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Abstract We analyze the accuracy of the discrete least-squares approximation of
a function u in multivariate polynomial spaces PΛ := span{y �→ yν : ν ∈ Λ}
with Λ ⊂ N

d
0 over the domain Γ := [−1, 1]d , based on the sampling of this func-

tion at points y1, . . . , ym ∈ Γ . The samples are independently drawn according to
a given probability density ρ belonging to the class of multivariate beta densities,
which includes the uniform and Chebyshev densities as particular cases. Motivated
by recent results on high-dimensional parametric and stochastic PDEs, we restrict our
attention to polynomial spaces associated with downward closed sets Λ of prescribed
cardinality n, and we optimize the choice of the space for the given sample. This
implies, in particular, that the selected polynomial space depends on the sample. We
are interested in comparing the error of this least-squares approximation measured in
L2(Γ, dρ)with the best achievable polynomial approximation errorwhen using down-
ward closed sets of cardinality n.We establish conditions between the dimension n and
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the size m of the sample, under which these two errors are proved to be comparable.
Our main finding is that the dimension d enters only moderately in the resulting trade-
off between m and n, in terms of a logarithmic factor ln(d), and is even absent when
the optimization is restricted to a relevant subclass of downward closed sets, named
anchored sets. In principle, this allows one to use these methods in arbitrarily high
or even infinite dimension. Our analysis builds upon (Chkifa et al. in ESAIM Math
Model Numer Anal 49(3):815–837, 2015), which considered fixed and nonoptimized
downward closed multi-index sets. Potential applications of the proposed results are
found in the development and analysis of efficient numerical methods for computing
the solution to high-dimensional parametric or stochastic PDEs, but are not limited to
this area.

Keywords Multivariate polynomial approximation · Discrete least squares ·
Convergence rate · Best n-term approximation · Downward closed set

Mathematics Subject Classification 41A10 · 41A25 · 41A50 · 41A63 · 65M70

1 Introduction

In recent years, it has become clear that many interesting engineering applications
feature an intrinsic dependence on a large number of parameters y1, . . . , yd , leading
to amajor concentration of efforts in the development and analysis of high-dimensional
approximationmethods. Inmany relevant situations, the parameters y j are independent
random variables distributed on intervals I j according to probability measures dρ j .
We are then typically interested in approximating a function

y = (y1, . . . , yd) �→ u(y),

depending on these parameters and measuring the error in L2(Γ, dρ), where Γ =
I1 × · · · × Id and dρ = dρ1 ⊗ · · · ⊗ dρd . Up to a renormalization, we may assume
that I j = [−1, 1] for all j , so that Γ = [−1, 1]d . In certain situations, the number of
parameters may even be countably infinite, in which case Γ = [−1, 1]N. Examples
where such problems occur are recurrent in the numerical treatment of parametric
and stochastic PDEs, where a fast and accurate approximation of the parameter-to-
solution map over high-dimensional parameter sets is useful to tackle more complex
optimization, control, and inverse problems.

In such a context, the potential of specific high-dimensional polynomial approx-
imation methods has been demonstrated in [6,9,10,15,21]. In these methods, the
approximation is picked from a multivariate polynomial space

PΛ := span
{
y �→ yν : ν ∈ Λ

}
,

where Λ is a given finite subset of Nd
0 . In the case of countably many parameters,

d = ∞, we replace N
d
0 by the set of finitely supported sequences of nonnegative

integers.
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The set Λ is said to be downward closed if and only if

ν ∈ Λ and μ ≤ ν 	⇒ μ ∈ Λ, (1)

where μ ≤ ν is meant component-wise as μi ≤ νi for all i . Polynomial spaces PΛ

associated with downward closed index sets Λ have been studied in various contexts,
see [2,12,13,16,17].

There exist two main approaches to polynomial approximation of a given function
u based on pointwise evaluations. The first approach relies on interpolation of the
function u at a given set of points {y1, . . . , yn} where n := #(Λ) = dim(PΛ); that
is, find v ∈ PΛ such that v(yi ) = u(yi ) for i = 1, . . . , n. The second approach
relies on projection, which aims at minimizing the L2(Γ, dρ) error between u and its
approximation in PΛ. Since the exact projection is not available, one typical strategy
consists of using the discrete least-squares method, that is, solving the problem

min
v∈PΛ

m∑

i=1

∣∣∣v
(
yi
)

− u
(
yi
)∣∣∣

2
,

where nowm > n. Discrete least-squares methods are often preferred to interpolation
methods when the observed evaluations are polluted by noise. Their convergence
analysis has been studied in the general context of learning theory, see, for example,
[11,14,23,24,28].

In recent years, an analysis of discrete least-squares methods has been proposed
[6,15,19,20,22], specifically targeted to the above described case ofmultivariate poly-
nomial spaces associated with downward closed sets, in the case where the dρ j are
identical Jacobi-type measures. This analysis, which builds upon the general results
from [7], gives conditions ensuring that, in the absence of noise in the pointwise eval-
uation of u, the accuracy of the discrete least-squares approximation is comparable to
the best approximation error achievable in PΛ, that is,

eΛ(u) := inf
v∈PΛ

‖u − v‖L2(Γ,dρ).

These conditions are stated in terms of a relation between the sizem of the sample and
the dimension n of PΛ. A similar analysis also covers the case of an additive noise in
the evaluation of the samples, which results in additional terms in the error estimate,
see, e.g., [22].

One remarkable result from the above analysis is that the conditions ensuring that
the least-squaresmethod has accuracy comparable to eΛ(u) only involve the dimension
of PΛ. These conditions are independent of the specific shape of the set Λ (as long as
it is downward closed), and in particular independent of the dimension d.

The possibility of using arbitrary sets Λ is critical in the context of parametric
PDEs in view of the recent results on high-dimensional polynomial approximation
obtained in [3,9,10]. These results show that for relevant classes of parametric PDEs,
the functions y �→ u(y) describing either the full solution or scalar quantities of
interest can be approximated with convergence rates O(n−s) which are independent
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of the parametric dimension d, when using polynomial spaces PΛn associated to
specific sequences of downward closed multi-index sets (Λn)n≥1 with #(Λn) = n. In
summary, we have

en(u) := min
#(Λ)=n

eΛ(u) ≤ Cn−s, (2)

where the minimum is taken over all downward closed sets of given cardinality n.
For each value of n, the optimal set Λn is the one that achieves the minimum in

(2) among all downward closed Λ of cardinality n. This set is unknown to us when
observing only the samples u(yi ). Therefore, a legitimate objective is to develop least-
squares methods for which the accuracy is comparable to the quantity en(u).

In this paper, we discuss least-squares approximations on multivariate polynomial
spaces for which the choice of Λ is optimized based on the sample. In particular, we
prove that the performance of such approximations is comparable to the quantity in (2),
under a relation betweenm and n where the dimension d enters as a logarithmic factor.
Furthermore, we show that this logarithmic dependence on d can be fully removed by
considering a more restricted class of downward closed sets called anchored sets, for
which similar approximation rates as in (2) can be achieved. The resulting least-squares
methods are thus immune to the curse of dimensionality.

The outline of the paper is the following: in Sect. 2, we introduce the notation
and briefly review some of the previous results achieved in the analysis of discrete
least squares on fixed multivariate polynomial spaces. In Sect. 3, we present the main
results of the paper concerning discrete least-squares approximations on optimized
polynomial spaces. Our analysis is based on establishing upper bounds on the number
of downward closed or anchored sets of a given cardinality, or on the cardinality of
their union.

The selection of the optimal polynomial space is based on minimizing the least-
squares error among all possible choices of downward closed or anchored sets of
a given cardinality n. Let us stress that in the form of an exhaustive search, this
task becomes computationally intensive when n and d are simultaneously large. Our
results should therefore mainly be viewed as a benchmark in arbitrary dimension d
for assessing the performance of fast selection algorithms, such as greedy algorithms,
that still need to be developed and analyzed in this context. A general discussion
on alternate selection strategies with reasonable computational cost is presented in
Sect. 4.

2 Discrete Least-Squares Approximation by Multivariate Polynomials

In this section, we introduce some useful notation and recall from [6] the main results
achieved for the analysis of the stability and accuracy of discrete least-squares approx-
imations in multivariate polynomial spaces.

2.1 Notation

In any given dimension d ∈ N, we consider the domain � := [−1, 1]d , and for some
given real numbers θ1, θ2 > −1, the tensorized Jacobi measure
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dρ = ⊗d
j=1dβ,

with density

ρ(y) :=
d∏

j=1

β(y j ),

where

dβ = β(t)dt := c(1 − t)θ1(1 + t)θ2dt, c :=
(∫ 1

−1
(1 − t)θ1(1 + t)θ2dt

)−1

.

We may also consider the case � := [−1, 1]N for which d = +∞ and dρ is
the Jacobi measure defined over � in the usual manner. We denote by L2(�, dρ) the
Hilbert space of real-valued square-integrable functions with respect to dρ and denote
by ‖ · ‖ the associated norm, i.e.,

‖v‖ :=
(∫

Γ

|v(y)|2dρ(y)

)1/2

.

Moreover, let F be defined as the set Nd
0 , where N0 := {0, 1, 2, . . .}, in the case

d < +∞, or as the countable set of all finitely supported sequences from N
N

0 in the
case d = +∞. For any ν ∈ F , we define

supp(ν) := { j ≥ 1 : ν j = 0},

and for any multi-index set Λ ⊆ F , we define

supp(Λ) := ∪ν∈Λ supp{ν}.

We say that a coordinate y j is active in the space PΛ when j ∈ supp(Λ).
For the given real parameters θ1, θ2 > −1, we introduce the family (Jn)n≥0 of

univariate orthonormal Jacobi polynomials associated with the measure dβ, and their
tensorized counterpart

Jν(y) =
∏

j≥1

Jν j (y j ), y = (y j ) j≥1,

for any ν ∈ F . The (Jν)ν∈F are an L2(Γ, dρ)-orthonormal basis. Particular instances
of these polynomials are tensorized Legendre polynomials when θ1 = θ2 = 0 and
tensorized Chebyshev polynomials of the first kind when θ1 = θ2 = −1/2.

In the present paper, we focus on finite multi-index setsΛ that are downward closed
in the sense of (1).We also say that a polynomial spacePΛ is downward closed when it
is associated with a downward closed multi-index setΛ ⊂ F . Recall that PΛ has been
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defined as the span of the monomials y �→ yν for ν ∈ Λ. Therefore it admits (Jν)ν∈Λ

as an L2(Γ, dρ)-orthonormal basis in the case of Λ downward closed. Sometimes we
enumerate the indices ν using the lexicographical ordering, and denote this basis by
(ψk)k=1,...,n , where

n := #(Λ) = dim(PΛ).

Given a finite downward closed multi-index set Λ ⊂ F , we would like to approxi-
mate the target function u : Γ → R in the L2 sense, using the noiseless evaluations
(u(yi ))i=1,...,m of u at the points (yi )i=1,...,m , where the yi are i.i.d. random vari-
ables distributed according to ρ. We define the continuous L2 projection of u on the
polynomial space PΛ as

ΠΛu := argmin
v∈PΛ

‖u − v‖,

and the discrete least-squares approximation Πm
Λu as

Πm
Λu := argmin

v∈PΛ

‖u − v‖m, (3)

where we have used the notation

‖v‖m :=
(
1

m

m∑

i=1

v
(
yi
)2
) 1

2

.

We introduce the m × #(Λ) design matrix D and the vector b ∈ R
m whose entries

are given by Di,k = ψk(yi ) and bi = u(yi ). We define the Gramian matrix G :=
m−1DTD. The discrete least-squares projection in (3) is then given by

Πm
Λu =

#(Λ)∑

k=1

akψk,

where the vector a = (ak) ∈ R
#(Λ) is the solution to the normal equations

Ga = m−1DTb.

2.2 Previous Results on the Stability and Accuracy of Discrete Least Squares

We introduce the quantity

K (PΛ) := sup
y∈�

∑

ν∈Λ

|Jν(y)|2 . (4)
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It is proved in [6] that discrete least squares in multivariate polynomial spaces
are stable and accurate provided that a precise condition involving m and K (PΛ) is
satisfied. Similar results have been proved in [22] for the case of noisy observations
of the target function, with several noise models.

For any δ ∈]0, 1[, we introduce the positive quantity

ζ(δ) := δ + (1 − δ) ln(1 − δ). (5)

Given a threshold τ ∈ R
+
0 , we introduce the truncation operator

Tτ (t) :=sign(t)min{τ, |t |}, for any t ∈ R,

and use it to define the truncated discrete least-squares projection operator u �→
Tτ (Π

m
Λu). The main results from [6] concerning stability and accuracy of the discrete

least-squares approximation with noiseless evaluations can be summarized as follows.

Theorem 1 In any dimension d, for any r > 0, any δ ∈]0, 1[, and any downward
closed multi-index set Λ ⊂ N

d
0 , one has

Pr
({

(1 − δ)‖v‖2 ≤ ‖v‖2m ≤ (1 + δ)‖v‖2, ∀v ∈ PΛ

})

≥ 1 − 2n exp (−ζ(δ)m/K (PΛ)) . (6)

If the following condition between m and K (PΛ) is satisfied:

m

lnm
≥ (1 + r)

ζ(δ)
K (PΛ), (7)

then

Pr
({

(1 − δ)‖v‖2 ≤ ‖v‖2m ≤ (1 + δ)‖v‖2, ∀v ∈ PΛ

})
≥ 1 − 2m−r .

Moreover, for any u ∈ L∞(�) with ‖u‖L∞(�) ≤ τ , the following holds:

Pr

(

‖u − Πm
Λu‖ ≤

(

1 +
√

1

1 − δ

)

inf
v∈PΛ

‖u − v‖L∞(Γ )

)

≥ 1 − 2m−r , (8)

E

(
‖u − Tτ

(
Πm

Λu
) ‖2

)
≤
(
1 + 4ζ(δ)

(1 + r) lnm

)
‖u − ΠΛu‖2 + 8τ 2m−r . (9)

The above theorem states that under condition (7), the discrete least-squares approx-
imation is stable, since one has

(1 − δ)‖v‖2 ≤ ‖v‖2m ≤ (1 + δ)‖v‖2, ∀v ∈ PΛ ⇔ (1 − δ)I ≤ G ≤ (1 + δ)I,
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where I denotes the identity matrix. Under the same condition, the discrete least-
squares approximation is also accurate in probability, from (8), and in expectation,
from (9), since the approximation error behaves like the best approximation error in
L∞ or in L2.

The quantity K (PΛ) depends both on Λ and on the chosen Jacobi measure, and
therefore on the parameters θ1, θ2. The following result from [6,18] shows that, once
these two parameters are fixed, the quantity K (PΛ) satisfies bounds that only depend
on #(Λ), independently of the particular shape of Λ and of the dimension d.

Lemma 1 In any dimension d and for any finite downward closed set Λ ⊂ F , one
has

#(Λ) ≤ K (PΛ) ≤
{

(#(Λ))ln 3/ ln 2 if θ1 = θ2 = −1/2,

(#(Λ))2max{θ1,θ2}+2 if θ1, θ2 ∈ N0.

Combining the two results, one therefore obtains sufficient conditions for stability
and optimal accuracy expressed only in terms of a relation between #(Λ) and m. For
example, in the case of the uniform measure that corresponds to θ1 = θ2 = 0, this
relation is of the form

m

lnm
≥ c (#(Λ))2 , c := c(δ, r).

3 Optimal Selection of Downward Closed Polynomial Spaces

The results recalled in the previous section hold for a given downward closed set
Λ ⊂ F . We now consider the problem of optimizing the choice of Λ, or equivalently
that of the space PΛ.

3.1 Optimized Index Sets

We define the family

Md
n := {Λ ⊂ F : Λ is downward closed and #(Λ) = n},

of all downward closed sets of cardinality n in d coordinates. Note that, in contrast to
the family of all subsets of F of cardinality n, the family Md

n is finite.
The error of best n-term polynomial approximation by downward closed sets is

then defined by

σn(u) := min
Λ∈Md

n

min
v∈PΛ

‖u − v‖.

A best n-term downward closed set is a Λ ∈ Md
n that achieves this minimum, that is,

such that
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Λopt := argmin
Λ∈Md

n

min
v∈PΛ

‖u − v‖.

Using the Parseval identity, we find that Λopt is also given by

Λopt = argmin
Λ∈Md

n

∑

ν /∈Λ

|uν |2, uν =
∫

Γ

u(y)Jν(y)dρ(y).

Note that such a set may not be unique due to possible ties in the values of the
coefficients, in which case we consider a unique choice by breaking the ties in some
arbitrary but fixed way. We set

un := ΠΛoptu = argmin
v∈P

Λopt

‖u − v‖. (10)

Of course, in the least-squares method, the discrete data do not allow us to identify
Λopt. Instead, we rely on

Λ
opt
m := argmin

Λ∈Md
n

min
v∈PΛ

‖u − v‖m, (11)

and compute

wn := Πm
Λ

opt
m
u = argmin

v∈P
Λ
opt
m

‖u − v‖m .

Our objective is now to compare the accuracy of the polynomial least-squares approx-
imation based on Λ

opt
m with the above optimal error σn(u). For this purpose, we shall

use the random variable

Cd
n := max

Λ∈Md
n

max
v∈PΛ

‖v‖2
‖v‖2m

.

Note that the search of Λ
opt
m remains a difficult task from the computational point

of view, due to the fact that #(Md
n) becomes very large even for moderate values of

n and d. As we discuss further, this cardinality also affects the conditions between
m and n which guarantee the optimality of the least-squares approximation based on
Λ

opt
m .
For this reason, it is useful to introduce an additional restriction on the potential

index sets. We say that Λ is anchored if and only if it is downward closed and satisfies
in addition

e j ∈ Λ and j ′ ≤ j 	⇒ e j ′ ∈ Λ,

where e j and e j ′ are the Kronecker sequences with 1 at positions j and j ′, respectively.
We also say that a polynomial space PΛ is anchored when Λ is anchored. Likewise,
we define the family
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An := {Λ ⊂ F : Λ is anchored and #(Λ) = n}.

The restriction to anchored sets introduces an order of priority among the coordi-
nates: given any j ≥ 1, the coordinate y j is active in Λ only if all the coordinates yk
for k < j are also active. In particular, for any set Λ ∈ An , we have

supp(Λ) = {1, . . . , k} (12)

for some k ≤ n − 1.
It is proved in [9] that, for relevant classes of parametric PDEs, the same algebraic

convergence rates O(n−s) can be obtained when imposing the anchored structure on
the optimally selected sets (Λn)n≥1 with #(Λn) = n. As we shall see further, one
specific advantage of anchored sets is to completely remove the dependence on the
dimension d in the convergence analysis of the least-squares method, and allows us
in particular to consider the infinite-dimensional framework.

Using the same notation as before with obvious modifications, we introduce the
following entities:

Λ̃opt := argmin
Λ∈An

min
v∈PΛ

‖u − v‖, ũn := ΠΛ̃optu = argmin
v∈P

Λ̃opt

‖u − v‖, (13)

Λ̃
opt
m := argmin

Λ∈An

min
v∈PΛ

‖u − v‖m, w̃n := Πm
Λ̃

opt
m
u = argmin

v∈P
Λ̃
opt
m

‖u − v‖m,

and

C̃n := max
Λ∈An

max
v∈PΛ

‖v‖2
‖v‖2m

.

Remark 1 The estimators wn and w̃n can be viewed as the solutions of a nonconvex
optimization problem. This problem has a natural algebraic formulation. Recalling
(Jν)ν∈F the L2(Γ, dρ)-orthonormal basis, we introduce for a given finite set J ⊂ F
the design matrix

D =
(
Jν
(
yi
))

, (14)

where the row index i ranges in {1, . . . ,m} and the column index ν ranges in J .
Then, recalling the data vector b = (u(yi ))i=1,...,m , and taking J as the union of all
downward closed sets of cardinality n, we find that the component vector a = (aν)ν∈J
of wn = ∑

ν∈J aν Jν is the solution to the constrained minimization

min
{
‖Da − b‖�2 : ‖a‖�0d

≤ n
}

.

Here ‖a‖�0d
is the cardinality of the smallest downward closed setΛ ⊂ J that contains

all the nonzero entries of a. In other words, we minimize over those a whose support
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is contained in a downward closed set of cardinality at most n. Likewise, taking J
as the union of all anchored sets of cardinality n, we find that the component vector
ã = (ãν)ν∈J of w̃n = ∑

ν∈J ãν Jν is the solution of the constrained minimization

min
{
‖D̃a − b‖�2 : ‖̃a‖�0a

≤ n
}

.

Here ‖̃a‖�0a
is the cardinality of the smallest anchored set Λ ⊂ J that contains all the

nonzero entries of ã. It is well known that such optimization problems with �0-type
constraints have combinatorial nature, and in turn numerical algorithms for computing
their solutions do not generally have polynomial complexity. This justifies in practice
the use of convex relaxation methods such as basis pursuit, or greedy selection strate-
gies such as orthonormalmatching pursuit.While our paper is mainly directed towards
the convergence properties of the estimators wn and w̃n which are the exact solutions
to the above problems, we discuss these numerical methods in the final section.

We now would like to compare the estimators wn and w̃n with the best n-term
approximation in the aforementioned classes of multi-index sets Md

n and An . The
following lemma shows the role played by Cd

n and C̃n in quantifying the relation
between the error achieved by the optimal discrete least-squares projection and the
error achieved by the optimal L2 projection.

Lemma 2 It holds that, for any Λ ∈ Md
n ,

‖u − wn‖ ≤ ‖u − v‖ + 2
√
Cd
2n−1‖u − v‖m, v ∈ PΛ, (15)

and for any Λ ∈ An,

‖u − w̃n‖ ≤ ‖u − ṽ‖ + 2
√
C̃2n−1‖u − ṽ‖m, ṽ ∈ PΛ. (16)

Proof Let Λ ∈ Md
n , and define Λ̂ := Λ ∪ Λ

opt
m . We first observe that Λ̂ is also

downward closed and #(Λ̂) ≤ 2n − 1 because any downward closed set contains the
null multi-index. Since wn ∈ P

Λ
opt
m
, we have v − wn ∈ PΛ̂ for any v ∈ PΛ. It follows

that

‖v − wn‖ ≤
√
Cd
2n−1‖v − wn‖m ≤

√
Cd
2n−1 (‖u − v‖m + ‖u − wn‖m)

≤ 2
√
Cd
2n−1‖u − v‖m,

and therefore

‖u − wn‖ ≤ ‖u − v‖ + ‖v − wn‖ ≤ ‖u − v‖ + 2
√
Cd
2n−1‖u − v‖m,

which is (15). The proof of (16) is analogous. ��
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Note that the estimates in the above lemma imply in particular that

‖u − wn‖ ≤ ‖u − un‖ + 2
√
Cd
2n−1‖u − un‖m, (17)

and

‖u − w̃n‖ ≤ ‖u − ũn‖ + 2
√
C̃2n−1‖u − ũn‖m,

with un and ũn defined by (10) and (13). Note that they also imply

‖u − wn‖ ≤
(
1 + 2

√
Cd
2n−1

)
‖u − v‖L∞ , v ∈ PΛ, (18)

for any Λ ∈ Md
n , and

‖u − w̃n‖ ≤
(
1 + 2

√
C̃2n−1

)
‖u − ṽ‖L∞ , ṽ ∈ PΛ, (19)

for any Λ ∈ An .

3.2 Probabilistic Bounds

In view of Lemma 2, we are interested in bounding the random variablesCd
n and C̃n . In

this section, we give probabilistic bounds, which ensure that under certain conditions
between m and n, these random variables do not exceed a fixed value, here set to
2, with high probability. In the whole section, we choose δ = 1/2, so that, with the
notation (5), one has

ζ := ζ(δ) = ζ(1/2) = (1 − ln 2)/2 ≈ 0.153.

We define, for any ν ∈ F , the “rectangular” set Rν := {μ ∈ F , μ ≤ ν}, and for
any n ≥ 1, the hyperbolic cross set

Hd
n :=

⎧
⎨

⎩
μ ∈ F :

d∏

j=1

(μ j + 1) ≤ n

⎫
⎬

⎭
.

Note that

Hd
n =

⋃

#(Rν )≤n

Rν .

The cardinality ofHd
n is bounded by

#
(
Hd

n

)
≤ n(1 + ln(n))d−1, (20)
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see [15, Appendix A.2] for a proof and some remarks on the accuracy of this upper
bound. The relevance of the hyperbolic cross for our purposes is due to the following
observation.

Lemma 3 The union of all downward closed sets of cardinality at most n in finite
dimension d coincides withHd

n ; that is,

⋃

Λ∈Md
n

Λ = Hd
n . (21)

Proof On the one hand, all rectangles Rν such that #(Rν) ≤ n belong to Md
n , so

that inclusion holds from right to left. On the other hand, inclusion from left to right
follows by observing that for any Λ ∈ Md

n , one has Λ = ∪μ∈ΛRμ and Rμ ⊂ Hd
n

for all μ ∈ Λ. ��
This leads us to a first probabilistic bound for the random variable Cd

n . Indeed,
using (21) we obtain that

Pr
(
Cd
n > 2

)
= Pr

(

max
Λ∈Md

n

max
v∈PΛ

‖v‖2
‖v‖2m

> 2

)

≤ Pr

(

max
v∈PHd

n

‖v‖2
‖v‖2m

> 2

)

.

Thus, using Theorem 1 with δ = 1/2 combined with the estimates in Lemma 1, we
obtain that, in any dimension d and for any r > 0, if m and n satisfy

m

lnm
≥
{

(1+r)
ζ

(
#
(Hd

n

))ln 3/ ln 2
with Chebyshev polynomials of the first kind,

(1+r)
ζ

(
#
(Hd

n

))2max{θ1,θ2}+2
with Jacobi polynomials and θ1, θ2 ∈ N0,

(22)

then

Pr
(
Cd
n > 2

)
≤ 2m−r .

From (21) and (12), we also find that the union of all anchored sets of cardinality
at most n satisfies the following inclusion:

⋃

Λ∈An

Λ ⊂ Hn−1
n .

By similar arguments, we obtain the following probabilistic bound for the random
variable C̃n : in any dimension d, for any r > 0, if m and n satisfy

m

lnm
≥
{

(1+r)
ζ

(
#
(Hn−1

n

))ln 3/ ln 2
with Chebyshev polynomials of the first kind,

(1+r)
ζ

(
#
(Hn−1

n

))2max{θ1,θ2}+2
with Jacobi polynomials and θ1, θ2 ∈ N0,

(23)

then

Pr
(
C̃n > 2

) ≤ 2m−r .
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The above results describe the regimes of m and n such that Cd
n and C̃n do not

exceed 2 with high probability. In the case of downward closed sets, this regime
is quite restrictive due to the presence of ln(n)d−1 in the upper bound (20) for the
cardinality of Hd

n , which forces the sample size m to be extremely large as d grows.
Likewise, m has to be extremely large compared to n in the case of anchored sets.

We next describe another strategy that yields similar probabilistic bounds under
less restrictive regimes. It is based on estimating the cardinality of Md

n and An and
using union bounds. Our way of estimating #(Md

n) and #(An) is based on strategies
for encoding any downward closed or anchored set. One first such strategy leads to
the following result.

Lemma 4 (First Cardinality Bound) One has the cardinality estimates

#
(
Md

n

)
≤ 2nd (24)

and

#
(An

) ≤ 2n(n−1). (25)

Proof We encode any downward closed set Λ ⊂ F of cardinality n in d dimensions,
by associating d bits bν,1, . . . , bν,d to each multi-index ν ∈ Λ, where the value of the
j th bit is equal to one if ν + e j ∈ Λ and equal to zero if ν + e j /∈ Λ. We order these
blocks of bits according to the lexicographic order ν1, . . . , νn of appearance of ν in
Λ, where ν1 = (0, . . . , 0). The resulting bitstream

BΛ := (
bν1,1, . . . , bν1,d , bν2,1, . . . , bν2,d , . . . , bνn ,1, . . . , bνn ,d

)

uniquely encodes Λ, that is, the encoding map Λ �→ BΛ is injective. Indeed,
assuming that ν1, . . . , νk have been already identified, then the partial bitstream
(bν1,1, . . . , bνk ,d) contains the information on the positions of all indices ν ∈ Λ

such that ν /∈ {ν1, . . . , νk} and ν − e j ∈ {ν1, . . . , νk} for some j . Therefore νk+1

is uniquely determined as the index with smallest lexicographic order among such
indices.

Since the length of BΛ is nd, this model leads us to the upper bound (24). The same
encoding can be applied to anchored sets of cardinality at most n with n − 1 bits for
each index, leading to (25), which also directly follows from (24) and the fact that
#(An) ≤ #(Mn−1

n ). ��
Remark 2 Note that the cardinality estimate for the anchored sets is independent of
the dimension d. In particular, this allows us to derive some further results in the
infinite-dimensional framework, when using anchored sets.

Recalling the definition of K (PΛ) from (4), we introduce the following notation:

Kn = max
Λ∈Md

n

K (PΛ),

K̃n = max
Λ∈An

K (PΛ).
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Note that, according to Lemma 1, one has the estimate

K̃n ≤ Kn ≤
{
nln 3/ ln 2 if θ1 = θ2 = −1/2,

n2max{θ1,θ2}+2 if θ1, θ2 ∈ N0.
(26)

We are now in position to establish probabilistic bounds for the random variables Cd
n

and C̃n .

Lemma 5 In any finite dimension d, for any r > 0, if m and n satisfy

m

lnm
≥
(
1 + r + nd ln 2

lnm

)
Kn

ζ
, (27)

then

Pr
(
Cd
n > 2

)
≤ 2nm−(r+1) ≤ 2m−r .

In any finite dimension d or in infinite dimension, for any r > 0, if m and n satisfy

m

lnm
≥
(
1 + r + n2 ln 2

lnm

)
K̃n

ζ
, (28)

then

Pr
(
C̃n > 2

) ≤ 2nm−(r+1) ≤ 2m−r .

Proof Recalling (6) and using a union bound, we obtain

Pr
(
Cd
n > 2

)
= Pr

(

max
Λ∈Md

n

max
v∈PΛ

‖v‖2
‖v‖2m

> 2

)

≤
∑

Λ∈Md
n

Pr

(
max
v∈PΛ

‖v‖2
‖v‖2m

> 2

)

≤ 2nd2n exp {−ζm/Kn}
= 2n exp {−ζm/Kn + nd ln(2)} ,

wherewe have used the cardinality estimate (24). The final bound is smaller than 2m−r

under condition (27). The proof for C̃n is completely similar, using the cardinality
estimate (25). ��
Remark 3 Combining with (26), we find that (27) holds if r, d,m, and n satisfy

m

lnm
≥

⎧
⎪⎪⎨

⎪⎪⎩

(
1 + r + nd ln 2

lnm

)
nln 3/ ln 2

ζ
, with Chebyshev polynomials of the first kind,

(
1 + r + nd ln 2

lnm

)
n2max{θ1,θ2}+2

ζ
, with Jacobi polynomials and θ1, θ2 ∈ N0.

(29)
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Similarly, we find that (28) holds if r,m, and n satisfy

m

lnm
≥

⎧
⎪⎪⎨

⎪⎪⎩

(
1 + r + n2 ln 2

lnm

)
nln 3/ ln 2

ζ
, with Chebyshev polynomials of the first kind,

(
1 + r + n2 ln 2

lnm

)
n2max{θ1,θ2}+2

ζ
, with Jacobi polynomials and θ1, θ2 ∈ N0.

(30)

We next give an improved result on the cardinality ofMd
n andAn based on another

encoding strategy.

Lemma 6 (Second Cardinality Bound) One has the cardinality estimates

#
(
Md

n

)
≤ dn−1(n − 1)! (31)

and

#(An) ≤ ((n − 1)!)2 . (32)

Proof Given any downward closed multi-index set Λ with #(Λ) = n, we order the
elements of Λ in such a way that the set

Λk :=
{
ν1, . . . , νk

}
,

obtained by retaining only the first k elements of Λ, is downward closed for any
k = 1, . . . , n. Such anordering always exists, and in general it is not unique.Notice that
it always holds that ν1 = (0, . . . , 0). One way to impose a unique ordering is by taking
for νk the smallest index ν in lexicographic order among those ν ∈ Λ\{ν1, . . . , νk−1}
such that {ν1, . . . , νk} is downward closed. Each νk can be uniquely characterized by
choosing some lk ∈ {1, . . . , k − 1} and jk ∈ {1, . . . , d} such that

νk = νlk + e jk .

Again this choice can be made unique by asking that jk is the smallest number with
such a property. Therefore, the resulting map

Λ �→ ( j2, l3, j3, . . . , ln, jn)

is well defined and injective. Hence

#
(
Md

n

)
≤ d(2d) . . . (n − 1)d,

which is (31). We obtain (32) from the inequality #(An) ≤ #(Mn−1
n ). ��

The above results lead to improved probabilistic bounds for the random variables
Cd
n and C̃n .
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Lemma 7 In any finite dimension d, for any r > 0, if m and n satisfy

m

lnm
≥
(
1 + r + n ln(dn)

lnm

)
Kn

ζ
, (33)

then

Pr
(
Cd
n > 2

)
≤ 2nm−(r+1) ≤ 2m−r .

In any finite dimension d or in infinite dimension, for any r > 0, if m and n satisfy

m

lnm
≥
(
1 + r + 2n ln n

lnm

)
K̃n

ζ
, (34)

then

Pr
(
C̃n > 2

) ≤ 2nm−(r+1) ≤ 2m−r .

Proof Recalling (6) and using the inequality n! ≤ e
√
n(n/e)n , which holds for any

n ≥ 1, we obtain by means of a union bound that, for any n ≥ 2,

Pr
(
Cd
n > 2

)
≤ dn−1(n − 1)! (2n) exp {−ζm/Kn}

≤ dn−1e
√
n − 1

(
n − 1

e

)n−1

(2n) exp {−ζm/Kn}

= 2n exp

{
−ζm/Kn + (n − 1/2) ln

(
d(n − 1)

e

)
− 1

2
ln

(
d

e

)
+ 1

}

≤ 2n exp {−ζm/Kn + n ln(dn)} ,

where we have used the cardinality estimate (31). The final bound is smaller than
2m−r under condition (33). Trivially the final bound holds true also when n = 1. The
proof for C̃n is completely similar, using the cardinality estimate (32). ��
Remark 4 Combining with (26), we find that (33) holds if r, d,m, and n satisfy

m

lnm
≥

⎧
⎪⎪⎨

⎪⎪⎩

(
1 + r + n ln(dn)

lnm

)
nln 3/ ln 2

ζ
, with Chebyshev polynomials of the first kind,

(
1 + r + n ln(dn)

lnm

)
n2max{θ1,θ2}+2

ζ
, with Jacobi polynomials and θ1, θ2 ∈ N0.

(35)

Similarly, we find that (34) holds if r,m, and n satisfy

m

lnm
≥

⎧
⎪⎪⎨

⎪⎪⎩

(
1 + r + 2n ln n

lnm

)
nln 3/ ln 2

ζ
, with Chebyshev polynomials of the first kind,

(
1 + r + 2n ln n

lnm

)
n2max{θ1,θ2}+2

ζ
, with Jacobi polynomials and θ1, θ2 ∈ N0.

(36)
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The regimes ofm and n described by the above results are in principle less restrictive
than those previously obtained using the cardinality ofHd

n orHn−1
n . Indeed, for most

regimes of n and d, the cardinalities #(Hd
n ) or #(Hn−1

n ) are larger than n ln(dn) and
n ln(n), respectively. We may summarize the probabilistic bounds established in this
section as follows: for any r > 0 and any n ≥ 1, one has Cd

n ≤ 2 with probability
larger than 1−2m−r provided that (22) or (29) or (35) holds. Likewise, one has C̃n ≤ 2
with probability larger than 1 − 2m−r provided that (23) or (30) or (36) holds.

Remark 5 The encoding strategies that are used for proving Lemmas 4 and 6 are both
redundant, leading to an overestimation of #(Md

n) and #(An). We are not aware of
estimates for these cardinalities that are provably sharp up to multiplicative constants
independent of n and d. However, we can establish lower bounds that show that
for certain particular regimes of n and d, these cardinalities grow exponentially fast.
One simple instance of a lower bound for #(Md

n) in the regime where n − 1 ≤ d
is obtained as follows: we note that Md

n includes in particular all sets of the form
{(0, . . . , 0)} ∪ {e j : j ∈ S} for S ⊂ {1, . . . , d} such that #(S) = n − 1. It follows that

#
(
Md

n

)
≥
(

d

n − 1

)
.

In the regime where n = d/2 (for even d), we thus find that log2(#(Md
n)) grows at

least as fast as d.

Remark 6 It is interesting to compare the probabilistic bounds obtained in this section
with restricted isometry properties (RIP) recently obtained in [5], that are a common
vehicle in the analysis of compressed sensing schemes. Recalling the design matrix
D introduced in (14), and defining its renormalized version Φ := m−1/2D, we indeed
see that the property Cd

n ≤ 2 can be rephrased as

1

2
‖a‖2 ≤ ‖Φa‖2, ‖a‖�0d

≤ n,

that is, for all a whose support is contained in a downward closed set of cardinality at
most n. In [5], it is shown that the RIP property

(1 − δ)‖a‖2 ≤ ‖Φa‖2 ≤ (1 + δ)‖a‖2, ‖a‖�0d
≤ n, (37)

holds with probability at least 1 − γ if

m ≥ 26e
Kn

δ̃2
ln

(
Kn

δ̃2

)
max

{
25

δ̃4
ln

(
40

Kn

δ̃2
ln

(
Kn

δ̃2

))
ln(4N ),

1

δ̃
ln

(
1

γ δ̃
ln

(
Kn

δ̃2

))}
, δ̃ := δ

13
, (38)

where N = #(J ) with J the union of all downward closed sets of cardinality at most
n, that is, J = Hd

n . Note that in our analysis, we are only interested in establishing
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the lower inequality in the RIP, with the particular constant δ = 1
2 . However, since

we have started from the two-sided estimate in (6), one easily checks that the same
analysis leads to the validity of the RIP property (37) with probability at least 1 − γ ,
under the regime

m

lnm
≥
(
1 + ln(2/γ )

lnm
+ n ln(dn)

lnm

)
Kn

ζ(δ)
, (39)

where ζ(δ) is again given by (5). From an asymptotic point of view, it can be checked
that the regime (38) is more favorable than (39): indeed, n appears on the right side
of (38) only through Kn up to logarithmic factors, while it appears through nKn in
the right side of (39). However, the multiplicative constant on the right side of (38) is
prohibitively large: for example, in the case δ = 1

2 that is considered in the present

paper, we find that δ̃ = 1
26 and therefore 26e 1

δ̃2
25

δ̃4
> 1012. This shows that the regime

described by (39) is more favorable for moderate values of n. Similar remarks hold
when considering anchored sets rather than downward closed sets.

3.3 Accuracy of the Optimized Discrete Least-Squares Approximation

We are now in position to state our main results concerning the accuracy of the discrete
least-squares approximation wn and w̃n over the optimized index set Λ

opt
m and Λ̃

opt
m .

These results show that the accuracy compares favorably with the best approximation
error of the function u, measured either in L∞ or L2, using optimal choices of down-
ward closed or anchored sets (which might differ from the sets Λ

opt
m and Λ̃

opt
m ). We

begin with a result expressed in probability.

Theorem 2 Consider a function u defined onΓ and let r > 0. In any finite dimension,
under condition (22) or (29) or (35), with n replaced by 2n − 1, it holds that

Pr

(

‖u − wn‖ ≤ (1 + 2
√
2) min

Λ∈Md
n

min
v∈PΛ

‖u − v‖L∞(Γ )

)

≥ 1 − 2m−r .

In any finite or infinite dimension, under condition (23) or (30) or (36), with n replaced
by 2n − 1, it holds that

Pr

(
‖u − w̃n‖ ≤ (1 + 2

√
2) min

Λ∈An

min
v∈PΛ

‖u − v‖L∞(Γ )

)
≥ 1 − 2m−r .

Proof These estimates immediately follow from (18) and (19) combined with the
probabilistic bounds from the previous section. ��

Wenext give a result expressed in expectation of the truncated discrete least-squares
projection Tτ (wn) and Tτ (w̃n).
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Theorem 3 Consider a function u defined on Γ , such that |u(y)| ≤ τ for any y ∈ �,
and let r > 0. In any finite dimension, under condition (22) or (29) or (35), with n
replaced by 2n − 1, it holds that

E(‖u − Tτ (wn)‖2) ≤ (9 + 4
√
2)‖u − un‖2 + 8τ 2m−r . (40)

In any finite or infinite dimension, under condition (23) or (30) or (36), with n replaced
by 2n − 1, it holds that

E

(
‖u − Tτ (w̃n)‖2

)
≤
(
9 + 4

√
2
)

‖u − ũn‖2 + 8τ 2m−r . (41)

Proof For (40), we distinguish between the two complementary events �1 :=
{Cd

2n−1 ≤ 2} and �2 := {Cd
2n−1 > 2} and write

E

(
‖u − Tτ (wn)‖2

)
= E

(
‖u − Tτ (wn)‖2|�1

)
Pr(�1)

+E

(
‖u − Tτ (wn)‖2|�2

)
Pr(�2) =: E1 + E2.

Since |u − Tτ (wn)| ≤ 2τ and Pr(�2) ≤ 2m−r , the second term E2 is bounded by
8τ 2m−r . For the first term E1, we combine (17) and the fact that |u − Tτ (wn)| ≤
|u − wn| to obtain the bound

E1 ≤ E

((
‖u − un‖ + 2

√
2‖u − un‖m

)2)

= ‖u − un‖2 + 4
√
2‖u − un‖E (‖u − un‖m) + 8E

(
‖u − un‖2m

)

≤
(
9 + 4

√
2
)

‖u − un‖2.

The proof of (41) is analogous. ��
Remark 7 The constants 1+ 2

√
2 and 9+ 4

√
2 in the above theorems can be reduced

if one further restricts the regime between m and n so that Cd
2n−1 and C̃2n−1 are close

to 1 with high probability.

4 Alternative Algorithms for Model Selection

The actual computation of the optimized discrete least-squares approximations wn

and w̃n in Theorems 2 and 3 would require an exhaustive search among all possible
choices of downward closed or anchored sets of a given cardinality n, and this task
might become computationally prohibitive when n and d are simultaneously large.
Our results should therefore mainly be viewed as a benchmark in arbitrary dimension
d for assessing the performance of fast selection algorithms.

We review hereafter other strategies, which could be used for the purpose of select-
ing a proper polynomial space, and relate them to the results from this paper.
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• Model selection by complexity regularization: the above discussed least-squares
methods on optimized downward closed or anchored sets may be viewed as an
instance of a model selection procedure. Model selection is a widely studied topic
in statistical learning theory, in various settings such as classification, density esti-
mation, denoising, regression, and inverse problems. In the regression framework,
a typical approach consists of adding a complexity penalization term to the least-
squares empirical risk to be minimized, see for example Chapter 12 in [14]. One
general result for such estimators is provided by Theorem 12.1 of [14] estab-
lished in the bounded regression framework. It gives an oracle bound which has
the typical form of the minimum over all considered models of the sum of the
approximation error and of a penalty term that is always larger than m−1, and that
persists even as the noise level tends to zero. Therefore we cannot retrieve from
these standard results for model selection the potentially fast convergence rates
that can be derived from the above Theorem 3 in the noisefree case. Let us note
that, from a computational point of view, this approach has the same complexity as
the one required to compute the estimatorswn or w̃n in the present paper, since it is
based on an exhaustive optimization over the index sets. It is therefore prohibitive
for large values of d and n.

• Convex relaxation of �0 problems: as explained in Remark 1, the estimators wn

and w̃n are solutions to nonconvex optimization problems of �0 type up to the
additional prescription of the downward closed or anchored structure of the index
sets. Convex relaxation methods based on �1 or weighted-�1 minimization, such
as basis pursuit or LASSO, have been intensively studied, in particular under RIP
properties for the design matrix. In the context of multivariate approximation, they
have been first studied in the trigonometric polynomial framework [8] and then in
the algebraic polynomial framework [5,25,26]. The corresponding optimization
algorithms are computationallymuch less intensive than the complete optimization
of the index set that is needed to compute wn or w̃n , yet their complexity is still
polynomial in the cardinality of the set J that indexes the columns of D. This set
coincides with the hyperbolic crossHd

n in the downward closed case, leading to a
computational cost that could still be prohibitive for simultaneously large values
of n and d. Note that these methods do not necessarily generate downward closed
or anchored sets. While one may use the compressed sensing theory based on RIP
properties to analyze the accuracy of the resulting estimators, see in particular the
recovery guarantee established in Theorem 4.7 of [5], it is not clear to us that they
achieve the same optimality bounds as described by Theorems 2 and 3.

• Greedy algorithms: one classical alternative to the above described convex relax-
ationmethods are greedy algorithms such as orthonormal matching pursuit (OMP)
and its variants, such as iterative hard or soft thresholding. Convergence bounds
for the estimators produced by these algorithms have been established under RIP
properties, see [4,27] for OMP in a general framework and Theorem 4.9 of [5]
for iterative hard thresholding in the context of multivariate polynomial approx-
imation. Similar to convex relaxation methods, it is not clear that the estimators
obtained by these approaches achieve the same optimality bounds as described by
Theorem 2 and 3. From a computational point of view, the complexity of each step
of OMP scales linearly in the cardinality of J leading to a smaller computational
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cost than convex relaxation methods, yet that could still be prohibitive for simul-
taneously large values of n and d. One natural way to reduce the complexity is to
enforce the downward closed or anchored structure in the index selection: if Λk is
the index set generated after k steps of OMP, we construct Λk+1 = Λk ∪ {ν} by
maximizing the inner product of the residual with the colums of D corresponding
only to the indices ν such that the set Λk ∪ {ν} remains downward closed (or
anchored). This restriction has the effect of significantly reducing the complexity.
However it is not clear that any recovery guarantee can be established for such an
algorithm.

• Relaxed minimization: let us observe that one could replace the set Λ
opt
m defined

in (11) with a near-optimal set Λnear
m in the sense that one has

min
v∈PΛnear

m

‖u − v‖m ≤ C min
Λ∈Md

n

min
v∈PΛ

‖u − v‖m

for some fixed constant C ≥ 1. Then, it is easily checked that similar convergence
bounds can be established for the resulting estimators, up to changing the multi-
plicative constants. If one is only interested in establishing convergence rates, the
optimality criterion can be even further relaxed by only asking that

min
v∈PΛnear

m

‖u − v‖m ≤ C min
Λ∈Md

ξn

min
v∈PΛ

‖u − v‖m

for some fixed 0 < ξ ≤ 1. However, designing a fast selection algorithm that
would produce such near-optimal sets is currently an open problem. A similar
objective has been accomplished in the setting of tree structured index sets, see
[1].
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