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Abstract Weconsider the problem of projecting a probabilitymeasureπ on a setMN

of Radon measures. The projection is defined as a solution of the following variational
problem:

inf
μ∈MN

‖h � (μ − π)‖22,

where h ∈ L2(�) is a kernel, � ⊂ R
d , and � denotes the convolution operator. To

motivate and illustrate our study, we show that this problem arises naturally in various
practical image rendering problems such as stippling (representing an image with N
dots) or continuous line drawing (representing an image with a continuous line). We
provide a necessary and sufficient condition on the sequence (MN )N∈N that ensures
weak convergence of the projections (μ∗

N )N∈N to π . We then provide a numerical
algorithm to solve a discretized version of the problem and show several illustrations
related to computer-assisted synthesis of artistic paintings and drawings.
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1 Introduction

Digital halftoning consists of representing a grayscale image with only black and
white tones [30]. For example, a grayscale image can be approximated by a variable
distribution of black dots over a white background. This technique, called stippling, is
the cornerstone of most printing digital inkjet devices. A stippling result is displayed
in Fig. 1b. The lion in Fig. 1a can be recognized from the dotted image shown in
Fig. 1b. This is somehow surprising, since the differences between the pixel values of
the two images are far from zero. One way to explain this phenomenon is to invoke
the multiresolution feature of the human visual system [8,24]. Figure 1c and d are
blurred versions of Fig. 1a and 1b, respectively. These blurred images correspond to
low-pass versions of the original ones and are nearly impossible to distinguish.

Assuming that the dots correspond to Dirac masses, this experiment suggests plac-
ing the dots at locations p1, . . . , pN corresponding to the minimizer of the following

Fig. 1 Explanation of the stippling phenomenon. Images a and b are similar, while the norm of their
difference is large. Images c and d are obtained by convolving a and b with a Gaussian of variance equal
to 3 pixels. After convolution, the images cannot be distinguished
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variational problem:

min
(p1,...,pN )∈�N

∥
∥
∥
∥
∥

h �

(

π − 1

N

N
∑

i=1

δpi

)∥
∥
∥
∥
∥

2

2

, (1)

where � ⊂ R
2 denotes the image domain, δpi denotes the Dirac measure at point

pi ∈ R
2, π denotes the target probability measure (the lion), and h is a convolution

kernel that should depend on the point spread function of the human visual system.
By letting

M(�N ) =
{

μ = 1

N

N
∑

i=1

δpi , (pi )1≤i≤N ∈ �N

}

(2)

denote the set of N -point measures, problem (1) rereads as a projection problem:

min
μ∈M(�N )

‖h � (π − μ)‖22 . (3)

This variational problem is a prototypical example that motivates our study. As
explained later, it is intimately related to recent works on image halftoning by means
of attraction–repulsion potentials proposed in [14,26,28]. In references [10–12], this
principle is shown to have far-reaching applications ranging from numerical integra-
tion, quantum physics, economics (optimal location of service centers) or biology
(optimal population distributions).

In this paper, we extend this variational problem by replacing M(�N ) with an
arbitrary set of measures denoted by MN . In other words, we want to approximate a
given measure π by another measure in the set MN . We develop an algorithm that is
shown to converge to critical points of this projection problem in a general setting.

To motivate this extension, we consider a practical problem: how to perform con-
tinuous line drawing with a computer? Continuous line drawing is a starting course
in all art courses. It consists of drawing a picture without ever lifting the pencil from
the page. Figure 2 shows two drawings obtained with this technique. It is also used
in marketing, quilting designs, steel wire sculptures, connect the dot puzzles, etc. A
few algorithms were already proposed in [5,15,20,32,33]. We propose an original
solution that consists of setting MN as a space of pushforward measures associated
with sets of parameterized curves.

Apart from the two rendering applications discussed above, the proposed method-
ology has potential for diverse applications in fields such as imaging, finance, biology,
etc. As an application example, the interested reader can have a look at our recent
preprint on the generation of sampling schemes in magnetic resonance imaging [6].

The rest of this paper is structured as follows.Wefirst describe the notation and some
preliminary remarks in Sect. 2. We propose a mathematical analysis of the problem
for generic sequences of measures spaces (MN )N∈N in Sect. 3. We propose a generic
numerical algorithm in Sect. 4 and derive some of its theoretical guarantees. In Sect. 5,
we study the particular problem of continuous line drawing from a mathematical
perspective. Finally, we present some results in image rendering problems in Sect. 6.
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Fig. 2 Two examples of continuous line drawing. a A sketch of Marylin Monroe by Pierre Emmanuel
Godet (http://pagazine.com/) using a continuous line. A close inspection reveals that the line represents
objects and characters. bMeisje met de Parel, Vermeer 1665, represented using a spiral with variable width.
Realized by Chan Hwee Chong (http://www.behance.net/Hweechong)

2 Notation and Preliminaries

In this paper, we work on the measurable space (�,�), where � = T
d denotes the

torus T
d = R

d/Z
d . An extension to other spaces such as R

d or [0, 1]d is feasible
but requires slight adaptations. Since drawing on a donut is impractical, we will set
� = [0, 1]d in the numerical experiments.

The space of continuous functions on � is denoted by C(�). The Sobolev space
(W m,p([0, T ]))d , where m ∈ N, is the Banach space of d dimensional curves in �

with derivatives up to the m-th order in L p([0, T ]). Let M� denote the space of
probability measures on �, i.e., the space of nonnegative Radon measures p on �

such that p(�) = 1. Throughout the paper, π ∈ M� will denote a target measure.
Let M denote the space of signed measures on � with bounded total variation; that
is, μ = μ+ − μ−, where μ+ and μ− are two finite nonnegative Radon measures and
‖μ‖T V = μ+(�) + μ−(�) < ∞.

Let h : � → R denote a continuous function. Let μ ∈ M denote an arbitrary finite
signed measure. The convolution product between h and μ is defined for all x ∈ �

by:

μ � h(x) :=
∫

�

h(x − y)dμ(y)

= μ(h(x − ·)). (4)

In the Fourier space, the convolution (4) translates to, for all ξ ∈ Z
d (see e.g., [16]),

μ̂ � h(ξ) = μ̂(ξ)ĥ(ξ),

where μ̂ is the Fourier–Stieltjes series of μ. The Fourier–Stieltjes series coefficients
are defined for all ξ ∈ Z

d by
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μ̂(ξ) :=
∫

�

e−2iπ〈ξ,x〉 dμ(x).

We recall the Parseval formula
∫

�

|h(x)|2 dx =
∑

ξ∈Zd

∣
∣
∣ĥ(ξ)

∣
∣
∣

2
.

Let J : R
n → R denote a function and ∂ J its limiting-subdifferential (or simply

subdifferential) [1,22]. Let C ⊆ R
n denote a closed subset. The indicator function of

C is denoted by iC and defined by

iC (x) =
{

0 if x ∈ C,

+∞ otherwise.

The set of projections of a point x0 ∈ R
n on C is denoted by PC (x0) and defined by

PC (x0) = Argmin
x∈C

‖x − x0‖22.

The notation Argmin stands for the whole set of minimizers, while argmin denotes
one of the minimizers. Note that PC is generally a point-to-set mapping except if C is
convex closed, since the projection on a closed convex set is unique. The normal cone
at x ∈ R

n is denoted by NC (x). It is defined as the limiting-subdifferential of iC at x .
A critical point of the function J + iC is a point x∗ that satisfies 0 ∈ ∂ J (x∗)+ NC (x∗).
This condition is necessary (but not sufficient) for x∗ to be a local minimizer of J + iC .

3 Mathematical Analysis

Let
Nh(μ) := ‖h � μ‖2. (5)

In this section, we study some basic properties of the following projection problem:

min
μ∈MN

Nh(π − μ), (6)

where (MN )N∈N denotes an arbitrary sequence of measures sets in M�.

3.1 Norm Properties

We first study the properties of Nh on the space M of signed measures with bounded
total variation. The following proposition shows that it is well defined provided that
h ∈ C(�).

Proposition 1 Let h ∈ C(�) and μ ∈ M. Then h � μ ∈ L2(�).

123



88 Constr Approx (2017) 45:83–111

Proof Since � is bounded, it is enough to show that h � μ ∈ L∞(�). Moreover,
‖h‖∞ is finite since h is continuous on a bounded set. Hence ∀x ∈ �, |h � μ(x)| ≤
‖μ‖T V ‖h‖∞ < +∞. 
�
Remark 1 In fact, the result holds true for weaker hypotheses on h. If h ∈ L∞(�),
the set of bounded Borel measurable functions, h � μ ∈ L2(�) since

∀x ∈ �, |h � μ(x)| ≤ ‖μ‖T V

(

sup
x∈�

|h(x)|
)

< +∞.

Note that the L∞-norm is defined with an ess sup, while we used a sup in the above
expression. We stick to h ∈ C(�) since this hypothesis is more usual when working
with Radon measures.

The following proposition gives a necessary and sufficient condition on h ensuring
that Nh defines a norm on M.

Proposition 2 Let h ∈ C(�). The mapping Nh defines a norm on M if and only if all
Fourier series coefficients ĥ(ξ) are nonzero.

Proof Let us assume that ĥ(ξ) �= 0, ∀ξ ∈ Z
d . The triangle inequality and absolute

homogeneity hold trivially. Let us show thatμ �= 0 ⇒ Nh(μ) �= 0. The Fourier series
of a nonzero signed measure μ is nonzero, so that there is ξ ∈ Z

d such that μ̂(ξ) �= 0.
According to our hypothesis, ĥ(ξ) �= 0, hence μ̂ � h(ξ) �= 0 and Nh(μ) �= 0.

On the contrary, if there exists ξ0 ∈ Z
d such that ĥ(ξ0) = 0, the nonzero measure

defined through its Fourier series by

μ̂(ξ) =
{

1 if ξ = ξ0,

0 otherwise,

satisfies Nh(μ) = 0 and belongs to M. 
�
From now on, owing to Proposition 2, we will systematically assume - sometimes

without mentioning - that h ∈ C(�) and that ĥ(ξ) �= 0, ∀ξ ∈ Z
d . Finally, we show

that Nh induces the weak topology on M. Let us first recall the definition of weak
convergence.

Definition 1 A sequence of measures (μN )N∈N is said to weakly converge toμ ∈ M
if

lim
N→∞

∫

�

f (x)dμN (x) =
∫

�

f (x)dμ(x)

for all continuous functions f : � → R. The shorthand notation forweak convergence
is

μN ⇀
N→∞ μ.

Proposition 3 Assume that h ∈ C(�) and that ĥ(ξ) �= 0, ∀ξ ∈ Z
d . Then for all

sequences (μN )N∈N in M satisfying ‖μN ‖T V ≤ M < +∞, ∀N ∈ N,

lim
N→∞ Nh(μN ) = 0 ⇔ μN ⇀

N→∞ 0.
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Proof Let (μN )N∈N be a sequence of signed measures in M.
IfμN ⇀ 0, then μ̂N (ξ) = μN (ei2π〈ξ,·〉) → 0 for all ξ ∈ Z

d . Since |μ̂N (ξ)ĥ(ξ)| ≤
2M |ĥ(ξ)| for all ξ ∈ Z

d and
∑

ξ∈Zd

|2Mĥ(ξ)|2 < ∞, dominated convergence yields

that Nh(μN ) → 0.
Conversely, assume that Nh(μN ) → 0. Since the μN are bounded, there are sub-

sequences μNs that converge weakly to a measure ν that depends on the subsequence.
We have to prove that ν = 0 for all such subsequences. Since Nh(μN ) → 0, we have
μ̂N (ξ) → 0 for all ξ ∈ Z

d . Therefore, ν̂(ξ) = 0, ∀ξ ∈ Z
d . This is equivalent to

ν = 0 (see, e.g., [16, p.36]), ending the proof. 
�

3.2 Existence of Solutions

The first important question one may ask is whether problem (6) admits a solution or
not. Proposition 4 provides sufficient conditions for existence to hold.

Proposition 4 If MN is weakly compact, then problem (6) admits at least a solution.
In particular, if MN is weakly closed and bounded in TV-norm, problem (6) admits
at least a solution.

Proof Assume MN is weakly compact. Consider a minimizing sequence μn ∈ MN .
By compactness, there is aμ ∈ MN and a subsequence (μnk )k∈N such thatμnk ⇀

k→+∞
μ. By Proposition 3, Nh induces the weak topology on any TV-bounded set of signed
measures, so that lim

k→∞ Nh(π − μk) = Nh(π − μ).

Since closedballs inTV-norms areweakly compact, anyweakly closedTV-bounded
set is weakly compact. 
�

A key concept that will appear in the continuous line drawing problem is that of
pushforward or empirical measure [4] defined hereafter. Let (X, γ ) denote an arbitrary
probability space. Given a function p : X → �, the empirical measure associated
with p is denoted by p∗γ . It is defined for any measurable set B by

p∗γ (B) := γ (p−1(B)),

where γ denotes the Lebesgue measure on the interval [0, 1]. Intuitively, the quan-
tity p∗γ (B) represents the “time” spent by the function p in B. Note that p∗γ is a
probability measure since it is positive and p∗γ (�) = 1. Given a measure μ of kind
μ = p∗γ , the function p is called the parameterization of μ.

Let P denote a set of parameterizations p : X → � and M(P) denote the associ-
ated set of pushforward-measures:

M(P) := {μ = p∗γ, p ∈ P}.

In the rest of this section, we give sufficient conditions so that a projection on M(P)

exists. We first need the following proposition.
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Proposition 5 Let (pn)n∈N denote a sequence in P that converges to p pointwise.
Then (pn∗γ )n∈N converges weakly to p∗γ .

Proof Let f ∈ C(�). Since � is compact, f is bounded. Hence dominated conver-
gence yields

∫

X f (pn(x)) − f (p(x))dγ (x) → 0. 
�
Proposition 6 Assume that P is compact for the topology of pointwise convergence.
Then there exists a minimizer to problem (6) with MN = M(P).

Proof By Proposition 4, it is enough to show that M(P) is weakly compact. First,
M(P) is bounded in TV-norm since it is a subspace of probability measures. Consider
a sequence (pn)n∈N in P such that the sequence (pn∗γ )n∈N weakly converges to a
measure μ. Since P is compact for the topology of pointwise convergence, there
is a subsequence (pnk )k∈N converging pointwise to p ∈ P . By Proposition 5, the
pushforward-measure p∗γ = μ so that μ ∈ M(P) and P is weakly closed. 
�

3.3 Consistency

In this section, we consider a sequence (MN )N∈N of weakly compact subsets ofM�.
By Proposition 4, there exists a minimizer μ∗

N ∈ MN to problem (6) for every N .
We study conditions on (MN )N∈N that ensure consistency, i.e., μ∗

N ⇀
N→∞ π . In the

case of image rendering, it basically means that if N is taken sufficiently large, the
projectionμ∗

N and the target image π will be indistinguishable from a perceptual point
of view.

In order to evaluate distances between μ∗
N and π , the most natural metric is the

minimized norm Nh(μ∗
N − π). However, its analysis is easy in the Fourier domain,

whereas all measures sets in this paper are defined in the space domain. We therefore
prefer to use another metrization of weak convergence, given by the transportation
distance. Moreover, we will see in Theorem 1 that the transportation distance defined
below dominates Nh .

Definition 2 The L1 transportation distance, also known as Kantorovitch or Wasser-
stein distance, between two measures with same TV norm is given by

W1(μ, ν) := inf
c

∫

‖x − y‖1 dc(x, y),

where the infimum runs over all couplings ofμ and ν, that is, the measures c on�×�

with marginals satisfying c(A,�) = μ(A) and c(�, A) = ν(A) for all Borelians A.
Equivalently, we may define the distance through the dual, that is the action on

Lipschitz functions:

W1(μ, ν) = sup
f :Lip( f )≤1

μ( f ) − ν( f ). (7)

We define the point-to-set distance as

W1(MN , π) := inf
μ∈MN

W1(μ, π).
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Obviously this distance satisfies:

W1(MN , π) ≤ δN := sup
π∈M�

inf
μ∈MN

W1(μ, π). (8)

Theorem 1 Assume that h ∈ C(�) denote a Lipschitz continuous function with Lip-
schitz constant L. Then

Nh(μ − π) ≤ LW1(μ, π) (9)

and
Nh(μ∗

N − π) ≤ LW1(MN , π) ≤ LδN . (10)

Proof Let τx : h(·) �→ h(x − ·) denote the symmetrization and shift operator. Let us
first prove inequality (9):

‖h � (μ − π)‖22 =
∫

�

[h � (μ − π)(x)]2 dx

=
∫

�

|μ(τx h) − π(τx h)|2 dx

≤ |�|L2W 2
1 (μ, π),

where we used the dual definition (7) of the Wasserstein distance to obtain the last
inequality.

Let μN denote a minimizer of inf
μ∈MN

W1(μ, π). If no minimizer exists, we may

take an ε-solution with arbitrary small ε instead. By definition of the projection μ∗
N ,

we have
Nh(μ∗

N − π) ≤ Nh(μN − π) ≤ W (μN , π) ≤ δN . (11)


�
Even though the bound (10) is pessimistic in general, it provides some insight into

which sequences of measures spaces allow a fast weak convergence.

3.4 Application to Image Stippling

In order to illustrate the proposed theory,we first focus on the case of N -pointmeasures
M(�N ) defined in Eq. 2. This setting is the standard one considered for probabil-
ity quantization (see [13,18] for similar results). As mentioned earlier, it has many
applications including image stippling. Our main results read as follows.

Theorem 2 Let h denote an L-Lipschitz kernel. The set of N-point measures M(�N )

satisfies the following inequalities:

δN = sup
π∈M�

inf
μ∈M(�N )

W1(μ, π) ≤
(√

d

2
+ 1

)

1

N 1/d − 1
(12)
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and

sup
π∈M�

inf
μ∈M(�N )

Nh(μ − π) ≤ L

(√
d

2
+ 1

)

1

N 1/d − 1
. (13)

As a direct consequence, we get the following corollary.

Corollary 1 Let MN = M(�N ) denote the set of N-point measures. Then there
exist solutions μ∗

N to the projection problem (6). Moreover, for any L-Lipschitz kernel
h ∈ C(�):

i) μ∗
N ⇀

N→∞ π .

ii) Nh(μ∗
N − π) = O

(

L N− 1
d

)

.

Proof We first evaluate the bound δN defined in (8). To this end, for any given π ,
we construct an explicit sequence of measures μ0, . . . , μN , the last of which is an
N -point measure approximating π .

Note that T
d can be thought of as the unit cube [0, 1)d . It may therefore be parti-

tioned in Cd smaller cubes of edge length 1/C with C = �N 1/d�. We let (ωi )1≤i≤Cd

denote the small cubes and xi denote their center.We assume that the cubes are ordered
in such a way that ωi and ωi+1 are contiguous.

We define μ0 =
Cd
∑

i=1

π(ωi )δxi . The measure μ0 satisfies

W1(π, μ0) � 1

2
sup

i
Diameter(ωi )

�
√

d

2
�N 1/d�−1

�
√

d

2

1

N 1/d − 1
,

but is not an N -point measure since Nπ(ωi ) is not an integer.
To obtain an N -point measure, we recursively build μl as follows:

μl({xl}) = 1

N
�Nμl−1({xl})� ,

μl({xl+1}) = μl−1({xl+1, xl}) − 1

N
�Nμl−1({xl})�

if l ≤ (1/C)d − 1,

μl({xi }) = μl−1({xi }) if i /∈ {l, l + 1}.

We stop the process for l = (1/C)d and let μ̃ = μ(1/C)d . Notice that Nμl(xi ) is an
integer for all i � l and that μl is a probability measure for all l. Therefore, μ̃ is an
N -point measure. Moreover;
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W1(μl , μl+1) � 1

N
‖xl − xl+1‖2

� 1

N (N 1/d − 1)
.

Since the transportation distance is a distance, we have the triangle inequality. There-
fore,

W1(π, μ̃) ≤ W1(π, μ0) +
N

∑

l=1

W1(μl−1, μl),

=
√

d

2

1

N 1/d − 1
+ N

1

N (N 1/d − 1)

=
(√

d

2
+ 1

)

1

N 1/d − 1
.

The inequality (13) is a direct consequence of this result and Proposition 1.
We now turn to the proof of Corollary 1. To prove the existence, first notice that the

projection problem (6) can be recast as (1). Let p = (p1, . . . , pN ) ∈ �N . Themapping

p �→
∥
∥
∥h �

(

π − 1
N

∑N
i=1 δpi

)∥
∥
∥

2

2
is continuous. Problem (1) therefore consists of

minimizing a finite dimensional continuous function over a compact set. The existence
of a solution follows. Point ii) is a direct consequence of Theorem 1 and bound (13).
Point i) is due to the fact that Nh metrizes weak convergence, see Proposition 3. 
�

4 Numerical Resolution

In this section, we propose a generic numerical algorithm to solve the projection prob-
lem (6). We first draw a connection with the recent works on electrostatic halftoning
[26,28] in Sect. 4.1. We then recall the algorithm proposed in [26,28] when MN is
the set of N -point measures. Finally, we extend this principle to arbitrary measures
spaces and provide some results on their theoretical performance in Sect. 4.3.

4.1 Relationship to Electrostatic Halftoning

In a recent series of papers [12,14,26,28], it was suggested to use electrostatic prin-
ciples to perform image halftoning. This technique was shown to produce results
having a number of nice properties such as few visual artifacts. Motivated by prelim-
inary results in [26], the authors of [28] proposed to choose the N points locations
p = (pi )1≤i≤N ∈ �N as a solution of the following variational problem:

min
p∈�N

1

2N 2

N
∑

i=1

N
∑

j=1

H(pi − p j )

︸ ︷︷ ︸

Repulsion potential

− 1

N

N
∑

i=1

∫

�

H(x − pi ) dπ(x)

︸ ︷︷ ︸

Attraction potential

, (14)
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where H was initially defined as H(x) = ‖x‖2 in [26,28] and then extended to a
few other functions in [12]. The attraction potential tends to attract points towards the
bright regions of the image (regionswhere themeasureπ has a largemass),whereas the
repulsion potential can be regarded as a counter-balancing term that tends to maximize
the distance between all pairs of points. Deriving an algorithm to solve problem (14)
with good precision can be seen as a generalization of Thomson’s problem [29], which
belongs to Smale’s list of mathematical questions to solve for the 21st century [27].

Proposition 7 below shows that this attraction–repulsion problem is actually equiv-
alent to the projection problem (6) on the set of N -point measures defined in (2).We let
P∗ denote the set of solutions of (14) and M(P∗) = {μ = 1

N

∑N
i=1 δp∗

i
, p∗ ∈ P∗}.

We also let M∗ denote the set of solutions to problem (6).

Proposition 7 Let h ∈ C(�) denote a kernel such that |ĥ|(ξ) > 0, ∀ξ ∈ Z
d . Define

H through its Fourier series by Ĥ(ξ) = |ĥ|2(ξ). Then problems (6) and (14) yield the
same solutions set:

M∗ = M(P∗).

Proof First, note that since H and h are continuous, both problems are well defined
and admit at least one solution. Let us first expand the L2-norm in (6):

1

2
‖h � (μ − π)‖22 = 1

2
〈h � (μ − π), h � (μ − π)〉

= 1

2
〈H � (μ − π), μ − π〉

= 1

2
(〈H � μ,μ〉 − 2〈H � μ, π〉 + 〈H � π, π〉) .

Therefore,

Argmin
μ∈MN

1

2
‖h � (μ − π)‖22 = Argmin

μ∈MN

1

2
(〈H � μ,μ〉 − 2〈H � μ, π〉) .

To conclude, it suffices to remark that for a measure μ of kind μ = 1
N

∑N
i=1 δpi ,

1

2
(〈H � μ,μ〉 − 2〈H � μ, π〉)

= 1

2N 2

N
∑

i=1

N
∑

j=1

H(pi − p j ) − 1

N

N
∑

i=1

∫

�

H(x − pi ) dπ(x).


�
Remark 2 It is rather easy to show that a sufficient condition for h to be continuous is
that H ∈ C3(�) or H be Hölder continuous with exponent α > 2. These conditions
are, however, strong and exclude kernels such as H(x) = ‖x‖2.

From Remark 1, it is actually sufficient that h ∈ L∞(�) for Nh to be well defined.
This leads to less stringent conditions on H . We do not discuss this possibility further
to keep the arguments simple.
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Remark 3 Corollary 1 sheds light on the approximation quality of the minimizers of
attraction–repulsion functionals. Let us mention that consistency of problem (14) was
already studied in the recent papers [10–12]. To the best of our knowledge, Corollary
1 is stronger than existing results since it yields a convergence rate and holds true
under more general assumptions.

Though formulations (6) and (14) are equivalent, we believe that the proposed one
(6) has some advantages: it is probably more intuitive, shows that the convolution
kernel h should be chosen depending on physical considerations, and simplifies some
parts of the mathematical analysis such as consistency. However, the set of admissible
measures M(�N ) has a complex geometry, and this formulation as such is hardly
amenable to numerical implementation. For instance, M(�N ) is not a vector space,
since adding two N -point measures usually leads to (2N )-point measures. On the
other hand, the attraction–repulsion formulation (14) is an optimization problem of a
continuous function over the set �N . It therefore looks easier to handle numerically
using non-linear programming techniques. This is what we will implement below,
following previous works [26,28].

4.2 The Case of N-point Measures

In this section, we develop an algorithm specific to the projection on the set of N -point
measures defined in (2). This algorithm generates stippling results such as in Fig. 1. In
stippling, the measure is supported by a union of discs, i.e., a sum of diracs convoluted
with a disc indicator. We simply have to consider the image deconvoluted with this
disc indicator as π to include stippling in the framework of N -point measures. We will
generalize this algorithm to arbitrary sets of measures in the next section. We assume
without further mention that Ĥ(ξ) is real and positive for all ξ . This implies that H
is real and even. Moreover, Proposition 7 implies that problems (6) and (14) yield the
same solutions sets. We let p = (p1, . . . , pN ) and set

J̃ (p) := 1

2N 2

N
∑

i=1

N
∑

j=1

H(pi − p j )

︸ ︷︷ ︸

F(p)

− 1

N

N
∑

i=1

∫

�

H(x − pi ) dπ(x)

︸ ︷︷ ︸

G̃(p)

. (15)

The projection problem therefore rereads as

min
p∈�N

J̃ (p). (16)

For practical purposes, the integrals in G̃(p) first have to be replaced by numerical
quadratures. We let G(p) � G̃(p) denote the numerical approximation of G̃(p). This
approximation can be written as
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G(p) = 1

N

N
∑

i=1

n
∑

j=1

w j H(x j − pi )π j ,

where n is the number of discretization points x j and w j are weights that depend
on the integration rule. In particular, since we want to approximate integration with
respect to a probability measure, we require that

n
∑

j=1

w jπ j = 1.

In our numerical experiments, we use the rectangle rule. We may then take π j as
the integral of π over the corresponding rectangle. After discretization, the projection
problem therefore rereads as

min
p∈�N

J (p) := F(p) − G(p). (17)

The following result [1, Theorem5.3] will be useful to design a convergent
algorithm. We refer to [1] for a comprehensive introduction to the definition of
Kurdyka–Łojasiewicz functions and to its applications to algorithmic analysis. In
particular, we recall that semi-algebraic functions are Kurdyka–Łojasiewicz [19].

Theorem 3 Let K : R
n → R be a C1 function whose gradient is L-Lipschitz contin-

uous, and let C be a nonempty closed subset of R
n. Given ε ∈ (

0, 1
2L

)

and a sequence
of stepsizes γ (k) such that ε < γ (k) < 1

L − ε, we consider a sequence (x (k))k∈N that
complies with

x (k+1) ∈ PC

(

x (k) − γ (k)∇K (x (k))
)

, with x (0) ∈ C. (18)

If the function K + iC is a Kurdyka–Łojasiewicz function and if (x (k))k∈N is bounded,
then the sequence (x (k))k∈N converges to a critical point x∗ in C.

A consequence of this important result is the following.

Corollary 2 Assume that H is a C1 semi-algebraic function with L-Lipschitz contin-
uous gradient. Set 0 < γ < N

3L . Then the following sequence converges to a critical
point of problem (17):

p(k+1) ∈ P�N

(

p(k) − γ∇ J (p(k))
)

, with p(0) ∈ �N . (19)

If H is convex, 0 < γ < N
2L ensures convergence to a critical point.

Remark 4 The semi-algebraicity is useful to obtain convergence to a critical point.
In some cases, it might however not be needed. For instance, in the case where C is
convex and closed, it is straightforward to establish the decrease of the cost function
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assuming only that ∇ J is Lipschitz. Nesterov in [23, Theorem 3] also provides a

convergence rate in O
(

1√
k+1

)

in terms of objective function values.

Proof First notice that J is semi-algebraic as a finite sum of semi-algebraic functions.
Function J is C1 by the Leibniz integral rule. Let ∂k denote the derivative with

respect to pk . Then, since H is even,

∂k F(p) = 1

N 2

N
∑

i=1

∇H(pk − pi ) (20)

and

∂k G(p) = − 1

N

n
∑

j=1

w j∇H(x j − pk)π j . (21)

For any two sets of N points p(1) = (p(1)
k )1�k�N , p(2) = (p(2)

k )1�k�N :

‖∇F(p(1)) − ∇F(p(2))‖22 =
N

∑

k=1

∥
∥
∥∂k F(p(1)) − ∂k F(p(2))

∥
∥
∥

2

2

= 1

N 4

N
∑

k=1

∥
∥
∥

N
∑

i=1

∇H(p(1)
k − p(1)

i ) − ∇H(p(2)
k − p(2)

i )

∥
∥
∥

2

2

� 1

N 4

N
∑

k=1

( N
∑

i=1

L‖p(1)
k − p(1)

i − (p(2)
k − p(2)

i )‖2
)2

� L2

N 4

N
∑

k=1

( N
∑

i=1

‖p(1)
k − p(2)

k ‖2 + ‖p(1)
i − p(2)

i ‖2
)2

� L2

N 4

N
∑

k=1

N
( N

∑

i=1

(‖p(1)
k − p(2)

k ‖2 + ‖p(1)
i − p(2)

i ‖2
)2

)

� 2L2

N 3

N
∑

k=1

N
∑

i=1

‖p(1)
k − p(2)

k ‖22 + ‖p(1)
i − p(2)

i ‖22

= 4L2

N 2 ‖p(1) − p(2)‖22,

and

‖∇G(p(1)) − ∇G(p(2))‖22 =
N

∑

k=1

∥
∥
∥∂k G(p(1)) − ∂k G(p(2))

∥
∥
∥

2

2

= 1

N 2

N
∑

k=1

∥
∥
∥

n
∑

j=1

w jπ j
(∇H(p(1)

k − x) − ∇H(p(2)
k − x)

)
∥
∥
∥

2

2
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� 1

N 2

N
∑

k=1

( n
∑

j=1

w jπ j L‖p(1)
k − p(2)

k ‖
)2

= L2

N 2

( n
∑

j=1

w jπ j

)

‖p(1) − p(2)‖22

= L2

N 2 ‖p(1) − p(2)‖22.

Finally,

‖∇ J (p(1)) − ∇ J (p(2))‖2
� ‖∇F(p(1)) − ∇F(p(2))‖2 + ‖∇G(p(1)) − ∇G(p(2))‖2
�

(2L

N
+ L

N

)

‖p(1) − p(2)‖2 = 3L

N
‖p(1) − p(2)‖2.

Now, if we assume that H is convex and C2 (this hypothesis is not necessary, but
simplifies the proof), then F and G are also convex and C2. We let ∇2F denote the
Hessian matrix of F . Given the previous inequalities, we have 0 � ∇2F � 2L

N Id
and 0 � ∇2G � L

N Id. Hence, the largest eigenvalue in magnitude of ∇2(F − G) is
bounded above by 2L

N .
Moreover, the sequence (x (k))k∈N is bounded since �N is bounded. 
�

4.3 A Generic Projection Algorithm

We now turn to the problem of finding a solution of (6), where MN denotes our arbi-
trary measures set. In the previous section, it was shown that critical points of J + i�N

could be obtained with a simple projected gradient algorithm under mild assumptions.
Although this algorithm only yields critical points, they usually correspond to point
configurations that are visually pleasing after only a few hundreds of iterations. For
instance, the lion in Fig. 1bwas obtained after 500 iterations.Motivated by this appeal-
ing numerical behavior, we propose to extend this algorithm to the following abstract
construction:

1. Approximate MN by a subset An of n-point measures.
2. Use the generic Algorithm (18) to obtain an approximate projection μ∗

n on An .
3. When possible, reconstruct an approximationμN ∈ MN of a projectionμ∗

N using
μ∗

n .

To formalize the approximation step, we need the definition of Hausdorff distance.

Definition 3 The Hausdorff distance between two subsets X and Y of a metric space
(M, d) is

Hd(X, Y ) := max

{

sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(y, x)

}

.
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In words, two sets are close if any point in one set is close to at least a point in the
other set. In this paper, the relevant metric space is the space of signed measures M
with the norm Nh . The corresponding Hausdorff distance is denoted by HNh .

The following proposition clarifies why controlling the Hausdorff distance is rele-
vant to design approximation sets An .

Proposition 8 Let An and MN be two TV-bounded weakly closed sets of measures
such that HNh (An,MN ) ≤ ε. Let μ∗

n be a projection on An. Then there is a point
μN ∈ MN such that Nh(μ∗

n −μN ) ≤ ε and Nh(π −μN ) ≤ inf
μ∈MN

Nh(π −μ)+2ε.

Corollary 3 If lim
n→∞ HNh (An,MN ) = 0, then (μ∗

n)n∈N converges weakly along a

subsequence to a solution μ∗
N of problem (6).

Proof We first prove Proposition 8. Since An and MN are bounded weakly closed,
by Proposition 4, there exists at least one projection μ∗

n on An and one projection μ∗
N

on MN .
Moreover, since An and MN are bounded weakly closed, they are also closed for

Nh , so that the infimum in the Hausdorff distances are attained. Hence there exists
μn ∈ An such that Nh(μn − μ∗

N ) ≤ HNh (An,MN ) ≤ ε and μN ∈ MN such that
Nh(μN − μ∗

n) ≤ ε. The proposition follows from the triangle inequality:

Nh(μN − π) ≤ Nh(μN − μ∗
n) + Nh(μ∗

n − π)

≤ ε + Nh(μn − π)

≤ ε + Nh(μn − μ∗
N ) + Nh(μ∗

N − π)

≤ Nh(μ∗
N − π) + 2ε.

For the corollary, let us consider the sequence (μ∗
n)n∈N as n tends to infinity. Since

all μn are in M�, which is weakly compact, we have a subsequence that converges
to μ∗∞. Since Nh is a metrization of weak convergence on MN , this μ∗∞ is indeed a
solution to problem (6):

Nh(μ∗∞ − π) = lim
n→∞ Nh(μ∗

n − π)

= inf
μ∈MN

Nh(π − μ).


�
To conclude this section, we show that it is always possible to construct an approx-

imation set An ⊆ M(�n) with a control on the Hausdorff distance to MN . Let Mε
N

denote an ε-enlargement of MN w.r.t. the Nh-norm; i.e.,

Mε
N = ∪μN ∈MN {μ ∈ M�,Nh(μ − μN ) ≤ ε}. (22)

We may define an approximation set Aε
n as follows:

Aε
n = M(�n) ∩ Mε

N . (23)
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For sufficiently large n, this set is nonempty and can be rewritten as

Aε
n =

{

μ = 1

n

n
∑

i=1

δpi , with p = (pi )1≤i≤n ∈ Pε
n

}

, (24)

where the parameterization set Pε
n depends on MN and ε. With this discretization of

MN at hand, one can then apply (at least formally) the following projected gradient
descent algorithm:

p(k+1) ∈ PPε
n

(

p(k) − γ∇ J (p(k))
)

, with p(0) ∈ Pε
n . (25)

The following proposition summarizes the main approximation result.

Proposition 9 Assume that h is L-Lipschitz. Set ε =
(√

d
2 + 1

)
L

n1/d−1
and An = Aε

n.

Then
HNh (An,MN ) = O

(

Ln−1/d
)

.

Proof By construction, An satisfies

sup
μn∈An

inf
μN ∈MN

Nh(μn − μN ) ≤ ε.

Let μN be an arbitrary measure in MN . By inequality (12), there exists μn ∈
M(�n) such that Nh(μn − μN ) ≤ ε. Therefore μn also belongs to Aε

n . This shows
that

sup
μN ∈MN

inf
μn∈An

Nh(μn − μN ) ≤ ε.


�

The approximation process proposed (23) is nonconstructive since it does not
provide any explicit formula for Pε

n . Moreover, Pε
n can be an arbitrary set and the

projection on Pε
n might not be implementable. We will provide constructive approxi-

mations for specific measures spaces in Sect. 5.

5 Application to Continuous Line Drawing

In this section, we concentrate on the continuous line drawing problem described in
the introduction. We first construct a set of admissible measures MT that is a natural
representative of artistic continuous line drawings. The index T represents the time
spent to draw the picture. We then show that using this set in problem (6) ensures
existence of a solution and weak convergence of the minimizers μ∗

T to any π ∈ M�.
We finish by designing a numerical algorithm to solve the problem and analyze its
theoretical guarantees.
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5.1 Problem Formalization

Let us assume that an artist draws a picture with a pencil. The trajectory of the pencil
tip can be defined as a parameterized curve p : [0, T ] → �. The body, elbow, arm and
hand are subject to nontrivial constraints [21]. The curve p should therefore belong
to some admissible parameterized curves set denoted PT . In this paper, we simply
assume that PT contains curves with bounded first- and second-order derivatives in
Lq([0, T ]). More precisely, we consider the following sets of admissible curves:

1. Curves with bounded speed:

P1,∞
T =

{

p ∈ (W 1,∞([0, T ]))d , p([0, T ]) ⊂ �, ‖ ṗ‖∞ ≤ α1

}

,

where α1 is a positive real.
2. Curves with bounded speed and acceleration:

P2,∞
T =

{

p ∈ (W 2,∞([0, T ]))d , p([0, T ]) ⊂ �, ‖ ṗ‖∞ ≤ α1,

‖ p̈‖∞ ≤ α2

}

,

where α1 and α2 are positive reals. This set models rather accurately kinematic
constraints that are met in vehicles. It is obviously a rough approximation of arm
constraints.

3. The proposed theory and algorithm apply to a more general setting. For instance,
they cover the case of curves with derivatives up to an arbitrary order bounded in
Lq with q ∈ [1,∞]. We let

Pm,q
T =

{

p ∈ (W m,q([0, T ]))d , p([0, T ]) ⊂ �,

∀i ∈ {1, . . . , m}, ‖p(i)‖q ≤ αi

}

,

where (αi )i=1...m are positive reals. This case will be treated only in the numerical
experiments to illustrate the variety of results that can be obtained in applications.

Note that all above mentionned sets are convex. The convexity property will help
deriving efficient numerical procedures.

In the rest of this section, we consider the following projection problem:

inf
μ∈M(Pm,q

T

)
Nh(μ − π), (26)

with a special emphasis on the setM (Pm,∞
T

)

since it best describes standard kinematic
constraints. This problem basically consists of finding the “best” way to represent a
picture in a given amount of time T .
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5.2 Existence and Consistency

We first provide existence results using the results derived in Sect. 3 for q = ∞.

Theorem 4 For any m ∈ N
∗, Problem (26) admits at least one solution in M (Pm,∞

T

)

.

Proof From Proposition 6, it suffices to show that Pm,∞
T is compact for the topology

of pointwise convergence.
Let (pn)n∈N be a sequence in Pm,∞

T that converges pointwise to p. Since pn is in
W m,∞, its (m − 1)-th derivative is Lipschitz continuous. By definition of Pm,∞

T , the

p(m−1)
n are both uniformly bounded by αm−1 and αm-Lipschitz, hence equicontinuous.

Next, by Ascoli’s theorem, up to taking a subsequence, p(m−1)
n uniformly converges to

a continuous p(m−1). Integrating yields that p(i)
n → p(i) uniformly for all i ≤ m − 1,

so that
∥
∥p(i)

∥
∥∞ ≤ αi for i ≤ m − 1. Finally, a limit of L-Lipschitz functions is also

L-Lipschitz, so that
∥
∥p(m)

∥
∥∞ ≤ αm . Hence p ∈ Pm,∞

T , ending the proof. 
�
Let us now turn to weak convergence.

Theorem 5 Let T be an arbitrary positive real. Let μ∗
T ∈ M (Pm,∞

T

)

denote any
solution of Problem (26). Then, for any Lipschitz kernel h ∈ C(�):

i) μ∗
T ⇀

T →∞ π ,

ii) Nh(μ∗
T − π) = O

(

T − m
m(d+1)−1

)

.

Proof Let us consider a function u : [0, 1] → R such that:

• The m-th derivative is bounded by αm ; that is,
∥
∥u(m)

∥
∥∞ ≤ αm .

• For all integers i ∈ {1, . . . , m − 1}, endpoint values are zero; that is, u(i)(0) =
u(i)(1) = 0.

• Start point is zero; that is, u(0) = 0.
• Endpoint is positive; that is, u(1) = C > 0.

Let x and y in �, such that ‖x − y‖2 = Crm , and let τxy be the unit vector from
x to y. Then, for r small enough, the function s[x, y] : t �→ x + τxyu( t

r ) belongs to
Pm,∞

T , with all its first (m −1) derivatives zero at its endpoints. The condition r small
enough is for controlling the norm of the i-th derivatives for i ≤ m − 1, which scale
as rm−i .

Now, let us split � = [0, 1]d into N d small cubes ωi . We may order them such that
each ωi is adjacent to the next cube ωi+1. We write xi for the center of ωi . We now
build functions s ∈ Pm,∞

T by concatenating paths from xi to xi+1 and waiting times
in xi :

0 = t11 ≤ · · · ≤ t2i−1 ≤ t1i ≤ t2i ≤ t1i+1 ≤ · · · ≤ t2N d = T,

t2i − t1i =
(

1

NC

) 1
m

,

s(t) =
{

xi if t1i ≤ t ≤ t2i ,

s[xi , xi+1](t − t2i ) if t2i ≤ t ≤ t1i+1,
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under the condition T ≥ TN := (N d − 1)
( 1

NC

) 1
m , that is to say that we have enough

time to loop through all the cube centers.
Now let π ∈ M�. We may choose t2i − t1i ≤ T π(ωi ) for all i . Then, we may

couple π and s∗γT with c(xi , ωi ) = t2i −t1i
T . Since the small cubes have radius

√
d/N

and the big one has radius
√

d , we obtain

W1(π, s∗γT ) ≤
√

d

2N

∑

i

t2i − t1i
T

+ √
d

∑

i<N d

t1i+1 − t2i
T

=
√

d

2N

T − TN

T
+ √

d
TN

T
.

In particular, taking N = T
m

m(d+1)−1 , we find that W1
(M (Pm,∞

T

)

, π
) = O

(

T − m
m(d+1)−1

)

; hence
⋃

T M (Pm,∞
T

)

is weakly dense in M�. 
�

5.3 Numerical Resolution

We now turn to the numerical resolution of problem (26). We first discretize the
problem. We set �t := T

N and define discrete curves s as vectors of R
N ·d . We let

s(i) ∈ R
d denote the curve location at discrete time i , corresponding to the continuous

time i�t .
We define D1 : R

N ·d → R
N ·d , the discrete first-order derivative operator, as

follows:

(D1s)(i) = 1

�t

{

0 if i = 1,
s(i) − s(i − 1) if i ∈ {2, . . . , N }.

In what follows, Di denotes a discretization of the derivative operator of order i . In
the numerical experiments, we set D2 = −D∗

1 D1.
We define Pm,q

N , a discretized version of Pm,q
T , as follows:

Pm,q
N = {

s ∈ R
N ·d , such that ∀i ∈ {1, . . . N }, s(i) ∈ �, (27)

and ∀ j ∈ {1, . . . , m}, ‖D j s‖q � α j
}

. (28)

Here, ‖ · ‖q is defined by: ‖x‖q =
(

N ·d
∑

i=1

‖xi‖q
2

) 1
q

for q ∈ [1,+∞) and ‖x‖∞

= max
1�i�N ·d

‖xi‖2.
The measures set M(Pm,q

T ) can be approximated by the set of N -point mea-
sures M(Pm,q

N ). From Corollary 3, it suffices to control the Hausdorff distance
HW1(M(Pm,q

T ),M(Pm,q
N )), to ensure that the solution of the discrete problem (6)

with MN = M(Pm,q
N ) is a good approximation of problem (26). Unfortunately, the

control of this distance is rather technical and falls beyond the scope of this paper for
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general m and q. In the following proposition, we therefore limit ourselves to the case
m = 1, q = ∞.

Proposition 10 HW1(M(P1,∞
T ),M(P1,∞

N )) � α1
T
N .

Proof 1. Let us show that sup
μ∈M(P1,∞

T )

inf
μ̃∈M(P1,∞

N )

W1(μ, μ̃) � α1T

N
.

Let μ ∈ M(P1,∞
T ), and denote by p ∈ P1,∞

T a parameterization such

that μ = p∗γ . Define μ̃ = 1

N

N−1
∑

i=0

δ
p
(

iT
N

). Then a parameterization of μ̃

is defined by s(i) = p
( iT

N

)

. Moreover, for i ∈ {2, . . . N }, |(D1s)(i)| =
1

�t

∣
∣
∣
∣
p

(
iT

N

)

− p

(
(i − 1)T

N

)∣
∣
∣
∣
= 1

�t

∣
∣
∣
∣
∣

∫ iT
N

(i−1)T
N

ṗ(t) dt

∣
∣
∣
∣
∣
� 1

�t

∫ iT
N

(i−1)T
N

| ṗ(t)| dt �

α1. Therefore s ∈ P1,∞
N .

Let us consider the transportation map coupling the curve arcs between times
(i − 1) T

N and i T
N and the Diracs at

p
(

i T
N

)

. Then W1(p∗γ, s∗γ ) �
N

∑

i=1

1

N
sup

(i−1) T
N �t�i T

N

∥
∥
∥
∥

s(t) − s

(

(i − 1)
T

N

)∥
∥
∥
∥

�

α1
T

N
.

2. Let us fix μ ∈ M
(

P1,∞
N

)

, and let s ∈ P1,∞
N such that s∗γ = μ. We set p(0) =

s(1), and

p(t)=
⎧

⎨

⎩

s(1) for t ∈ ]

0, T
N

]

,

s(i)+( t
�t − i

)

(s(i + 1)−s(i)) for t ∈ ] iT
N ,

(i+1)T
N

]

, i ∈ {1, . . . N − 1}.

Since s ∈ �N and � is convex, p([0, T ]) ⊂ �. Moreover, p is continuous and
piecewise differentiable. Finally, for i ∈ {1, . . . , N − 1} and t ∈ ] iT

N ,
(i+1)T

N

]

,
ṗ(t) = 1

�t (s(i + 1) − s(i)) = D1(s)(i). Therefore, ‖ ṗ‖∞ � α1, ensuring that

p ∈ P1,∞
T . With the same coupling as above, we have W1(p∗γ, s∗γ ) � α1

T
N ,

which ends the proof.

�

To end up, let us describe precisely a solver for the following variational problem:

inf
μ∈M

(

P1,∞
T

) Nh(μ − π). (29)

We let M∗ denote the set of minimizers and P∗ denote the associated set of parame-
terizations.
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Algorithm 1: A projection algorithm on M
(

P1,∞
T

)

.

Input:
- π : target measure.
- N : a number of discretization points.
- s(0) ∈ P1,∞

N : initial parameterized curve.
- H : a semi-algebraic function with Lipschitz continuous gradient.
- nit : number of iterations.

Output:

- s(nit): an approximation of a curve in P∗.
- μ(nit) = (s(nit))∗γT : an approximation of an element ofM∗.

for 0 ≤ k ≤ nit do

- Compute η(k) = ∇ J (s(k))

- Set s(k+1) = P
P1,∞

N

(

s(k) − τη(k)
)

Remark 5 The implementation of Algorithm 1 requires computing the gradients (20)
and (21) and computing a projection on P1,∞

N . Both problems are actually nontrivial.
The naive approach to compute the gradient of F consists in using the explicit

formula (20). This approach is feasible only for a small amount of points N (less than
1000) since its complexity is O (

N 2
)

. In our numerical experiments, we therefore
resort to fast summation algorithms [17,25] commonly used in particles simulation.
This part of the numerical analysis is described in [28], and we do not discuss it in
this paper.

The set P1,∞
N and more generally the sets Pm,q

N are convex for q ∈ [1,∞]. Pro-
jections can be computed using first-order iterative algorithms for convex functions.
In our numerical experiments, we use accelerated proximal gradient descents on the
dual problem [3,23,31]. A precise description is given in [7].

6 Results

To illustrate the results, we focus on the continuous line drawing problem discussed
throughout the paper. It is performed using Algorithm 1. In the following experiments,
we set H as a smoothed L1-norm. This is similar to what was proposed in the original
halftoning papers in [26,28].

We first concentrate on the projection onto P1,∞
N . In Fig. 3, we show the evolution

of the curve s(k) across iterations, for different choices of s(0). After 30,000 iterations,
the evolution seems to be stabilized. The cost function during the 400 first iterations
is depicted in Fig. 4 for the three different initializations. As can be seen, the curve
evolves toward a satisfactory representation of the lion, whatever the initialization.
This is a very nice feature that is somehow surprising since our algorithm simply
consists of minimizing a highly nonconvex function with a first-order method.

In Fig. 5, we show the projection onto P1,∞
N of the famous Meisje met de Parel

painting (Girl with a Pearl Earring), after 10,000 iterations. To really see the precision

123



106 Constr Approx (2017) 45:83–111

s(
0)

s(
10

0)
s(

10
00

)
s(

30
,0
00

)

Fig. 3 Projection of the lion image onto P1,∞
N with N = 8000. The figure depicts s(k) with several values

of the iterate k in Algorithm 1
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0 100 200 300 400
10−4

10−3

10−2

10−1

100

Spiral

Circle

Random

Fig. 4 Decay of the cost function J for the three experiments depicted in Fig. 3.We represent log10(J (k)−
m) for k ≤ 400, where m is the mimimal value of J during the first 30,000 iterations

Fig. 5 Projection of Meisje met
de Parel, Vermeer 1665, onto
P1,∞

N with N = 150, 000. The

figure depicts s(10,000) obtained
with Algorithm 1

of the algorithm, we advise the reader to blink the eyes or to take a printed version of
the paper away. From a close distance, the curves or points are visible. From a long
distance, only the painting appears.
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m = 1, q = 1 m = 1, q = 1
(small α1 egral() α1)

m = 1, q = 2 m = 1, q = ∞

m = 2, q = ∞ m = 2, q = ∞
(isotropic norm)

Fig. 6 Projection of the lion image onto Pm,q
N with N = 8000, m ∈ {1, 2}, and q ∈ {1, 2, ∞}

To finish, we consider projections onto more general measure spaces, such as
M (Pm,q

T

)

. In Fig. 6, we show different behaviors for different m ∈ {1, 2} and
q ∈ {1, 2,∞}. We also show a large-scale example with a picture of Marylin Monroe
in Fig. 7.
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Fig. 7 Projection of Marylin
image, onto the set: C = {p ∈
(W 2,∞([0, T ]))2, sup

i∈[1,N ]
(‖D1 p(i)‖2) ≤

α1, sup
i∈[1,N ]

(‖D2 p(i)‖2) ≤ α2},
with N = 100, 000. The figure
depicts s(10,000) obtained with
Algorithm 1

7 Conclusion

We analyzed the basic properties of a variational problem to project a target Radon
measureπ on arbitrarymeasures setsMN .We then proposed a numerical algorithm to
find approximate solutions of this problem and gave several guarantees. An important
application covered by this algorithm is the projection on the set of N -point measures,
which is often called quantization and appears in many different areas such as finance,
imaging, biology, etc. To the best of our knowledge, the extension to arbitrary mea-
sures set is new and opens many interesting application perspectives. As examples in
imaging, let us mention open topics such as the detection of singularities [2] (e.g.,
curves in 3D images) and sparse spike deconvolution in dimension d [9].

To finish, let us mention an important open question. We provided necessary and
sufficient conditions on the sequence (MN )N∈N for the sequence of global minimiz-
ers (μ∗

N )N∈N to weakly converge to π . In practice, finding the global minimizer is
impossible, and we can only expect to find critical points. One may therefore won-
der whether all sequences of critical points weakly converge to π . An interesting
perspective to answer this question is the use of mean-field limits [10].
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