event as a “rare” event in the setting of the LDP for the relevant
matrix or polynomial ensemble. This intuitively leads to the conclusion that the (lim-
iting) intensity measure of the particles outside the hole must be the minimizer of
the large deviation rate functional, under the constraint of the existence of the hole.
This approach seems to be rather promising in investigating related problems for point
processes. We provide more details on this approach in Sect. 6, where we study the
two-dimensional β-Ginibre ensembles (also known as jellium or the one-component
plasma).

The main thrust of this work is on a certain set of ideas that tie together point
processes, large deviations, and the study of the hole event. Such focus naturally
leaves out several important strands of work related to various combinations of these
concepts. For instance, we mention the recent series of works studying various fine
properties of the large deviation principle for Coulomb systems. In particular, these
works establish rigorous connections of the LDP to the concept of renormalized energy
([6,14,43,45,57,61,62]). Another direction of recent investigations involves the study
of spatial rigidity structures that arise in several of these natural models ([10–12,28–
30,34,55]). Beyond that, there is the extensive research on universality in random
matrix ensembles (see, e.g., [24,65]). We will not pursue these matters here.

2 Large Deviations for Empirical Measures

A sequence of random variables Xn , defined on a common Polish space �, is said to
satisfy an LDP with rate an ↑ ∞ and a convex lower semi-continuous rate function
I : � → R+ if, for any Borel measurable set F ⊂ �, we have

lim
n→∞

1

an
logP[Xn ∈ F] ≤ − inf

x∈Fo
I (x),

where Fo is the interior of the set F and

lim
n→∞

1

an
logP[Xn ∈ F] ≥ − inf

x∈F
I (x),

where F is the topological closure of the set F .

Definition 2.1 A rate function I : � → R+ is good if all its level sets {x : I (x) ≤ α}
are compact subsets of �.
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2.1 Eigenvalues of Random Matrices

Large deviations for empirical measures of random matrices have been studied by
multiple authors. In this section, wewill only focus on LDPs for the empirical measure
of some specific families of random matrices, including Gaussian (and other unitarily
invariant) Hermitian ensembles in 1D, and the (real and complex) Ginibre ensemble
in 2D. We direct readers interested in a more extensive survey, including dynamical
aspects related to evolution under the Dyson Brownian motion, to [35].

To describe the results, we need to introduce some notation. We will denote by
M1(R) and M1(C), respectively, the space of probability measures on R and C. For
a finite set of points � := {z1, . . . , zN }, we define the empirical measure

E(�) := 1

N

N∑
i=1

δzi ,

where δλ is the delta measure (of unit mass) at the point λ. The empirical measures of
eigenvalues live in the spaceM1(R) (orM1(C) as appropriate) and, for “nice enough”
ensembles, obey LDPs in the same space.

2.1.1 The Ginibre Ensemble

We begin with the LDP for the Ginibre ensemble. For the original paper, we refer the
reader to [9]. The (real or complex) Ginibre ensemble (of order n) is the ensemble
of eigenvalues of n × n random matrices with i.i.d. Gaussian entries (resp., real or
complex) with mean zero and variance n−1. The (infinite) Ginibre ensemble is the
limit, in distribution, of the finite Ginibre ensembles.

In the complex case, the (infinite) Ginibre ensemble turns out to be the 2D
Coulomb gas at inverse temperature β = 2. It also turns out to be a determinan-
tal point process on C with kernel K (z, w) = exp(zw) and background measure
dμ(z) = π−1e−|z|2dm(z), i.e. the standard Gaussian measure. Its distribution is
invariant under the rigid motions of the plane, and it serves as a crucial example
of an (invariant) 2D point process that is relevant to the physical literature. The finite n
joint density, also known as the density of states in the physical literature, is given by

�(z1, . . . , zn) = |
(z1, . . . , zn)|2 exp
(

−
n∑

i=1

|zi |2
)

, (2)

where


(z1, . . . , zn) =
∏
j<k

(z j − zk)

denotes the Vandermonde determinant.
In what follows, let S = R or C, with the particular value being specified by

the context. Let Msym
1 (C) denote the space of probability measures on C that are
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symmetric about the real axis. Define the logathmic potential of a measure μ ∈
M1(C):

Uμ(z) =
∫

log |z − w| dμ(w).

The logarithmic energy of μ is given by

�(μ) =
∫

Uμ(z) dμ(z) =
∫∫

log |z − w| dμ(z)dμ(w).

Note that �(μ) can equal −∞, e.g., in the case of measures μ having an atomic
component. Define also the functionals I [S] : M1(C) �→ [0,∞] as

I [R](μ) =
{

1
2

∫ |z|2dμ(z) − 1
2�(μ) − 3/8 if μ ∈ Msym

1 (C),

∞ otherwise,

and

I [C](μ) =
∫

|z|2dμ(z) − �(μ) − 3/4.

We can state the LDP for the (real or complex) Ginibre ensemble (denoted resp. G[R]
n

or G[C]
n ) as follows:

Theorem 2.1 ([9,37]) The sequence of empirical measures E(G[S]
n ) obey a large devi-

ation principle in the space M1(C) with rate n2 and good rate function I [S].

The rate function I [S] is minimized by the uniformmeasure on the unit disk. Conse-
quently, the (random) empiricalmeasures E(G[S]

n ) converge a.s. to the uniformmeasure
on the unit disk.

2.1.2 One-Dimensional log-Gas

We now consider n particles on the real line, whose joint probability density is given
by

Z−1
n |
(x1, . . . , xn)|β exp

(
−n

n∑
i=1

V (xi )

)
,

where β > 0, the confining potential V : R → R is a continuous function such that,
for some β ′ > 1 satisfying β ′ ≥ β, we have

lim
|x |→∞

V (x)

β ′ log |x | > 1,
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and Zn = Zn(β, V ) is a normalizing constant. Important special cases include
β = 1, 2 and V (x) = |x |2/2, which correspond to the eigenvalues of the well-
knownGaussianOrthogonal Ensemble (GOE) andGaussianUnitary Ensemble (GUE)
respectively. In other words,β = 1 and 2 respectively correspond to theHermitian ver-
sions of the real and complex Ginibre ensembles (tridiagonal random matrix models
for general β > 0 are known for the quadratic confining potential, see [23]).

To state the large deviations principle for such Hermitian random matrices (see,
e.g., [5,8]), we introduce the rate function I Vβ : M1(R) → [0,∞] as:

I Vβ =
{∫

V (x)dμ(x) − β
2�(μ) − cVβ if

∫
V (x)dμ(x) < ∞,

∞ otherwise,

where

cVβ = inf
ν∈M1(R)

{∫
V (x)dν(x) − β

2
�(ν)

}
.

With these definitions in hand, we state the LDP for the above Hermitian random
matrices as follows:

Theorem 2.2 ([8]) The sequence of empirical measures E(Pn
V,β) obey a large devia-

tion principle in the space M1(R) with rate n2 and good rate function I Vβ .

It is known that I Vβ attains its minimum value in the spaceM1(R) at a unique measure

σ V
β that is compactly supported and is characterized by

V (x) − βUσ V
β

(x)

{
= CV

β for σ V
β − a.e.x,

> CV
β for all x /∈ supp(σ V

β ),

whereUμ denotes the logarithmic potential of themeasureμ, andCV
β is some constant.

An upshot of this is that the (random) empirical measures E(Pn
V,β) converge a.s. to

the measure σ V
β .

We mention in passing that large deviation principles are also known for β-Ginibre
ensembles (defined analogously to the β ensembles in 1D by using a general β expo-
nent on the Vandermonde in (2)); these correspond to the 2DCoulomb gas (for general
inverse temperature β). For details, we refer to [38].

2.2 Zeros of Random Polynomials

The theory of large deviations for empirical measures of zeros of random polynomials
is of more recent origin. One of the earliest articles in this direction, namely [67],
deals with the crucial case of (complex) Gaussian random polynomials, i.e., random
polynomials with independent Gaussian coefficients (with mean zero and possibly
decaying variances). Depending on the mode of decay of the variances, we obtain
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several distinguished “standard ensembles” - Kac (constant variance of coefficients),
Elliptic (coefficient of zk has variance

(n
k

)
k!) and Weyl (coefficient of zk has variance

1/k!). [67] covers all these cases, as well as more general scalings of coefficients.
In fact, [67] works in the more general setting of Gaussian measures on polynomial
spaces of degree n that live on the Riemann surfaceCP1. These Gaussianmeasures are
determined by inner products naturally induced from ametric h andmeasure ν onCP1,
the only condition being that the pair (h, ν) satisfy the so-called Bernstein–Markov
property. The results obtained on the Riemann sphere CP1 can be transferred (via the
stereographic projection) to the complex plane. For a detailed exposition of this, we
refer the reader to [15] (which also deals with the case of real Gaussian coefficients).

2.2.1 Weyl Polynomials

In this article, we will focus on the crucial case of the Weyl polynomials,

Pn(z) =
n∑

k=0

ξk√
k! z

k,

which are naturally related to the so-called standard planar Gaussian Entire Function
(GEF, see (1)). Viewed over the complex plane, this corresponds to h, the standard
Euclidean metric, and ν, the standard Gaussian measure on C.

In what follows, we will denote by Zn = {z1, . . . , zn} the zero set of the Weyl
polynomial of degree n, scaled down by

√
n. Also recall that for any measure μ ∈

M1(C), we denote by Uμ and �(μ) the logarithmic potential and the logarithmic
energy of μ, respectively. We can now state the following LDP for zeros of Weyl
polynomials:

Theorem 2.3 ([16,67]) The sequence of empirical measures E(Zn) satisfy a large
deviation principle in the space M1(C) with rate n2 and good rate function

I Z (μ) = 2 sup
z∈C

(
Uμ(z) − 1

2
|z|2
)

− �(μ) − C.

Theminimizer (and, consequently, the a.s. limit of theZn-s ) of the above rate function
is the uniform measure on the unit disk. The constant C is such that I evaluated at this
measure is 0.

A word is in order here about the ‘unusual’ form of the rate function, and especially
the appearance of the nonlinear and rather nondifferentiable sup term. The key to this
lies in an expression for the joint density of (the scaled) zeros for theWeyl polynomial
(w.r.t. Lebesgue measure on Cn), which can be written as

ρ(z1, . . . , zn) ∝ |
(z1, . . . , zn)|2
(
n

π

∫
C

|QZn (w)|2e−n|w|2 dm(w)

)−(n+1)

, (3)

where QZn is the monic polynomial
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QZn (w) = (w − z1) . . . (w − zn),

and m is the Lebesgue measure on C. The Vandermonde determinant leads to the
logarithmic energy term in the rate function. In addition, we have

|QZn (w)|2e−n|w|2 = exp

(
2n

[
UE(Zn)(w) − 1

2
|w|2

])
,

and we see that for large n, the main contribution to the integral in (3) is coming from
the maximum over w ∈ C of the term inside the square brackets.

2.2.2 Other Polynomials

LDPs are known for empirical measures of zeros of many other random polynomial
and polynomial-like ensembles, in addition to the models described above. Some key
examples are [25,32,68] and [16].

Some of these ensembles pose specific technical challenges of their own in estab-
lishing the LDP. As an example, we can consider the LDP for the Kac polynomial
ensemble with exponential coefficients ([32]). The major new difficulty is that all the
coefficients are now positive a.s. This restricts the possible zero sets of such poly-
nomials, the precise nature of which was not fully understood until recently. E.g.,
Obrechkoff’s theorem ([54]) provides a necessary (but not sufficient) condition that
the number of zeros of such a polynomial in a conical sector (around R+) can grow at
most linearly with the angle at the apex of the cone. This issue makes an impact even
on the form of the LDP rate functional:

Theorem 2.4 ([32]) The empirical measure of zeros of Kac polynomials with expo-
nential coefficients satisfy an LDP at rate n2 and good rate function

I (μ) =
{
Uμ(1) − 1

2�(μ) if μ ∈ P,

∞ otherwise,

whereP is the set of all measures inM1(C) that are weak limits of empirical measures
of polynomials with positive coefficients.

The approach of [32] exploits certain aspects of a potential theoretic description of the
set P obtained by [7]. The universality results of [16] employ comparison techniques
with appropriate ensembles already known to have an LDP.

3 Hole Events and Hole Probabilities

Hole events and hole probabilities have classically been a key object of interest in the
study of point processes (a.k.a. particle systems). An important example of this is the
well-known result that hole probabilities for a determinantal point process are given
by certain Fredholm determinants related to its kernel ([48, Chap. 6], [60]).
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To fix ideas, let Dr denote the (open) disk (in dimension one an interval) of radius
r , centered at the origin. The hole event, denoted Hr , is the event where there are no
points of the point process in Dr . The hole probability at radius r is P[Hr ], which
clearly decays to 0 as r → ∞. A very well-studied question in point process theory is
the manner of decay ofP[Hr ] (more precisely, its logarithmic asymptotics). Typically,
the logarithm of the hole probability decays like a power law, whose exponent depends
upon the point process under consideration, and is thought to shed light on its ‘rigidity’.
By rigidity in this setting, we envisage lattice-like behavior. In particular, the heuristic
is that the faster the decay rate of the hole probability (that is, the higher the exponent
discussed above), the stronger is the lattice-like behavior. E.g., as we shall see below,
the exponent for the Poisson process (in 2D) is 2. On the other hand, for compactly
supported i.i.d. perturbations of the latticeZ2, the hole probability is 0 for large enough
hole sizes, and hence, heuristically speaking, the above exponent is ∞.

In 2D, the simplest example of a homogeneous point process, namely the Pois-
son process (with unit intensity) gives a decay of P[Hr ] = exp(−Area(Dr )) =
exp(−πr2), so the decay exponent is 2. For the 2D Coulomb gas (inverse temperature
β = 2, a.k.a. the Ginibre ensemble), it has been shown that this exponent is 4 ([58],
[39, Chap. 7]); i.e., the hole probability exhibits the decay r−4 logP[Hr ] → − 1

4 as
r → ∞. The larger exponent of the Ginibre process already attests to a stronger global
spatial correlation compared to the Poisson process (the latter being characterized by
the spatial independence of its points). For the application of LDP techniques to study
hole probabilities for the Ginibre ensemble, see, for example, Sect. 4.3.

A key ingredient in the proof is the fact that the number of particles in Dr , for
any determinantal point process, is given by a sum of independent Bernoulli random
variables (see, e.g., [39, Chap. 4]). The parameters (success probabilities) of these
Bernoullis are essentially the eigenvalues of the integral operator given by the kernel
of the determinantal process restricted to Dr . An alternative approach for the Ginibre
ensemble is to use the fact (first proved by Kostlan for the finite Ginibre ensemble)
that the set of the squares of the moduli of the eigenvalues is distributed like a set of
independent Gamma random variables (see [39, Theorem 4.7.3] also for the infinite
ensemble).

In comparison, the study of hole probabilities for the zeros of the GEF introduces
considerable challenges. The basic underlying reason for this is the absence of any
tractable “integrable” structure in theGEFzeros process, as opposed to Poisson (spatial
independence) or the Ginibre (determinantal). The study of the hole probability for
the GEF has been undertaken in a series of papers, beginning with upper and lower
bounds for r−4 logP[Hr ] ([64]) and culminating in the proof of the fact ([50]) that

r−4 logP[Hr ] → −e2

4
, as r → ∞. (4)

In fact, in [50] and subsequent works ([51,52]), hole probability asymptotics have
been understood for a wide class of Gaussian entire functions. One can recover (4)
using LDP techniques and also study in more details the hole event, see Sects. 4.2 and
7.
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Thus, the exponents of the Ginibre and the GEF zeros process match. This leads
to the interesting question regarding the comparison of these two processes vis-a-vis
their strength of correlations (or lattice-like behavior). This has spawned an interest-
ing collection of results. On the one hand, there are comparison theorems for finite
order correlation functions of the Ginibre and GEF zero ensembles ([53]). On the
other hand, there are recent results showing significant differences in the properties of
their (spatially) conditional distributions ([33,34]). A very interesting problem is to
determine whether there is a natural invariant point process in the plane whose hole
probability decays qualitatively faster than the decay rate of the Ginibre ensemble and
the GEF zeros process.

We conclude this section by mentioning several other works related to hole proba-
bilities, mostly of recent origin. An important instance is the study of hole probability
asymptotics for zeros of a wide class of Gaussian analytic functions having a finite
radius of convergence. This includes the well-studied hyperbolic GAFs (with general
intensity L > 0), whose domain of convergence is the unit disk. For the case L = 1,
the zero set has been shown to be a determinantal point process in [56]. In the same
paper ([56]), the asymptotics of the hole probability (as r ↑ ∞) has been worked
out. In [17], the hole probability asymptotics have been worked out for general L . In
the process, a surprising discovery is made to the effect that the form of the asymp-
totics (including its dependence on L) depend crucially on whether L is sub-critical
(0 < L < 1), critical (L = 1), or super-critical (L > 1). Another interesting family of
results involves gap probabilities (essentially, hole probabilities in 1D) for important
families of 1D Gaussian processes, in particular connecting these asymptotics with
simple properties of their spectral measures and so-called “persistence probabilities”
([4,21,22,26,27]). In [58] and [59], the author obtains fine quantitative estimates on
various aspects of the hole probability and the hole event for the Ginibre ensemble
and related determinantal processes associated with higher Landau levels.

4 Conditional Distribution on the Hole Event

In this section, we consider the following problem: What is the principal cause of a
(rare) event of a hole of large radius? Having understood hole probabilities, the next
natural question, therefore, is to try and understand the point process conditioned to
have a hole of a large radius. This question, however, turns out to be a surprisingly
difficult one - even in expectation.

4.1 The Ginibre Ensemble

Until recently, the only 2Dpoint process forwhich thiswas understoodwas theGinibre
ensemble ([40]; see [58] for a more recent study of finer aspects and more quantitative
results). We state the result as (see the appendix in [40]):

Theorem 4.1 ([40]) The conditional intensity ρR (w.r.t. Lebesgue measure on C) of
the Ginibre eigenvalues on the event HR is given by
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ρR(z) = 1

π
e−|z|2

∞∑
n=0

|z|2n
�(n + 1, R2)

,

for |z| ≥ R, where we have used the incomplete Gamma function

�(n + 1, x) =
∫ ∞

x
e−t tndt.

In particular, for r = R and R � 1, we have ρ(R) ∼ 1
2πR2 (see equation (2.13) in

[40]). This roughly corresponds to the appearance of a delta measure at the edge of
the hole under appropriate renormalization.

In [59], Shirai described the complete behavior of the conditional intensity of eigen-
values for the more general “Ginibre-type” ensembles. We mention here a version of
Theorem 1.4 therein, adapted to our specific context and using our notation. For a
Borel set D ⊂ C, let ξ(D) denote the number of Ginibre eigenvalues in D. Let
A(x, y) denote the annulus {z ∈ C : x ≤ |z| < y}. With this notation, we can state:

Theorem 4.2 [[59]] For b > a > 1, we have

lim
R→∞

1

R2E[ξ(A(
√
aR,

√
bR))|HR] = b − a

and

lim
R→∞

1

R2E[ξ(A(R,
√
bR))|HR] = b.

The discontinuity in the limit at a = 1 captures the delta measure at the edge of the
hole. The above limit aslo shows clearly that asymptotically, beyond the hole, the
conditional intensity converges to the equilibrium intensity.

We point out that only the specific situation of a “round” hole was considered in
this approach - that is, the hole consisted of no particles present in the disk of radius
R, as opposed to, say, a hole in the form of a particle-free square of side length R, with
R → ∞. This is crucial for obtaining the above results (as previously mentioned,
the set of the squares of the moduli of the eigenvalues is distributed like a set of
independent Gamma random variables).

Acrucial deficiencyof this approach is the dependenceon the above explicit descrip-
tion of the radii of the Ginibre points, which (or any substitute thereof) is not available
for the other point processes. Even for the Ginibre ensemble, this approach depends
crucially on the radial symmetry of the hole, and thus precludes any understanding of
holes of any shape other than a disk.

4.2 GEF Zeros

Very recently, progress has been achieved ([1,33]) in understanding the conditional
intensity around a large hole for point processes other than the Ginibre ensemble
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and for noncircular holes. The new progress relies on a novel large deviation based
approach. As an example, we state the following description for the (limiting) condi-
tional intensity measure around a “round” hole for the GEF zeros process ([33]):

Theorem 4.3 Let mT be the uniform probability measure on the unit circle {|z| = 1},
and put

μZ
0 = e · dmT + 1{|w|≥√

e}
m

π
.

Then, as R → ∞, the scaled zero counting measure [ZR] of the GEF, conditioned on
having a hole in {|z| < R}, converges weakly to a limiting measure (in expectation,
probability):

1

R2 [ZR]
( ·
R

)
→ μZ

0 , as R → ∞.

We immediately point out a key difference with the conditional intensity for the
Ginibre process: the appearance of a “forbidden region” immediately beyond the hole,
where the expected density of zeros vanishes as R → ∞. To the best of our knowledge,
this is the first example of such a “forbidden region”, and there is no instance, proven
or conjectured, even in the physical literature, that predicts such a phenomenon. See
Figs. 1 and 2 for a comparison between the distributions of the points conditioned on
the hole event (with R = 13).

The paper [33], in fact, provides quantitative estimates of the typical number of
zeros in the annulus between R and

√
eR. In what follows, we denote by NF (A) the

number of zeros of the GEF in the set A ⊂ C.

Theorem 4.4 Suppose R is sufficiently large, ε ∈ (R−2, 1), that γ ∈ (1 +
1
2 log

1
ε
(log R)−1, 2], and consider the annulus

A(R(1 + ε),
√
eR(1 − ε)) = {z ∈ C : R(1 + ε) ≤ |z| ≤ √

eR(1 − ε)}.

Fig. 1 GEF zeros, hole event
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Fig. 2 Ginibre ensemble, hole
event

We have

P
[
NF (A(R(1 + ε),

√
eR(1 − ε))) ≥ Rγ |HR

] ≤ exp(−CεR2γ ),

where C > 0 is a numerical constant.

Theproofs ofTheorem4.3 andTheorem4.4 are basedon a certain deviations inequality
for linear statistics of the GEF zeros. We provide more details in Sect. 7.

It is an interesting problem to establish fine asymptotics, on the lines of Theorem
4.1, for the GEF zeros process. This would involve, in the best case scenario, an
explicit expression for the conditional density function. At a more modest level, it can
also envisage asymptotics of the conditional intensity function in various regimes, an
important example of which is the rate of blowup of this function at the edge of the
hole. It is also of interest to find the asymptotics of the (conditional) expected value
of NF (A(R(1 + ε),

√
eR(1 − ε))), as R → ∞.

4.3 Ginibre Ensemble: General Holes and Weighted Fekete Points

Noncircular holes for the Ginibre ensemble were recently studied in the paper [1]. To
this end, we recall the functional

I (μ) =
∫

|z|2 dμ(z) −
∫∫

log |z − w| dμ(z)dμ(w) − 3

4
, μ ∈ M1(C).

Wemention that it is known that the uniformmeasure on the unit diskμ0 is the unique
global minimizer for the above functional (and in fact, I (μ0) = 0). We denote by D
the open unit disk.

Theorem 4.5 ([1]) Let Gn denote the eigenvalues of the Ginbre emsemble of order n.
Let U ⊂ D be a subset satisfying at least one of the following conditions:
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• (Balayage condition) There exists a sequence of open sets Un such that U ⊂ Un ⊆
D for all n, and the balayage measure νn on ∂Un converges weakly to the balayage
measure on ∂U.

• (Exterior ball condition) There exists ε > 0 such that for every z ∈ ∂U, there
exists a η ∈ U� such that

B(η, ε) ⊂ U� and |z − η| = ε.

Then we have

lim
n→∞

1

n2
logP[Gn(√nU ) = 0] = − inf

μ∈M1(C):μ(U )=0
I (μ).

Note that all convex domains satisfy the exterior ball condition.
In the case of the exterior ball condition, the proof relies on the use of weighted

Fekete points. Let E ⊂ C be a (nice) closed subset, and put

δn(E) = sup
z1,...,zn∈E

⎧⎨
⎩
∏
j<k

|z j − zk | exp
(

−1

2
|z j |2

)
exp

(
−1

2
|zk |2

)⎫⎬
⎭

2
n(n−1)

.

A set Fn = {z�1, . . . , z�n} ⊂ E is said to be an n-th weighted Fekete set if the points in
Fn attain the supremum δn(E) (such a set always exists, but is not necessarily unique).
It is known (see [63]) that the sequence {δn(E)} is decreasing, and furthermore,

lim
n→∞ log δn(E) = − inf

μ(E�)=0

[∫
|z|2 dμ(z) −

∫∫
log |z − w| dμ(z)

]
,

where the infimum is over all probability measures μ such that μ(E�) = 0. Heuristi-
cally, the Fekete points provide the most likely configuration of particles, conditioned
on having no particles in the set E�.

For the infinite Ginibre ensemble, we have:

Theorem 4.6 [1] Let G∞ denote the infinite Ginibre ensemble, and let U ⊂ D be an
open set satisfying either the balayage condition or the exterior ball condition as in
the statement of Theorem 4.5. Then we have the hole probability asymptotics

lim
r→∞

1

r4
logP[G∞(rU ) = 0] = − inf

μ∈M1(C):μ(U )=0
I (μ).

5 Large Fluctuations in the Number of Points and the
Jancovici–Lebowitz–Manificat Law

Closely related to the hole event are the phenomena of “deficiency” and “overcrowd-
ing” in the number of particles, which entail that the number of particles in Dr is
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very far from its typical value of about r2 particles (with the standard normalization
for the Ginibre ensemble and the GEF zeros). This has been extensively studied both
for the Ginibre ensemble and the GEF zeros ([40,41,49]), with the discovery that the
fluctuations in both cases obey the Jancovici–Lebowitz–Manificat law (in short, the
JLM law), that was first introduced in the context of large charge fluctuations for the
2D Coulomb gas ([40], see Conjecture 5.1 for the statement).

We start with a special case of the JLM law. Denote by n(R) the number of particles
of the Ginibre ensemble inside the disk {|z| < R}. Here we consider the event {n(R) =
pR2}, where p ≥ 0 (p �= 1) is fixed. Shirai ([58]) proved

lim
R→∞ R−4 logP

[
n(R) = pR2

]
= −1

4

∣∣∣2p2 log p − (p − 1)(3p − 1)
∣∣∣ . (5)

In [33], the authors derive the corresponding result for theGEF zeros; for a complete
statement, we direct the reader to [33].

5.1 The Jancovici–Lebowitz–Manificat Law

Compared with (5), one can certainly consider a wider range of fluctuations in the
number of particles and also examine other ensembles. We find it rather surprising
that the asymptotic decay of the probability of large fluctuations is described by a
common ‘law’, both for the Ginibre ensemble and the GEF zeros process (this law
also appears in other ensembles, such as certain randomly perturbed lattices, see [49]).

5.1.1 Finite β-Ginibre Ensemble

The paper [40] by Jancovici, Lebowitz, and Manificat considers large charge fluctu-
ations for a one-component Coulomb system of particles of one sign embedded into
a uniform background of the opposite sign. This system is mathematically equivalent
to the finite two-dimensional β-Ginibre ensemble, which consists of N particles in
the complex plane C, whose joint probability density, with respect to the Lebesgue
measure on CN , is given by

p(z1, . . . , zN ) = (Zβ
N )−1

∏
j<k

∣∣z j − zk
∣∣β exp

⎛
⎝−β

2

N∑
j=1

|z j |2
⎞
⎠ . (6)

Here β > 0 is the inverse temperature, and Zβ
N is the normalizing constant (also

known as the partition function).
For N large, the particles tend to be asymptotically uniformly distributed inside

the disk of radius
√
N centered at the origin. Let us denote by n(R) the number of

particles in the disk D(0, R) = {|z| ≤ R}. For N large compared with R2, we have
that n(R) is typically about R2.
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Now, fix the parameters a > 1
2 and b �= 0 (where b ≥ −1 if a = 2, and b > 0 if

a > 2), and consider the very rare event

N β
a,b(R) =

{
n(R) = �R2 + bRa�

}
.

Based onmacroscopic electrostatic considerations, the paper [40] argues that after tak-
ing the limit N to infinity, the following asymptotic probabilities for large fluctuations
in n(R) are observed.

Conjecture 5.1 (The JLM law)With the parameters a, b as above, and for R → ∞,
we have

P
[
N β

a,b(R)
]

= exp
(
−β · ψ(β; a, b, log R) · Rϕ(a)(1 + o(1))

)
,

where

ϕ(a) =

⎧⎪⎨
⎪⎩

2a − 1, 1/2 < a ≤ 1,

3a − 2, 1 ≤ a ≤ 2,

2a, a ≥ 2,

ψ(β; a, b, log R) =

⎧⎪⎨
⎪⎩

cβb2, 1/2 < a < 1,
1
6 |b|3, 1 < a < 2,
1
2 (a − 2)b2 log R, a > 2,

and cβ is some constant depending on β.

Remark 5.1 See [40] for the precise expression for ψ(β; a, b, γ ) in the case a = 2
(cf. (5)). It seems that no such expression is known for a = 1 (even when β = 2).

The constant cβ is derived from the (conjectured) central limit theorem (CLT) for
n(R). Recently the CLT for smooth linear statistics was proved in [44] (in this case
the dependence on β is explicit).

In the case of the (infinite) Ginibre ensemble (β = 2), the arguments of [40] are
essentially mathematically rigorous (for proofs in the case a = 2, see the aforemen-
tioned [58]). For other values of β, it is not even known if a limiting object for the
β-Ginibre ensemble exists when the number of particles goes to infinity.

5.1.2 Fluctuations for the GEF Zeros Process

Nazarov, Sodin, and Volberg ([49]) confirmed that some of the predictions of [40]
hold also for large fluctuations in the number of zeros of the GEF. More precisely,
they proved the following result:

Theorem 5.1 ([49]) For every a ≥ 1/2 and every ε > 0, we have

exp(−Rϕ(a)+ε) ≤ P
(
|nF (R) − R2| ≥ Ra

)
≤ exp(−Rϕ(a)−ε) (7)

for all sufficiently large R > R0(ε, a).
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Remark 5.2 Partial results in this direction were already obtained in [41,64].

Using the results of [33] together with the approach of [41], it is possible to establish
finer asymptotics for fluctuations in the GEF zeros process that are analogous to the
JLM law, in a restricted range of exponents. As an example we mention:

Theorem 5.2 For fixed b �= 0, a ∈ (4/3, 2), we have, for the GEF zeros process the
asymptotics

P
[
nF (R) = �R2 + bRa�

]
= exp

(
−2|b|3

3
R3a−2(1 + o(1))

)
, R → ∞.

The lower bound in the above asymptotics can, in fact, be shown to hold for a ∈ (1, 2),
and it is plausible that the results hold in this range.

5.2 Deficiency and Overcrowding: conditional distribution

Denote by nF (R) the number of zeros of the GEF inside the disk {|z| < R}. Recall that
the zero counting measure [ZR] denotes the GEF zero counting measure, conditioned
on the hole event in {nF (R) = 0}. We now denote by [Z p

R] the GEF zero counting
measure, conditioned on the event {nF (R) = �pR2�}, with p ≥ 0, p �= 1.

Notation: If p = 0, we set q = e. Otherwise, for 0 < p < e, let q = q(p) be the
nontrivial solution of the equation p(log p − 1) = q(log q − 1).

In [33], we find the limiting conditional measure for these conditional counting
measures. More precisely, the scaled conditional counting measure converges weakly
(say in expectation) to a limiting Radon measure on C:

1

R2 [Z p
R]
( ·
R

)
→ μZ

p as R → ∞,

where

μZ
p =

⎧⎪⎪⎨
⎪⎪⎩

[
1{0≤|w|≤√

p} + 1{√q≤|w|}
]
m
π

+ (q − p)mT, p ∈ [0, 1) ,[
1{0≤|w|≤√

q} + 1{√p≤|w|}
]
m
π

+ (p − q)mT, p ∈ (1, e) ,

1{√p≤|w|} mπ + p mT, p ≥ e.

Using the determinantal structure of the Ginibre ensemble, it is not difficult to prove
that a similar result holds for the (conditional) “eigenvalue” counting measure, with
the limiting measure μZ

p , replaced by

μG
p =

⎧⎨
⎩

[
1{0≤|w|≤√

p} + 1{1≤|w|}
]
m
π

+ (1 − p)mT, p ∈ [0, 1) ,[
1{|w|≤1} + 1{√p≤|w|}

]
m
π

+ (p − 1)mT, p > 1.

Figures 3 and 4 illustrate the case of a deficiency p = 1
2 , while Figs. 5 and 6

illustrate overcrowding for p = 2.
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Fig. 3 GEF, deficiency p = 1
2

Fig. 4 Ginibre, deficiency
p = 1

2

Fig. 5 GEF, overcrowding
p = 2
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Fig. 6 Ginibre, overcrowding
p = 2

6 Analysis of an Illustrative Model: 2D β-Ensembles

In this section, we will provide proof sketches for the convergence of the conditional
distributions of the particles and of the JLM law for the finite β-Ginibre ensembles.
In the next section, we will briefly describe our proof from [33] for the zeros of the
GEF. We recall that the two-dimensional β-Ginibre ensemble consists of N particles,
whose joint probability density, with respect to the Lebesgue measure on CN , is given
by (6).

Since, at the moment, a limiting object for the finite β-Ginibre ensemble is not
known to exist, we choose a different limiting procedure than the one in the paper
[40] (see Sect. 5.1). We fix a scaling parameter α ≥ 1 and consider the asymptotics

in terms of the large parameter R =
√

N
α
. Heuristically, with the parameter α, the

finite system resembles the (hypothetical) infinite system up to distances less than√
αR from the origin. In this setting, there are typically about R2 particles in the disk

D(0, R) = {|z| ≤ R}. We again denote the number of particles in this disk by n(R).
Wewill illustrate below the proof of some of the predictions in Conjecture 5.1 above

(using the different scaling procedure above). The proof in the case of overcrowding is
similar. For a ≥ 2, one has to choose the value of the scaling parameter α depending
on a, b, and also R (if a > 2).

Theorem 6.1 For fixed b > 0, a ∈ (4/3, 2), we have,

P
[
n(R) ≤ R2 − bRa

]
= exp

(
−βb3

3
R3a−2(1 + o(1))

)
, R → ∞.

Our proof of Theorem 6.1 proceeds via large deviation type estimates, and for
a ≤ 4/3, the error in our estimates (see Proposition 6.1) overwhelms the leading term.
In the range a ∈ (1, 4

3 ], establishing the JLM law for the β-Ginibre ensembles with
β �= 2 is an interesting open problem.
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In addition to predicting the asymptotic decay of the rare events, the paper [40]
describes the limiting conditional distribution of the particles. In order to simplify the
presentation, we will consider just the events

Fp(R) =
{
n(R) ≤ pR2

}
,

with p ∈ [0, 1) a fixed parameter (one can also consider overcrowding, and p can
depend on R).

In order to describe the limiting distribution, we introduce linear statistics, that is,
the random variables

n(ϕ; R) =
N∑
j=1

ϕ
( z j
R

)
,

where ϕ is a smooth (say C2) test function with compact support.
The following result describes the conditional limiting distribution, where m is the

Lebesgue measure on C and mT is the uniform probability measure on the unit circle
{|z| = 1}.
Theorem 6.2 As R → ∞, we have

EFp(R) [n(ϕ; R)] = R2
∫
C

ϕ(w) dμα
p(w) + o(R2),

where the limiting conditional measure is given by

μα
p =

(
1{|z|≤√

p} + 1{1≤|z|≤√
α}
) m

π
+ (1 − p)mT.

Remark 6.1 WewritePF (resp.EF ) for the conditional probability (resp. expectation)
on the event F .

Remark 6.2 Notice that μα
p is not a probability measure. Later, it will also be conve-

nient to work with the normalized probability measure

μα
p = 1

α
μα

p.

6.1 Deviation Inequality for Linear Statistics

Theorem 6.2 follows from the following deviation inequality:

Proposition 6.1 For R, λ > 0, we have

PFp(R)

[∣∣∣∣n(ϕ; R) − R2
∫
C

ϕ(w) dμα
p(w)

∣∣∣∣ ≥ λ

]
≤ exp

(
− Cβ

D(ϕ)
λ2 + CϕR

2 log R

)
,
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where

D(ϕ) = ‖∇ϕ‖2L2(m)
=
∫
C
(ϕ2

x + ϕ2
y) dm.

Remark 6.3 The proposition is nontrivial only for λ ≥ CR
√
log R; hence we may

assume this holds below.

The proof (motivated by the LDP approach in [9,37]) is based on the approximation
of the joint density of the particles (at the exponential scale) by a functional acting on
probability measures. The (strictly convex, lower semi-continuous) function is given
by

Iα(ν) =
∫
C

|z|2
α

dν(z) − �(ν). (8)

The global minimizer of the functional (also known as the equilibrium measure) is
given by

μα
eq = 1

α
1{|z|≤√

α}(w) · m
π

,

that is, the uniform probability measure on the disk D(0,
√

α).
Consider now the set of measures

Fp = Fp(α) =
{
μ ∈ M1(C) : μ(D) ≤ p

α

}
, p ∈ [0, 1),

where M1(C) is the set of probability measures on the complex plane C and D is
the unit disk D = D(0, 1) = {|z| < 1}. In Sect. 6.5, we show that the measure that
minimizes the functional Iα over the closed set Fp is μα

p.
We also consider measures that are ‘far’ from the minimizing measure μα

p. For a
test function ϕ, we put

Lϕ,λ =
{
μ ∈ M1(C) :

∣∣∣∣
∫
C

ϕ(w) dμ(w) −
∫
C

ϕ(w) dμα
p(w)

∣∣∣∣ ≥ λ

}
.

A key tool required for the proof of Proposition 6.1 is the next claim, which can be
regarded as an effective formulation of the fact that Iα is strictly convex.

Claim 1 For any compactly supported measure ν ∈ Fp ∩ Lϕ,λ, we have

Iα(ν) ≥ Iα(μα
p(w)) + 2π

D(ϕ)
λ2.

Proof See the similar [33, Claim 11]. ��
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6.2 Approximation of the Joint Density

We start with an asymptotic estimate for the normalizing constant Zβ
N (see [43, Corol-

lary 1.5]).

Proposition 6.2 We have

log Zβ
N = −1

2
βN 2 · Iα(μα

eq) + O(N log N ),

where the error term depends on β.

It is technically convenient to restrict the consideration to particles in a finite box.
For example, one can easily prove that

P
[
max j∈{1,...,N }|z j | ≥ R3

]
≤ exp

(
−β

4
R6
)

, ∀R ≥ R0(β).

Hereafter, we assume that max j |z j | ≤ R3.

6.2.1 Smoothed Empirical Measure

Given w = (w1, . . . , wN ) ∈ CN , let μw = 1
N

∑N
j=1 δw j be the empirical probability

measure of the points. For a parameter t = t (R) (which is chosen to be R−C1 for
sufficiently large constant C1 > 0), we consider the smoothed empirical measure

μt
w = μw � m|z|=t ,

where m|z|=t is the uniform probability measure on |z| = t . It is not difficult to verify
the following (cf. [33, Claim 4]):

Claim 2 If C1 is chosen to be sufficiently large, then

1

N 2

∑
j �=k

log |w j − wk | ≤ �(μt
w) + C log 1

t

N
≤ �(μt

w) + C log R

N

and

1

N

N∑
j=1

|w j |2 =
∫
C

|w|2 dμt
w(w) + O(R−2).

Instead of working with the original particles z j , it is more convenient to work with
a scaled version. We set

L = R − t and w = 1

L
z.

123



124 Constr Approx (2018) 48:101–136

With this scaling, our assumptions that n(R) ≤ pR2 and
∣∣n(ϕ; R) − R2

∫
C ϕ(w)

dμα
p(w)

∣∣∣ ≥ λ imply that

μt
w(D) ≤ p

α

and
∣∣∣∣
∫
C

ϕ(z) dμt
w(z) −

∫
C

ϕ(w) dμα
p(w)

∣∣∣∣ ≥
λ

2N
,

wherewe used the fact that N = αR2, the (Hölder) continuity ofϕ, and our assumption
that λ ≥ CR

√
log R.

6.2.2 Upper Bound for the Joint Density

Define the following sets in CN :

Np = Np(t) =
{
w ∈ CN : μt

w(D) ≤ p

α

}
,

Lϕ,λ = Lϕ,λ(t) =
{
w ∈ CN :

∣∣∣∣
∫
C

ϕ(z) dμt
w(z) −

∫
C

ϕ(w) dμα
p(w)

∣∣∣∣ ≥
λ

2N

}
.

By the arguments outlined above, we have

P

[
Fp(R) ∩

{∣∣∣∣n(ϕ; R) − R2
∫
C

ϕ(w) dμα
p(w)

∣∣∣∣ ≥ λ

}]

≤ exp

(
1

2
βN 2

[
Iα(μα

eq) − inf
w∈Np∩Lϕ,λ

I �(w)

]
+ O(N log N )

)
,

where

I �(w) = L2

N 2

N∑
j=1

|w j |2 − 1

N 2

∑
j �=k

log |w j − wk |.

Claim 2 gives the following bound:

I �(w) ≥ Iα′(μt
w) − C log R

N
,

where Iα is the limiting functional defined in (8) and α′ = N
L2 = α(1+ O(R−2)). As

one can show that

inf
μ∈Fp∩Lϕ,λ

Iα′(μ) = inf
μ∈Fp∩Lϕ,λ

Iα(μ) + O(R−2),
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we conclude that

P

[
Fp(R) ∩

{∣∣∣∣n(ϕ; R) − R2
∫
C

ϕ(w) dμα
p(w)

∣∣∣∣ ≥ λ

}]

≤ exp

(
−1

2
βN 2 inf

μ∈Fp∩Lϕ,̃λ

[
Iα(μ) − Iα(μα

eq)
]

+ O(N log N )

)
, (9)

where λ̃ = λ
2N .

6.3 Proof of Proposition 6.1

Using Claim 1, we obtain

inf
μ∈Fp∩Lϕ,̃λ

[
Iα(μ) − Iα(μα

p)
]

≥ 2π

D(ϕ)
·
(

λ

2N

)2

≥ Cλ2

D(ϕ)N 2 . (10)

In Sect. 6.4.1, we show the lower bound estimate

P
[
Fp(R)

] ≥ exp

(
−1

2
βN 2 · inf

μ∈Fp

[
Iα(μ) − Iα(μα

eq)
]

+ O(N log N )

)
. (11)

To prove Proposition 6.1, we combine (9), (10), (11), and the fact that μα
p minimizes

Iα over Fp.

6.4 Outline of the Proof of Theorem 6.1

The proof of the upper bound of Theorem 6.1 follows the same lines as the proof of
Proposition 6.1 (ignoring the condition on linear statistics). From Claim 3, we find
(cf. [58])

P
[
Fp(R)

] ≤ exp

(
−1

2
βN 2 · 1

4α2

∣∣∣2p2 log p − (p − 1)(3p − 1)
∣∣∣+ O(N log N )

)

≤ exp

(
−1

8
βR4

∣∣∣2p2 log p − (p − 1)(3p − 1)
∣∣∣+ O(R2 log R)

)
.

To obtain the upper bound, we take p = 1 − bRa−2 (because of the error term, the
result is not trivial for 4

3 < a < 2).

Remark 6.4 Notice that for p near 1, we have

2p2 log p − (p − 1)(3p − 1) = 2

3
(p − 1)3(1 + O(p − 1)).
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6.4.1 Lower Bound

The proof of the lower bound is similar to the proof of the lower bound for the hole
probability in [1], and we will only sketch the idea. We again choose t = R−C1 for
some sufficiently large C1 > 0 and scale the points as follows:

w = 1

R
z.

One can construct a set of points w0 with the following properties:

• There are at most pR2 points inside D (the open unit disk).
• Point-to-point separation: |w0

j − w0
k | ≥ Ct for all j �= k.

• Separation from boundary:
⋃

w0
j∈D D(w0

j , t) ⊂ D.

• The points approximate the minimizing measure

∣∣∣∣Uμt
w0

(z) −Uμα
p
(z)

∣∣∣∣ ≤
C log N

N
, ∀z ∈ C. (12)

Remark 6.5 One can construct such a ‘good’ set of points directly, using the radial
symmetry of the problem. Another possibility is to use Fekete points for (essentially)
the measure μα

p (that is, weighted Fekete points with respect to the weight given by
Uμα

p
). A small difficulty with the second approach is that p can depend on N (the

number of points).

Next we define a set of ‘good configurations’ of points:

GN =
{
w ∈ CN : |w j − w0

j | <
t

2
∀ j ∈ {1, . . . , N }

}
.

By the separation of the points, and using (12), we have for w ∈ GN :

1

N 2

∑
j �=k

log |w j − wk | = �(μα
p) + O

(
log N

N

)
,

and

1

N

N∑
j=1

|w j |2 =
∫
C

|w|2 dμα
p(w) + O

(
log N

N

)
.

Also notice that the volume (in CN ) of GN is at least exp(−CN log N ). The lower
bound is obtained by integrating the (scaled) joint density over the set GN , using the
above estimates, and Claim 3.
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6.5 Minimizing Measures

The following lemma gives a characterization of the (constrained) minimizers of the
functional Iα (cf. [33, Lemma 10]).

Lemma 6.1 Let C ⊂ M1(C) be a closed and convex set of probability measures. The
probability measure μ0 ∈ C is the (unique) minimizer of Iα over C if and only if, for
all μ ∈ C,

∫ |z|2
2α

dμ0(z) − �(μ0) ≤
∫ |z|2

2α
dμ(z) −

∫
Uμ0(z) dμ(z).

Proof Let μ ∈ C be a probability measure such that μ �= μ0. Without loss of general-
ity, we assume μ has compact support and finite logarithmic energy. It is known ([63,
Lemma I.1.8]) that −�(μ − μ0) > 0.

For t ∈ (0, 1), consider the measure μt = (1− t)μ0 + tμ ∈ C, and expand Iα(μt )

to get

Iα(μt ) = Iα(μ0) + 2t

(∫ |z|2
2α

dμ(z)−
∫

Uμ0(z) dμ(z)−
∫ |z|2

2α
dμ0(z)+�(μ0)

)

+ t2 [−�(μ − μ0)] .

Therefore, if the linear term in t is non-negative, then Iα(μt ) > Iα(μ0), and this
implies (from the convexity of Iα) that Iα(μ) > Iα(μ0). The other direction is clear.

��
We now wish to find the minimizing measure of the functional Iα over the set

Fp = Fp(α) =
{
μ ∈ M1(C) : μ(D) ≤ p

α

}
,

which is a closed and convex subset of M1(C) (recall that D denotes the open unit
disk).

We argue that the following probability measure is the minimizer:

μα
p = 1

α

(
1{|z|≤√

p} + 1{1≤|z|≤√
α}
) m

π
+ 1 − p

α
mT.

A simple calculation gives the values of the logarithmic potential on the support

Uμα
p
(z) = |z|2

2α
+ logα − 1

2
+
{
c1, |z| ≤ √

p,

0, 1 ≤ |z| ≤ √
α,

where c1 = p(log p−1)+1
2α > 0. It is also not difficult to see that

Uμα
p
(z) <

|z|2
2α

+ logα − 1

2
+
{
c1,

√
p < |z| < 1,

0,
√

α < |z| .
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The properties above give

∫ |z|2
2α

dμα
p(z) − �(μα

p) =
∫ [ |z|2

2α
−Uμα

p
(z)

]
dμα

p(z) = − logα − 1

2
− c1

p

α
.

On the other hand, for any μ ∈ M1(C), such that μ(D) ≤ p
α
, we have

∫ [ |z|2
2α

−Uμα
p
(z)

]
dμ(z) ≥ − logα − 1

2
−
∫
D
c1 dμ ≥ − logα − 1

2
− c1

p

α
.

Finally, it is straightforward to evaluate the functional Iα for μα
p (cf. [58]).

Claim 3 We have for p ∈ [0, 1),

Iα(μα
p) = Iα(μα

eq) + 1

4α2

∣∣∣2p2 log p − (p − 1)(3p − 1)
∣∣∣ .

Remark 6.6 The above result also holds in the range p > 1.

7 Analysis of the GEF Zeros Process

In order to prove Theorem 4.3 and Theorem 4.4, we need to understand the behavior
of linear statistics of the GEF zeros, conditioned on the hole event in {|z| < R}. We
recall that linear statistics are the random variables

nF (ϕ; R) =
∑

z: F(z)=0

ϕ
( z

R

)
,

where ϕ is a smooth (say C2) test function with compact support, and we sum over
all the zeros of the GEF (to prove Theorem 4.4, the test function ϕ has to depend on
R, but here we ignore this technicality).

The analysis presented in the previous section requires some modifications in order
to obtain the conditional intensity for the GEF zeros process. The main idea is to
approximate the (scaled) GEF with the Weyl polynomials

Pα,R(z) =
N∑

k=0

ξk√
k! (Rz)

k,

where α > 1 is a large parameter (eventually depending on R), and N = N (α, R) =
�αR2� is the degree of Pα,R .

Roughly speaking, with this choice of the parameters, the scaled GEF F(Rz)
(defined in (1)) and the polynomial Pα,R have a very similar bevavior inside a disk
of radius

√
β, as long as β � α. Therefore, by taking α large, we can obtain an

understanding of the conditional intensity of the Gaussian zeros (under conditioning
byHR) by analyzing the same problem for the polynomials.
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Remark 7.1 It turns out that in order to carry out this approximation scheme, we need
to let α → ∞ logarithmically with R. A drawback of this is that we cannot use ‘off-
the-shelf’ large deviation principles for empirical measures of random polynomial
zeros such as [67].

7.1 Joint Probability Density and the Limiting Functional

The joint density of the zeros of Pα,R with respect to the Lebesgue measure on CN is
given by (cf. (3))

ρR(z1, . . . , zN )

= (CN ,R,α)−1|
(z1, . . . , zN )|2
(
R2

π

∫
C

|QN (w)|2e−R2|w|2 dm(w)

)−(N+1)

,(13)

where QN is the polynomial

QN (w) = (w − z1) . . . (w − zN )

and CN ,R,α is a normalizing constant. As was briefly outlined in 2.2.1, at the expo-
nential scale, one can approximate this density with the limiting functional

I Zα (μ) = 2 sup
z∈C

(
Uμ(z) − 1

2α
|z|2
)

− �(μ) − Cα,

where we used N
R2 � α.

Remark 7.2 The global minimizer of the functional I Zα is the uniform probability on
the disk {|z| ≤ √

α}, which we denoted by μα
eq.

7.1.1 Deviation Inequality

The analysis is done in a similar way to the case of the β-Ginibre ensembles (Sects. 6.1
and 6.2).

Recall that NF (R) is the number of zeros of the GEF inside the disk {|z| < R}. To
fix ideas, consider the following event:

FZ
p (R) =

{
NF (R) ≤ pR2

}
, p ∈ [0, 1),

and introduce the following sets of measures:

Fp =
{
μ ∈ M1(C) : μ(D) ≤ p

α

}
, p ∈ [0, 1)
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and

LZ
ϕ,λ =

{
μ ∈ M1(C) :

∣∣∣∣
∫
C

ϕ(w) dμ(w) −
∫
C

ϕ(w) dνα
p(w)

∣∣∣∣ ≥ λ

}
,

where D is the open unit disk and να
p is the restriction of the limiting measure μZ

p

(introduced in Sect. 5.2) to the disk {|z| ≤ √
α}, and normalized to be a probability

measure.
In a similar fashion to (9), one can show

P

[
FZ
p (R) ∩

{∣∣∣∣nF (ϕ; R) − R2
∫
C

ϕ(w) dμZ
p (w)

∣∣∣∣ ≥ λ

}]

≤ exp

⎛
⎝−N 2 inf

μ∈Fp∩LZ
ϕ,̃λ

[
I Zα (μ) − I Zα (μα

eq)
]

+ O(N log N )

⎞
⎠ ,

where λ̃ = λ
2N . Then, combining Claim 11 from [33] (corresponding to Claim 1 for

the Ginibre ensemble), together with a lower bound estimate for the probability of
FZ
p (R), we obtain the deviation inequality

PFZ
p (R)

[∣∣∣∣nF (ϕ; R)−R2
∫
C

ϕ(w) dμZ
p (w)

∣∣∣∣≥λ

]
≤ exp

(
− C

D(ϕ)
λ2+CϕR

2 log2 R

)
.

Remark 7.3 The actual proof is technically more involved, in large part because the
choice of the value of N has to be random.

7.1.2 Lower Bound for P
[
FZ
p (R)

]

Because of the circular symmetry of the problem, one can use analytic techniques to
obtain the lower bound for the probability of the event FZ

p (R), which are not available
in the case of the β-Ginibre ensembles.

The main idea is to use Rouché’s theorem. More precisely, recalling that the GEF
is given by the Gaussian Taylor series

F(z) =
∞∑
k=0

ξk√
k! z

k,

weexplicitly construct an eventwhere the term
∣∣∣ξk0 zk0√

k0!
∣∣∣ , k0 = �pR2�, dominates the

sum over all the other terms (on the circle {|z| = R}). This simple but effective method
originally appeared in the paper [64] and was later used in many other problems of
this type.
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Fig. 7 Conditional intensity
profile in 1D

7.1.3 The Minimizing Measures

In order to find the limiting conditional measures for the GEF zeros process, one has
to identify the (probability) measure να

p which minimizes the functional I Zα over the
set Fp. The interested reader can find the details in [33, Section 5].

8 Conditional Intensities in 1D

The conditional intensity around a hole has been studied in 1D (where it is usually
called a ‘gap’), in the context of the GUE (Gaussian Unitary Ensemble) point process
in [46]. In this section, we briefly describe the approach in [46] and compare and
contrast the results therein with the situation we already discussed in 2D.

In 1D, under the natural scaling (necessary for obtaining an LDP from the GUE),
the “droplet” (that is, the minimizer of the LDP rate functional) assumes the form
of the famous semicircle distribution. With the normalization of [46], this density is
given by

f (x) = 1

π

√
2 − x2, |x | ≤ √

2.

Under this scaling, the “hole” assumes the form of an interval (ζ1, ζ2). In the important
case where (ζ1, ζ2) is an interval symmetric about the origin, denoted by (−w,w),
the (scaled) conditional intensity has the form

fw(x) = 1

π

√
L2 − x2

x2 − w2 |x |, x ∈ [−L ,−w] ∪ [w, L],

where L = √
w2 + 2. In particular, we note that there is no singular component, in

contrast with both of the models we considered in 2D. Figure 7 depicts the density for
w = 1.

In [46], the authors approach this problem by obtaining a singular integral equation
for fw, which is deduced essentially from a variational perturbation of the LDP rate
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functional around the minimizing measure. The authors then illustrate two approaches
to solving this singular integral equation - one of them being a Riemann–Hilbert
approach and the other being via an application of Tricomi’s theorem ([66]).

In [46], the authors also study the particle distribution for atypical indices for the
GUE. The index N+ of a configuration of N particles on R is the number of particles
on R+. By symmetry, the typical value of N+/N = 1/2. Using similar variational
techniques (as discussed above) on the LDP rate functional for the GUE ensemble,
in [46] the authors obtain the asymptotics of the probability of an atypical index
N+/N = c �= 1/2, as well as the typical particle profile given such an atypical index.
This can be compared with [6], where a similar problem has been studied for the
Ginibre ensemble using free boundary techniques.

9 Simulation of the Hole Event and Numerical Aspects

Numerical methods to effectively simulate the distribution of zeros (or eigenvalues)
conditioned on a large hole is a challenging problem, because of the rarity of the hole
event and the strong correlation among the particles. E.g., for theGinibre ensemble, the
asymptotics of the hole probabilities can be understood via the statistical independence
of their absolute values, but this approach is not useful for simulations, because it
carries no information about the correlations between the particles.

In the present paper, Fig. 1 is obtained by simulating the GEF (and then the zeros
thereof) under the conditions (on the coefficients) that produce the tight lower bound
for the hole probability (as alluded to in Sect. 7.1.2). Figure 2 is obtained by manually
moving the eigenvalues of a Ginibre matrix (that are inside the disk) to the disk’s
boundary. In [46], a modified Metropolis Hastings algorithm was studied for simulat-
ing such conditional distributions (conditioned on hole, overcrowding, or deficiency
events) for the GUE process in 1D.

A 2D analogue of such an algorithm, for the Ginibre ensemble, would consist of
the following: We start with a “legitimate” particle configuration, namely one that
satisfies the constraint of having a hole. E.g., a reasonable initial configuration would
be equi-spaced points on the boundary of the hole. Given a “legitimate” configuration
(λ1, . . . , λN ), we generate a new one (λ′

1, . . . , λ
′
N ) by perturbing a (randomly picked)

particle by a small Gaussian noise, conditioned to avoid the “hole”. Ideally, we then
replace the current configuration with the new one with probability

min

(
fN (λ′

1, . . . , λ
′
N )

fN (λ1, . . . , λN )
, 1

)
,

where fN is the probability density function of the Ginibre ensemble of size N . How-
ever, the generation of new configurations that avoid the hole introduces an inherent
asymmetry, which has to be taken into account in the acceptance probability for this
approach. More precisely, one has to add the ratio of the probability to move from the
new configuration to the old one, over the probability to move from the old configu-
ration to the new one (which are not the same).
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Fig. 8 Simulation of a circular
hole by a modified Metropolis
Hastings algorithm

Figure 8 presents the result of 10, 000 iterations of the above algorithm, in the
case of a circular hole. The initial configuration consists of 2, 000 points uniformly
distributed in the annulus outside of the excluded disk and inside the support of the
equilibrium measure (indicated by the outer circle). It is more difficult to implement
this algorithm efficiently for the GEF zero process, mainly because the finite particle
density fN is considerably more complicated for the zeros, involving interactions of
all orders up to N .

A different but related question is to numerically solve constrained optimization
problems on the space of probability measures (on a Euclidean space), like the ones
arising in the hole problem for the Ginibre ensemble and the GEF zeros. In the setting
of the Ginibre ensemble, the goal is to minimize a weighted logarithmic energy

I (μ) =
∫

V (x) dμ(x) − �(μ)

of a probability measure (or, more generally, a finite Borel measure) μ, subject to
constraints on its support. This can be directly related to LDP rate functionals - for
example, the LDP rate functional for the Ginibre process is a logarithmic energy with
a quadratic weight V .

To our knowledge, very little is known about this problem in dimensions greater than
one. In 1D, a similar numerical problem has been addressed by [18] in the weighted
case (using an approach involving iterated balayage), and by [19,36] in the unweighted
case. Even in the 1D situation, there are various assumptions on the Riesz measure
corresponding to the weight V , which would be of interest to relax.

It remains a nontrivial and highly interesting question to devise efficient numerical
techniques to simulate the particle configurations for the hole (and, in the same vein,
for overcrowding and deficiency) events. In the case of the hole event for the Ginibre
ensemble, one can use weighted Leja points (see [63, Chapter V]) to approximate the
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most likely eigenvalue configurations (given by theweighted Fekete points, mentioned
in Sect. 4.3). Finding a similar method for the GEF zeros process seems to be an
interesting problem.
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