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Abstract We consider general linear approximation spaces Xb
q based on a quasi-

Banach space X , and we analyze the degree of compactness of the embedding Xb
q ↪→

X . Applications are given to periodic Besov spaces on the d-torus, including spaces of
generalized and logarithmic smoothness. In particular, we obtain the exact asymptotic
behavior of approximation and entropy numbers of embeddings of such Besov spaces
in Lebesgue spaces and in Besov spaces of logarithmic smoothness.
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1 Introduction

The problem of compactness of embeddings between function spaces on bounded
domainsΩ inRd is a classical question with a long history.Many authors have studied
this problem by using a variety of techniques, some of them based upon piecewise-
polynomial approximation, more refined spline approximations, the Fourier-analytical
approach, or wavelet bases. See, for example, the books by Triebel [48, 4.10], König
[29, 3.C], Edmunds and Triebel [22, 3.3] and the references given there; see also the
papers by Leopold [36] and Cobos and Kühn [14]. The related question of embed-
dings between weighted function spaces on R

d has also been extensively studied, as
can be seen in the papers by Haroske and Triebel [28], Kühn, Leopold, Sickel and
Skrzypczak [33–35], Kühn [31,32] and Haroske and Skrzypczak [26,27]. The out-
come is the description of the degree of compactness of the embeddings id in terms
of the asymptotic behavior of entropy numbers (en(id)) and of approximation num-
bers (an(id)). For the case where Ω is a bounded domain in R

d with C∞ boundary,
1 < p < ∞, 0 < q ≤ ∞, s > 0, and we consider the embedding operator id from
the Besov space Bs

p,q(Ω) into the Lebesgue space L p(Ω), it turns out that an(id)
and en(id) behave asymptotically as n−s/d (see [22, Theorems 3.3.3/2 and 3.3.4]).
The space Bs

p,q(R
d) is defined by using the Fourier transform, and Bs

p,q(Ω) is the
restriction of Bs

p,q(R
d) to Ω .

In this paper, we deal with periodic spaces of functions on the d-torus Td , defined
by using the modulus of smoothness. Besides Besov spaces Bs

p,q , we also consider

Besov spaces of generalized smoothness Bs,ψ
p,q , where s ≥ 0 and ψ is a slowly varying

function, paying special attention to the case when s = 0 and ψ(t) = (1 + | log t |)γ
that we denote byB0,γ

p,q (see, for example, the papers byDeVore, Riemenschneider, and
Sharpley [20]; Caetano, Gogatishvili and Opic [6]; or Cobos and Domínguez [9,10]).
Spaces B0,γ

p,q have only logarithmic smoothness.

Let 1 < p < ∞. For the embedding id : Bs,ψ
p,q ↪→ L p with s > 0, we show

that the approximation and entropy numbers behave as n−s/d/ψ(n1/d). If s = 0 and
ψ(t) = (1+| log t |)γ , then the behavior is as (log n)−(γ+1/q) if γ +1/q > 0, while in
the limit case γ = −1/q and 0 < q < ∞, we derive that they behave asymptotically as
(log log n)−1/q . Note that when s = 0, the estimates do not depend on the dimension d.
We also establish sharp results on approximation and entropy numbers of embeddings
Bs,ψ
p,u ↪→ B0,γ

p,q .
To establish all these estimates, we follow a new approach based on the struc-

ture of Bs,ψ
p,q as approximation space modeled on L p. In fact, given an abstract

approximation scheme (X; An), we consider the approximation spaces Xb
q , where

b is a certain sequence of positive numbers, and we analyze the degree of com-
pactness of the embedding Xb

q ↪→ X in terms of approximation and entropy
numbers.
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We work with sufficiently general sequences b, so that spaces Xb
q include as

special cases the classical approximation spaces Xα
q (see [4,5,18,19,39,41]), the

more general spaces X (α,ψ)
q (see [10,43]), as well as limiting approximation spaces

X (0,γ )
q (see [15,16,23]) and X [α,ψ;r ]

q (see [24,44]). Almira and Luther [1,2] have also
studied an extension of spaces Xα

q , but our conditions on the parameters are differ-
ent.

In Sect. 2, we introduce the spaces Xb
q , show an equivalent quasi-norm in Xb

q , and
prove a representation theorem, which allows us to describe any element f ∈ Xb

q as
the sum of a series f =∑∞

j=0 g j with g j ∈ An( j) for a certain sequence (n( j)). This
result comprises several others in the literature, namely, the representation theorems
established by Pietsch [41, Theorem 3.1] for Xα

q , Cobos and Resina [16,17] and Fehér

and Grässler [23, Theorem 1] for X (0,γ )
q with γ > −1/q, Pustylnik [43, Theorem 3.3]

for X (α,ψ)
q , and Pustylnik [44, Theorem 3.2] and Fernández-Martínez and Signes [24,

Theorem 5.4] for X [α,ψ;r ]
q . In addition, it gives new information for X (0,−1/q)

q , the
extreme case where γ = −1/q and 0 < q < ∞ which shows another jump in the
scale.

In Sect. 3, we develop a procedure that shows how one can relate limiting spaces
with classical approximation spaces by selecting an appropiate subsequence of the
approximation sets An . As a consequence, we derive the reiteration theorem and
the interpolation theorem for limiting spaces X (0,γ )

q with γ > −1/q established in
[23, Theorems 2 and 5] from the corresponding results for spaces Xα

q given in [41,
Theorem 3.2], [38] and [5, Korollar 2.3.1]. This technique yields a new result in the
extreme case γ = −1/q. We also use this approach to derive interpolation properties
of limiting spaces from the properties of spaces Xα

q .
Then, in Sect. 4, we work with linear approximation schemes (X; An), that is,

we suppose that An = Pn(X), where (Pn) is a sequence of uniformly bounded
projections in X . We consider the embedding id : Xb

q ↪→ X and we show an
upper estimate for approximation numbers and a lower estimate for entropy numbers.
When Xb

q equals X (α,ψ)
q and α > 0, we determine the exact asymptotic behav-

ior of entropy and approximation numbers of the embedding. We also cover the
case Xb

q = X (0,γ )
q for γ ≥ −1/q, as well as some other embeddings including

id : X (α,ψ)
u ↪→ X (0,γ )

q .

In the final Sect. 5, we apply the previous results to embeddings Bs,ψ
p,q ↪→

L p, B0,γ
p,q ↪→ L p and Bs,ψ

p,u ↪→ B0,γ
p,q establishing the results already stated for approx-

imation numbers and entropy numbers.
Working with Besov spaces given by the modulus of smoothness, usually the cases

of positive smoothness and logarithmic smoothness require different tools. See, for
example, [12,13,20]. However, our approach allows us to cover both cases simulta-
neously. Other applications of the abstract results are possible. In particular, they can
be used to derive similar results for Besov sequence spaces.
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2 Approximation Spaces

Hereafter, given two sequences (un), (vn) of nonnegative real numbers, we write un �
vn if there is a constant c > 0 such that un ≤ c vn for all n ∈ N. The notation un ∼ vn
means un � vn and vn � un . A similar notation is used for quasi-norms.

Let (X, ‖ · ‖X ) be a quasi-Banach space, and let (An)n∈N0 be a sequence of subsets
of X satisfying the following conditions:

A0 = {0} ⊆ A1 ⊆ . . . ⊆ An ⊆ . . . ⊆ X,

λAn ⊆ An for any scalar λ and any n ∈ N0 = N ∪ {0},
An + Am ⊆ An+m for any n,m ∈ N0.

Given any f ∈ X , we put E0( f ) = ‖ f ‖X and

En( f ) = En( f )X = inf{‖ f − g‖X : g ∈ An}, n ∈ N.

Let b = (bn) be a sequence of positive numbers with b1 = 1, and let 0 < q ≤ ∞.
We assume that

∞∑

n=1

bqnn
−1 = ∞ if q < ∞ and sup

n≥1
{bn} = ∞ if q = ∞. (2.1)

The approximation space Xb
q = (X; An)

b
q consists of all f ∈ X that have a finite

quasi-norm

‖ f ‖Xb
q

=

⎧
⎪⎨

⎪⎩

( ∞∑
n=1

(bnEn−1( f ))qn−1
)1/q

if 0 < q < ∞,

supn≥1 {bnEn−1( f )} if q = ∞.

It is easy to check that if (2.1) does not hold, then we are in the trivial case where
X = Xb

q with equivalence of quasi-norms.
Clearly, Xb

q ↪→ X , where ↪→means continuous embedding. Moreover, if bn ∼ hn ,
then Xb

q = Xh
q with equivalence of quasi-norms.

Next we give some examples.

Example 2.1 Let bn = nα , where α > 0. The approximation spaces Xα
q generated by

b = (bn) are the classical approximation spaces considered in [5,18,19,39,41]. It is
shown in [41, Proposition 2] that

‖ f ‖Xα
q

∼ ‖ f ‖�
Xα
q

=
⎛

⎝‖ f ‖qX +
∞∑

j=1

2 jαq E2 j ( f )q

⎞

⎠

1/q

.

This equivalent quasi-norm is very useful for developing the theory of spaces Xα
q . It

involves the sequences (ϕ( j)) = (2 jα) and (n( j)) = (2 j ), which have the following
connection with the sequence (bn) = (nα): If q = ∞, we have
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max{bk : n( j) + 1 ≤ k ≤ n( j + 1)} = max
{
kα : 2 j + 1 ≤ k ≤ 2 j+1

}
= 2( j+1)α

∼ ϕ( j) ,

and if 0 < q < ∞, we obtain

n( j+1)∑

k=n( j)+1

bqk
k

∼
∫ 2 j+1

2 j
xαq dx

x
∼ 2 jαq = ϕ( j)q .

Note also that 1 = n(0) < n(1) < · · · < n( j) < · · · , 1 = ϕ(0) < ϕ(1) < · · · <

ϕ( j) < · · · , and that 1 < ϕ( j + 1)/ϕ( j) = 2α , j ∈ N0. Furthermore,

r−1∑

j=0

n( j) =
r−1∑

j=0

2 j ≤ 2r = n(r) .

In a more general way, if ψ is a slowly varying function (see [21, pp. 108–109] and
also [3]), we designate by X (α,ψ)

q the approximation space generated by b = (bn) =
(nαψ(n)) (see [10,43]). Without loss of generality, we may assume that (bn) is an
increasing sequence. If we take this time (ϕ( j)) = (2 jαψ(2 j )) and (n( j)) = (2 j ),
then we have similar relationships as above between (bn) and (ϕ( j)), (n( j)). Indeed,
if 0 < q < ∞, by [21, Proposition 3.4.33], we get

n( j+1)∑

k=n( j)+1

bqk
k

∼
∫ 2 j+1

2 j
(xαψ(x))q

dx

x
∼ 2 jαqψ(2 j )q = ϕ( j)q .

Moreover, using [3, Theorem 1.5.6], we obtain that there are N ∈ N and constants
1 < K1 < K2 such that

K1 ≤ ϕ( j + 1)

ϕ( j)
≤ K2 , j ≥ N .

Example 2.2 Let bn = (1 + log n)γ with γ ≥ −1/q if 0 < q < ∞ and γ > 0
if q = ∞. We write X (0,γ )

q for the approximation spaces generated by the sequence
b = (bn). These kinds of approximation spaces have been studied in [15–17,23].

If γ > −1/q, according to [23, Lemma 1], we have

‖ f ‖
X (0,γ )
q

∼ ‖ f ‖�
X (0,γ )
q

=
⎛

⎝‖ f ‖qX +
∞∑

j=1

(
2 j (γ+1/q)Eμ j ( f )

)q

⎞

⎠

1/q

,

where μ j = 22
j
. So, the companion sequences of (bn) are now (n( j)) = (μ j ) and

(ϕ( j)) = (2 j (γ+1/q)). We have again
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n( j+1)∑

k=n( j)+1

bqk
k

=
μ j+1∑

k=μ j+1

(1 + log k)γ q

k
∼
∫ μ j+1

μ j

(1 + log x)γ q
dx

x

∼ 2 j (γ q+1) = ϕ( j)q ,

with

1 <
ϕ( j + 1)

ϕ( j)
= 2γ+1/q , j ∈ N0 ,

and

r−1∑

j=0

n( j) =
r−1∑

j=0

22
j ≤ 22

r = n(r) .

If γ = −1/q and 0 < q < ∞, let ρ j = 2μ j = 22
2 j

. The choice n( j) = ρ j and
ϕ( j) = 2 j/q yields sequences satisfying similar relationships as above.

Extracting the common features from these examples, in what follows we work
with approximation spaces Xb

q satisfying that there is a sequence of positive integers
1 = n(0) < n(1) < · · · < n( j) < · · · and another sequence of positive numbers
(ϕ( j)) j∈N0 such that 1 = ϕ(0) and

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

n( j+1)∑

k=n( j)+1
bqk k

−1 ∼ ϕ( j)q if q < ∞,

max
n( j)+1≤k≤n( j+1)

bk ∼ ϕ( j) if q = ∞.

(2.2)

We also suppose that there are an integer N ∈ N and real constants 1 < K1 < K2
such that

K1 ≤ ϕ( j + 1)

ϕ( j)
≤ K2, j ≥ N . (2.3)

In particular, the sequence (ϕ( j)) is increasing with ϕ( j) ∼ ϕ( j + 1) and
lim j→∞ ϕ( j) = ∞. In addition, we also assume that

⎧
⎪⎪⎨

⎪⎪⎩

r−1∑

j=0
n( j) ≤ n(r) for all r ∈ N,

or
An is a linear subspace of X for all n ∈ N.

(2.4)

Next we show an equivalent quasi-norm in Xb
q .
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Lemma 2.1 Under the assumptions (2.1), (2.2), and (2.3), the quasi-norm of Xb
q is

equivalent to

‖ f ‖�
Xb
q

=
⎛

⎝‖ f ‖qX +
∞∑

j=1

ϕ( j)q En( j)( f )
q

⎞

⎠

1/q

(the sum should be replaced by the supremum if q = ∞).

Proof Suppose 0 < q < ∞. According to (2.2), our assumption on (ϕ( j)), and the
fact that (En( f )) is nonincreasing, we obtain

‖ f ‖Xb
q

=
⎛

⎝‖ f ‖qX +
∞∑

j=0

n( j+1)∑

k=n( j)+1

(bk Ek−1( f ))q

k

⎞

⎠

1/q

≤
⎛

⎝‖ f ‖qX +
∞∑

j=0

En( j)( f )
q

n( j+1)∑

k=n( j)+1

bqk
k

⎞

⎠

1/q

�

⎛

⎝‖ f ‖qX +
∞∑

j=1

ϕ( j)q En( j)( f )
q

⎞

⎠

1/q

= ‖ f ‖�
Xb
q
.

Conversely, using (2.2), we derive

‖ f ‖Xb
q

=
⎛

⎝‖ f ‖qX +
∞∑

j=0

n( j+1)∑

k=n( j)+1

(bk Ek−1( f ))q

k

⎞

⎠

1/q

�

⎛

⎝‖ f ‖qX +
∞∑

j=0

En( j+1)−1( f )
qϕ( j)q

⎞

⎠

1/q

∼ ‖ f ‖�
Xb
q
.

The case q = ∞ is similar. �

Writing down Lemma 2.1 for the case bn = nαψ(n) (Example 2.1), we recover a

result contained in [43, Theorem 3.2]. In the special case ψ(t) = 1 for all t > 0, that
is, in the case of classical approximation spaces, we obtain [41, Proposition 2].

If bn = (1 + log n)γ with γ > −1/q (Example 2.2), we recover [23, Lemma 1].
For the case γ = −1/q and 0 < q < ∞, Lemma 2.1 gives that

‖ f ‖
X (0,−1/q)
q

∼ ‖ f ‖�
X (0,−1/q)
q

=
⎛

⎝‖ f ‖qX +
∞∑

j=1

(2 j/q Eρ j ( f ))
q

⎞

⎠

1/q

.
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The following result provides a characterization for elements of Xb
q as sums of series

with terms in the sets An( j). Recall that we may assume without loss of generality that
‖ · ‖X is a p-norm with 0 < p < q (see [30, 15.10] or [29, Proposition 1.c.5]).

Theorem 2.1 Assume that (2.1), (2.2), (2.3), and (2.4) hold. Let f ∈ X. Then f ∈
Xb
q if, and only if, there is a representation f = ∑∞

j=0 g j (convergence in X) with
g j ∈ An( j) and (ϕ( j)‖g j‖X ) ∈ 
q . Furthermore,

‖ f ‖∗
Xb
q

= inf

⎧
⎪⎨

⎪⎩

⎛

⎝
∞∑

j=0

(ϕ( j)‖g j‖X )q

⎞

⎠

1/q

: g j ∈ An( j) and f =
∞∑

j=0

g j

⎫
⎪⎬

⎪⎭

is an equivalent quasi-norm on Xb
q .

Proof Suppose 0 < q < ∞, and let f ∈ Xb
q . Take any ε > 0, and for each j ∈

N0, select f j ∈ An( j) such that ‖ f − f j‖X ≤ (1 + ε)En( j)( f ). Put f−1 = 0 and
g j = f j − f j−1, j ∈ N0. Since f ∈ Xb

q and (2.1) holds, we have that En( f ) → 0 as
n → ∞. This yields that

∥
∥
∥ f −

k∑

j=0

g j

∥
∥
∥
X

= ‖ f − fk‖X ≤ (1 + ε)En(k)( f ) → 0 as k → ∞.

Hence f =∑∞
j=0 g j with convergence in X . Moreover,

‖g j‖X ≤ cX (‖ f − f j‖X + ‖ f − f j−1‖X ) ≤ 2(1 + ε)cX En( j−1)( f ), j ∈ N,

and
‖g0‖X ≤ cX (‖ f ‖X + ‖ f − f0‖X ) ≤ 2(1 + ε)cX‖ f ‖X .

Here cX is the constant in the quasi-triangle inequality in X , whence, using (2.3) and
Lemma 2.1, we get

‖ f ‖∗
Xb
q

≤
⎛

⎝
∞∑

j=0

(ϕ( j)‖g j‖X )q

⎞

⎠

1/q

�

⎛

⎝‖ f ‖qX +
∞∑

j=1

ϕ( j − 1)q En( j−1)( f )
q

⎞

⎠

1/q

� ‖ f ‖Xb
q
.

Next we check the converse inequality. As we pointed out before, we may assume
that ‖ · ‖X is a p-norm with 0 < p < q. Let s > 0 such that 1/p = 1/q + 1/s.
Given any representation f = ∑∞

j=0 g j (convergence in X ) with g j ∈ An( j) and
(ϕ( j)‖g j‖X ) ∈ 
q , we have by (2.4) that

∑r
j=0 g j ∈ An(r+1), r ∈ N. Take any

1 < D < K1. We have
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En(r+1)( f ) ≤
∥
∥
∥ f −

r∑

j=0

g j

∥
∥
∥
X

=
⎛

⎝
∥
∥
∥

∞∑

j=r+1

g j

∥
∥
∥
p

X

⎞

⎠

1/p

≤
⎛

⎝
∞∑

j=r+1

‖g j‖p
X

⎞

⎠

1/p

=
⎛

⎝
∞∑

j=r+1

(D j‖g j‖X )pD− j p

⎞

⎠

1/p

≤
⎛

⎝
∞∑

j=r+1

(D j‖g j‖X )q

⎞

⎠

1/q ⎛

⎝
∞∑

j=r+1

D− js

⎞

⎠

1/s

= D−(r+1)

(1 − D−s)1/s

⎛

⎝
∞∑

j=r+1

(D j‖g j‖X )q

⎞

⎠

1/q

.

Therefore, using Lemma 2.1 and (2.3), we obtain

‖ f ‖Xb
q

∼
⎛

⎝‖ f ‖qX +
∞∑

j=1

ϕ( j)q En( j)( f )
q

⎞

⎠

1/q

�

⎛

⎝‖ f ‖qX +
∞∑

j=1

(ϕ( j)D− j )q
∞∑

k= j

(Dk‖gk‖X )q

⎞

⎠

1/q

=
⎛

⎝‖ f ‖qX +
∞∑

k=1

(Dk‖gk‖X )q
k∑

j=1

(ϕ( j)D− j )q

⎞

⎠

1/q

.

On the other hand, since D/K1 < 1, (2.3) also implies that (ϕ(k)D−k)k≥N is increas-
ing because

ϕ(k)

Dk
≤ ϕ(k + 1)

Dk+1

D

K1
<

ϕ(k + 1)

Dk+1 , k ≥ N .

Moreover,
ϕ( j) ≤ K j−k

1 ϕ(k) for N ≤ j ≤ k.

Therefore,

k∑

j=1

(ϕ( j)D− j )q ≤
N−1∑

j=1

(ϕ( j)D− j )q + (ϕ(k)K−k
1 )q

k∑

j=N

(K1/D) jq

�
N−1∑

j=1

(ϕ( j)D− j )q + (ϕ(k)D−k)q

� (ϕ(k)D−k)q .

123



462 Constr Approx (2018) 47:453–486

Consequently, we derive that

‖ f ‖Xb
q

�
(

‖ f ‖qX +
∞∑

k=1

(ϕ(k)‖gk‖X )q

)1/q

.

Finally, since

1 = ϕ(0) < ϕ(N ) ≤ ϕ( j)

K j−N
1

for j ≥ N ,

using Hölder’s inequality, we obtain

‖ f ‖X ≤
⎛

⎝
∞∑

j=0

‖g j‖p
X

⎞

⎠

1/p

�

⎛

⎝
∞∑

j=0

(ϕ( j)‖g j‖X )q

⎞

⎠

1/q ⎛

⎝
∞∑

j=0

K−s j
1

⎞

⎠

1/s

�

⎛

⎝
∞∑

j=0

(ϕ( j)‖g j‖X )q

⎞

⎠

1/q

,

and we conclude that ‖ f ‖Xb
q

� ‖ f ‖∗
Xb
q
.

The case q = ∞ can be treated analogously. �

When bn = nαψ(n) (Example 2.1), Theorem 2.1 gives [43, Theorem 3.3] for 
q

spaces. The case ψ(t) = 1 for all t > 0 corresponds to [41, Theorem 3.1]. Applying
Theorem 2.1 in the case bn = (1+ log n)γ with γ > −1/q (Example 2.2), we recover
the representation theorem for spaces X (0,γ )

q established in [16, Theorem 1.2], [17,
Theorem 2], and [23, Theorem 1]. For the case γ = −1/q and 0 < q < ∞, Theorem
2.1 produces the following result which covers a case left open in [16] and [23].

Theorem 2.2 Let 0 < q < ∞. An element f ∈ X belongs to X (0,−1/q)
q if, and

only if, there exists g j ∈ Aρ j such that f = ∑∞
j=0 g j (convergence in X) with

(2 j/q‖g j‖X ) ∈ 
q . Moreover,

‖ f ‖∗
X (0,−1/q)
q

= inf

⎧
⎪⎨

⎪⎩

⎛

⎝
∞∑

j=0

(2 j/q‖g j‖X )q

⎞

⎠

1/q

: g j ∈ Aρ j , f =
∞∑

j=0

g j

⎫
⎪⎬

⎪⎭

is an equivalent quasi-norm on X (0,−1/q)
q .

In Examples 2.1 and 2.2 and Theorem 2.2, the powers of 2 can be replaced by
powers of e (see [42, Sect. 3] for more general results in the case of spaces Xα

q ). We
close this section with another concrete case of approximation space, involving now
iterated logarithms and exponentials. We put

L1(t) = log t , Lr (t) = log(Lr−1(t)) , E1(t) = et , Er (t) = eEr−1(t) , r > 1.
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Example 2.3 Let 0 < q ≤ ∞, α > 0, r ∈ N, and let ψ be a slowly varying function.
Put

b1 = 1 , bn = Lr (n)αψ
(
Lr (n)

) r∏

j=1

L j (n)−1/q , n > 1 .

Clearly, (bn) satisfies (2.1). Take

n( j) = Er+1( j) and ϕ( j) = Lr
(
n( j)

)α
ψ
(
Lr
(
n( j)

)) = e jαψ(e j ) .

Then we have

n( j+1)∑

k=n( j)+1

bqk k
−1 =

Er+1( j+1)∑

k=Er+1( j)+1

Lr (k)
αqψ

(
Lr (k)

)q 1

k
∏r

j=1 L j (k)

∼ e jαqψ(e j )q
∫ Er+1( j+1)

Er+1( j)

dx

x
∏r

j=1 L j (x)

= ϕ( j)q .

This shows that (2.2) holds. Using [3, Theorem 1.5.6], we can find 1 < K1 < K2 and
N ∈ N such that

K1 ≤ ϕ( j + 1)

ϕ( j)
= eα ψ(e j+1)

ψ(e j )
≤ K2 .

So, (2.3) is also satisfied. Moreover,

m−1∑

j=0

n( j) ≤ mEr+1(m − 1) ≤ Er+1(m) = n(m) .

Weput X [α,ψ;r ]
q for the approximation space generated by the sequence (bn) defined

above. Notice that if r = 1 and ψ(t) = 1 for all t > 0, then X [α,1;1]
q coincides with

the space X (0,α−1/q)
q in Example 2.2. Moreover, X [1/q,1;2]

q is the space X (0,−1/q)
q .

It follows from Lemma 2.1 that

‖ f ‖
X [α,ψ;r ]
q

∼
(
‖ f ‖qX +

∞∑

j=1

(
e jαψ(e j )EEr+1( j)( f )

)q
)1/q

. (2.5)

Writing down Theorem 2.1 for spaces X [α,ψ;r ]
q , we obtain the following result.
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Theorem 2.3 Let 0 < q ≤ ∞, α > 0, r ∈ N, and let ψ be a slowly varying function.
Then f ∈ X [α,ψ;r ]

q if, and only if, there is a representation f =∑∞
j=0 g j (convergence

in X) with g j ∈ AEr+1( j) and
(
e jαψ(e j )‖g j‖X

) ∈ 
q . Furthermore,

‖ f ‖∗
X [α,ψ;r ]
q

= inf

⎧
⎪⎨

⎪⎩

⎛

⎝
∞∑

j=0

(
e jαψ(e j )‖g j‖X

)q

⎞

⎠

1/q

: g j ∈ AEr+1( j) and f =
∞∑

j=0

g j

⎫
⎪⎬

⎪⎭

is an equivalent quasi-norm on X [α,ψ;r ]
q .

When r = 1 (respectively r > 1), Theorem 2.3 gives back a result contained in
[44, Theorem 3.2] (respectively, [24, Theorem 5.4]).

3 Relationships Between Approximation Spaces Generated by Different
Approximation Families

Let X and (An)n∈N0 be as in the previous section. Let again μ j = 22
j
and ρ j = 2μ j .

Theorem 3.1 Consider the new approximation families defined by

Bn = A2n if n ∈ N with B0 = {0}

and

Dn = Aμn if n ∈ N with D0 = {0}.

(a) If 0 < q ≤ ∞ and γ > −1/q, then

X (0,γ )
q = (X; Bn)

γ+1/q
q . (3.1)

(b) If 0 < q < ∞ and γ = −1/q, then

X (0,−1/q)
q = (X; Dn)

1/q
q . (3.2)

Proof According to Example 2.2, Lemma 2.1, and Example 2.1, we obtain

X (0,γ )
q = (X; An)

(0,γ )
q

=

⎧
⎪⎨

⎪⎩
f ∈ X : ‖ f ‖�

X (0,γ )
q

=
⎛

⎝‖ f ‖qX +
∞∑

j=1

(2 j (γ+1/q)Eμ j ( f ))
q

⎞

⎠

1/q

< ∞

⎫
⎪⎬

⎪⎭

= (X; Bn)
γ+1/q
q .
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This establishes (a). Concerning (b), we get

X (0,−1/q)
q = (X; An)

(0,−1/q)
q

=

⎧
⎪⎨

⎪⎩
f ∈ X : ‖ f ‖�

X (0,−1/q)
q

=
⎛

⎝‖ f ‖qX +
∞∑

j=1

(2 j/q Eρ j ( f ))
q

⎞

⎠

1/q

< ∞

⎫
⎪⎬

⎪⎭

= (X; Dn)
1/q
q .

�


As a consequence of Theorem3.1, certain results on limiting spaces X (0,γ )
q that have

direct proofs in the literature can be derived from the known results for the classical
approximation spaces Xα

q . This is the case of the reiteration formula. It was shown by
Pietsch [41, Theorem 3.2] that

(
Xα
q

)β

r
= Xα+β

r provided that 0 < α, β < ∞ and 0 < q, r ≤ ∞. (3.3)

For limiting spaces, Fehér and Grässler [23, Theorem 2] proved that

(
X (0,γ )
q

)(0,δ)

r
= X (0,γ+δ+1/q)

r for 0 < q, r ≤ ∞, γ > −1/q and δ > −1/r. (3.4)

Formula (3.4) follows from (3.3) using (3.1). Namely,

(
X (0,γ )
q

)(0,δ)

r
=
(
(X; Bn)

γ+1/q
q ; Bn

)δ+1/r

r

= (X; Bn)
γ+1/q+δ+1/r
r

= X (0,γ+1/q+δ)
r .

This method allows us to treat the extreme case γ = −1/q, δ = −1/r , which was
not covered in [23, Theorem 2].

Theorem 3.2 Let 0 < q, r < ∞. Then

(
X (0,−1/q)
q

)(0,−1/r)

r

=
⎧
⎨

⎩
f ∈ X : ‖ f ‖ =

(

‖ f ‖rX +
∞∑

n=1

(
(1 + log n)1/q E2n ( f )

)r 1

n

)1/r

< ∞
⎫
⎬

⎭
.
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Proof By (3.2), (3.3), and (3.1), we derive

(
X (0,−1/q)
q

)(0,−1/r)

r
=
(
(X; Dn)

1/q
q ; Dn

)1/r

r

= (X; Dn)
1/q+1/r
r = (X; Bn)

(0,1/q)
r

=
⎧
⎨

⎩
f ∈ X : ‖ f ‖ =

(

‖ f ‖rX +
∞∑

n=1

(
(1 + log n)1/q E2n ( f )

)r 1

n

)1/r

< ∞
⎫
⎬

⎭
.

�

The case (X (0,−1/q)

q )
(0,δ)
r with δ > −1/r can be treated with similar ideas.

Theorem 3.3 Let 0 < q < ∞, 0 < r ≤ ∞, and δ > −1/r . Then

(
X (0,−1/q)
q

)(0,δ)

r

=
⎧
⎨

⎩
f ∈ X : ‖ f ‖ =

(

‖ f ‖rX +
∞∑

n=1

(
nδ+1/r (1 + log n)1/q E2n ( f )

)r 1

n

)1/r

< ∞
⎫
⎬

⎭
.

Proof We claim that X (0,−1/q)
q = (X; Bn)

(0,0)
q . Indeed, for all k ∈ N, we have

2k+1
∑

n=2k−1

1

n(1 + log n)
∼
∫ 2k+1

2k

dx

x log x
= log

(

1 + 1

k

)

∼ 1

k
.

Hence,

‖ f ‖
X (0,−1/q)
q

=
(
‖ f ‖qX +

∞∑

k=1

2k+1
∑

n=2k−1

En( f )
q 1

n(1 + log n)

)1/q

∼
(
‖ f ‖qX +

∞∑

k=1

E2k ( f )
q 1

k

)1/q = ‖ f ‖
(X;Bn)(0,0)q

,

which establishes our claim. Therefore, applying [10, Theorem 3.2] with ψ(t) =
(1 + log t)1/q , we obtain

(
X (0,−1/q)
q

)(0,δ)

r
=
(
(X; Bn)

(0,0)
q ; Bn

)δ+1/r

r
= (X; Bn)

(δ+1/r,ψ)
r

=
⎧
⎨

⎩
f ∈ X : ‖ f ‖ =

(

‖ f ‖rX +
∞∑

n=1

(
nδ+1/r (1 + log n)1/q E2n ( f )

)r 1

n

)1/r

<∞
⎫
⎬

⎭
.

�
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This approach is also useful to establish interpolation formulae. Let (A0, A1) be
a pair of quasi-Banach spaces, that is to say, two quasi-Banach spaces Ai that are
continuously embedded in the same Hausdorff topological vector space. Peetre’s K -
functional is defined for a ∈ A0 + A1 by

K (t, a) = inf{‖a0‖A0 + t‖a1‖A1 : a = a0 + a1, ai ∈ Ai }, t > 0.

For 0 < q ≤ ∞ and 0 < θ < 1, the real interpolation space (A0, A1)θ,q is formed
by all those a ∈ A0 + A1 having a finite quasi-norm

‖a‖(A0,A1)θ,q =
(∫ ∞

0
(t−θK (t, a))q

dt

t

)1/q

(the integral should be replaced by the supremum if q = ∞).
According to a result of Peetre and Sparr [38] (see also [5, Korollar 2.3.1]), for

0 < α0 �= α1 < ∞, 0 < r0, r1, q ≤ ∞, and 0 < θ < 1, we have

(
Xα0
r0 , Xα1

r1

)
θ,q

= Xα
q , (3.5)

where α = (1 − θ)α0 + θα1.
If 0 < q, q0, q1 ≤ ∞, γ j > −1/q j , j = 0, 1, γ0 + 1/q0 �= γ1 + 1/q1, and

0 < θ < 1, Fehér and Grässler [23, Theorem 5] proved that

(
X (0,γ0)
q0 , X (0,γ1)

q1

)

θ,q
= X (0,γ )

q , (3.6)

where γ = γθ + 1/qθ − 1/q, 1/qθ = (1− θ)/q0 + θ/q1, and γθ = (1− θ)γ0 + θγ1.
We can recover (3.6) from (3.5) by using (3.1):

(
X (0,γ0)
q0 , X (0,γ1)

q1

)

θ,q
=
(
(X; Bn)

γ0+1/q0
q0 , (X; Bn)

γ1+1/q1
q1

)

θ,q

= (X; Bn)
γθ+1/qθ−1/q+1/q
q

= X (0,γ )
q .

For the extreme case γ j = −1/q j , we derive the following new interpolation
formulae.

Theorem 3.4 Let 0 < q0, q1 < ∞, 0 < θ < 1, and 1/qθ = (1− θ)/q0 + θ/q1. Then

(
X (0,−1/q0)
q0 , X (0,−1/q1)

q1

)

θ,qθ

= X (0,−1/qθ )
qθ

.
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Furthermore, if 0 < r �= qθ , then

(
X (0,−1/q0)
q0 , X (0,−1/q1)

q1

)

θ,r

=
⎧
⎨

⎩
f ∈ X : ‖ f ‖ =

(

‖ f ‖rX +
∞∑

n=1

((1 + log n)1/qθ−1/r E2n ( f ))
r 1

n

)1/r

< ∞
⎫
⎬

⎭
.

Proof According to (3.2) and (3.5), we get

(
X (0,−1/q0)
q0 , X (0,−1/q1)

q1

)

θ,qθ

=
(
(X; Dn)

1/q0
q0 , (X; Dn)

1/q1
q1

)

θ,qθ

= (X; Dn)
1/qθ
qθ

= X (0,−1/qθ )
qθ

.

Similarly, if r �= qθ , we obtain

(
X (0,−1/q0)
q0 , X (0,−1/q1)

q1

)

θ,r
= (X; Dn)

1/qθ
r = (X; Bn)

(0,1/qθ−1/r)
r

=
⎧
⎨

⎩
f ∈ X : ‖ f ‖ =

(

‖ f ‖rX +
∞∑

n=1

((1 + log n)1/qθ−1/r E2n ( f ))
r 1

n

)1/r

< ∞
⎫
⎬

⎭
.

�

Next we consider interpolation of approximation spaces generated by different

quasi-Banach spaces. Let X0, X1 be quasi-Banach spaces with X1 ↪→ X0, An ⊆ X1
for n ∈ N, and suppose that the following assumption holds.

Assumption A. There exist a second approximation family ( Ãn)n∈N0 in X1 and a
sequence of linear operators Ln : Ãn −→ An, n ∈ N0, with the following property:
If there are a positive constant M and a sequence (gn)n∈N0 , gn ∈ Ãn, such that

‖ f − gn‖X0 ≤ MẼn( f )X0 ,

where Ẽn( f )X0 is the best approximation error of f ∈ X0 with respect to Ãn , then

‖ f − Lngn‖X j ≤ C j En( f )X j , j = 0, 1.

Here the constants C j depend only on M and X j .
Under Assumption A, DeVore and Popov [19, Theorem 2] proved that

(
(X0)

α0
q0 , (X1)

α1
q1

)

θ,qθ

= ((X0, X1)θ,qθ

)αθ

qθ
(3.7)

provided that 0 < α0, α1 < ∞, 0 < q0, q1 ≤ ∞, 0 < θ < 1, αθ = (1 − θ)α0 + θα1,
and 1/qθ = (1−θ)/q0+θ/q1. We can complement (3.7) with the following formulae
for limiting approximation spaces.
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Theorem 3.5 Let X0, X1 be quasi-Banach spaces such that X1 ↪→ X0, An ⊆ X1 for
n ∈ N, and Assumption A holds. Let 0 < θ < 1.

(a) If 0 < q0, q1 ≤ ∞, γ j > −1/q j for j = 0, 1, γθ = (1 − θ)γ0 + θγ1, and
1/qθ = (1 − θ)/q0 + θ/q1, then

(
(X0)

(0,γ0)
q0 , (X1)

(0,γ1)
q1

)

θ,qθ

= ((X0, X1)θ,qθ

)(0,γθ )

qθ
.

(b) If 0 < q0, q1 < ∞, then

(
(X0)

(0,−1/q0)
q0 , (X1)

(0,−1/q1)
q1

)

θ,qθ

= ((X0, X1)θ,qθ

)(0,−1/qθ )

qθ
.

Proof It is not hard to check that Assumption A also holds for the approximation
schemes (X0; Bn), (X1; Bn), whence (3.1) and (3.7) yield

(
(X0)

(0,γ0)
q0 , (X1)

(0,γ1)
q1

)

θ,qθ

=
(
(X0; Bn)

γ0+1/q0
q0 , (X1; Bn)

γ1+1/q1
q1

)

θ,qθ

= ((X0, X1)θ,qθ ; Bn
)γθ+1/qθ

qθ
= ((X0, X1)θ,qθ

)(0,γθ )

qθ
.

The proof of (b) is similar but using (3.2). �

Now we turn our attention to spaces X [α,ψ;r ]

q introduced in Example 2.3. As we

show in the next result, spaces X [α,ψ;r ]
q are related to spaces X (α,ψ)

q of Example 2.1 if
we make a suitable selection of the approximation sets An .

Theorem 3.6 Given r ∈ N, consider the approximation family

G(r)
n = AEr+1(n) if n ∈ N and G(r)

0 = {0} .

If 0 < q ≤ ∞, α > 0, and ψ is a slowly varying function, then

X [α,ψ;r ]
q = (X;G(r)

n )(α,ψ)
q .

Proof This follows from (2.5). �

Let 0 < α0, α1 < ∞, 1 ≤ q0, q1 ≤ ∞, and letψ0, ψ1 be slowly varying functions.

By [43, Theorem 4.2], the following holds:

(
X (α0,ψ0)
q0

)(α1,ψ1)

q1
= X (α0+α1,ψ0ψ1)

q1 . (3.8)

Combining Theorem 3.6 with (3.8), we obtain the following reiteration formula:

(
X [α0,ψ0;r ]
q0

)[α1,ψ1;r ]
q1

= X [α0+α1,ψ0ψ1;r ]
q1 ,

which is a special case of [44, Theorem 3.5] if r = 1 and [24, Theorem 5.6] if r > 1.
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As for interpolation formulae, it follows from [43, Corollary 5.4] that

(
X (α0,ψ0)
q0 , X (α1,ψ1)

q1

)
θ,q = X

(
(1−θ)α0+θα1,ψ

1−θ
0 ψθ

1

)

q

provided that 0 < α0 �= α1 < ∞, 0 < θ < 1, 1 ≤ q0, q1, q ≤ ∞, and ψ0, ψ1 are
slowly varying functions. Hence, for any r ∈ N, using Theorem 3.6, we derive

(
X [α0,ψ0;r ]
q0 , X [α1,ψ1;r ]

q1

)
θ,q = X

[
(1−θ)α0+θα1,ψ

1−θ
0 ψθ

1 ;r
]

q .

4 Approximation and Entropy Numbers of Embeddings

Let T ∈ L(V,W ) be a bounded linear operator between the quasi-Banach spaces
V,W . For k ∈ N, the k-th approximation number ak(T ) of T is given by

ak(T ) = inf{‖T − R‖V,W : R ∈ L(V,W ) with rank R < k},

where rank R is the dimension of the range of R. The k-th (dyadic) entropy number
ek(T ) = ek(T : V −→ W ) of T is defined as the infimum of all ε > 0 such that there
are w1, . . . , w2k−1 ∈ W with

T (UV ) ⊆
2k−1
⋃

j=1

(w j + εUW ).

Here UV ,UW are the closed unit balls of V,W, respectively (see [8,22,40]).
Note that T is compact if and only if limk→∞ ek(T ) = 0. On the other hand,

if limk→∞ ak(T ) = 0, then T is compact, but there are compact operators T
such that limk→∞ ak(T ) > 0 (see [22]). The asymptotic decay of the sequences
(ek(T )), (ak(T )) can be considered as a measure of the degree of compactness of the
operator T .

It follows from the definitions that

‖T ‖V,W = a1(T ) ≥ a2(T ) ≥ · · · ≥ 0 and ‖T ‖V,W ≥ e1(T ) ≥ e2(T ) ≥ · · · ≥ 0.

Moreover, entropy and approximation numbers are multiplicative; that is, for all k, l ∈
N,

ak+l−1(S ◦ T ) ≤ ak(S)al(T ), ek+l−1(S ◦ T ) ≤ ek(S)el(T ).

In this section, we determine the exact asymptotic behavior of the approximation
and entropy numbers of embeddings involving approximation spaces.

In what follows, we assume that (X; An) is a linear approximation scheme. This
means that there is a uniformly bounded sequence of linear projections Pn mapping
X onto An . Then
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‖ f − Pn f ‖X ≤ c En( f ), f ∈ X, n ∈ N, (4.1)

where c = cX [1 + sup{‖Pn‖X,X : n ∈ N}]. Note that (2.4) holds. We also have the
following stability property.

Lemma 4.1 Let 0 < q ≤ ∞, and assume that (2.1), (2.2), and (2.3) hold and that
(X; An) is a linear approximation scheme. Then (Xb

q; An) is a linear approximation
scheme as well.

Proof Suppose that 0 < q < ∞. The case q = ∞ can be treated in the same way. Let
(Pn) be the sequence of linear projections on X with ‖Pn‖X,X ≤ M for all n ∈ N. We
are going to show that these projections are also uniformly bounded in Xb

q . We may
assume that X is p-normed with 0 < p < q. Put 1/s = 1/p − 1/q.

Given any n ∈ N, let j0 ∈ N0 be such that n( j0) ≤ n < n( j0 + 1). Take any
f ∈ Xb

q . We can find a representation f =∑∞
j=0 g j with g j ∈ An( j) and

⎛

⎝
∞∑

j=0

(ϕ( j)‖g j‖X )q

⎞

⎠

1/q

≤ 2 ‖ f ‖∗
Xb
q

≤ c ‖ f ‖Xb
q
.

Since

Pn f =
j0∑

j=0

g j + Pn
( ∞∑

j= j0+1

g j

)
,

applying Theorem 2.1 and Hölder’s inequality, we obtain

‖Pn f ‖qXb
q

�
j0∑

j=0

ϕ( j)q‖g j‖qX + ϕ( j0 + 1)q
∥
∥
∥Pn

( ∞∑

j= j0+1

g j

)∥
∥
∥
q

X

≤
j0∑

j=0

ϕ( j)q‖g j‖qX + ϕ( j0 + 1)q

⎛

⎝
∞∑

j= j0+1

‖Png j‖p
X

⎞

⎠

q/p

≤
j0∑

j=0

ϕ( j)q‖g j‖qX + Mq ϕ( j0 + 1)q

⎛

⎝
∞∑

j= j0+1

‖g j‖p
X

⎞

⎠

q/p

≤
j0∑

j=0

ϕ( j)q‖g j‖qX

+ Mq ϕ( j0 + 1)q
∞∑

j= j0+1

ϕ( j)q‖g j‖qX

⎛

⎝
∞∑

j= j0+1

ϕ( j)−s

⎞

⎠

q/s

.
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Now using (2.3), we derive that

‖Pn f ‖qXb
q

�
j0∑

j=0

ϕ( j)q‖g j‖qX + Mq(1 − K−s
1 )−q/s

∞∑

j= j0+1

ϕ( j)q‖g j‖qX

≤ (1 + Mq(1 − K−s
1 )−q/s) cq ‖ f ‖q

Xb
q
.

This proves that (Pn) is uniformly bounded on Xb
q . �


Working with a linear approximation scheme (X; An) with projections (Pn), let

Q0 = P1 and Q j = Pn( j) − Pn( j−1) for j ∈ N.

For any f ∈ Xb
q , we have by (2.1) that (En( f )) → 0. Then (4.1) yields that (Pn f ) →

f in X and therefore f =∑∞
j=0 Q j f in X .

The following result can be proved by using (4.1) with the same arguments as in
Theorem 2.1.

Theorem 4.1 Let 0 < q ≤ ∞, and assume that (2.1), (2.2), and (2.3) hold and that
(X; An) is a linear approximation scheme. Let f ∈ X. Then f ∈ Xb

q if and only if
f =∑∞

j=0 Q j f (convergence in X) with (ϕ( j)‖Q j f ‖X ) ∈ 
q . Moreover,

‖ f ‖�
Xb
q

= ‖(ϕ( j)‖Q j f ‖X )‖
q

is an equivalent quasi-norm in Xb
q .

Now we can establish the following estimates.

Theorem 4.2 Let 0 < q ≤ ∞, and assume that (2.1), (2.2), and (2.3) hold and that
(X; An) is a linear approximation scheme with m( j) = dim An( j), j ∈ N0. We have
for embedding id : Xb

q ↪→ X,

am( j)+1(id) � 1

ϕ( j)
� em( j)+1(id).

Proof We know that id =∑∞
k=0 Qk . Moreover,

rank
j∑

k=0

Qk = rank Pn( j) = dim An( j) = m( j).

123



Constr Approx (2018) 47:453–486 473

Since we can assume without loss of generality that ‖ · ‖X is a p-norm, we get

am( j)+1(id) ≤
∥
∥
∥id −

j∑

k=0

Qk

∥
∥
∥
Xb
q ,X

=
∥
∥
∥

∞∑

k= j+1

Qk

∥
∥
∥
Xb
q ,X

≤
⎛

⎝
∞∑

k= j+1

‖Qk‖p
Xb
q ,X

⎞

⎠

1/p

.

Theorem 4.1 implies that ‖Qk‖Xb
q ,X ≤ c/ϕ(k), k ∈ N0. Therefore, using (2.3), we

obtain for j ≥ N ,

am( j)+1(id) ≤ c

⎛

⎝
∞∑

k= j+1

ϕ(k)−p

⎞

⎠

1/p

≤ c
1

ϕ( j + 1)

⎛

⎝
∞∑

k= j+1

K ( j+1−k)p
1

⎞

⎠

1/p

� 1

ϕ( j + 1)
.

This yields that am( j)+1(id) � 1/ϕ( j).
Nextwe establish the lower estimate for entropy numbers. Sincem( j) = dim An( j),

volume arguments (see [8, (1.1.10), p. 9]) show that

em( j)+1(id : An( j) −→ An( j)) ∼ 1.

Consider the following commutative diagram:

Xb
q

id
X

An( j)

id
id

We have

1 � em( j)+1(id : An( j) −→ An( j)) ≤ 2 em( j)+1(id : An( j) −→ X)

≤ 2 ‖id‖An( j),Xb
q
em( j)+1(id : Xb

q −→ X).

In order to estimate ‖id‖An( j),Xb
q
, note that if f belongs to An( j), then f is already a

series representation as in Theorem 2.1. Hence,

‖ f ‖Xb
q

� ‖ f ‖∗
Xb
q

≤ ϕ( j)‖ f ‖X .
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Consequently,
em( j)+1(id : Xb

q −→ X) � 1/ϕ( j).

�

The estimates in Theorem 4.2 can be improved in the important concrete cases

that we discuss below, where we give the precise asymptotic behavior for entropy and
approximation numbers.

Hereafter, we suppose that there is 0 < λ ∈ R such that

m( j) = dim An( j) ∼ n( j)λ. (4.2)

We write [·] for the greatest integer function.
Corollary 4.1 Let bn = nαψ(n), where α > 0 and ψ is a slowly varying function.
Assume that (X; An) is a linear approximation scheme satisfying (4.2) and that 0 <

q ≤ ∞. Then for the embedding id : Xb
q ↪→ X, we have

an(id) ∼ en(id) ∼ 1

nα/λ ψ(n1/λ)
.

Proof Aswe have seen in Example 2.1, in this case ϕ( j) = 2 jα ψ(2 j ) and n( j) = 2 j .
According to Theorem 4.2, we derive

a[2 jλ]+1(id) � 1

2 jα ψ(2 j )
� e[2 jλ]+1(id).

This yields that

an(id) � 1

nα/λ ψ(n1/λ)
� en(id).

Now using [14, Theorem 3.3], we conclude the desired result. �

Corollary 4.2 Assume that (X; An) is a linear approximation scheme satisfying (4.2),
and let 0 < α1 < α0 and 0 < q0, q1 ≤ ∞. Then for the embedding id : Xα0

q0 ↪→ Xα1
q1 ,

we have
an(id) ∼ en(id) ∼ n−(α0−α1)/λ.

Proof According to (3.3), we have that

Xα0
q0 = (Xα1

q1 )
α0−α1
q0 ,

and, by Lemma 4.1, the approximation scheme (Xα1
q1 ; An) is also linear. Hence, the

result follows from Corollary 4.1. �


Since (X (0,γ )
q )αp = X (α,γ+1/q)

p if γ > −1/q (see [10, Theorem 3.2]), we can also
derive the following.

123



Constr Approx (2018) 47:453–486 475

Corollary 4.3 Assume that (X; An) is a linear approximation scheme satisfying (4.2),
and let α > 0, 0 < q0, q1 ≤ ∞ and γ1 > −1/q1. Then for the embedding id :
X (α,γ1+1/q1)
q0 ↪→ X (0,γ1)

q1 , we have

an(id) ∼ en(id) ∼ n−α/λ.

Corollary 4.4 Let 0 < q ≤ ∞, γ ≥ −1/q, and assume that (X; An) is a linear
approximation scheme satisfying (4.2). Then for the embedding id : X (0,γ )

q ↪→ X, we
have:

(a) If γ > −1/q, then

an(id) ∼ en(id) ∼ (log n)−(γ+1/q).

(b) If γ = −1/q and 0 < q < ∞, then

an(id) ∼ en(id) ∼ (log log n)−1/q .

Proof Suppose first that γ > −1/q. By Example 2.2, we have ϕ( j) = 2 j (γ+1/q) and
n( j) = μ j = 22

j
. Applying Theorem 4.2, we get

a[μλ
j ]+1(id) � (logμ j )

−(γ+1/q) � e[μλ
j ]+1(id).

It follows that
an(id) � (log n)−(γ+1/q) � en(id).

Then [14, Theorem 3.3] yields the estimate (a).
If γ = −1/q and 0 < q < ∞, then ϕ( j) = 2 j/q and n( j) = ρ j = 2μ j . By

Theorem 4.2, we obtain

a[ρλ
j ]+1(id) � (log log ρ j )

−1/q � e[ρλ
j ]+1(id).

This yields that
an(id) � (log log n)−1/q � en(id),

and so, applying again [14, Theorem 3.3], we derive that

an(id) ∼ en(id) ∼ (log log n)−1/q .

�


Having in mind Lemma 4.1, we can combine Corollary 4.4 with the reiteration
formula (3.4) to obtain the following result.
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Corollary 4.5 Let 0 < q0, q1 ≤ ∞ and γ0, γ1 ∈ R with γ0 + 1/q0 > γ1 + 1/q1 > 0.
If (X; An) is a linear approximation scheme satisfying (4.2), then for the embedding
id : X (0,γ0)

q0 ↪→ X (0,γ1)
q1 , we have

an(id) ∼ en(id) ∼ (log n)−(γ0−γ1+1/q0−1/q1).

Remark 4.1 Note that the estimates in Corollaries 4.4 and 4.5 do not depend on the
exponent λ in (4.2).

Next we analyze the degree of compactness of the embeddings from spaces X (α,ψ)
u

with α > 0 into limiting approximation spaces. The proofs are more involved due to
the jumps in the scale and the lack of relationships among the parameters.

Theorem 4.3 Let 0 < α < ∞, 0 < u, q ≤ ∞, γ + 1/q > 0, and ψ be a slowly
varying function. Assume that (X; An) is a linear approximation scheme satisfying
(4.2). Then for the embedding id : X (α,ψ)

u ↪→ X (0,γ )
q , we get

an(id) ∼ en(id) ∼ n−α/λ(log n)γ+1/qψ(n1/λ)−1.

Proof Assume 0 < u, q < ∞. According to Example 2.1, for the space X (α,ψ)
u , we

have n( j) = 2 j . Let Q0 = P1 and Q j = P2 j − P2 j−1 , j ∈ N. Write also nγ ( j) = μ j

and R j = Pnγ ( j) − Pnγ ( j−1), j ∈ N, with R0 = P2. Take j, r ∈ N with

2r−2 < j ≤ 2r−1, so log j ∼ r. (4.3)

As m( j) ∼ n( j)λ = 2 jλ, there are positive numbers c1, c2 such that c12 jλ ≤ m( j) ≤
c22 jλ. We have

a[c22 jλ]+1(id) ≤ ‖id − Pn( j)‖X (α,ψ)
u ,X (0,γ )

q
=
∥
∥
∥id −

j∑

k=0

Qk

∥
∥
∥
X (α,ψ)
u ,X (0,γ )

q

=
∥
∥
∥

2r∑

k= j+1

Qk +
∑

k>r

Rk

∥
∥
∥
X (α,ψ)
u ,X (0,γ )

q

≤ c

⎛

⎝
∥
∥
∥

2r∑

k= j+1

Qk

∥
∥
∥
X (α,ψ)
u ,X (0,γ )

q
+
∥
∥
∥
∑

k>r

Rk

∥
∥
∥
X (α,ψ)
u ,X (0,γ )

q

⎞

⎠ .

We proceed to estimate the norm of these operators. Given any f ∈ X (α,ψ)
u , since

∑2r
k= j+1 Qk f ∈ Aμr , applying Theorem 2.1 to X (0,γ )

q , where ϕ( j) = 2 j (γ+1/q), we
get that

∥
∥
∥

2r∑

k= j+1

Qk f
∥
∥
∥
X (0,γ )
q

� 2(γ+1/q)r
∥
∥
∥

2r∑

k= j+1

Qk f
∥
∥
∥
X
.
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In order to estimate the last term, we may assume without loss of generality that ‖ · ‖X
is a p-norm with 0 < p < u. Put 1/s = 1/p − 1/u. We obtain

∥
∥
∥

2r∑

k= j+1

Qk f
∥
∥
∥
X

≤
⎛

⎝
2r∑

k= j+1

‖Qk f ‖p
X

⎞

⎠

1/p

≤
⎛

⎝
2r∑

k= j+1

(2kαψ(2k)‖Qk f ‖X )u

⎞

⎠

1/u ⎛

⎝
2r∑

k= j+1

2−kαsψ(2k)−s

⎞

⎠

1/s

� 2− jαψ(2 j )−1

⎛

⎝
2r∑

k= j+1

(2kαψ(2k)‖Qk f ‖X )u

⎞

⎠

1/u

� 2− jαψ(2 j )−1‖ f ‖
X (α,ψ)
u

.

Therefore,

∥
∥
∥

2r∑

k= j+1

Qk

∥
∥
∥
X (α,ψ)
u ,X (0,γ )

q
� 2(γ+1/q)r2− jαψ(2 j )−1 ∼ jγ+1/q2− jαψ(2 j )−1.

As for the norm of the other operator, first we notice that

‖Rk f ‖X =
∥
∥
∥

2k∑

ν=2k−1+1

Qν f
∥
∥
∥
X

≤
⎛

⎝
2k∑

ν=2k−1+1

‖Qν f ‖p
X

⎞

⎠

1/p

≤
⎛

⎝
2k∑

ν=2k−1+1

(2ναψ(2ν)‖Qν f ‖X )u

⎞

⎠

1/u ⎛

⎝
2k∑

ν=2k−1+1

2−ναsψ(2ν)−s

⎞

⎠

1/s

� 2−α2k−1
ψ(22

k−1
)−1

⎛

⎝
2k∑

ν=2k−1+1

(2ναψ(2ν)‖Qν f ‖X )u

⎞

⎠

1/u

.

Therefore, if u ≤ q, we have

∥
∥
∥
∑

k>r

Rk f
∥
∥
∥
X (0,γ )
q

�
(
∑

k>r

(2k(γ+1/q)‖Rk f ‖X )q

)1/q

≤
(
∑

k>r

(2k(γ+1/q)‖Rk f ‖X )u

)1/u

�

⎛

⎝
∑

k>r

2k(γ+1/q)u2−αu2k−1
ψ(22

k−1
)−u

2k∑

ν=2k−1+1

(2ναψ(2ν)‖Qν f ‖X )u

⎞

⎠

1/u

� 2r(γ+1/q)2−α2r−1
ψ(22

r−1
)−1

⎛

⎝
∑

k>r

2k∑

ν=2k−1+1

(2ναψ(2ν)‖Qν f ‖X )u

⎞

⎠

1/u

.
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Now using (4.3) and Theorem 4.1, we conclude that
∥
∥
∥
∑

k>r Rk f
∥
∥
∥
X (0,γ )
q ,X (α,ψ)

u
�

jγ+1/q2− jαψ(2 j )−1.
If q < u, then ρ = u/q > 1. Let 1/ρ + 1/ρ′ = 1. By Hölder’s inequality, we

obtain

∥
∥
∥
∑

k>r

Rk f
∥
∥
∥
X (0,γ )
q

�
(
∑

k>r

(2k(γ+1/q)‖Rk f ‖X )q

)1/q

�

⎛

⎜
⎝
∑

k>r

⎛

⎝2k(γ+1/q)u2−α2k−1uψ(22
k−1

)−u
2k∑

ν=2k−1+1

(2ναψ(2ν)‖Qν f ‖X )u

⎞

⎠

q/u
⎞

⎟
⎠

1/q

≤
⎛

⎝
∑

k>r

2k∑

ν=2k−1+1

(2ναψ(2ν)‖Qν f ‖X )u

⎞

⎠

1/u

×
(
∑

k>r

(
2k(γ+1/q)2−α2k−1

ψ(22
k−1

)−1
)qρ′

)1/qρ′

.

Hence
∥
∥
∥
∑

k>r

Rk f
∥
∥
∥
X (0,γ )
q

� 2r(γ+1/q)2−α2r−1
ψ(22

r−1
)−1‖ f ‖

X (α,ψ)
u

� jγ+1/q2− jαψ(2 j )−1‖ f ‖
X (α,ψ)
u

.

Consequently, for any 0 < q, u < ∞, it follows that a[c22 jλ]+1(id) �
jγ+1/q2− jαψ(2 j )−1, which yields that

an(id) � n−α/λ(log n)γ+1/qψ(n1/λ)−1. (4.4)

Next we establish the lower estimate for entropy numbers. Let k0 ∈ N with
c12k0λ − c2 > 0. Take any r ∈ N, and let j ∈ N be such that

j = 2r + k0. (4.5)

Let Y = {g ∈ A2 j : Pμr g = 0} = ker(Pμr : A2 j −→ A2 j ). Since

Aμr = Pμr Aμr ⊆ Pμr A2 j ⊆ Pμr X = Aμr ,

we have that Pμr : A2 j −→ A2 j has rank equal to dim Aμr . Hence,

dim A2 j = dim [ ker(Pμr : A2 j −→ A2 j )] + rank [ Pμr : A2 j −→ A2 j ]
= dim Y + dim Aμr .
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Using (4.5), we get

dim Y ≥ c12
jλ − c2μ

λ
r = 2( j−k0)λ

(
c12

k0λ − c2
)

∼ 2 jλ.

By volume arguments (see [8, (1.1.10), p. 9]), we derive

1 � 2([2 jλ]−1)/dim Y e[2 jλ](id : Y −→ Y ) � e[2 jλ](id : Y −→ Y ).

Moreover, since (id − Pμr )g = g for any g ∈ Y , the following commutative diagram
holds

Y
id

id

Y

X (α,ψ)
u

id
X (0,γ )
q

id −Pμr

It follows that

1 � ‖id‖
Y,X (α,ψ)

u
e[2 jλ]

(
id : X (α,ψ)

u ↪→ X (0,γ )
q

)
‖id − Pμr ‖X (0,γ )

q ,Y
.

We now proceed to estimate the norms of the two operators. By Theorem 2.1, given
any f ∈ Y ⊆ A2 j , we obtain

‖ f ‖
X (α,ψ)
u

� ‖ f ‖∗
X (α,ψ)
u

≤ 2 jαψ(2 j )‖ f ‖X ,

whence ‖id‖
Y,X (α,ψ)

u
� 2 jαψ(2 j ). As for the other operator, given any f ∈ X (0,γ )

q ,
using that ‖ · ‖X is a p-norm with 1/p = 1/q + 1/s and Theorem 4.1, we obtain

‖(id − Pμr ) f ‖X =
∥
∥
∥
(
id −

r∑

k=0

Rk

)
f
∥
∥
∥
X

=
∥
∥
∥

∞∑

k=r+1

Rk f
∥
∥
∥
X

≤
( ∞∑

k=r+1

(2(γ+1/q)k‖Rk f ‖X )q

)1/q ( ∞∑

k=r+1

2−(γ+1/q)sk

)1/s

� 2−(γ+1/q)r‖ f ‖
X (0,γ )
q

� j−(γ+1/q)‖ f ‖
X (0,γ )
q

.

So, ‖id − Pμr ‖X (0,γ )
q ,X

� j−(γ+1/q). This yields that

e[2 jλ](id) � 2− jαψ(2 j )−1 jγ+1/q ,

and therefore
en(id) � n−α/λψ(n1/λ)−1(log n)γ+1/q . (4.6)
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Finally, by (4.4), (4.6), and [14, Theorem 3.3], we conclude that

an(id) ∼ en(id) ∼ n−α/λψ(n1/λ)−1(log n)γ+1/q .

The cases q = ∞ and/or u = ∞ can be treated similarly. �


Remark 4.2 In the particular case ψ(t) = (1+ | log t |)γ+1/q , t > 0, of Theorem 4.3,
we recover Corollary 4.3.

The techniques used in the proof of Theorem 4.3 can be modified to deal with the
limit case γ = −1/q, where there is another jump in the scale. Instead of R j , we work
with S j = Pρ j − Pρ j−1 , and the space Y is defined as the collection of all g ∈ A2 j

such that Pρr g = 0. The result reads as follows.

Theorem 4.4 Let 0 < α < ∞, 0 < u ≤ ∞, 0 < q < ∞, and let ψ be a slowly
varying function. Assume that (X; An) is a linear approximation scheme satisfying
(4.2). Then for the embedding id : X (α,ψ)

u ↪→ X (0,−1/q)
q , we have

an(id) ∼ en(id) ∼ n−α/λ(log log n)1/qψ(n1/λ)−1.

To complete this section, we establish a result on spaces X [α,ψ;r ]
q (Example 2.3).

Theorem 4.5 Let 0 < α < ∞, r ∈ N, 0 < q ≤ ∞, and let ψ be a slowly varying
function. Assume that (X; An) is a linear approximation scheme satisfying (4.2). Then
for the embedding id : X [α,ψ;r ]

q ↪→ X, we have

an(id) ∼ en(id) ∼ Lr (n)−αψ
(
Lr (n)

)−1
.

Proof This time ϕ( j) = e jαψ(e j ) and n( j) = Er+1( j). Theorem 4.2 yields

a[Er+1( j)λ]+1(id) � Lr
(
Er+1( j)

)−α
ψ
(
Lr
(
Er+1( j)

))−1 � e[Er+1( j)λ]+1(id),

and so

an(id) � Lr (n
1/λ)−αψ

(
Lr (n

1/λ)
)−1 � en(id) .

Besides,

Lr (n
1/λ)αψ

(
Lr (n

1/λ)
) ∼ Lr (n)αψ

(
Lr (n)

)
.

Then the result follows by using [14, Theorem 3.3]. �
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5 Applications to Besov Spaces

Let d ∈ N, and let Td be the d-torus

T
d = {x = (x1, . . . , xd) ∈ R

d : |x j | ≤ π for j = 1, . . . , d}.

We identify points x, y if x − y = 2kπ for any k ∈ Z
d .

For 1 < p < ∞, let L p = L p(T
d) be the usual Lebesgue space on T

d . For

s ≥ 0, 0 < q ≤ ∞, and ψ a slowly varying function, Bs,ψ
p,q stands for the Besov space

formed by all f ∈ L p having a finite quasi-norm

‖ f ‖Bs,ψ
p,q

= ‖ f ‖L p +
(∫ 1

0
(t−sψ(t)ωk( f, t)p)

q dt

t

)1/q

(with the usual modification if q = ∞). Here s < k ∈ N, and ωk( f, t)p is the k-th
order modulus of smoothness of f , given by

ωk( f, t)p = sup
|h|≤t

‖Δk
h f ‖L p , t > 0,

where
Δ1

h f (x) = f (x + h) − f (x) and Δk+1
h f (x) = Δ1

h(Δ
k
h f )(x).

Note that for all k ∈ N with k > s, all these quasi-norms are equivalent. The case
ψ(t) = 1 and s > 0 corresponds to the classical periodic Besov spaces Bs

p,q defined

by differences. If s = 0 and ψ(t) = (1 + | log t |)γ , we simply write B0,γ
p,q .

Let T0 = {0}, and for n ∈ N, let

Tn =

⎧
⎪⎨

⎪⎩

∑

∑d
j=1 |k j |≤n

cke
ik·x : ck ∈ C, k = (k1, . . . , kd) ∈ Z

d

⎫
⎪⎬

⎪⎭

be the linear space of all trigonometric polynomials of (triangular) degree less than or
equal to n. Here k · x = k1x1 + · · · + kd xd . Consider also the sets of all trigonometric
polynomials of cubic (respectively, spherical) degree less than or equal to n given by

Rn =
⎧
⎨

⎩

∑

max j=1,...,d |k j |≤n

cke
ik·x : ck ∈ C, k = (k1, . . . , kd) ∈ Z

d

⎫
⎬

⎭

and

Sn =

⎧
⎪⎪⎨

⎪⎪⎩

∑

(∑d
j=1 |k j |2

)1/2≤n

cke
ik·x : ck ∈ C, k = (k1, . . . , kd) ∈ Z

d

⎫
⎪⎪⎬

⎪⎪⎭

.
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Put also R0 = S0 = {0}. It is clear that if d = 1, then Tn = Rn = Sn .
In multivariate approximation, the set from which the frequencies of the approxi-

mating polynomials are taken plays an important role, because some results depend
on the particular choice of this set (see, for example, [25] and [49]). However, as we
show below, the families (Tn), (Rn), and (Sn) yield the same approximation spaces.

We have
Tn ⊆ Rn ⊆ Tdn, Tn ⊆ Sn ⊆ Tdn .

For Jn = Tn, Rn, Sn , put

E J
n ( f ) = inf{‖ f − g‖L p : g ∈ Jn}.

Let k0 ∈ N such that d < 2k0 . We have ET
2 j+k0

( f ) ≤ ER
2 j ( f ) ≤ ET

2 j ( f ) and

ET
2 j+k0

( f ) ≤ ES
2 j ( f ) ≤ ET

2 j ( f ). Therefore, if s > 0, we get

‖ f ‖�
(L p;Rn)

(s,ψ)
q

=
⎛

⎝‖ f ‖qL p
+

∞∑

j=1

(2 jsψ(2 j )ER
2 j ( f ))

q

⎞

⎠

1/q

≤ ‖ f ‖�
(L p;Tn)(s,ψ)

q

�

⎛

⎝‖ f ‖qL p
+

∞∑

j=1

(2 jsψ(2 j )ET
2 j+k0

( f ))q

⎞

⎠

1/q

� ‖ f ‖�
(L p;Rn)

(s,ψ)
q

.

Similarly, (L p; Tn)(s,ψ)
q = (L p; Sn)(s,ψ)

q and (L p; Tn)(0,γ )
q = (L p; Rn)

(0,γ )
q =

(L p; Sn)(0,γ )
q .

Note also that (L p; Rn) is a linear approximation scheme with

(Pn f )(x) =
∑

max j=1,...,d |k j |≤n

f̂ (k) eik·x

and

f̂ (k) = (2π)−d
∫

Td
f (x) e−ik·xdx, k ∈ Z

d ,

(see [25, Corollary 3.5.2 and Theorem 3.5.7]). Moreover, dim Rn = (2n + 1)d , so
(4.2) is satisfied.

When ψ(t) = 1 and s > 0, it is known that Bs
p,q = (L p; Rn)

s
q (see [37, 5.3] and

also [46, Corollary 3.7.1]). On the other hand, if d = 1 and ψ(t) = (1 + | log t |)γ , it
is shown in [20, Corollary 7.1/(i)] that B0,γ

p,q = (L p; Rn)
(0,γ )
q . In fact, using Jackson

and Bernstein inequalities (see [37,47]) and a convenient form of Hardy’s inequality,
for d ∈ N, if s > 0 andψ is a slowly varying function, then Bs,ψ

p,q = (L p; Rn)
b
q , where
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b = (nsψ(n)), and if γ ≥ −1/q, then B0,γ
p,q = (L p; Rn)

(0,γ )
q (see [45]; see also [9,

Lemma 2.1]). Therefore, as a direct consequence of Corollaries 4.1 to 4.5, we derive
the following results.

Corollary 5.1 Let 1 < p < ∞, 0 < q ≤ ∞, s > 0, and let ψ be a slowly varying
function. Then for the embedding id : Bs,ψ

p,q ↪→ L p, we have

an(id) ∼ en(id) ∼ 1

ns/dψ(n1/d)
.

Corollary 5.2 Let 1 < p < ∞, 0 < q0, q1 ≤ ∞, and 0 < s1 < s0. Then for the
embedding id : Bs0

p,q0 ↪→ Bs1
p,q1 , we have

an(id) ∼ en(id) ∼ n−(s0−s1)/d .

Corollary 5.3 Let 1 < p < ∞, 0 < q ≤ ∞, and γ ≥ −1/q. Then for the embedding
id : B0,γ

p,q ↪→ L p, we have:

(a) If γ > −1/q, then

an(id) ∼ en(id) ∼ (log n)−(γ+1/q).

(a) If γ = −1/q and 0 < q < ∞, then

an(id) ∼ en(id) ∼ (log log n)−1/q .

Corollary 5.4 Let 1 < p < ∞, 0 < q0, q1 ≤ ∞, and γ0, γ1 ∈ R with γ0 + 1/q0 >

γ1 + 1/q1 > 0. Then for the embedding id : B0,γ0
p,q0 ↪→ B0,γ1

p,q1 , we have

an(id) ∼ en(id) ∼ (log n)−(γ0−γ1+1/q0−1/q1).

Remark 5.1 It should be noticed that the asymptotic behaviors described inCorollaries
5.3 and 5.4 are independent of the dimension d. Moreover, the fine index q is involved
in the estimates, which is not the case in Corollaries 5.1 and 5.2.

Corollary 5.5 Let 1 < p < ∞, s > 0, 0 < q0, q1 ≤ ∞, and γ > −1/q1. Then for
the embedding id : Bs,γ+1/q1

p,q0 ↪→ B0,γ
p,q1 , we have

an(id) ∼ en(id) ∼ n−s/d .

The following result is a consequence of Theorems 4.3 and 4.4. It shows the
degree of compactness of embeddings when we replace in Corollary 5.5 the function
(1 + | log t |)γ+1/q1 by any other slowly varying function ψ . It also allows γ to take
the extreme value −1/q1.

Corollary 5.6 Let 1 < p < ∞, s > 0, 0 < u, q ≤ ∞, γ ≥ −1/q, and let ψ be a
slowly varying function. Then for the embedding id : Bs,ψ

p,u ↪→ B0,γ
p,q , we obtain:
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(a) If γ > −1/q, then

an(id) ∼ en(id) ∼ n−s/d(log n)γ+1/qψ(n1/d)−1 .

(b) If γ = −1/q and 0 < q < ∞, then

an(id) ∼ en(id) ∼ n−s/d(log log n)1/qψ(n1/d)−1 .

Remark 5.2 In several recent papers (see [11–13]), dealing with Besov spaces with
smoothness close to zero, it has been pointed out that in this case there are important
differences between spaces defined by the modulus of smoothness and spaces defined
via the Fourier transform. Corollary 5.3 can also be used to illustrate this fact. Indeed,
if we assume that 1 < p < ∞, 0 < q ≤ min(2, p), and γ > 0, it follows from
Corollary 5.3 that

an
(
id : B0,γ

p,q ↪→ L p

)
∼ en

(
id : B0,γ

p,q ↪→ L p

)
∼ (log n)−(γ+1/q) . (5.1)

However, for spaces defined by the Fourier transform, approximation and entropy
numbers have aworse behavior. In fact, letΩ be a boundedLipschitz domain inRd and
define B0,γ

p,q (Ω) by restriction from B0,γ
p,q (Rd), the Besov space on R

d of logarithmic
smoothness given by the Fourier transform. According to [7, Theorem 4.3], under our
assumptions on p, q, γ , we have that B0,γ

p,q (Rd) is formed by regular distributions.

Hence B0,γ
p,q (Ω) ↪→ L p. Using [14, Corollary 4.6], one can show that

an
(
id : B0,γ

p,q (Ω) ↪→ L p

)
∼ en

(
id : B0,γ

p,q (Ω) ↪→ L p

)
∼ (log n)−γ .

Note that the exponent of the logarithm in this formula is worse than in (5.1).

References

1. Almira, J.M., Luther, U.: Compactness and generalized approximation spaces. Numer. Funct. Anal.
Optim. 23, 1–38 (2002)

2. Almira, J.M., Luther, U.: Generalized approximation spaces and applications. Math. Nachr. 263, 3–35
(2004)

3. Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation, Encyclopedia of Mathematics and its
Applications, vol. 27. Cambridge Univ. Press, Cambridge (1987)

4. Brudnyi, Ju.A., Krugljak, N.Ja.: A family of approximation spaces. In: Studies in the Theory of Func-
tions of Several Real Variables, vol. 2, pp. 15–42. Yaroslav. Gos. Univ., Yaroslavl (1978) (in Russian)

5. Butzer, P.L., Scherer, K.: Approximationsprozesse und Interpolationsmethoden. Mannheim, Zürich
(1968)

6. Caetano, A.M., Gogatishvili, A., Opic, B.: Sharp embeddings of Besov spaces involving only loga-
rithmic smoothness. J. Approx. Theory 152, 188–214 (2008)

7. Caetano, A.M., Leopold, H.-G.: On generalized Besov and Triebel–Lizorkin spaces of regular distri-
butions. J. Funct. Anal. 264, 2676–2703 (2013)

8. Carl, B., Stephani, I.: Entropy, Compactness and the Approximation of Operators. Cambridge Univer-
sity Press, Cambridge (1990)

9. Cobos, F., Domínguez, O.: Embeddings of Besov spaces of logarithmic smoothness. StudiaMath. 223,
193–204 (2014)

123



Constr Approx (2018) 47:453–486 485

10. Cobos, F., Domínguez, O.: Approximation spaces, limiting interpolation and Besov spaces. J. Approx.
Theory 189, 43–66 (2015)

11. Cobos, F., Domínguez, O.: On Besov spaces of logarithmic smoothness and Lipschitz spaces. J. Math.
Anal. Appl. 425, 71–84 (2015)

12. Cobos, F., Domínguez, O.: On the relationship between two kinds of Besov spaces with smoothness
near zero and some other applications of limiting interpolation. J. Fourier Anal. Appl. 22, 1174–1191
(2016)

13. Cobos, F., Domínguez, O., Triebel, H.: Characterizations of logarithmic Besov spaces in terms of
differences, Fourier-analytical decompositions, wavelets and semi-groups. J. Funct. Anal. 270, 4386–
4425 (2016)

14. Cobos, F., Kühn, T.: Approximation and entropy numbers in Besov spaces of generalized smoothness.
J. Approx. Theory 160, 56–70 (2009)

15. Cobos, F., Milman, M.: On a limit class of approximation spaces. Numer. Funct. Anal. Optim. 11,
11–31 (1990)

16. Cobos, F., Resina, I.: Representation theorems for some operator ideals. J. Lond. Math. Soc. 39, 324–
334 (1989)

17. Cobos, F., Resina, I.: On some operator ideals defined by approximation numbers. In: Geometric
Aspects of Banach Spaces, London Mathematical Society Lecture Note Series, vol. 140, pp. 133–139.
Cambridge University Press, Cambridge (1989)

18. DeVore, R.A., Lorentz, G.G.: Constructive Approximation. Springer, Berlin (1993)
19. DeVore, R.A., Popov, V.A.: Interpolation of approximation spaces. In: Constructive Theory of Func-

tions (Varna, 1987), pp. 110–119. Publ. House Bulgar. Acad. Sci., Sofia (1988)
20. DeVore, R.A., Riemenschneider, S.D., Sharpley, R.C.: Weak interpolation in Banach spaces. J. Funct.

Anal. 33, 58–94 (1979)
21. Edmunds, D.E., Evans, W.D.: Hardy Operators, Function Spaces and Embeddings. Springer, Berlin

(2004)
22. Edmunds, D.E., Triebel, H.: Function Spaces, Entropy Numbers, Differential Operators. Cambridge

University Press, Cambridge (1996)
23. Fehér, F., Grässler, G.: On an extremal scale of approximation spaces. J. Comput. Anal. Appl. 3, 95–108

(2001)
24. Fernández-Martínez, P., Signes, T.: Limiting ultrasymmetric sequence spaces. Math. Ineq. Appl. 19,

597–624 (2016)
25. Grafakos, L.: Classical Fourier Analysis. Springer, New York (2008)
26. Haroske, D.D., Skrzypczak, L.: Entropy and approximation numbers of embeddings of function spaces

with Muckenhoupt weights. I. Rev. Mat. Complut. 21, 135–177 (2008)
27. Haroske, D.D., Skrzypczak, L.: Entropy and approximation numbers of embeddings of function spaces

with Muckenhoupt weights. II. General weights. Ann. Acad. Scient. Fennicae Math. 36, 111–138
(2011)

28. Haroske, D.D., Triebel, H.: Wavelet bases and entropy numbers in weighted function spaces. Math.
Nachr. 278, 108–132 (2005)

29. König, H.: Eigenvalue Distribution of Compact Operators. Birkhäuser, Basel (1986)
30. Köthe, G.: Topological Vector Spaces I. Springer, Berlin (1969)
31. Kühn, T.: Entropy numbers in weighted function spaces. The case of intermediate weights. Proc.

Steklov Inst. Math. 255, 159–168 (2006)
32. Kühn, T.: Entropy numbers in sequence spaces with an application to weighted function spaces. J.

Approx. Theory 153, 40–52 (2008)
33. Kühn, T., Leopold, H.-G., Sickel, W., Skrzypczak, L.: Entropy numbers of embeddings of weighted

Besov spaces. Constr. Approx. 23, 61–77 (2006)
34. Kühn, T., Leopold, H.-G., Sickel, W., Skrzypczak, L.: Entropy numbers of embeddings of weighted

Besov spaces II. Proc. Edinburgh Math. Soc. 49, 331–359 (2006)
35. Kühn, T., Leopold, H.-G., Sickel, W., Skrzypczak, L.: Entropy numbers of embeddings of weighted

Besov spaces III. Weights of logarithmic type. Math. Z. 255, 1–15 (2007)
36. Leopold, H.-G.: Embeddings and entropy numbers in Besov spaces of generalized smoothness. In:

Hudzik, H., Skrzypczak, L. (eds.) Function Spaces. Lecture Notes in Pure and Applied Mathematics,
vol. 213, pp. 323–336. Marcel Dekker, New York (2000)

37. Nikolskii, S.M.: Approximation of Functions of Several Variables and Imbedding Theorems. Springer,
Berlin (1975)

123



486 Constr Approx (2018) 47:453–486

38. Peetre, J., Sparr, G.: Interpolation of normed abelian groups. Ann. Mat. Pure Appl. 92, 217–262 (1972)
39. Petrushev, P.P., Popov, V.A.: Rational Approximation of Real Functions. Encyclopedia ofMathematics

and its Applications, vol. 28. Cambridge University Press, Cambridge (1987)
40. Pietsch, A.: Operator Ideals. North-Holland, Amsterdam (1980)
41. Pietsch, A.: Approximation spaces. J. Approx. Theory 32, 115–134 (1981)
42. Pietsch, A.: Tensor products of sequences, functions, and operators. Arch. Math. 38, 335–344 (1982)
43. Pustylnik, E.: Ultrasymmetric sequence spaces in approximation theory. Collect. Math. 57, 257–277

(2006)
44. Pustylnik, E.: A new class of approximation spaces. Rend. Circolo Mat. Palermo 76, 517–532 (2005)
45. Schmeisser, H.-J., Runovski, K.: in preparation
46. Schmeisser, H.-J., Triebel, H.: Topics in Fourier Analysis and Function Spaces. Wiley, Chichester

(1987)
47. Temlyakov, V.N.: Approximation of Periodic Functions. Nova Science, New York (1994)
48. Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam

(1978)
49. Weisz, F.: 
1-summability of d-dimensional Fourier transforms. Constr. Approx. 34, 421–452 (2011)

123


	Approximation and Entropy Numbers of Embeddings Between Approximation Spaces
	Abstract
	1 Introduction
	2 Approximation Spaces
	3 Relationships Between Approximation Spaces Generated by Different Approximation Families
	4 Approximation and Entropy Numbers of Embeddings
	5 Applications to Besov Spaces
	References




