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1 Introduction and Statement of Results

Let u = u(x;α) denote a solution of the second Painlevé equation

uxx = xu + 2u3 + α, x ∈ C. (1.1)

It is known that for special values of the parameter α ∈ C, the equation admits rational
solutions. In fact, Vorob’ev and Yablonski [24,25] showed that for α = n ∈ Z, the
Eq. (1.1) has a unique rational solution of the form

u(x; n) = d

dx
ln

{Qn−1(x)

Qn(x)

}
, n ∈ Z≥1;

u(x; 0) = 0, u(x;−n) = −u(x; n), n ∈ Z≥1,

which is constructed in terms of the Vorob’ev–Yablonski polynomials {Qn(x)}n≥0.
These special polynomials can be defined via a differential-difference equation,

Qn+1(x)Qn−1(x) = xQ2
n(x) − 4

(
Q′′

n(x)Qn(x) − (Q′
n(x)

)2)
, n ∈ Z≥1, x ∈ C,

(1.2)

where Q0(x) = 1,Q1(x) = x , or equivalently [19] in determinantal form: with
qk(x) = 0 for k < 0,

Qn(x) =
n∏

k=1

(2k)!
2kk! det

[
qn−2�+ j (x)

]n−1

�, j=0
, n ∈ Z≥1;

∞∑
k=0

qk(x)wk = exp

[
−4

3
w3 + wx

]
. (1.3)

For our purposes, it will prove useful to rewrite (1.3) in terms of Schur poly-
nomials. In general (cf. [21]), the Schur polynomial sλ ∈ C[t] in the variable
t = (t1, t2, t3, . . .), t j ∈ C associated with the partition λ = (λ1, λ2, . . . , λ�(λ)) with
Z � λ j ≥ λ j+1 > 0 is determined by the Jacobi–Trudi determinant,

sλ(t) = det
[
hλ j − j+k(t)

]�(λ)

j,k=1. (1.4)

Here, hk(t) for k ∈ Z≥0 is defined by the generating series

∞∑
k=0

hk(t)zk = exp

⎛
⎝ ∞∑

j=1

t j z
j

⎞
⎠ ; and hk(t) = 0, k < 0. (1.5)

Remark 1.1 (Homogeneity). From (1.5), it follows immediately that hk(t) is a
weighted-homogeneous function,

hk(t) = εkhk

(
ε−1t1, ε

−2t2, ε
−3t3, . . .

)
, ε ∈ C\{0},
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and hence also

sλ(t) = ε|λ|sλ

(
ε−1t1, ε

−2t2, ε
−3t3, . . .

)
, |λ| =

�(λ)∑
j=1

λ j . (1.6)

For the special choice of a staircase partition,

λ ≡ δn = (n, n − 1, n − 2, . . . , 2, 1); �(δn) = n, (1.7)

the identities (1.4), (1.5), and (1.3) lead to the representation of Qn(x) in terms of
Schur polynomials,

Qn(x) =
n∏

k=1

(2k)!
2kk! sδn

(
x, 0,−4

3
, 0, 0, . . .

)
, x ∈ C, n ∈ Z≥1.

It is well known that Eq. (1.1) admits higher order generalizations and itself forms
the first member of a full hierarchy. To be more precise, let LN denote the following
quantities expressed in terms of the Lenard recursion operator,

d

dx
LN+1[u] =

(
d3

dx3
+ 4u

d

dx
+ 2ux

)
LN [u], N ∈ Z≥0; L0[u] = 1

2
,

and with the integration constant determined uniquely by the requirement Ln[0] =
0, n ≥ 1. The recursion gives, for instance,

L1[u] = u, L2[u] = uxx + 3u2, L3[u] = uxxxx + 5(ux )
2 + 10uuxx + 10u3.

The N -th member of the Painlevé II hierarchy is subsequently defined as the ordinary
differential equation

(
d

dx
+2u

)
LN
[
ux − u2] = xu+αN , x ∈ C, αN ∈ C; u =u(x;αN , N ). (1.8)

Hence, the first member N = 1 is Painlevé II (1.1) itself; for N = 2, we have

uxxxx − 10uu2
x − 10u2uxx + 6u5 = xu + α2,

and more generally, the N -th member is an ordinary differential equation of order
2N . Besides (1.8), we shall also consider a case which involves additional com-
plex parameters t3, t5, . . . , t2N−1. With u = u(x;αN , t, N ) for x, αN ∈ C and
t = (t3, . . . , t2N−1) ∈ C

N−1,

(
d

dx
+2u

)
LN
[
ux − u2]=

N−1∑
k=1

(2k+1)t2k+1

(
d

dx
+2u

)
Lk
[
ux −u2]+xu+αN .

(1.9)
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For (1.8) and (1.9), it is known [15,17] that rational solutions exist if and only if
αN = n ∈ Z. Moreover, Clarkson and Mansfield in [9] introduced generalizations of
the Vorob’ev–Yablonski polynomials for N = 2, 3 which allow the computation of
the rational solutions of (1.8) once more in terms of logarithmic derivatives,

u(x; n, N ) = d

dx
ln

{
Q[N ]

n−1(x)

Q[N ]
n (x)

}
; u(x; 0, N ) = 0,

u(x;−n, N ) = −u(x; n, N ), n ∈ Z≥1. (1.10)

This approach has been extended to (1.9) for general N ∈ Z≥1 by Demina and
Kudryashov [14,15], who found in particular the analogues of (1.2) for what we
shall call generalized Vorob’ev–Yablonski polynomials Q[N ]

n (x; t),

Q[N ]
n+1(x; t)Q[N ]

n−1(x; t) = (Q[N ]
n (x; t)

)2{
x − 2LN

[
2
d2

dx2
lnQ[N ]

n (x; t)

]

+2
N−1∑
k=1

(2k + 1)t2k+1Lk

[
2
d2

dx2
lnQ[N ]

n (x; t)

]}
,

n ∈ Z≥1, (1.11)

with Q[N ]
0 (x; t) = 1 and Q[N ]

1 (x; t) = x . For fixed t = (t3, t5, . . . , t2N−1) ∈ C
N−1

and n, N ∈ Z≥1, these special polynomials are then used in the construction of the
unique rational solutions of (1.9),

u(x; n, t, N ) = d

dx
ln

{
Q[N ]

n−1(x; t)

Q[N ]
n (x; t)

}
; u(x; 0, t, N ) = 0,

u(x;−n, t, N ) = −u(x; n, t, N ).

1.1 Determinantal Identities

It is mentioned in [14], but not proved, that alsoQ[N ]
n (x; t) can be expressed as a Schur

polynomial. In our first theorem below, we shall close this small gap.

Theorem 1.2 Let δn denote the staircase partition (1.7) of length n ∈ Z≥1. For any

t = (t3, t5, . . . , t2N−1) ∈ C
N−1,

the generalized Vorob’ev–Yablonski polynomial Q[N ]
n (x; t), x ∈ C defined in (1.11)

equals

Q[N ]
n (x; t) =

n∏
k=1

(2k)!
2kk! sδn

(
x, 0, 22t3, 0, 2

4t5, . . . , 2
2N t2N+1, 0, 0, 0, . . .

)
,

t2N+1 ≡ − 1

2N + 1
. (1.12)
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Besides the Jacobi–Trudi type identity (1.3), Vorob’ev–Yablonski polynomials can
also be expressed as Hankel determinants; in fact, in [5] the following Hankel deter-
minant representation for the squared polynomial Q2

n(x) was obtained:

Q2
n(x) = (−1)

(
n + 1
2

)
1

2n

n∏
k=1

[
(2k)!

k!
]2

det
[
μ�+ j−2(x)

]n+1
�, j=1, x ∈ C, (1.13)

with {μk(x)}k∈Z≥0 defined by the generating function

exp

[
xw − w3

3

]
=

∞∑
j=0

μ j (x)w j .

In our second theorem,we present the analogue of (1.13) for the generalizedVorob’ev–
Yablonski polynomial Q[N ]

n (x; t).

Theorem 1.3 Let t = (t3, . . . , t2N−1) ∈ C
N−1 and n ∈ Z≥1. For any x ∈ C, we have

the Hankel determinant representation

(
Q[N ]

n (x; t)
)2 = (−1)

(
n + 1
2

)
1

2n

n∏
k=1

[
(2k)!

k!
]2

det
[
μ

[N ]
�+ j−2(to)

]n+1

�, j=1
, (1.14)

where we use the abbreviation

to =(t1, 0, t3, 0, t5, . . . , t2N−1, 0, t2N+1, 0, 0, 0, . . .
); t1= x, t2N+1=− 1

2N +1
,

and the coefficients
{
μ

[N ]
j (to)

}
j∈Z≥0

are defined by the generating function

exp

⎡
⎣ ∞∑

j=1

t jw
j

⎤
⎦ =

∞∑
k=0

μ
[N ]
k (to)w

k, t j ≡ 0, j > 2N + 1. (1.15)

Remark 1.4 In fact, the statement of Theorem 1.3 is the specialization of a more
general identity for Schur functions (compare Lemma 3.1 below), which in our case
reads

s2δn

(
t1, 0, 2

2t3, 0, 2
4t5, 0, . . .

) = 2n2s(n+1)n (t1, 0, t3, 0, t5, 0, t7, . . .) .

Here, λ = (n + 1)n denotes the rectangular partition with n + 1 rows of length n and
the specialization consists in simply setting

t1 = x, t2N+1 = − 1

2N + 1
, t j ≡ 0, j > 2N + 1.
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1.2 Roots of Higher Vorob’ev–Yablonski Polynomials

In analogy to [5], we provide a direct application of Theorem 1.3. Numerical studies
carriedout in [9,15,20] show that the zeros of generalizedVorob’ev–Yablonski polyno-
mials formhighly regular and symmetric patterns, as canbe clearly seen inFig. 1.These
patterns in the case of the Painlevé II equation itself have been first analyzed in [6,7].
However, the approach outlined in [5] starts directly from (1.13) and not from a Lax
pair associated with (1.1). To be more precise, the identity (1.14) allows us to localize
the roots of the generalized Vorob’ev–Yablonski polynomials as n → ∞ by ana-
lyzing associated pseudo-orthogonal polynomials. Of course in the generalized case
these patterns depend on the parameters {t2 j+1}N−1

j=1 (compare [15]); we shall confine
ourselves here to the case of higher Vorob’ev–Yablonski polynomials, namely the case

t3 = t5 = · · · = t2N−1 = 0. (1.16)

More specifically, we are considering the roots of the rescaled higher Vorob’ev–
Yablonski polynomials

R[N ]
n =

{
x ∈ C : Q[N ]

n

(
n

2N
2N+1 x

)
= 0
}

. (1.17)

Fig. 1 The roots of the rescaled higher Vorob’ev–Yablonski polynomials Q[2]
60 , Q

[3]
70 , Q

[4]
72 , Q

[5]
77 , Q

[6]
78 ,

Q[7]
75 (from left to right and top to bottom). See (1.16), (1.17) for their definition. The symmetry of the

pattern is easily explained from the definition of the polynomials. The locations of the outer vertices of the
star-shaped regions are given in (1.20). The various lines that appear in the figures are not straight lines
but real analytic arcs defined by the implicit Eq. (4.16). It is quite evident that for N ≥ 2, there are further
subdivisions of the star-shaped region into subregions
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These sets admit a discrete Z2N+1 rotational symmetry, which follows immediately
from Theorem 1.2 and the homogeneity (1.6);

Q[N ]
n (ωx) = ω

n
2 (n+1)Q[N ]

n (x), ω = e
2π i

2N+1 .

We can provide a partial analytic description for the boundary of the polygons PN

seen in Fig. 1 that asymptotically contain the sets (1.17) as n → ∞. More precisely,
we have first the following theorem:

Theorem 1.5 There exists a compact region PN in the complex x–plane such that for
any δ > 0, the root sets R[N ]

n are contained in a δ-neighborhood Nδ(PN ) of PN as
n → ∞.

The description of the regions PN is provided in part by Theorem 1.7 below. First
we require:

Definition 1.6 Given N ∈ Z≥1, let a = a(x; N ), x ∈ C, denote the unique solution
of the algebraic equation

(2a)2N+1 − x(2a)2N + (−1)N
(
2N
N

)
= 0 (1.18)

that is analytic in the domain

x ∈ C

∖ 2N⋃
k=0

[
0, x [N ]

k

]

and behaves near x = ∞ as

a = x

2
+ O

(
x−2N

)
, x → ∞. (1.19)

Here, the points x = x [N ]
k , k = 0, . . . , 2N are the solutions of

x2N+1 = (−1)N (2N + 1)

(
2N + 1

2N

)2N (2N
N

)
(1.20)

and form the outer vertices of the regular star-shaped regions shown in Fig. 1.

Theorem 1.7 The regions PN are compact, invariant under the rotations of angle
2π

2N+1 , and contain the origin, and their boundary ∂ PN consists of branches of the
locus in the complex x-plane described by

ZN =
{

x ∈ C : 	(ϕ(z; a)
)∣∣∣

z=z[N ]
k

= 0

}
. (1.21)
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Here z = z[N ]
k , k = 1, . . . , 2N are the solutions of the equation

z2N − 1

2a
TN−1,− 1

2

(
z2

a2

)
= 0,

where Tm,α(z) denotes the Maclaurin polynomial of degree m ∈ Z≥0 of the function
(1+ z)α = 1+O(z), z → 0. Moreover, a = a(x) is defined in (1.18) and (1.19), and
the function ϕ is defined by

ϕ(z; a) = −2 ln

(
z + (z2 + a2)

1
2

ia

)
+ 2

z

(
z2 + a2) 12

− 1

2N + 1

(z2 + a2)
3
2

a3z2N+1 TN−1,− 3
2

(
z2

a2

)
,

with principal branches for fractional exponents and logarithms.

The branches of the real-analytic curves specified by ZN of Theorem 1.7 are plotted
as the arcs in Fig. 1. Perhaps more important than what Theorem 1.7 says is what it
does not say. In fact, of all the branches of curves defined by (1.21), we are not able
to effectively discern which ones actually form the boundary of PN . In particular,
we cannot conclude in general that the points (1.20) belong to ∂ PN , although Fig. 1
clearly highlights them as outer vertices of the star-shaped boundaries.

Remark 1.8 A local analysis (which we do not propose here but is essentially identical
to [5]) shows that the angle between consecutive arcs emanating from the points x [N ]

k
(1.20) is 2π

5 . This angle is related to the pole sector opening angle of the tritronquée
solutions of Painlevé I, see [7] for a detailed analysis in the case N = 1.

1.3 The Roots Inside PN

Inspection of Fig. 1 clearly shows that the pattern of roots within PN is subdivided in
subregions. This can be easily qualitatively understood in terms of the steepest descent
analysis; the so–called g-function of the problem (see Sect. 4 below) is an Abelian
integral on a Riemann surface of genus 0 on the outside of PN and of genera 2, 4, . . .
inside. In fact we can show that x = 0 belongs to a region where the genus is 2N ,
and thus it is reasonable to deduce that there are nested regions of higher and higher
genus, until the maximum is reached (2N ). These regions are quite evident in Fig. 1.
In principle, the boundaries between these nested regions could be described as well
in terms of Abelian integrals, but it is beyond the scope of this paper to attempt any
such detailed description.

1.4 Outline of the Paper

We conclude the introduction with a short outline of the upcoming sections. First
Theorem 1.2 is derived in Sect. 2 by referring to the KdV and mKdV hierarchies for
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which we construct a polynomial tau function in terms of Schur polynomials. Then an
explicit scaling reduction brings us back to the Painlevé II hierarchy, and Theorem 1.2
follows.After that,we turn towardsTheorem1.3, but in contrast to the proof of (1.13) in
[5] which relied on (1.2), identity (1.14) will follow from Schur function identities and
Theorem 1.2. In the final Sect. 4, we follow largely the logic outlined in [5]. However,
we choose not to present any details on the nonlinear steepest descent analysis for the
underlying orthogonal polynomials. Once the correct inequalities for the g-function
have been verified, the asymptotic analysis outside of PN is almost identical to [5],
see Sect. 4 for further details.

2 Short Reminder About the (m)KdV and Painlevé II Hierarchies

The goal of this section is to remind the reader very briefly of the construction of
the Painlevé II hierarchy as a scaling reduction of the modified Korteweg–de Vries
(mKdV) hierarchy, cf. [9]. In doing so, we will en route derive Theorem 1.2.

2.1 The KdV Hierarchy

The KdV hierarchy involves the Lenard recursion operator

∂

∂x
Ln+1[u]=

(
∂3

∂x3
+4u(x)

∂

∂x
+2ux (x)

)
Ln[u], L0[u]= 1

2
, Ln[0]=0, (2.1)

and its equations are written as the partial differential equations

∂u

∂t2n+1
= ∂

∂x
Ln+1[u], n ∈ Z≥0; u = u(to), to = (t1, 0, t3, 0, t5, . . .). (2.2)

It is customary, and we will adhere to the custom, to denote the variable t1 by x
since L1[u] = u and hence the first member of the hierarchy above reads simply
∂t1u = ux . In general, the equations of the hierarchy should be viewed as an infinite
set of compatible evolution equations for a single function u = u(x). A solution of
the hierarchy is then a function u(x; t3, t5, . . . ).

Definition 2.1 A function τKdV = τKdV(to) is called a tau function for the KdV hier-
archy (2.2) if the function

u(to) = 2
∂2

∂x2
ln τKdV(to) , x ≡ t1,

solves the hierarchy (2.2).

2.2 Rational Solutions to KdV and Staircase Schur Polynomials

The solutions of the KdV equation rational in x for all values of t = t3 (and for all
higher times t5, t7, . . . ) and vanishing at x = ∞were completely characterized in [2];
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they all belong to the countable union of orbits flowing out of initial data of the form

u(x; t3, t5, . . . )
∣∣∣
0=t3=t5=...

= un(x) = n(n + 1)

x2
, n ∈ Z≥0 ,

and then evolving from this initial datum as per (2.2). The corresponding tau functions
τn(to)were obtained explicitly in [1] in terms ofWronskians of certain polynomials in
t0. Up to normalization and re-parametrization, theseWronskians coincide with Schur
polynomials associated with staircase partitions evaluated at the odd times, namely

τn(to) = sδn (t1, 0, 2
2t3, 0, 2

4t5, . . . ) , un(to) = 2
∂2

∂x2
ln τn(to) , (2.3)

where δn denotes the staircase partition (1.7) of length n ∈ Z≥1. Moreover, it can be
shown (cf. [22]) that these are the only Schur polynomials that give KdV tau functions
when all even times are set to zero.

Remark 2.2 The particular rescaling t2�+1 
→ 22�t2�+1 is used in (2.3) in order to
correct the normalization so that the coefficients in (2.2) are as indicated.

2.3 The mKdV Hierarchy

The modified KdV (mKdV) hierarchy is defined in terms of a new dependent variable
v = v(to) that is related to u via the Miura transformation

u = ∓vx − v2, (2.4)

where the choice of signs is arbitrary.More is true: if v satisfies u = −vx −v2, then the
new function û = vx −v2 is a different solution of the KdV hierarchy (and vice versa);
this is an example of a Bäcklund transformation. Inserting (2.4) into (2.2) yields a new
set of evolution equations:

∂

∂t2n+1

(
∓vx − v2

)
= ∂

∂x
Ln+1

[∓ vx − v2
] (2.1)=

(
∂3

∂x3
− 4(±vx + v2)

∂

∂x

− 2(±vxx + 2vvx ))Ln
[∓ vx − v2

]

=
(

∂

∂x
± 2v

)
∂

∂x

(
∂

∂x
∓ 2v

)
Ln
[∓ vx − v2

]
.

This can be rewritten as follows:

(
∓ ∂

∂x
− 2v

)
∂v

∂t2n+1
=
(

∂

∂x
± 2v

)
∂

∂x

(
∂

∂x
∓ 2v

)
Ln
[∓ vx − v2

]
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or equivalently,

(
∓ ∂

∂x
− 2v

){
∂v

∂t2n+1
− ∂

∂x

(
∓ ∂

∂x
+ 2v

)
Ln
[∓ vx − v2

]
︸ ︷︷ ︸

Q(±)
n [v]

}
= 0.

We now notice that the two expressions

(
∓ ∂

∂x
+ 2v

)
Ln
[∓ vx − v2

] = 1

2

(
∓ ∂

∂x
+ 2v

)
[∫

dx

(
∂

∂x
± 2v

)
∂

∂x

(
∂

∂x
∓ 2v

)]n

define the same differential polynomial in v, since the right-hand side is clearly invari-
ant under the map x 
→ −x . Thus we can simply write

Q(+)
n [v] = Q(−)

n [v] = Qn[v],

omitting the reference to the choice of sign. We now want to conclude that the expres-
sion Qn[v] vanishes identically; the two equations in (2.5) below are simply stating
that F(x) = Qn[v] is a joint solution of the two ordinary differential equations
(±∂x + 2v)F(x) = 0. Thus Qn[v] should be in the null-space of both equations
±∂x + 2v; as long as v is not identically zero (which is an uninteresting situation),
the only function in both null-spaces is the null function, and henceQn[v] ≡ 0. Thus
(see also [8,9]) we have concluded that if u is a solution of the KdV hierarchy (2.2)
and v is related to u by (2.4), then v must solve the hierarchy of equations indicated
below and named mKdV hierarchy,

∂v

∂t2n+1
= ∂

∂x

(
∓ ∂

∂x
+ 2v

)
Ln
[∓ vx − v2

]
, n ∈ Z≥0; v = v(to). (2.5)

The choice of signs is irrelevant, since the right-hand side (as noted above) yields the
same differential polynomial in v.

2.4 Schur Functions and Painlevé II Hierarchy

Let us now return to our special situation for which we fix

t1= x, t2N+1=− 1

2N + 1
, t =(t3, t5, . . . , t2N−1) ∈ C

N−1, t2 j+1 = 0, j > N .

Proposition 2.3 For n, N ∈ Z≥1, define the two functions

gn(x; t) = ln sδn

(
x, 0, 22t3, 0, 2

4t5, . . . , 2
2N t2N+1, 0, 0, 0, . . .),

Wn(x; t) = gn+1(x; t) − gn(x; t) (2.6)
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with some fixed branch for the logarithm. We then have the Miura relation

2 ∂2x gn(x; t) = −∂2x Wn(x; t) − (∂x Wn(x; t)
)2

. (2.7)

A proof of (2.7) can be found in “Appendix 1”. In view of Proposition 2.3, we note
that the two functions

u(to) = 2 ∂2x gn(x; t), v(to) = ∂x Wn(x; t)

satisfy precisely the Miura relation (2.4) with the choice of the minus sign; namely,
u = −v′ − v2. Since sδn gives a tau function for the KdV hierarchy, it follows that v

satisfies the hierarchy (2.5) for n = 0, . . . , N . Summarizing:

Proposition 2.4 The function

w(x; t) = −∂x Wn(x; t)

satisfies the mKdV hierarchy in the form

∂w

∂t2n+1
= ∂

∂x

(
∂

∂x
+ 2w

)
Ln
[
wx − w2], 0 ≤ n ≤ N . (2.8)

Recalling the homogeneity property (1.6),we see thatw(x; t)obeys a simple scaling
invariance that will allow us to reduce the partial differential equations (2.8) to an
ordinary differential equation; we carry out a scaling reduction:

(i) View w = −v(to) as a function in the variables t1 = x, t = (t3, t5, . . . , t2N−1) ∈
C

N−1 and t2N+1.
(ii) By homogeneity (1.6), it follows that w = w(t1, t, t2N+1) is a function of the

form

w = (− (2N + 1)t2N+1
)− 1

2N+1 V (T1, T3, . . . , T2N−1), (2.9)

and V depends on the “new” variables

T2k+1 = t2k+1

(−(2N + 1)t2N+1)
2k+1
2N+1

, k = 0, . . . , N − 1.

(iii) Substituting (2.9) into the left-hand side of (2.8) with n = N , we find

(2N + 1)t2N+1
∂w

∂t2N+1
= −(− (2N + 1)t2N+1

)− 1
2N+1

⎡
⎣V +

N−1∑
j=0

(2 j + 1)T2 j+1
∂V

∂T2 j+1

⎤
⎦ . (2.10)
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(iv) Next we evaluate (2.10), (2.9) at t2N+1 = − 1
2N+1 and compare the result to

(2.8),

∂

∂x

(
∂

∂x
+ 2V

)
LN
[
Vx − V 2] = V +

N−1∑
j=0

(2 j + 1)t2 j+1
∂V

∂t2 j+1
. (2.11)

(v) Since t1 = x and V + x ∂V
∂x = ∂

∂x (xV ), (2.11) can be rewritten with the help of
(2.8),

∂

∂x

{(
∂

∂x
+ 2V

)
LN
[
Vx − V 2]− xV

−
N−1∑
j=1

(2 j + 1)t2 j+1

(
∂

∂x
+ 2V

)
L j
[
Vx − V 2]

⎫⎬
⎭ = 0. (2.12)

Equation (2.12) is an ordinary differential equation for the function V = w(x; t) in
which t ∈ C

N−1 appear as parameters. From (1.6) and (1.7), we see that

sδn

(
x, 0, 22t3, 0, 2

4t5, . . . , 2
2N t2N+1, 0, 0, 0, . . .

) = egn(x;t)

is a polynomial in x of degree |δn| = n
2 (n + 1). Its logarithmic derivative ∂x gn(x; t)

behaves therefore as

∂x gn(x; t) = n

2x
(n + 1) + O(x−2), x → ∞,

and we deduce in turn for w(x; t),

w(x; t) = ∂x
(
gn(x; t) − gn+1(x; t)

) = −n + 1

x
+ O

(
x−2
)

, x → ∞.

The only term in (2.12) with a nonzero limiting value as x → ∞ is the term xV =
xw(x; t); all remaining ones are of order O(x−1) or less. This fixes the integration
constant in (2.12) and yields (1.9) with αN = n + 1. Recall [14,15] that αN ∈ Z is
necessary to have a rational solution to (1.9), and for all integer values of αN there
exists a unique rational solution that can be obtained from the trivial solution for
αN = 0 by Bäcklund transformations. Therefore we have the following:

Theorem 2.5 For n, N ∈ Z≥1, the unique rational solution of the Painlevé II hierar-
chy (1.9) is

u(x; n + 1, t, N ) = d

dx
ln

sδn

sδn+1

(
x, 0, 22t3, 0, 2

4t5, . . . , 2
2N t2N+1, 0, 0, 0, . . .

)
,

t2N+1 = − 1

2N + 1
, (2.13)
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and we have the identity

Q[N ]
n (x; t) =

n∏
k=1

(2k)!
2kk! sδn

(
x, 0, 22t3, 0, 2

4t5, . . . , 2
2N t2N+1, 0, 0, 0, . . .), x ∈ C.

Proof It is easy to see that the left-hand side of (2.13) is a rational solution to (1.9) by
the scaling reduction (2.9)–(2.12). By the uniqueness of the rational solutions of the
Painlevé II hierarchy, we have

Q[N ]
n (x; t) = cn,N (t)sδn

(
x, 0, 22t3, 0, 2

4t5, . . . , 2
2N t2N+1, 0, 0, 0, . . .

)
,

with an x-independent factor cn,N (t). However, to leading order,

sδn

(
x, 0, 22t3, 0, 2

4t5, . . . , 2
2N t2N+1, 0, 0, 0, . . .

) ∼ sδn (x, 0, 0, 0, . . .)

= x |δn |

h(δn)
, x → ∞,

where h(λ) denotes the product of the hook-lengths of λ (cf. [21]). Since

|δn| = n

2
(n + 1), h(δn) =

n∏
k=1

2kk!
(2k)! ,

and Q[N ]
n (x; t) is a monic polynomial of degree n

2 (n + 1), the claim follows. ��

3 Proof of Theorem 1.3

Wewill appeal to certain identities satisfied by symmetric functions that can be found,
for instance, in [21]. First let us start with the following lemma.

Lemma 3.1 The symmetric polynomial identity

s2δn
(20t1, 0, 2

2t3, 0, 2
4t5, 0, . . .) = 2−ns(n+1)n

(
2t1, 0, 2

3t3, 0, 2
5t5, . . .

)

= 2n2s(n+1)n (t1, 0, t3, 0, t5, 0, t7, . . . )

holds, where λ = (n + 1)n stands for the rectangular partition with n + 1 rows of
length n and δn is the staircase partition (1.7).

In the proof of Lemma 3.1, we will use Schur P-functions, which can be defined
as follows (cf. [21], Section III. 8): for a strict partition λ of length �(λ) = 2n1, i.e.,
λ1 > λ2 > . . . λ2n ≥ 0, we define the 2n × 2n skew-symmetric matrix

Mλ = [Qλi λ j (t̂)
]2n

i, j=1, (3.1)

1 If �(λ) is odd, we add an extra part of length 0 to λ to make the number of parts even.
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with

Q jk(t̂) =

⎧⎪⎨
⎪⎩

q j (t̂)qk(t̂) + 2
∑k

m=1(−1)mq j+m(t̂)qk−m(t̂), j > k,

0, j = k,

−q j (t̂)qk(t̂) − 2
∑k

m=1(−1)mq j+m(t̂)qk−m(t̂), j < k,

where q j ∈ C[t̂] with t̂ = (t1, t3, t5, . . .) are defined by the generating function

∞∑
j=0

q j (t̂)z j = exp

(
2

∞∑
k=0

t2k+1z2k+1

)
.

The Schur P-function associated with the strict partition λ is given by the Pfaffian of
the matrix (3.1) up to a simple scaling factor,

Pλ(t1, t3, t5, . . .) = 2−�(λ)Pf
[
Mλ

] = 2−�(λ)Pf
[

Qλi λ j (t̂)
]2n

i, j=1
.

Proof of Lemma 3.1 The Schur polynomial sδn can be written in terms of the Schur
P-function Pδn ,

sδn (t1, 0, t3, 0, t5, 0, . . .) = Pδn (t1, t3, t5, . . .). (3.2)

For a proof of this identity, see [21], §3.8, example 3, page 259, and also [16], Lemma
V.4. Second, for a strict partition λ, we have [26], Theorem 4,

2�(λ) P2
λ

(
t1
2

,
t3
2

,
t5
2

, . . .

)
= sλ̄(t1, 0, t3, 0, t5, . . .), (3.3)

with λ̄ denoting the double of the partition λ which is defined via its Frobenius char-
acteristics,

λ̄ = (λ1, λ2, . . . , λ�(λ)

∣∣λ1 − 1, λ2 − 1, . . . , λ�(λ) − 1
)
.

Combining (3.2) and (3.3),

s2δn
(20t1, 0, 2

2t3, 0, 2
4t5, 0, . . .) = P2

δn
(20t1, 2

2t3, 2
4t5, . . .)

= 2−ns(n+1)n (2t1, 0, 2
3t3, 0, 2

5t5, . . .)

= 2n2s(n+1)n (t1, 0, t3, 0, t5, . . .),

where we have used homogeneity (1.6) in the last step. This concludes the proof. ��
We are now ready to derive Theorem 1.3 by referring to (1.12) and Lemma 3.1.
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Proof of Theorem 1.3 Let t = (t3, t5, . . . , t2N−1) ∈ C
N−1 and

to =(t1, 0, t3, 0, t5, . . . , t2N−1, 0, t2N+1, 0, 0, 0, . . .), t1 = x, t2N+1 = − 1

2N + 1
.

This gives us

(Q[N ]
n (x; t)

)2
(1.12)=

n∏
k=1

[
(2k)!
2kk!

]2
s2δn

(
20t1, 0, 2

2t3, 0, 2
4t5, . . . , 2

2N t2N+1, 0, 0, 0, . . .)

= 1

2n

n∏
k=1

[
(2k)!

k!
]2

s(n+1)n (t1, 0, t3, 0, t5, . . . , t2N+1, 0, 0, 0, . . .)

= 1

2n

n∏
k=1

[
(2k)!

k!
]2

s(n)n+1(to) = 1

2n

n∏
k=1

[
(2k)!

k!
]2

det
[
μ

[N ]
n−�+ j (to)

]n+1
�, j=1

= (−1)

(
n + 1
2

)
1

2n

n∏
k=1

[
(2k)!

k!
]2

det
[
μ

[N ]
�+ j−2(to)

]n+1
�, j=1,

where we used that for the transposed partition λ′,

sλ′(t1, 0, t3, 0, t5, . . .)=(−1)|λ|sλ(−t1, 0,−t3,−t5, . . .)
(1.6)= sλ(t1, 0, t3, 0, t5, . . .),

(3.4)

and that the Schur polynomials of rectangular partitions are Hankel determinants. ��
Corollary 3.2 Let to = (t1, 0, t3, 0, t5, . . .), and let {hk(to)}k∈Z≥0 be as in (1.5).
Introducing the notation

�n,�(to) = det
[
h j+k−2+�(to)

]n+1
j,k=1, n, � ∈ Z≥0,

we have the Hankel determinant identity

�n+1,0(to) = (−1)n�n,2(to). (3.5)

Proof Note that

s(n+1)n (to) = det
[
hn+1− j+k(to)

]n
j,k=1 = (−1)n−1 det

[
h j+k(to)

]n
j,k=1,

s(n)n+1(to) = det
[
hn− j+k(to)

]n+1
j,k=1 = (−1)n det

[
h j+k−2(to)

]n+1
j,k=1,

and since |(n)n+1| = |(n + 1)n| = n(n + 1) ≡ 0mod 2, the stated identity follows
from (3.4). ��
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Remark 3.3 Identity (3.5) in Corollary 3.2 does not hold if any of the even-index times
is nonzero.

4 Characterization of the Set R[N]
n

The logic we are following here is identical to [5]. The square of the polynomials
Q[N ]

n (x) is proportional to a Hankel determinant

�n(x; N ) = det
[
μ

[N ]
j+k−2(to)

]n+1
j,k=1

of the moments μ
[N ]
k (to) (1.15), which can alternatively be written as

μ
[N ]
k (to) = 1

2π i

∮
S

zke
x
z − z−2N−1

2N+1
dz

z
; to = (x, 0, 0, . . . , 0, t2N+1, 0, 0, 0, . . .),

t2N+1 = − 1

2N + 1
,

where S ⊂ C denotes the unit circle traversed in counterclockwise direction. It is
then a well-known fact that �n(x; N ) = 0 if and only if the Riemann–Hilbert prob-
lem 4.1 below has no solution, or equivalently, if and only if the n-th monic orthogonal
polynomial ψn(z; x, N ) = zn + O(zn−1), z → ∞ for the weight

dμ0(z; x, N ) = e−ϑ(z;x,N )

2π iz
, ϑ(z; x, N ) = 1

(2N + 1)z2N+1 − x

z
, z ∈ S, (4.1)

does not exist. In view of the scaling x 
→ n
2N

2N+1 x in (1.17), we also perform a scaling

z 
→ n− 1
2N+1 z so that we arrive at the following Riemann–Hilbert problem with a

varying exponential weight.

Riemann–Hilbert Problem 4.1 Suppose γ ⊂ C is a smooth Jordan curve that encir-
cles the origin counterclockwise. Let �(z) = �(z; x, n, N ) = [� jk(z; x, n, N )]2j,k=1
denote the 2 × 2 matrix-valued piecewise analytic function that is uniquely charac-
terized by the following three properties:

(1) �(z) is analytic for z ∈ C\γ .
(2) Given the orientation of γ , the limiting values �±(z) from the (+) and (−) side

of the contour exist and are related via the jump condition

�+(z) = �−(z)

[
1 w(z; x, N )

0 1

]
, z ∈ γ ; w(z; x, N ) = e−nϑ(z;x,N )

2π iz
.

(3) The function �(z) is normalized as z → ∞,

�(z) =
(

I + �1(x; n, N )

z
+ O

(
z−2
))

znσ3, σ3 =
[
1 0
0 −1

]
.
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Since

ψn(z; x, N ) = �11(z; x, n, N ),

we have then through Theorem 1.3, compare also [5]:

Proposition 4.2 The zeros of the scaled Vorob’ev–Yablonski polynomials

Q[N ]
n (n

2N
2N+1 x) coincide with the values of x for which the problem 4.1 is not solv-

able.

In principle, an asymptotic analysis of the Problem 4.1 as n → ∞ is possible using
the Deift–Zhou steepest descent analysis [10,12,13], and the zeros will be located
asymptotically in terms of appropriate Theta functions as in [5]. However, here we
simply want to prove the absence of zeros outside of a certain compact region PN and,
en route, give a partial characterization of the boundary ∂ PN . For a more comprehen-
sive analysis that is only marginally different from the present situation, we refer to
[5]; here we shall just remind the reader that the method requires the construction of
an appropriate function, called customarily “the g-function”.

In case of Problem 4.1, the g-function is a priori expressible in the form

g(z) = 1

2
ϑ(z; x, N ) +

∫ z

z0

(
P4N+2(w)

) 1
2

dw

w2N+2 + �

2
,

� = �(x; N ) ∈ C, z0 = z0(x; N ) ∈ C, (4.2)

where, in general, P4N+2(z) is an appropriate polynomial of the indicated degree.
The ansatz (4.2) is explained in the paragraph “Construction of the g-function” of
[5], and the discussion there can be applied almost verbatim here. From (4.2), we see
that the g-function is an Abelian integral on the Riemann surface of the square root
of P4N+2(z; x), a surface which depends parametrically on x and N as explained in
detail in (4.3) and following. In particular, depending on the number of odd roots, this
surface has a genus that can range from a minimum of 0 (if there are only two simple
roots in P4N+2(z)) to a maximum of 2N (if all the roots are simple). We could follow
the same lines of reasoning as [5], Section 5.1 and carry out the necessary Deift–Zhou
nonlinear steepest descent analysis (in [5], this was achieved for N = 1), which would
then show that:

If x belongs to a region characterized by the fact that the genus of the Riemann
surface y2 = P4N+2(z; x) is zero and the g-function satisfies the appropriate
inequalities (recalled below), then the Riemann–Hilbert problem 4.1 is even-
tually solvable for sufficiently large n. Thus in the genus zero situation, the
orthogonal polynomials associated with the measure (4.1) exist for n sufficiently
large; i.e., �n(x; N ) �= 0, and consequently Q[N ]

n (x) is zero–free in the corre-
sponding region in the x-plane, compare (1.14).

We find that the generalization of the analysis of [5], Section 5.1 to the present setting
N ≥ 2 does not present any complication, and hence, in the interest of brevity, it is
omitted. Significant differences from [5]would start arising only ifwe embarked on the

123



Constr Approx (2016) 44:417–453 435

analysis of the location of zeros within the regions where the genus is positive (i.e., the
structure of the pattern of zeroes inside the star-shaped regions of Fig. 1, which is not
an object of consideration in the present paper). Therefore our strategy is as follows:
we postulate a genus zeroAnsatz for the g-function in (4.3); the algebraic requirements
are easily verified, but the required inequalities are not always verified. We shall then
find where the inequalities fail and hence where the roots are asymptotically confined.

For the concrete construction of the g-function in the genus zero region, we follow
the logic outlined in [5]. We seek a function y = y(z), z ∈ C\B, of the form

y(z) = 1

z2N+2

(
z2 + a2) 12 P(z; a), P ∈ C[z] deg(P) = 2N , (4.3)

where (z2 + a2)
1
2 is defined and analytic off the oriented branch cut B = B(x, N )

that connects the points z = ±ia. The precise location of B ⊂ C shall be discussed in
Sect. 4.2 below; for now we require that y satisfies the two conditions

y(z) = 1

2
ϑz(z; x, N ) + O(1), z → 0; y(z) = 1

z
+ O

(
z−2
)

, z → ∞. (4.4)

Using simple algebra, we directly obtain:

Proposition 4.3 The conditions (4.4) imply that a and x are related via

x = 2a + cN

a2N
, cN = (−1)N

22N

(
2N
N

)
, (4.5)

and the polynomial P(z; a) is uniquely determined as

P(z; a) = z2N − 1

2a
TN−1,− 1

2

(
z2

a2

)
, (4.6)

where Tm,α(ζ ) is the Maclaurin polynomial of degree m ∈ Z≥0 of the function (1 +
ζ )α = 1 + O(ζ ), ζ → 0.

Proof Observe that the condition y(z) ∼ 1
z , z → ∞, implies that P(z; a) is monic,

and from the behavior at z = 0, we find that

1

2

1 − xz2N

√
z2 + a2

= P(z; a) + O
(

z2N+2
)

. (4.7)

Writing P(z; a) = z2N + Q(z) with a polynomial Q(z) of degree at most 2N −1 and
reading (4.7) at O (z2N

)
, we get

1

2
√

z2 + a2
= Q(z) + O

(
z2N
)

, z → 0,
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and thus

Q(z) = − 1

2a
TN−1,− 1

2

(
z2

a2

)
,

which gives (4.6). In order to deduce (4.5), we recall that P(z; a) is monic; i.e., we
must have

x − 1

a2N

(− 1
2

N

)
= 2a,

that is, (4.5). ��
Proposition 4.4 The branch points of the map a = a(x), defined implicitly by (4.5),
are the solutions of P(±ia; a) = 0.

Proof We have to evaluate the condition P(±ia; a) = 0; using (4.6), this amounts to

0 = P(±ia; a) = (−1)N a2N − 1

2a

N−1∑
k=0

(− 1
2

k

)
(−1)k

= (−1)N a2N − (−1)N N

a

(− 1
2

N

)

= (−1)N a2N − N

a22N

(
2N
N

)
.

Thus the condition determining the coincidence of a zero of P(z; a) with z = ±ia is

a2N+1 = (−1)N N

22N

(
2N
N

)
. (4.8)

On the other hand, the map (4.5) has a branch point where x ′(a) = 0, which gives
exactly (4.8). ��

4.1 The Complex Effective Potential and the Inequalities

For further steps, it will prove useful to define the effective potential,

ϕ(z; a) = 2
∫ z

ia(x)

y(w)dw, z ∈ C\B (4.9)

which in the given situation (4.6) can be evaluated explicitly,

ϕ(z; a) = −2 ln

(
z + (z2 + a2)

1
2

ia

)
+ 2

z

(
z2 + a2) 12

− 1

2N + 1
TN−1,− 3

2

(
z2

a2

)
(z2 + a2)

3
2

a3z2N+1 , (4.10)
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and all branches in (4.10) are principal ones such that (z2 + a2)
1
2 ∼ z as z → ∞.

Lemma 4.5 Given (4.10), we have for N ∈ Z≥1,

∂ϕ

∂x
(z; a) = − (z2 + a2)

1
2

za
, z ∈ C\B. (4.11)

Proof The jump of ϕ(z; a) equals 4π i on a contour that extends to infinity. Hence
∂xϕ(z; a) has no jump on a contour that extends to infinity. Along B, we have
(∂xϕ(z; a))+ = −(∂xϕ(z; a))− by the choice of principal branches in (4.11). Since
ϕ(z; a) vanishes at the branch point z = ia (and is constant ±2π i at z = −ia on the
two sides), we deduce that ∂xϕ(z; a) must be zero at ±ia. Also (compare Sect. 4.2
below),

∂ϕ

∂x
(z; a) =

{
− 1

z + O(1), z → 0,

O(1), z → ∞.

Thus the ratio of the proposed expression for ∂xϕ(z; a) is bounded at z = ±ia, analytic
across the cut, and bounded at z = ∞ with limit 1 at z = 0. The lemma now follows
from Liouville’s theorem. ��
The potential (4.9) is related to the g-function (4.2) by

g(z) = 1

2

(
ϑ(z; x, N ) − ϕ(z; a) + �

)
, z ∈ C\B, (4.12)

where the constant � (modified Robin constant) is defined by the requirement that
g(z) = ln(z) + O(z−1) as |z| → ∞. The relevant inequalities for g(z) are more
conveniently expressed directly as inequalities for the effective potential. In terms
of the latter, the following properties of the effective potential are equivalent to the
existence of the g-function and characterize ϕ(z; a) (the proof of these statements is
simple if not already obvious):

(1) Near z = 0, the effective potential has the behavior

ϕ(z; a) = −ϑ(z; x) + O(1) ⇒ y(z) = 1

2
ϑz(z; x) + O(1) , (4.13)

while near z = ∞, it behaves as

ϕ(z) = −2 ln z + O(1). (4.14)

(2) Analytic continuation of ϕ(z; a) in the domain z ∈ C\B yields the same function
up to addition of imaginary constants; in particular, the analytic continuation of
ϕ(z; a) around a large circle orthogonal to B yields ϕ(z; a) + 2π i.

(3) For each component B j of B, we have that

ϕ+(z; a) + ϕ−(z; a) = −2iα j , z ∈ B j , α j ∈ R.
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(4) The effective potential

�(z; x) ≡ 	(ϕ(z; a)
)
, z ∈ C\B,

with a = a(x) as in (1.18) and (1.19) is a harmonic function in z ∈ C\B.
Moreover, �(z; ·)∣∣B ≡ 0.

(5) Inequality 1. The sign of �(z) on the left and right of B is negative.
(6) Inequality 2.Wecan continuously deform the contour of integration γ to a simple

Jordan curve (still denoted by γ ) such that B ⊂ γ and such that �(z)
∣∣
γ \B > 0.

Note that ϕ(z; a) and g(z) are both related to the antiderivative of the differential

y(z)dz = (P4N+2(z)
) 1
2

dz

z2N+2 ,

which is defined on a Riemann surface X = {(w, z) : w2 = P4N+2(z)} of genus
between 0 and 2N . Since �(z) = 	(ϕ(z)) vanishes along B, it also follows that B is
a subset of its zero-level set; therefore, B consists of a union of arcs defined locally
by the differential equation 	(y(z)dz) = 0.

4.2 Location of Branch Cut

The following proposition appeared in [5] but applies also to the present situation
(4.10).

Proposition 4.6 The effective potential �(z; a) = 	(ϕ(z; a)
)

has the following prop-
erties:

(1) The function �(z; a) is defined modulo a sign depending on the determination of

(z2 + a2)
1
2 .

(2) The zero-level set Z = {z ∈ C : �(z; a) = 0} is well defined independent of the
determination of the square root in (1) and invariant under the reflection z 
→ −z.

(3) For |a| sufficiently large, there are two smooth branches of the zero-level set Z
that connect z = ±ia and that are symmetric under z 
→ −z.

Proof Statements (1) and (2) follow just as in ([5] Proposition 3.5); for (3), we note
that, as a → ∞,

ϕ(za; a) →−2 ln
(

z + (z2+ 1)
1
2

i

)
+ 2

z
(z2 + 1)

1
2 =−2

∫ z

i

(
1 + w2) 12 dw

w2 ≡ Q(z),

and the limit is uniform on compact subsets of the Riemann sphere not containing
z = 0. The remaining logic is now as in [5]. ��
Suppose that a > 0 is sufficiently large, and thus Proposition 4.6 applies. We claim
that B = B(x, N ) is the branch in point (3) above that intersects the positive half ray
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R+ (by deformation, this fixes the branch cut for all x /∈ PN ). In order to see this,
recall from (4.13), as z → 0,

y(z) ∼ −1

2
ϑz(z; x, N ) ∼ 1

2z2N+2 ⇒ y(z) → +∞, z ↓ 0.

But this requires in (4.3) that (z2 + a2)
1
2 ∼ −a as z → 0. Simultaneously, (4.14)

requires y(z) ∼ 1
z near z = ∞ and hence (z2 + a2)

1
2 ∼ z as z → +∞. Hence, the

determination of the square root in (4.3) has to change on the positive half ray; i.e.,
B = B(x, N ) is as claimed.

4.3 The inequalities of the g-Function and the Region PN

Since the Quadratic Differentials

η = (dϕ)2 = 4(z2 + a2)P2(z; a)
dz2

z4N+4 and in general

η = (dϕ)2 = 4P4N+2(z)
dz2

z4N+4 (4.15)

are of the type studied by Jenkins and Spencer [18], that is, of the form R(z)dz2

with R(z) a rational function, we can follow some of the reasoning that was already
explained in [5].

Preliminaries. Define the set Hx as consisting of the union of the second-order
poles and all critical trajectories, i.e., all solutions of 	(dϕ(z; a)) = 	(2y(z)dz) = 0
that issue from each of the zeros and simple poles of R(z); the latter are absent in
our case. The zeros are at ±ia and at the N pairs ±z j that are the roots of the even
polynomial P(z; a). Also [23], there are 2k + 1 branches of Hx issuing from each
of the points of order k of R(z), k = −1, 0, 1, . . . (the case k = −1 corresponds to
simple poles, and all others to zeroes). We are interested in the connected components
of

C\Hx =
⊔

j

K j ,

and a simple argument in analytic function theory (see [18]) shows that each simply
connected component K j is conformally mapped by ϕ(z; a) into a half-plane or a
vertical strip α < �(z; x) < β; each doubly connected component K is mapped to

an annulus (or a punctured disk) {r− < |w| < r+} by w = e
2π i

p ϕ(z), where p = ∮
γ
dϕ

and γ is a closed simple contour separating the two boundary components of K .
It is also shown in [18] that there are no other possibilities for the topology of the
connected components K j . Moreover, there is a one-to-one correspondence between
annular domains (including the degenerate case of a punctured disk) and free homotopy
classes of simple closed contours γ for which

∮
γ
dϕ �= 0. In our case, there is only one
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Fig. 2 Illustration of the conformal punctured disk K∞, foliated by the trajectories Cr (one of them is
highlighted and labelled). The complement, D0, contains the other critical trajectories and consists of the
two-lobed region marked by the thick (blue) line. In this example, N = 2 so there are 4 saddle points inside
D0, visible here where the critical trajectories intersect at right angles (Color figure online)

such class corresponding to a loop encircling the origin and hence only one annular
domain that we denote by K∞ (which is actually a punctured disk).

By construction, ϕ(z; a) ∼ −2 ln z, z → ∞, which shows that z = ∞ is at the

center of a conformal punctured disk via the conformal map w = e
1
2ϕ(z). Moreover,

the level sets Cr = {z : �(z; x) = −2 ln r} are foliating a region around z = ∞ in
topological circles if r is sufficiently large. Thus none of the hyperelliptic trajectories
issuing from ±ia, {±z j } can “escape” to infinity; they either connect to z = 0 or
amongst each other. Suppose r0 is the infimum of the r > 0 for which Cr is smooth;
this means thatCr0 contains at least one zero of dzϕ (by symmetry, it contains then two
zeros in our situation). The annular (punctured disk) domain K∞ is then (see Fig. 2)

K∞ =
⋃

r>r0

Cr .

We also write D0 = C \ K∞, which is a simply connected, symmetric region con-
taining the origin.
Necessary and sufficient condition for the correct inequalities in genus zero. We
argue that we need to have r0 = 0. To put it differently, the “first encounter” of the
level sets Cr as r decreases must be with the two branch points ±ia rather than any
of the zeros {z j }. We shall then verify that this occurs for x > 0 large enough.
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Sufficiency. Suppose now that r0 = 0 and thus ±ia ∈ K∞ and ±z j ∈ Int(D0). Then
the simple, closed loop ∂K∞ is separated into two components by ±ia, and each of
them is a hyperelliptic trajectory. We know that there must be three trajectories from
each ±ia, and two of them are already accounted for and form the boundary of D0
(see Fig. 2); thus the third trajectory is entirely contained in D0, which is compact.

Now let us turn our attention to D0; the points ±z j ∈ D0 for j = 1, . . . , N . In D0,
each branch of y(z) (4.3) is single valued (the branch points are on the boundary of
D0). Only one of the two branches of y(z) has the behavior 1

2ϑz(z; x); integrating this
branch from ia coincides with ϕ(z; x) in D0. The value of the sign of � in the interior
of D0 close to the boundary D0 determines which of the two parts of ∂ D0\{±ia} is
the branch cut B: this is the part that has � > 0 on both sides (ie., in D0 and K∞).
Thus � is continuous but not harmonic on B, while on ∂ D0\B it is continuous and
harmonic. We still need to show that there is a path connecting ±ia that lies within
the region � < 0.

This follows from the topological description of the possible regions K j discussed
in the paragraph “Preliminaries”. Indeed, let K1 be the region containing the arc ∂ D0\B
where ϕ(z; a) is conformally one-to-one. From the discussion of signs thus far, this
is either a half-plane w = � < 0 or a strip −ε < � < 0 (the only annular domain is
K∞). The two points ±ia are mapped on the imaginary axis 	w = � = 0; thus there
is a path connecting ϕ(ia) to ϕ(−ia) in the w-plane that lies in the left half-plane. The
pre-image of this path in the z plane connects thus±ia, and� restricted to the interior
points of this path is strictly negative.

Necessity. If r0 > 0, then ±ia ∈ D0. The trajectories issuing from ±ia all belong
to the zero-level set of�. None of them can connect to any of the zeros {±z j }, and thus
they either connect to each other or to the origin. Since the sign of � changes 2N + 1
times around z = 0, they all must go to the origin and thus there is no possibility of
deforming the contour of integration so that it contains the branch cut B and avoids
the origin.

Sufficient condition for the correct inequalities in highest genus. We work with
the same general setup as in the previous case. Now the quadratic differential is of the
form on the right in (4.15). Suppose that P4N+2(z) there has all simple roots {a±

k }2N+1
k=1

(the roots come clearly in pairs of opposite signs). We claim that a sufficient condition
for the fulfillment of the inequalities is that all branch points a±

k lie on ∂ D0 = ∂K∞.
In this case, ∂K∞ is broken into 4N +2 arcs (see for example Fig. 3). There is only one
branch of y(z) that behaves as y(z) ∼ 1

2ϑz(z; x) near z = 0; the integral of this branch
with base point a+

1 is single-valued in D0 = C\K∞ because the region contains no
branch points and the residue of y(z) at z = 0 vanishes; this integral then defines
ϕ(z; a) (and �) within D0. The level curves of �(z; x) that issue from a j and do not
connect to other branch points must connect to the origin because �(z; x) changes
sign exactly 4N + 2 times when going around the origin. The regions where ϕ(z; a)

is now one-to-one within D0 are 4N + 2 half-planes because their boundary has only
one connected component. Necessarily in 2N +1 of them�(z; x) < 0, and in 2N +1
of them �(z; x) > 0. The arcs of ∂K∞\{a±

k }2N+1
k=1 bounding the three regions where

�(z; x) < 0 are the cuts, and the others are simply zero-level sets separating regions
where �(z; x) has opposite signs. The possibility of connecting two branch points
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Fig. 3 The placement of the trajectories of the quadratic differential η in the case of x = 0; the red arcs
are the branch cuts of the the �–function. The cases presented correspond to N = 2, 3 (left/right). Also
indicated is the foliation by the trajectories Cr of the region K∞ (see Sect. 4.3). The shaded (cyan) regions
indicate where � > 0; all the trajectories that issue from the branch points constitute the set � = 0 (Color
figure online)

that are connected by an arc of these level sets follows exactly by the same argument
used in the previous paragraph.

Occurrence of the necessary/sufficient conditions. By point (3) of Proposi-
tion 4.6, for a (hence, x) large enough, there is a smooth branch of the zero-level
set of �(z; x) that connects ±ia; by symmetry, there is another one, and thus the third
branch of the level sets that issue from ±ia must go to zero (we have seen that there
is no branch that extends to infinity). The remaining roots of P(z; a) all tend to zero
as a → ∞ (which is easily seen from the explicit expression (4.6)). Thus they must
fall within the region D0. Then the necessary condition in genus 0 is fulfilled. For
the case of maximal genus, the occurrence of the sufficient condition is contained in
Proposition 4.9.

The discriminant locus. By discriminant locus, we refer to the boundary of the
locus in the x-plane where the inequalities for the genus zero Ansatz fail. This is the
boundary of a region PN ; from the discussion above, it follows that the inequalities are
preserved under a deformation in x until failure occurs exactly when one of the zeros
of P(z; a) falls on the branch cutB connecting±ia, and hence, by symmetry, one also
intersecting the opposite arc. We know that this does not happen for |x | sufficiently
large, and hence the discriminant must be a bounded set.

In order to detect the occurrence of the situation above, it is necessary (but not
sufficient) that �(z j ; x) = 0 for some j ; i.e., one of the saddle points of � lies on the
zero-level set:

∂ PN ⊂ ZN = {x ∈ C : ∃ z ∈ C : 	(ϕ(z; a(x))
) = 0, ϕzz(z; a(x)) = 0

}
. (4.16)

The set ZN is clearly closed, and thus ∂ PN must be compact (since we know already
it is bounded). However, the set ZN is strictly larger than ∂ PN ; indeed it describes
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the situation where any of the saddle points of �(z; x) intersect any branch of the
zero-level set. The zero-level set contains several branches besides the branch cut, and
hence the set ZN in (4.16) describes also all these “fake” situations.

A detailed analysis for arbitrary N seems unwieldy. We shall attempt below only
a partial study of the case N = 2, 3 in “Appendix 2”, where we show that the points
(1.20) do indeed belong to the boundary of the regions PN for N = 2, 3. However, the
set ZN is easily drawn, and the results are displayed in Fig. 1 together with the roots
of some higher polynomials. The result of this discussion is the following theorem:

Theorem 4.7 The roots R
[N ]
n of the polynomials Q[N ]

n

(
n

2N
2N+1 x

)
all lie within an

arbitrarily small neighborhood of a compact region PN as n → ∞; the boundary
of this region consists entirely of a finite union of real-analytic arcs in the x plane
satisfying the condition (4.16).

The condition (4.16) is spelled out in more detail in the statement of Theorem 1.7,
which is henceforth proved as well.

Remark 4.8 A careful consideration should also allow us to prove that the region is
simply connected. It is also relatively simple to show that x = 0 belongs to the interior
of this region (see Proposition 4.9 below).

The set ZN in (4.16) contains the points x for which one pair of roots of P(z; a)

coincides with the branch points ±ia; these points are easily computed and are pre-
cisely the 2N +1 points in (1.20). However, we cannot positively conclude for general
N that they are on the boundary of PN , although this is quite evident from the numer-
ics. Also, the detailed shape of ∂ PN , beyond the easily established discrete Z2N+1
symmetry, is hard to describe in more detail; for example, it is not obvious how to
conclude that it consists of 4N + 2 smooth arcs for N ∈ Z≥2, as Fig. 1 clearly shows.
We find it however already sufficiently interesting that we can narrow down the bound-
ary of� as a subset of a simple set of equations (4.16), although we cannot completely
describe it.

4.4 Large n Behavior of Rational Solutions

Wewant to provide a short comment on the large n behavior of rational solutions to the
hierarchy (1.8) computed in (4.17). First, compare Proposition 3.2 in [5] for N = 1;
we have

u(x; n, N ) = 1

2
n

1
2N+1

�11(0; x, n, N )�12(0; x, n, N )

�1;12(x, n, N )
,

where �(z) = �(z; x, n, N ) denotes the solution of RHP 4.1. Second, using this
formula and following similar steps as in Section 6.1 of [5], we would then obtain, as
n → ∞,

u
(
n

2N
2N+1 x; n, N

) = − n
1

2N+1

2a(x; N )

(
1 + O

(
n−1
) )

(4.17)
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uniformly for x in the genus-zero region. Here a = a(x; N ) is the branch (1.19) of Eq.
(1.18) introduced in Definition 1.6, and the derivation of (4.17) is essentially identical
to the proof of Corollary 6.1 in [5].

4.5 At the Center of PN

In a small vicinity of x = 0, we have

P4N+2(z) =
2N+1∏
k=1

(z − a+
k )(z − a−

k ),

with a±
j �= a±

k for j �= k. As in [5], the branch points a+
k = −a−

k are partially
determined through (4.13),(4.14) and in addition through Boutroux type conditions

	
(∮

γ j

y(z)dz

)
= 0, γ j ∈ H1(X,Z); y(z) = 1

z2N+2

(
P4N+2(z)

) 1
2 .

The latter are imposed on the hyperelliptic curve X = {(w, z) : w2 = P4N+2(z)},
which is obtained by crosswise gluing together two copies of C\B with B =⋃N

k=1[a+
2k−1, a+

2k]∪ [a+
2N+1, a−

1 ]∪⋃N
k=1[a−

2k, a−
2k+1]. Solvability of the resulting sys-

tem for {a+
k }2N+1

k=1 would now follow as in [5], but here we are only interested in the
case x = 0.

Proposition 4.9 (Compare Proposition 3.9 in [5]). For x=0, theg-function is obtained
from (4.12), (4.9) using

y(z) = 1

z2N+2

(
R(z)

) 1
2 , R(z) = P4N+2(z)

∣∣∣
x=0

= z4N+2 + 1

4
,

which is defined and analytic off z ∈ B with the branch points a+
k = ak,0 =

2− 1
2N+1 e

iπk
2N+1 , k = 1, . . . , 2N + 1.

Proof Local behavior. Near z = 0, we have

y(z) = −1

2

1

z2N+2

(
1 + O

(
z4N+2

))
,

and near infinity, clearly y(z) = 1
z + O(z−2). Note that the determination of the root

near z = 0 is the opposite.
Boutroux condition. We have

∫ a j+1,0

a j,0

(
R(z)

) 1
2

dz

z2N+2 =
∫ ωa j+1,0

ωa j,0

ω−2N−1(R(ωz)
) 1
2

dz

z2N+2

= −
∫ a j+2,0

a j+1,0

(
R(z)

) 1
2

dz

z2N+2 ,
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and thus it is sufficient to verify the Boutroux condition

∮
γ

(
R(z)

) 1
2

dz

z2N+2 ∈ iR

for a specific j ∈ {1, . . . , 2N }. This condition guarantees that all branch points lie
in the zero-level set of �. But for j = 1, it follows immediately that the integral is
imaginary using the Schwartz symmetry.

Connectedness of the level curves. First of all, the set �(z) = 0 inC\{0} consists
of one connected component alone; this is so because there are no saddle points, and
if there were two or more connected components, there would have to be a saddle
point in the region bounded by them. We shall now verify that the level curves satisfy
the necessary and sufficient conditions specified in Sect. 4.3. The critical trajectories
must:

(1) Connect all 4N + 2 branch points,
(2) Obey the Z4N+2 symmetry because of obvious symmetry.

A simple counting then shows that the only possibility is that exactly one trajectory
from each branch point (in fact a straight segment) connects the branch points to
0 because the sign of � changes 4N + 2 times around a small circle surrounding
the origin. The other two trajectories must then connect the branch points. This is
depicted in Fig. 3. The discussion on the necessary and sufficient condition for the
correct inequalities is now as explained in ([5], Section 3.1). ��
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5 Appendix 1: Proof of the Miura Relation (2.7)

Remark 5.1 We draw the reader’s attention to the notation used in this section:

t = (t1, t2, t3, t4, . . . ) , to = (t1, 0, t3, 0, t5, . . . ) , t̃o = (t1, 0, 2
2t3, 0, 2

4t5, . . . ),

t j ∈ C.

Let k, � ∈ Z≥0, and introduce

μk(t) = 1

2π i

∮
S

zkeϑ(z) dz

z
, ϑ(z) = ϑ(z; t) =

∑
j≥1

t j

z j
,

�n,�(t) = det
[
μ�+ j+k−2(t)

]n
j,k=1, �0,�(t) ≡ 1,
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where S ⊂ C denotes the unit circle traversed in counterclockwise orientation. Recall-
ing (1.5), we see that

μk(t) = 1

k!
dk

dwk
exp

[∑
j≥1

t jw
j
]∣∣∣∣

w=0

= hk(t),

and thus with (1.4),

�n,�(t) = s(�+n+1)n (t).

In particular, by Lemma 3.1, we know that for the special value � = 0, we have the
identity

�n,0(to) = s(n+1)n (to) = 2−n2s2δn

(
t̃o
)
.

Next, let {pn,�(z)}n≥0 be the monic orthogonal polynomials associated with the mea-
sure

dν�(z) = 1

2π i
z�eϑ(z) dz

z
, z ∈ S, � ∈ Z≥0;

∮
S

pn,�(z)pm,�(z)dν�(z) = ĥnδnm .

It is well known [11] that the matrix

�n,�(z) =
[

pn,�(z)
1
2π i

∮
S pn,�(w)

dν�(w)
w−z

γn−1,� pn−1,�(z)
γn−1,�
2π i

∮
S pn−1,�(w)

dν�(w)
w−z

]
,

z ∈ C\S; γn,� = −2π i
�n,�(t)

�n+1,�(t)
(5.1)

satisfies a Riemann–Hilbert problem; i.e. �n,�(z) is analytic for z ∈ C\S, and we have
the conditions

(
�n,�(z)

)
+ = (�n,�(z)

)
−

[
1 z�−1eϑ(z)

0 1

]
, z ∈ S;

�n,�(z) =
(

I + �′
n,�(∞)

1

z
+ O

(
z−2
))

znσ3 , z → ∞.

Proposition 5.2 The following identities hold for the Hankel determinants: �n,�(t):

�n,�+1(t − [z])
�n,�(t)

= (−1)n(�n,�(z)
)
11,

�n,�−1(t + [z])
�n,�(t)

= (−1)n(�n,�(z)
)
22,

(5.2)

and

�n+1,�(t)
�n,�(t)

= −2π i
(
�′

n,�(∞)
)
12,

�n−1,�(t)
�n,�(t)

= i

2π

(
�′

n,�(∞)
)
21, (5.3)

123



Constr Approx (2016) 44:417–453 447

where [z] denotes the infinite vector of components (z, z2
2 , z3

3 , z4
4 , . . .); i.e.

t ∓ [z] =
(

t1 ∓ z, t2 ∓ z2

2
, t3 ∓ z3

3
, . . .

)
.

Proof The two identities in (5.3) follow simply by inspection of the expression (5.1).
As for the identities (5.2), the proof follows from Heine’s formula for the orthogonal
polynomials and the observation that

w� exp
[
ϑ(w; t − [z])] = w�−1(w − z) exp

[
ϑ(w; t)

]
,

w� exp
[
ϑ(w; t + [z])] = w�+1

w − z
exp
[
ϑ(w; t)

]
.

Indeed, we have

�n,�+1(t − [z]) = det
[
μ�+ j+k−1(t − [z])]nj,k=1

= 1

n!
∮

Sn

∏
j<k

(w j − wk)
2

n∏
j=1

w�
j exp

[
ϑ(w j ; t − [z])]dw j

2π i

= 1

n!
∮

Sn

∏
j<k

(w j − wk)
2

n∏
j=1

(w j − z)dν�(w j )

= (−1)n det

⎡
⎢⎢⎢⎣

μ� · · · μ�+n
...

...

μ�+n−1 μ�+2n−1
1 · · · zn

⎤
⎥⎥⎥⎦ = (−1)n pn,�(z)�n,�(t),

where we used the well-known representation of orthogonal polynomials in terms of
moment determinants (see, e.g., Proposition 3.8 in [11]). The second identity can be
found in [4], but we can give here a direct derivation using Andreief’s identity [3].
Recall that dν�(w) = w�−1eϑ(w)dw. Then

∮
Sn

∏
j<k

(wk−w j )
2

n∏
j=1

dν�(w j )

w j−z

=
∮

Sn
det
[
wk−1

j

]n

j,k=1
det
[
wk−1

j

]n

j,k=1

n∏
j=1

dν�(w j )

w j−z

=
∮

Sn
det
[
wk−1

j

]n

j,k=1
det

[
wk−1

j

w j − z

]n

j,k=1

n∏
j=1

dν�(w j ). (5.4)

Multi-linearity allows us to replace the monic powers in the first determinant by the
monic orthogonal polynomials p j,�(w), so that we obtain
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(5.4) =
∮

Sn
det
[

pk−1,�(w j )
]n

j,k=1
det

[
wk−1

j

w j − z

]n

j,k=1

n∏
j=1

dν�(w j ). (5.5)

Now, in the second determinant, we can subtract to the columns 2 ≤ k ≤ n themultiple
zk−1/(wk − z) of the first column, thus obtaining

(5.5) =
∮

Sn
det
[

p j−1,�(wk)
]n

j,k=1
det

⎡
⎢⎢⎢⎣

1
w1−z

w1−z
w1−z · · · wn−1

1 −zn−1

w1−z
...

...
...

1
wn−z

wn−z
wn−z · · · wn−1

n −zn−1

wn−z

⎤
⎥⎥⎥⎦

n∏
j=1

dν�(w j ).

(5.6)

Now using Andreief’s identity, we obtain

(5.6)=n! det

⎡
⎢⎢⎢⎢⎢⎣

∮
S p0,�(w)

dν�(w)
w−z

∮
S p0,�(w)w−z

w−z dν�(w) · · · ∮S p0,�(w)wn−1−zn−1

w−z dν�(w)∮
S p1,�(w)

dν�(w)
w−z

∮
S p1,�(w)w−z

w−z dν�(w)
∮

S p1,�(w)wn−1−zn−1

w−z dν�(w)

.

.

.
.
.
.

.

.

.∮
S pn−1,�(w)

dν�(w)
w−z

∮
S pn−1,�(w)w−z

w−z dν�(w) · · · ∮S pn−1,�(w)wn−1−zn−1

w−z dν�(w)

⎤
⎥⎥⎥⎥⎥⎦

,

but due to orthogonality, the matrix above has the following structure:

(5.6) = n! det

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∮
S p0,�(w)

dν�(w)
w−z ĥ0 � · · · �∮

S p1,�(w)
dν�(w)
w−z 0 ĥ1 � �

...
... 0

. . . �
...

...
...

. . . ĥn−2∮
S pn−1,�(w)

dν�(w)
w−z 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= (−1)n+1n!
∮

S
pn−1,�(w)

dν�(w)

w − z

n−2∏
j=0

ĥ j .

However,

ĥ j =
∮

S
p2j,�(w)dν�(w) = � j+1,�(t)

� j,�(t)
,

and therefore

�n,�−2(t + [z]) = (−1)n+1�n−1,�(t)
�0,�(t)

∮
S

pn−1,�(w)
dν�(w)

w − z

= (−1)n�n,�(t)
(
�n,�(z)

)
22.

��
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5.1 Dodgson–Hirota Bilinear Identity

Consider the following matrix-valued function:

Hn,�(z; t, s) = �n,�−1(z; t)
[
eϑ(z;t)−ϑ(z;s) 0

0 z2

]
�−1

n,�+1(z; s), z ∈ C\(S ∪ {0}).

A direct inspection using the jumps of �n,� shows that this matrix has no jumps on
the contour S; however, it has an essential singularity at z = 0 due to the presence of
the exponentials. We can thus compute the contour integral below in two ways. First,
by evaluation as a residue at infinity:

1

2π i

∮
|z|=R

Hn,�(z; t, s)
dz

z
=
[
1 − (�′

n,�−1(∞; t)
)
12

(
�′

n,�+1(∞; s)
)
21 �

� �

]
, (5.7)

where the � indicates expressions that are not relevant to the steps below. Secondly,
we evaluate the left-hand side in (5.7) as a residue at z = 0, but we are only interested
in the (11)-entry,

1

2π i

∮
|z|=R

(
Hn,�(z; t, s)

)
11

dz

z
= res

z=0

1

z
eϑ(z;t)−ϑ(z;s)(�n,�−1(z; t)

)
11

(
�n,�+1(z; s)

)
22.

Hence with (5.7) and Proposition 5.2,

res
z=0

1

z
eϑ(z;t)−ϑ(z;s) �n,�(t − [z])�n,�(s + [z])

�n,�−1(t)�n,�+1(s)
= 1 − �n+1,�−1(t)�n−1,�+1(s)

�n,�−1(t)�n,�+1(s)
,

or equivalently,

res
z=0

1

z
eϑ(z;t)−ϑ(z;s)�n,�(t − [z])�n,�(s + [z])

= �n,�−1(t)�n,�+1(s) − �n+1,�−1(t)�n−1,�+1(s). (5.8)

Remark 5.3 Identity (5.8) closely resembles a “Hirota” version of the classical Dodg-
son determinantal identity, for if we set t = s, then (5.8) reduces to the Dodgson
identity for Hankel determinants,

�2
n,� = �n,�−1 �n,�+1 − �n+1,�−1�n−1,�+1. (5.9)

We now rewrite Eq. (5.8) with the substitution t 
→ t + h, s = t − h and define

H Dn,�(t, h) = res
z=0

(
1

z
e2ϑ(z;h)�n,�(t + h − [z])�n,�(t − h + [z])

)

− �n,�−1(t + h)�n,�+1(t − h) − �n+1,�−1(t + h)�n−1,�+1(t − h)
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so that (5.8) can be written in the compact form

H Dn,�(t, h) ≡ 0 , ∀ t, h, ∀ n, � ∈ Z≥1. (5.10)

For the rest of this section, we shall set all even times to zero; i.e., we choose t = to.
Now use Corollary 3.2 in conjunction with (5.9),

�2
n,1(to)=�n,0(to)�n,2(to)−�n+1,0(to)�n−1,2(to)=2(−1)n�n,0(to)�n+1,0(to),

(5.11)

and recall Lemma 3.1,

�n,0(to) = s(n+1)n (to) = 2−n2s2δn
(̃to).

Hence with (2.6) for t2 j+1 = 0, j > N and t1 = x ,

�n,0(to) = 2−n2e2gn(x;t), �n+1,0(to) = 2−(n+1)2e2Wn(x;t)+2gn(x;t). (5.12)

Differentiating (5.10) with respect to h j , we can derive awhole hierarchy of equations;
however, we are only interested in one particular identity:

∂2

∂h2
1

H Dn,�(to, h)

∣∣∣
h=0

= −∂2�n+1,�−1

∂t21
�n−1,�+1 − �n+1,�−1

∂2�n−1,�+1

∂t21

+ 2
∂�n+1,�−1

∂t1

∂�n−1,�+1

∂t1

+ ∂2�n,�−1

∂t21
�n,�+1 − 2

∂�n,�−1

∂t1

∂�n,�+1

∂t1

+�n,�−1
∂2�n,�+1

∂t21
+ 2

∂2 ln�n,�

∂t12
(�n,�)

2 = 0, (5.13)

and the argument of all determinants in the right-hand side equals t = to. For � = 1,
with (5.13) and (3.5), (5.11), this leads to

0= (�′′
n+1,0�n,0+�n+1,0�′′

n,0−2�′
n+1,0�′

n,0

)+(ln�n+1,0 + ln�n,0
)′′

�n+1,0�n,0,

(′) = ∂

∂t1
,

which can be rewritten as

0 =
(

�′′
n+1,0

�n+1,0
+ �′′

n,0

�n,0
− 2

�′
n+1,0

�n+1,0

�′
n,0

�n,0

)
+ (ln�n+1,0 + ln�n,0

)′′

= 2
∂2

∂t21
ln
(
�n,0�n+1,0

)+
(

∂

∂t1
ln

�n,0

�n+1,0

)2
,
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and after simplification with (5.12),

2 ∂2x gn(x; t) = −∂2x Wn(x; t) − (∂x Wn(x; t)
)2

,

which completes the proof of (2.7).

6 Appendix 2: The Outer Corners of the Regions PN for N = 2, 3

In this section, we offer a proof that the points (1.20) belong to the boundary of PN .
The proof is a verification that the inequalities for the effective potential are fulfilled
at the particular values of a(x) determined in (4.8). These correspond in the a-plane to
the points (1.20) in the x-plane. The proof is a simple deformation argument starting
from large |a| (and hence also large x).

Observing various panes in Fig. 1 and using the Z2N+1 symmetry of the region, it
is sufficient to show that the point

a[N ]
0 = 1

2
(−1)N

(
2N

(
2N
N

)) 1
2N+1

⇒ x [N ]
0 = (−1)N

(
(2N + 1)

(
2N + 1

2N

)2N ( 2N
N

)) 1
2N+1

(or rather its x–image) belongs to the boundary of PN . This point is alternatively
positive or negative, depending on the parity of N . Consider now in some detail the
case N = 2; then a[2]

0 � 0.944 (x [2]
0 � 2.36021). In this case, the polynomial P(z; a)

(4.6) equals

P = P2(z; a) = z4 + 1

4

z2

a3 − 1

2a
.

Let z±
j (a), j = 1, 2 denote the roots of P2. We know from the argument in Sect. 4.3

that for |a| large, the inequalities are fulfilled; as we deform a from larger absolute
values to smaller ones, these inequalities can fail only if the sign of �(z±

j (a); a)

changes.
We now simply have to verify that the sign of �(z j (a); a) remains constant as

a decreases from +∞ to the critical value a[2]
0 (corresponding to x decreasing from

+∞ to the rightmost corner x [2]
0 ). Since the four roots admit an explicit expression in

terms of a, this verification is a simple exercise in calculus. To be more precise, one
pair that we denote z±

2 (a) is purely imaginary and lies on the zero-level set of �(z; a)

identically for a ∈ [a[2]
0 ,∞); this is not a cause of concern because it belongs to the

level curve (in fact a straight line) joining z = ±ia to z = 0. The other pair z±
1 (a) is

real for a ∈ [a[2]
0 ,∞). Then one can easily verify that

F(a) = �
(
z±
1 (a); a

)
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Fig. 4 The graph of the value of � at the saddle point z1

is, depending on which of the two members of the pair, a monotone increas-
ing/decreasing function of a ∈ [a[2]

0 ,∞) and not changing sign. This verification
uses Lemma 4.5 and the explicit expression for the roots, so that (for a real)

d

da
�
(
z j (a); a

) = −	
(

∂x�(z; a)
dx

da

∂a P(z; a)

P ′(z; a)

∣∣∣∣
z=z j (a)

)

= 	
(√

z2 + a2

za

∂a P(z; a)

P ′(z; a)

∣∣∣∣
z=z j (a)

dx

da

)
. (6.1)

In Fig. 4, we display the graph of�(z1(a); a) in the range [a[2]
0 ,∞); the monotonicity

can be shown by inspecting the sign of (6.1); we leave the detail to the reader. The
argument above can be repeated for N = 3, but for larger N we were not able to find
a unifying argument.
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