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Abstract We derive and investigate lower bounds for the potential energy of finite
spherical point sets (spherical codes). Our bounds are optimal in the following sense—
they cannot be improved by employing polynomials of the same or lower degrees in
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the Delsarte–Yudin method. However, improvements are sometimes possible, and we
provide a necessary and sufficient condition for the existence of such better bounds. All
our bounds can be obtained in a unified manner that does not depend on the potential
function, provided the potential is given by an absolutely monotone function of the
inner product between pairs of points, and this is the reason we call them universal.
We also establish a criterion for a given code of dimension n and cardinality N not to
be LP-universally optimal; e.g., we show that two codes conjectured by Ballinger et
al. to be universally optimal are not LP-universally optimal.

Keywords Minimal energy problems · Spherical potentials · Spherical codes
and designs · Levenshtein bounds · Delsarte–Goethals–Seidel bounds · Linear
programming

Mathematics Subject Classification 74G65 · 94B65 (52A40, 05B30)

1 Introduction

Minimal energy configurations, maximal codes, and spherical designs havewide rang-
ing applications in various fields of science, such as crystallography, nanotechnology,
material science, information theory, wireless communications, etc. In this article, we
shall derive lower bounds on the potential energy of such configurations via a unified
methodworking for a large class of potential interaction functions. A fundamental con-
nection between our lower bounds and the classical Delsarte–Goethals–Seidel bounds
on spherical designs and Levenshtein’s bounds on maximal codes is presented. For a
fixed dimension and code cardinality, the Delsarte–Goethals–Seidel bounds serve to
localize the analysis, and then, as illustrated in Fig. 2, the zeros of the Levenshtein
optimal polynomials for maximal codes determine the optimal polynomials for a large
class of potentials.

Following Levenshtein’s terminology (see [27]) we call the lower bounds that we
obtain universal. This choice of this term is also consistent with its use by Cohn and
Kumar in their study [14] of universally optimal energy configurations, since our
bounds likewise work for all absolutely monotone potential functions of the inner
product. Furthermore, our lower bounds are attained for all sharp configurations as
defined in [14].

LetSn−1 denote the unit sphere inRn .We refer to afinite setC ⊂ S
n−1 as a spherical

code, and, for a given (extended real-valued) function h(t) : [−1, 1] → [0,+∞], we
define the h-energy of a spherical code C by
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E(C; h) :=
∑

x,y∈C,x �=y

h(〈x, y〉),

where 〈x, y〉 denotes the inner product of x and y. Note that for x, y ∈ S
n−1, we have

|x − y|2 = 2 − 2〈x, y〉.
A commonly arising problem is to minimize the potential energy provided the

cardinality |C | of C is fixed, that is, to determine

E(n, N ; h) := inf
{

E(C; h) : |C | = N , C ⊂ Sn−1
}

,

the minimum possible h-energy of a spherical code of cardinality N (see [20,31]).
Although the theorems in Sect. 2 hold for general potentials h, we will be espe-
cially concerned with functions h(t) that are absolutely monotone (strictly absolutely
monotone); that is, h(i)(t) ≥ 0, i = 0, 1, . . . (h(i)(t) > 0, i = 0, 1, . . . ). Some exam-
ples of absolutely monotone potentials include the Riesz α-potential h(t) = [2(1 −
t)]−α/2, α > 0, and in particular the Newton potential (when α = n − 2); the Gauss
potential h(t) = e2t−2; and the Korevaar potential h(t) = (1 + r2 − 2r t)−(n−2)/2,
0 < r < 1. Although the logarithmic potential h(t) = −(1/2) ln (2 − 2t) is not
positive on [−1, 0], all its derivatives are positive, and the results in this article
apply to this potential as well. The situation is similar for the Fejes–Tóth potential
h(t) = −[2(1 − t)]α/2, 0 < α < 2, which includes the important particular case in
discrete geometry of α = 1, namely of finding configurations that maximize the sum
of all mutual distances.

A general technique (referred to here as the Delsarte–Yudin method) for obtaining
lower bounds for the h-energy of arbitrary spherical codes was developed by Yudin
[35] using Delsarte’s linear programming method [17,18,21] and was further applied
by Kolushov and Yudin [22], Andreev [1], and Cohn and Kumar [14]. These bounds
depend on the choice of polynomials satisfying certain constraints. Here we provide
explicit solutions to Delsarte’s linear program based upon Levenshtein’s work onmax-
imal codes [26,27], which allows us to establish universal lower bounds on potential
energy for a large class of potential functions h.

In Sect. 2, we describe in a unified manner results fromDelsarte et al. [18] and Lev-
enshtein [25–27] that are instrumental in defining our bounds. Theorems 2.3 and 2.6
explain the importance of special type quadrature rules in determining lower bounds
on energy and investigation of their optimality. Theorem 3.1 is one of the main results
in this paper. It gives lower bounds that are optimal in the following sense – they
cannot be improved by polynomials of the same or lower degree that satisfy the stan-
dard linear programming constraints specified in Theorem 2.2. On the other hand,
the bounds of Theorem 3.1 can be further improved in some cases, and Theorem 4.1
gives necessary and sufficient conditions for existence of such improvements via the
so-called test functions, which were first introduced and investigated for analysis of
the Levenshtein bounds for maximal codes in 1996 by Boyvalenkov et al. [11]. We
derive a quantitative version of [11, Theorem 5.2] in Theorem 4.11, which provides a
criterion for disproving that certain codes are LP-universally optimal. As an applica-
tion, we prove that the two codes conjectured to be universally optimal in [2] are not

123



388 Constr Approx (2016) 44:385–415

LP-universally optimal; namely, their universal optimality may not be established by
an ad-hoc approach similar to the 600-cell approach given in [14,15].

2 Linear Programming Framework and 1/N-Quadrature Rules

2.1 Gegenbauer Polynomials and the Delsarte–Yudin Linear Programming
Framework

For fixed dimension n, the Gegenbauer polynomials [33] are defined by P(n)
0 = 1,

P(n)
1 = t and the three-term recurrence relation

(i + n − 2)P(n)
i+1(t) = (2i + n − 2)t P(n)

i (t) − i P(n)
i−1(t) for i ≥ 1. (1)

We note that {P(n)
i (t)} are orthogonal in [−1, 1] with respect to the weight (1 −

t2)(n−3)/2 and that P(n)
i (1) = 1. In standard Jacobi polynomial notation (see [33,

Chapter 4]), we have that

P(n)
i (t) = P((n−3)/2,(n−3)/2)

i (t)

P((n−3)/2,(n−3)/2)
i (1)

.

Denote the space of real polynomials of degree at most k by Pk . Any f ∈ Pk

can be uniquely expanded in terms of the Gegenbauer polynomials as f (t) =∑k
i=0 fi P(n)

i (t). The coefficients fi given by

fi =
∫ 1
−1 f (t)P(n)

i (t)(1 − t2)(n−3)/2 dt
∫ 1
−1

[
P(n)

i (t)
]2

(1 − t2)(n−3)/2 dt
, i = 0, 1, . . . , k,

play an important role in linear programming theorems.
Let {Yk�(x) : � = 1, 2, . . . , rk} be an orthonormal basis of the space Harm(k) of

homogeneous harmonic polynomials in n variables of degree k restricted to S
n−1,

where

rk := dim Harm(k) =
(

n + k − 3

n − 2

)
2k + n − 2

k
=
(

n + k − 1

n − 1

)
−
(

n + k − 3

n − 1

)

(2)
and orthonormality is with respect to integration over the sphere utilizing σn , the
normalized (n − 1)-dimensional Hausdorff measure restricted to Sn−1. The functions
{Yk�, � = 1, 2, . . . , rk} are known as spherical harmonics of degree k. TheGegenbauer
polynomials and spherical harmonics are related through the well-known addition
formula (see [23]):

1

rk

rk∑

�=1

Yk�(x)Yk�(y) = P(n)
k (〈x, y〉), x, y ∈ S

n−1; (3)

123



Constr Approx (2016) 44:385–415 389

that is, the Gegenbauer polynomial P(n)
k (t) is, up to a normalization, the kernel for the

orthogonal projection onto Harm(k).
If f is a function integrable on [−1, 1] with respect to the weight function

(1− t2)(n−3)/2 and y is any fixed point on Sn−1, then the following relation (a partic-
ular/special case of the Funk–Hecke formula, see [29, Theorem 6]) holds:

∫

Sn−1
f (〈x, y〉)dσn(x) = γn

1∫

−1

f (t)(1 − t2)(n−3)/2dt,

where

γn := �
( n
2

)
√

π�
( n−1

2

) .

If C = {x1, . . . , xN } is a spherical code of N points on S
n−1, then it follows from

(3) that:

N∑

i, j=1

P(n)
k (〈xi , x j 〉) = 1

rk

rk∑

�=1

N∑

i, j=1

Yk�(xi )Yk�(x j ) = 1

rk

rk∑

�=1

(
N∑

i=1

Yk�(xi )

)2

≥ 0.

(4)
We define the k-th moment of C by

Mk(C) :=
N∑

i, j=1

P(n)
k (〈xi , x j 〉).

From (4), we have Mk(C) = 0 if and only if
∑N

i=1 Y (xi ) = 0 for all spherical
harmonics Y ∈ Harm(k). If Mk(C) = 0 for 1 ≤ k ≤ τ , then C is called a spherical
τ -design. Equivalently, C is a spherical τ -design if and only if

∫

Sn−1
p(x)dσn(x) = 1

|C |
∑

x∈C

p(x)

(σn is the normalized (n − 1)-dimensional Hausdorff measure) holds for all polyno-
mials p(x) = p(x1, x2, . . . , xn) of degree at most τ . The set

I(C) := {k ∈ N : Mk(C) = 0} (5)

is called the index set of C . Hence, C is a spherical τ -design if and only if
{1, 2, . . . , τ } ⊂ I(C).

Suppose f : [−1, 1] → R is of the form

f (t) =
∞∑

k=0

fk P(n)
k (t), fk ≥ 0 for all k ≥ 1, (6)
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where we remark that f (1) = ∑∞
k=0 fk < ∞. Since |P(n)

k (t)| ≤ 1, it follows that the
right-hand side of (6) converges uniformly on [−1, 1]. We then obtain the following
relations, which form the basis for many packing and energy bounds for spherical
codes C = {xi }N

i=1 of cardinality N (see [6,14,21,35]):

E(C; f ) =
N∑

i, j=1

f (〈xi , x j 〉) − f (1)N

=
∞∑

k=0

fk

N∑

i, j=1

P(n)
k (〈xi , x j 〉) − f (1)N

=
∞∑

k=0

fk Mk(C) − f (1)N

≥ f0N 2 − f (1)N . (7)

Since Mk(C) = 0 for k = 1, . . . , τ when C is a τ -design, the following result
immediately follows from (7).

Theorem 2.1 (Delsarte et al. [18]) Suppose C is a spherical τ -design on S
n−1 and

f (t) is a polynomial of degree at most τ such that f (t) ≥ 0 on [−1, 1] and f0 =
γn

∫ 1
−1 f (t)(1 − t2)(n−3)/2 dt > 0. Then

|C | ≥ f (1)

f0
. (8)

Maximizing the right-hand side of (8) over polynomials satisfying the above
hypotheses, Delsarte et al. [18] obtain a lower bound on

B(n, τ ) := min{|C | : C ⊂ S
n−1 is a spherical τ -design}

Specifically, they show

B(n, τ ) ≥ D(n, τ ) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2

(
n + k − 2

n − 1

)
if τ = 2k − 1,

(
n + k − 1

n − 1

)
+
(

n + k − 2

n − 1

)
if τ = 2k.

(9)

We refer to D(n, τ ) as the Delsarte–Goethals–Seidel bound for spherical τ -designs.
Another application of (7) is Yudin’s lower bound on energy.

Theorem 2.2 (Yudin [35]) Suppose f : [−1, 1] → R is of the form (6) with fk ≥ 0
for all k ≥ 1. Then, for N ≥ 2,

E(n, N ; f ) ≥ f0N 2 − f (1)N .
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Consequently, if h : [−1, 1] → [0,∞] satisfies h(t) ≥ f (t), t ∈ [−1, 1], we have

E(n, N ; h) ≥ f0N 2 − f (1)N . (10)

Furthermore, C is an optimal (energy minimizing) code for h, and equality holds in
(10) if and only if both of the following conditions hold:

(a) f (t) = h(t) for all t ∈ {〈x, y〉 : x �= y, x, y ∈ C};
(b) for all k ≥ 1, either fk = 0 or Mk(C) = 0.

For a given h : [−1, 1] → [0,∞], we denote by An,h the set of functions
f ≤ h satisfying the conditions (6). Recall that for such f , the coefficient sequence
( f0, f1, . . .) ∈ �1. The problem ofmaximizing the lower bound f0N 2− f (1)N arising
in Theorem 2.2 can then be expressed in terms of an infinite linear program:

maximize F( f0, f1, . . .) := N

(
f0(N − 1) −

∞∑

k=1

fk

)
,

subject to
∞∑

k=0

fk P(n)
k (t) ≤ h(t), t ∈ [−1, 1] and fk ≥ 0, for all k ≥ 1. (11)

In the following, we shall consider the above linear program restricted to a subspace
	 (usually finite-dimensional) of the linear space C([−1, 1]) of real-valued functions
continuous on [−1, 1]. For such a 	, we define

W(n, N ,	; h) := sup
f ∈	∩An,h

N 2( f0 − f (1)/N ). (12)

In general, it can be a difficult problem to find the value of W(n, N ,	; h). We con-
sider sufficient conditions that allow us to solve for W(n, N ,	; h). In particular, we
explicitly find the solutions of the truncated linear program (11) and thus find (12)
when 	 = Pk , for all k ≤ τ(n, N ), for some τ(n, N ) (as defined in equation (19)
below). In the particular case when m = τ(n, N ), we derive the universal lower bound
(ULB) for potential energy of spherical codes.

2.2 1/N-Quadrature Rules and Lower Bounds for Energy

We refer to a finite sequence of ordered pairs {(αi , ρi )}k
i=1 as a 1/N-quadrature rule

if −1 ≤ α1 < α2 < · · · < αk < 1 and ρi > 0 for i = 1, 2, . . . , k, and say that
{(αi , ρi )}k

i=1 is exact for a subspace 	 ⊂ C([−1, 1]) if

f0 := γn

∫ 1

−1
f (t)(1 − t2)(n−3)/2dt = f (1)

N
+

k∑

i=1

ρi f (αi ) (13)

for all f ∈ 	.
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Theorem 2.3 Let {(αi , ρi )}k
i=1 be a 1/N-quadrature rule that is exact for a subspace

	 ⊂ C([−1, 1]).
(a) If f ∈ 	 ∩ An,h, then

E(n, N ; h) ≥ N 2
k∑

i=1

ρi f (αi ).

(b) We have

W(n, N ,	; h) ≤ N 2
k∑

i=1

ρi h(αi ). (14)

If there is some f ∈ 	∩ An,h such that f (αi ) = h(αi ) for i = 1, . . . , k, then equality
holds in (14), which yields the universal lower bound

E(n, N ; h) ≥ N 2
k∑

i=1

ρi h(αi ). (15)

Proof If f ∈ 	, then (13) holds, and so, from Theorem 2.2, we obtain

E(n, N ; h) ≥ N 2( f0 − f (1)/N ) = N 2
k∑

i=1

ρi f (αi ),

showing that (a) holds.
For (b), using (13), we obtain

W(n, N ,	; h) = sup
f ∈	∩An,h

N 2( f0 − f (1)/N )

= sup
f ∈	∩An,h

N 2
k∑

i=1

ρi f (αi ) ≤ N 2
k∑

i=1

ρi h(αi ).

Clearly equality holds if there is some f ∈ 	 ∩ An,h such that f (αi ) = h(αi ) for
i = 1, . . . , k. 
�

As we describe next, a spherical code C = {x1, . . . , xN } ⊂ S
n−1 provides a

quadrature rule that is exact on the subspace

	C :=
⎧
⎨

⎩ f (t) = f0 +
∑

�∈I(C)

f� P(n)
� (t) :

∑

�∈I(C)

| f�| < ∞
⎫
⎬

⎭ ,

with I(C) as defined in (5). Let

{〈xi , x j 〉 : xi �= x j ∈ C
} =: {−1 ≤ α1 < α2 < · · · < αk < 1},
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and let {q�} denote the inner product distribution; i.e.,

q� :=
∣∣ {(i, j) : 〈xi , x j 〉 = α�

} ∣∣
N 2 , � = 1, . . . , k.

If f ∈ 	C , then f� = 0 for all � /∈ I(C) (unless � = 0) and equality holds in (7).
Hence, for such f , we obtain

f0 = 1

N 2

(
E(C; f ) + N f (1)

) = f (1)

N
+

k∑

�=1

q� f (α�); (16)

that is, {(α�, q�)}k
�=1 is a 1/N -quadrature rule exact for 	C .

Example 2.4 As an example, we consider the 600-cell C consisting of 120 points in
S
3. Each x ∈ C has 12 nearest neighbors forming an icosahedron (the Voronoi cells

are dodecahedra), and there are 8 inner products −1 = α1 < α2 < · · · < α8 < 1
between distinct points in C . If f (t) ≤ h(t) on [−1, 1] and f (αk) = h(αk) and for
all αk > −1, then we must also have f ′(αk) = h′(αk), resulting in 2 · 7 + 1 = 15
interpolation conditions. If C were a 14-design, then this would suggest we search for
f ∈ A4,h ∩ 	 with 	 = P14. However, C is only an 11-design (i.e., M12(C) �= 0),
although M13(C) = · · · = M19(C) = 0, so C is almost a 19-design. This suggests we
choose	 to be a 15-dimensional subspace ofP19 ∩{P(4)

12 }⊥. In fact, Cohn and Kumar
[14, Section 7] show that for any absolutely monotone potential h on [−1, 1], there is
a unique f ∈ A4,h ∩ 	 for 	 := { f ∈ P17 : f11 = f12 = f13 = 0} that proves the
optimality of C .

Example 2.5 Another example is provided by the so-called sharp configurations [14],
namely, configurations with k distinct inner products that are spherical designs of
strength 2k − 1. In this case, 	 = P2k−1, and the existence of the 1/N -quadrature is
provided by the configuration quadrature (16) and the design property. We shall return
to this example in Remark 3.3 following Theorem 3.1.

The two examples above cover all currently known universally optimal configura-
tions. The next theorem provides sufficient conditions for optimality of (15) even in a
larger subspace.

Theorem 2.6 Let {(αi , ρi )}k
i=1 be a 1/N-quadrature rule that is exact for a sub-

space 	 ⊂ C([−1, 1]) and such that equality holds in (14). Suppose 	′ =
	
⊕

span {P(n)
j : j ∈ I} for some index set I ⊂ N. If Q(n)

j := 1
N +

∑k
i=1 ρi P(n)

j (αi ) ≥ 0 for j ∈ I, then

W(n, N ,	′; h) = W(n, N ,	; h) = N 2
k∑

i=1

ρi h(αi ).
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Proof Suppose f (t) ∈ An,h ∩ 	′. Then we may write the decomposition of f as

f (t) = g(t) +
∑

j∈I
f j P(n)

j (t)

for some g ∈ 	 and f j ≥ 0, for j ∈ I. Note that f0 = g0, since 0 /∈ I. Furthermore,
since the quadrature rule {(αi , ρi )}k

i=1 is exact for g ∈ 	, we have

f0 − f (1)N−1 = g0 − f (1)N−1 = g(1)

N
+

k∑

i=1

ρi g(αi ) −
⎛

⎝g(1) +
∑

j∈I
f j

⎞

⎠ N−1

=
k∑

i=1

ρi

⎛

⎝ f (αi ) −
∑

j∈I
f j P(n)

j (αi )

⎞

⎠ −
⎛

⎝
∑

j∈I
f j

⎞

⎠ N−1

=
k∑

i=1

ρi f (αi ) −
∑

j∈I
f j

(
1

N
+

k∑

i=1

ρi P(n)
j (αi )

)

=
k∑

i=1

ρi f (αi ) −
∑

j∈I
f j Q(n)

j ≤
k∑

i=1

ρi h(αi ) = 1

N 2W(n, N ,	; h),

where, for the last inequality, we used f (t) ∈ An,h and Q(n)
j ≥ 0. 
�

2.3 Levenshtein Bounds for Spherical Codes

Let

A(n, s) := max
{
|C | : C ⊂ S

n−1, 〈x, y〉 ≤ s, x �= y ∈ C
}

denote the maximal possible cardinality of a spherical code on S
n−1 of prescribed

maximal inner product s.
For a, b ∈ {0, 1} and i ≥ 1, let ta,b

i denote the greatest zero of the adjacent Jacobi

polynomial P
(a+ n−3

2 ,b+ n−3
2 )

i (t), and also define t1,10 = −1. For τ ∈ N, let Iτ denote
the interval

Iτ :=

⎧
⎪⎪⎨

⎪⎪⎩

[
t1,1k−1, t1,0k

]
if τ = 2k − 1,

[
t1,0k , t1,1k

]
if τ = 2k.

The collection of intervals is well defined from the interlacing properties t1,1k−1 <

t1,0k < t1,1k , see [27, Lemmas 5.29, 5.30]. Note also that it partitions I = [−1, 1) into
countably many subintervals with nonoverlapping interiors.
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Fig. 1 The Levenshtein function L(4, s) on Iτ , 1 ≤ τ ≤ 6

For every s ∈ Iτ , using linear programming bounds for special polynomials
f (n,s)
τ (t) of degree τ (see [27, Equations (5.81) and (5.82)]), Levenshtein proved

that (see [27, Equation (6.12)])

A(n, s) ≤

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

L2k−1(n, s) = (k+n−3
k−1

) [ 2k+n−3
n−1 − P(n)

k−1(s)−P(n)
k (s)

(1−s)P(n)
k (s)

]
if s ∈ I2k−1

L2k(n, s) = (k+n−2
k

) [ 2k+n−1
n−1 − (1+s)(P(n)

k (s)−P(n)
k+1(s))

(1−s)(P(n)
k (s)+P(n)

k+1(s))

]
if s ∈ I2k .

(17)
For every fixed dimension n, each bound Lτ (n, s) is smooth with respect to s. The
function

L(n, s) =
⎧
⎨

⎩

L2k−1(n, s) if s ∈ I2k−1,

L2k(n, s) if s ∈ I2k

is continuous in s. The connection between the Delsarte–Goethals–Seidel bound (9)
and the Levenshtein bounds (17) is given by the equalities

L2k−2

(
n, t1,1k−1

)
= L2k−1

(
n, t1,1k−1

)
= D (n, 2k − 1) ,

L2k−1

(
n, t1,0k

)
= L2k

(
n, t1,0k

)
= D(n, 2k), (18)

at the ends of intervals Iτ (Fig. 1).
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2.4 Levenshtein’s 1/N-Quadrature Rule

Levenshtein’s method for obtaining his bounds on cardinality of maximal spherical
codes utilizes orthogonal polynomials theory and Gauss-type quadrature rules that
we now briefly review. The location of the cardinality N relative to the Delsarte–
Goethals–Seidel numbers D(n, τ ) is an important step in determining our universal
lower bounds. The monotonicity of the bounds D(n, τ ) with respect to τ (see (9))
implies that for every fixed dimension n and cardinality N , there is unique

τ := τ(n, N ) such that N ∈ (D(n, τ ), D(n, τ + 1)]. (19)

For the so found τ , define k := ⌈
τ+1
2

⌉
, and let αk = s be the unique solution of (see

(18))
N = Lτ (n, s), s ∈ Iτ . (20)

Then as described by Levenshtein in [27, Section 5] (see also [9,26]), there exist
uniquely determined quadrature nodes and nonnegative weights

− 1 ≤ α1 < · · · < αk < 1, ρ1, . . . , ρk ∈ R
+, i = 1, . . . , k (21)

such that the Radau/Lobatto 1/N -quadrature (see [5,16]) holds:

f0 = f (1)

N
+

k∑

i=1

ρi f (αi ) for all f ∈ Pτ . (22)

When τ = 2k −2 is even, then α1 = −1 and (22) is Lobatto quadrature. The numbers
αi , i = 2, . . . , k, are the roots of the equation

Pk−1(t)Pk−2(αk) − Pk−1(αk)Pk−2(t) = 0, (23)

where Pi (t) = P
( n−1

2 , n−1
2 )

i (t). When τ = 2k − 1 is odd, then α1 > −1 and (22)
becomes Radau quadrature. The numbers αi , i = 1 . . . , k, are the roots of the equation

Pk(t)Pk−1(αk) − Pk(αk)Pk−1(t) = 0, (24)

where Pi (t) = P
( n−1

2 , n−3
2 )

i (t). In fact, {αi } are roots of the Levenshtein’s polynomials

f (n,αk )
τ (t) (see [27, Equations (5.81) and (5.82)]).
The dynamical behavior of the quadrature nodes {αi } is the following. When N ∈

(D(n, 2k − 2), D(n, 2k − 1)), then α1 = −1 and the quadrature (22) is Lobatto. The
solution αk of (20) belongs to the interval (t

1,0
k−1, t1,1k−1), and all {αi }k

i=2 strictly increase
with N . We have that

1 = |α1| > |α2| > |αk | > |α3| > |αk−1| > · · · .
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At the transition point N = D(n, 2k −1), α1 = −1 and αk = t1,1k−1. The equation (23)

becomes P(n+2)
k−1 (t) = 0, which implies that

1 = |α1| > |α2| = |αk | > |α3| = |αk−1| > · · · .

As N increases from D(n, 2k − 1) to D(n, 2k), αk strictly increases from t1,1k−1 to t1,0k ,

as do the rest of the nodes {αi }k−1
i=1 . In particular, α1 > −1 and (22) defines Radau

quadrature, and

1 > |α1| > |αk | > |α2| > |αk−1| > · · · .

More details on the nodes {αi } can be found in [12, Appendix], [10, Corollary 3.9],
and [7, Section 2.6].

3 Universal Lower Bounds

3.1 Optimal Polynomials for Lower Bounds

The optimal polynomials of degrees one and two to be applied in Theorem 2.2 can be
found by direct computations and manipulations with the corresponding derivatives.
These polynomials suggest a general form of polynomials which are optimal in the
following sense—they give lower bounds that cannot be improved by utilizing other
polynomials of the same or lower degree in Theorem 2.2.

Our choice of polynomials for Theorem 2.2 can be viewed as an extension of the
ideas of Levenshtein [26,27], who uses suitable quadrature formulas (Subsection 2.4)
to explain the bounds (17) and their optimality in the same sense as above. This
similarity should not seem unusual; the maximal code problem is an infinite version
of the Riesz energy problem. In fact, Cohn and Kumar [14] use a similar idea to deal
with universally optimal configurations. Thus, our paper can be viewed as a natural
extension of the works [14,26,27]. Recall that given a fixed dimension n and a code
cardinality N , we can associate τ = τ(n, N ) and s ∈ Iτ such that Lτ (n, s) = N (see
(19) and (20)). Depending on the parity of τ , we distinguish two cases:

Case (i): τ = 2k − 2 and αk = s ∈
(

t1,0k−1, t1,1k−1

]
. Then we choose f (t) as the

Hermite interpolation polynomial of degree 2k − 2 defined by (recall that α1 = −1
in this case)

f (−1) = h(−1), f (αi ) = h(αi ), f ′(αi ) = h′(αi ), i = 2, . . . , k. (25)

Case (ii): τ = 2k − 1 and αk = s ∈
(

t1,1k−1, t1,0k

]
. Then f (t) is the Hermite

interpolation polynomial of degree 2k − 1 defined by

f (αi ) = h(αi ), f ′(αi ) = h′(αi ), i = 1, 2, . . . , k; (26)
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In the notation of Cohn–Kumar’s paper [14, p. 110], our polynomials are

f (t) = H(h; (t − s) f (n,s)
τ (t)). (27)

3.2 Main Theorem

The equations (25) and (26) define aHermite interpolation problem for f (t) to intersect
and touch the graph of the potential function h(t) (see [22, Theorems 2 and 3], [14,
Section 5]). This implies as in [14, Sections 3 and 5] that f ∈ An,h and we could use
f (t) for bounding E(n, N ; h) from below. Observe that the nodes (21) are independent
of the potential function h; hence we call our bound on E(n, N ; h) a universal lower
bound (ULB).

Next, we state our main theorem. We note that here is the first time we impose the
condition that the potential function h(t) is absolutely monotone and that none of the
preceding results has required this property.

Theorem 3.1 Let n, N be fixed and h(t) be an absolutely monotone potential. Suppose
that τ = τ(n, N ) is as in (19), and choose k = ⌈

τ+1
2

⌉
. Associate the quadrature nodes

and weights αi and ρi , i = 1, . . . , k, as in (22). Then

E(n, N ; h) ≥ Rτ (n, N ; h) := N 2
k∑

i=1

ρi h(αi ). (28)

Moreover, the polynomials f (t) defined by (26), respectively by (25), provide the
unique optimal solution of the linear program (12) for the subspace 	 = Pτ , and
consequently,

W(n, N ,Pτ ; h) = Rτ (n, N ; h). (29)

Remark 3.2 The optimality of the Hermite interpolants (27) is analogous to the opti-
mality of the Levenshtein polynomials f (n,s)

τ (t) (proved first by Sidelnikov [32]), and
emphasizes the universality of our bound.

Remark 3.3 As noted in Example 2.5, the sharp configurations (see [14]) define 1/N -
quadrature. Moreover, the k inner products coincide with {αi }. Consequently, the
bounds (28) are attained by all sharp configurations.

Proof of Theorem 3.1 We first consider the odd case (ii); that is, τ = 2k − 1. The
conditions in (ii) define Hermite interpolation at the points αi , i = 1, 2, . . . , k, and
give a unique polynomial f of degree 2k − 1 with positive leading coefficient. The
absolute monotonicity of h(t) implies that f (t) ≤ h(t).

Next we derive that f satisfies condition (6) as well. From (24) we have that
the quadrature nodes {α1, . . . , αk} are zeros of a polynomial of the type Pk(t) +
cPk−1(t), where {Pi } are the Jacobi orthogonal polynomials {P

( n−1
2 , n−3

2 )

i }. From the
interlacing properties of the orthogonal polynomials we obtain that the constant c =
−Pk(s)/Pk−1(s) is nonnegative. Indeed, the largest roots of the Jacobi polynomials
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t1,0k−1 of Pk−1 satisfy t1,0k−1 < t1,1k−1 (see [26]). Since the last but largest root of Pk is

smaller than t1,0k−1 (by the interlacing property), we obtain that the ratio Pk(t)/Pk−1(t)

doesn’t change sign in [t1,1k−1, t1,0k ). Moreover, from [7, Lemma 3.1.3(a)] (see also [8,
Lemma 1.5.8]),

− Pk(t
1,1
k−1)

Pk−1(t
1,1
k−1)

= n + 2k − 3

n + 2k − 1
> 0; (30)

hence c ≥ 0. Utilizing the approach of [14, Sections 3 and 5], we conclude that the
Hermite interpolant f has nonnegative Gegenbauer expansion. Therefore, f ∈ An,h .

We now use (22) to derive the universal bound of f . We have

f0 = f (1)

N
+

k∑

i=1

ρi f (αi ) ⇐⇒ N ( f0N − f (1)) = N 2
k∑

i=1

ρi f (αi )

= N 2
k∑

i=1

ρi h(αi ),

which means that E(n, N ; h) ≥ N 2∑k
i=1 ρi h(αi ) = R2k−1(n, N ; h).

Furthermore, for any polynomial u = ∑2k−1
i=0 ui P(n)

i (t) ∈ An,h of degree at most
2k − 1, we have

N ( f0N − f (1)) = N 2
k∑

i=1

ρi h(αi ) ≥ N 2
k∑

i=1

ρi u(αi ) = N (u0N − u(1)), (31)

i.e., N (u0N − u(1)) ≤ R2k−1(n, N ; h), and u(t) does not improve (28).
Should equality hold in (31) for some u ∈ An,h ∩ P2k−1, we observe that u(αi ) =

h(αi ) for i = 1, 2, . . . , k. Additionally, the condition u(t) ≤ h(t) implies that u′(αi ) =
h′(αi ) for all αi ∈ (−1, 1). Hence, u satisfies the Hermite interpolation data (26), and
by the uniqueness of the Hermite interpolant, u ≡ f . Therefore, f is the unique
optimal solution to the linear programming problem (11) in the class An,h ∩ P2k−1,
and (29) holds.

In the even case (i), we proceed analogously, where we only modify the proof of the
nonnegativity of the Gegenbauer expansion. In this case, we utilize [15, Lemma 10].


�

3.3 Discussion and Examples

The bounds (28) are easy for computation and investigation. Moreover, the approach
by which they were derived doesn’t depend on the potential function, and in this sense
they are universal. This universality is illustrated in Fig. 2, where we consider n = 4,
N = 24 and plot the Gauss, Korevaar, and Newton potential functions, together with
the corresponding optimal Hermite interpolants of degree τ = 5, that solve the linear
program (11) in the class P5. We also overlay the Levenshtein polynomial f (4,s)

5 (t),
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Fig. 2 The optimal polynomials (Hermite interpolants) that provide the ULB for Gauss, Korevaar, and
Newton potentials (in ascending order), along with the corresponding Levenshtein polynomial for n = 4,
N = 24

whose zeros are the solutions of (24), where s satisfies L5(4, s) = 24. These zeros
of the Levenshtein polynomial also serve as quadrature nodes for the universal lower
bound (28) and as Hermite interpolation nodes for the optimal LP polynomials.

In [2] the authors have done an extensive experimental investigation of energy-
minimizing point configurations; in particular, they provide the computational
minimizers for the Newton potential energy (h(t) = [2(1 − t)]−(n−2)/2) when
n = 1, 2, . . . , 32 and N = 1, 2, . . . , 64. Table 1 compares the Newton energy from
[2] and our universal lower bound (ULB) when n = 4 and N = 5, 6, . . . , 64.

Utilizing the same Newton energy-minimizing configurations provided in [2] in
Table 2,we compare our universal lower bound (ULB)with theGauss potential (h(t) =
e2t−2) energies of these configurations, which in general provide upper bounds on the
minimal Gauss energy for the same choice of n = 4 and N = 5, 6, . . . , 64. We
note that the error dramatically improves, which is to be expected, as the Hermite
interpolants of analytic potential functions are excellent approximants. Observe that
for N = 5 and N = 8, the bounds are exact. Both cases are universally optimal.

In the next result, we describe the explicit solution of the linear program (12) for
	 = Pm for all m ≤ τ(n, N ).

Theorem 3.4 Let m ≤ τ(n, N ). Then the solution of the linear program (12) for
	 = Pm is given by the Hermite interpolants at the Levenshtein nodes determined by
N = Lm(n, s).
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Table 1 Newtonian (harmonic) energy comparison (see [2]) with ULB for n = 4, N = 5, . . . , 64

N Harmonic
energy

ULB
bound

% N Harmonic
energy

ULB
bound

% N Harmonic
energy

ULB
bound

%

5 4.00 4.00 0.00 25 182.99 182.38 0.34 45 664.48 663.00 0.22

6 6.50 6.42 1.28 26 199.69 199.00 0.35 46 697.26 695.40 0.27

7 9.50 9.42 0.88 27 217.15 216.38 0.36 47 730.75 728.60 0.29

8 13.00 13.00 0.00 28 235.40 234.50 0.38 48 764.59 762.60 0.26

9 17.50 17.33 0.95 29 254.38 253.38 0.39 49 799.70 797.40 0.29

10 22.50 22.33 0.74 30 274.19 273.00 0.43 50 835.12 833.00 0.25

11 28.21 28.00 0.74 31 294.79 293.51 0.43 51 871.98 869.40 0.30

12 34.42 34.33 0.26 32 315.99 314.80 0.38 52 909.19 906.60 0.28

13 41.60 41.33 0.64 33 337.79 336.86 0.28 53 947.15 944.60 0.27

14 49.26 49.00 0.53 34 360.52 359.70 0.23 54 985.88 983.40 0.25

15 57.62 57.48 0.24 35 384.54 383.31 0.32 55 1025.76 1023.00 0.27

16 66.95 66.67 0.42 36 409.07 407.70 0.33 56 1066.62 1063.53 0.29

17 76.98 76.56 0.54 37 434.19 432.86 0.31 57 1108.17 1104.88 0.30

18 87.62 87.17 0.51 38 460.28 458.80 0.32 58 1150.43 1147.05 0.29

19 98.95 98.48 0.48 39 487.25 485.51 0.36 59 1193.38 1190.03 0.28

20 110.80 110.50 0.27 40 514.90 513.00 0.37 60 1236.91 1233.83 0.25

21 123.74 123.37 0.30 41 543.16 541.40 0.32 61 1281.38 1278.45 0.23

22 137.52 137.00 0.38 42 572.16 570.60 0.27 62 1326.59 1323.88 0.20

23 152.04 151.38 0.44 43 601.93 600.60 0.22 63 1373.09 1370.13 0.22

24 167.00 166.50 0.30 44 632.73 631.40 0.21 64 1420.59 1417.20 0.24

Proof To derive the theorem, we need to modify the proof of Theorem 3.1 as follows
(we consider the odd case (ii) m = 2k − 1, the even being similar). We determine
αk := s as the solutionof L2k−1(n, s) = N that is in the interval [t1,1k−1, tk) and the nodes

α1, . . . , αk−1 as the solutions of (24). Here tk = t0,0k denotes the largest root of the

Gegenbauer polynomial P(n)
k (observe that (17) shows that tk is a pole of L2k−1(n, s)).

If m < τ(n, N ), then s ∈ (t1,0k , tk) and the constant c = −Pk(s)/Pk−1(s) < 0, so the
argument of Theorem 3.1 doesn’t apply. However, [15, Lemma 10] with the multi-
set {α1, α1, α2, α2, . . . , αk, αk} implies that the Hermite interpolant with these nodes
is a linear combination with nonnegative coefficients of the polynomials {1, (t −
α1), (t −α1)

2, (t −α1)
2(t −α2), . . . , (t −α1)

2(t −α2)
2 · · · · · (t −αk)}. The positive

definiteness of all these polynomials except for the last one can be derived by utilizing
[14, Theorem 3.1 and Lemma 5.3] (for the application of which the sign of c is
irrelevant), while the positive definiteness of the last polynomial for s ∈ (t1,0k , tk) is
noted in the proof of [26, Theorem 5.2]. 
�
Example 3.5 Here we present the LP solutions for n = 4, N = 24, the Newtonian
potential h(t) = (2 − 2t)−1, and 	 = Pm for m = 1, . . . , 5. Note that in this case
τ(n, N ) = 5. For m = 1, . . . , 5, we solve 24 = Lm(4, s) to determine quadrature
points and weights (cf. Fig. 1). The corresponding optimal polynomials from Theo-
rem 3.4 given in terms of Gegenbauer expansions (up to three digits) are:
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g1(t) = .499P(4)
0 (t) + .229P(4)

1 (t),

g2(t) = .581P(4)
0 (t) + .305P(4)

1 (t) + 0.093P(4)
2 (t),

g3(t) = .658P(4)
0 (t) + .395P(4)

1 (t) + .183P(4)
2 (t) + 0.069P(4)

3 (t),

g4(t) = .69P(4)
0 (t) + .43P(4)

1 (t) + .23P(4)
2 (t) + .10P(4)

3 (t) + 0.027P(4)
4 (t),

g5(t) = .71P(4)
0 (t) + .46P(4)

1 (t) + .26P(4)
2 (t) + .13P(4)

3 (t) + 0.05P(4)
4 (t)

+ 0.01(4) P5(t).

A natural question is whether linear programming bounds can be improved if we
consider polynomials of higher than τ(n, N ) degree. The next section investigates this
topic. As one would expect from our results thus far presented, the analogy with the
situation for maximal spherical codes is quite close.

4 Necessary and Sufficient Conditions for Optimality of the Universal
Lower Bounds

4.1 Test Functions

Let n and N be fixed, τ = τ(n, N ) and Lτ (n, s) = N be as in (19) and (20), and j be
a positive integer. We introduce the following functions1 in n and s = αk :

Q j (n, s) := 1

N
+

k∑

i=1

ρi P(n)
j (αi ) for s ∈ Iτ . (32)

It follows that Q j (n, s) = 0 for 1 ≤ j ≤ τ and s ∈ Iτ (since this is the coefficient

f0 = 0 in the Gegenbauer expansion of P(n)
j (t)). Thus the functions Q j (n, s) are not

interesting for these cases, and so we assume below that j ≥ τ + 1 when s ∈ Iτ .
The next theorem shows that the functions Q j (n, s) give necessary and sufficient

conditions for existence of improving polynomials of higher degrees.

Theorem 4.1 The bounds (28) can be improved by a polynomial from An,h of degree
at least τ + 1 if and only if Q j (n, s) < 0 for some j ≥ τ + 1. Furthermore, if h is
strictly absolutely monotone and Q j (n, s) < 0 for some j ≥ τ + 1, then (28) can be
improved by a polynomial from An,h of degree exactly j .

Proof We give a proof for τ = 2k − 1.
(Necessity) The necessity follows from Theorem 2.6 for I = {2k, 2k + 1, . . . }.
(Sufficiency) Conversely, assume that h is strictly absolutely monotone, and sup-

pose that Q j (n, s) < 0 for some j ≥ 2k.
We shall improve the bound (28) by using the polynomial

f (t) = εP(n)
j (t) + g(t),

1 In fact, these are a specialized version of the functions Q(n)
j from Theorem 2.6.
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where ε > 0 and g(t) ∈ P2k−1 will be properly chosen. Set h̃(t) := h(t) − εP(n)
j (t),

and select ε such that h̃(i)(t) ≥ 0 on [−1, 1] for all i = 0, 1, . . . , j . Observe that
for this choice of ε, the function h̃(t) is absolutely monotone. The polynomial g(t) is
chosen as the Hermite interpolant of h̃ at the nodes {αi }; i.e.,

g(αi ) = h̃(αi ), g′(αi ) = h̃′(αi ), i = 1, 2, . . . , k.

Since h̃(t) is an absolutely monotone function, we infer as in Theorem 3.1 that g ∈
An,h̃ , implying that f ∈ An,h .

Let g(t) = ∑2k−1
�=0 g� P(n)

� (t). Note that f0 = g0 and f (1) = g(1) + ε. We next
prove that the bound given by f (t) is better than R2k−1(n, N ; h). To this end, we
multiply by ρi and sum up the first interpolation equalities:

k∑

i=1

ρi g(αi ) =
k∑

i=1

ρi h(αi ) − ε

k∑

i=1

ρi P(n)
j (αi ).

Since

k∑

i=1

ρi g(αi ) = g0 − g(1)

N

by (22) and

k∑

i=1

ρi P(n)
j (αi ) = Q j (n, s) − 1

N

by the definition of the test functions (32), we obtain

g0 − g(1)

N
= R2k−1(n, N ; h)

N 2 + ε

N
− εQ j (n, s),

which is equivalent to

N (Ng0 − (g(1) + ε)) = R2k−1(n, N ; h) − εN 2Q j (n, s).

Therefore N (N f0 − f (1)) = R2k−1(n, N ; h)− εN 2Q j (n, s) > R2k−1(n, N ; h); i.e.,
the polynomial f (t) gives better bound indeed. We also obtained a new bound

W (n, N ; h) ≥ R2k−1(n, N ; h) − εN 2Q j (n, s). (33)


�
Theorem 4.1 provides a sufficient condition for solving the infinite linear program

(11).
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Corollary 4.2 If Q j (n, s) ≥ 0 for all j > τ(n, N ), then f h
τ(n,N )(t) solves the linear

program (11).

4.2 Investigation of the Test Functions

The test functions (32) coincide with the functions with the same name that were
introduced and investigated in 1996 by Boyvalenkov et al. [11]. More details and all
proofs are given in the dissertations [7,8]. We cite some results from [7,8,11] with
reformulations for energy bounds.

Theorem 4.3 ([7,8,11]) The bounds Rτ (n, N ; h) cannot be improved by using poly-
nomials of degrees τ + 1 and τ + 2.

Set k1(n) := √
n − 2, and let k2(n) ≥ 9 be such that

4n ≤ k2(n)2 − 4k2(n) + 5 +
√

k2(n)4 − 8k2(n)3 − 6k2(n)2 + 24k2(n) + 25.

Then we have the following theorems.

Theorem 4.4 (a) [11, Theorem 4.9] If n ≥ 3 and k ≥ k1(n), then all bounds
R2k(n, N ; h) corresponding to s in the interior of the interval I2k can be improved by
polynomials of degree 2k + 3.

(b) [7, Theorem 3.5.9], [8, Theorem 3.4.14] If n ≥ 3 and k ≥ k2(n), then all
bounds R2k−1(n, N ; h) corresponding to s in the interior of the interval I2k−1 can be
improved by polynomials of degree 2k + 3.

Remark 4.5 To make the paper self-contained, we include a proof of Theorem 4.4(b)
in the Appendix.

Theorem 4.6 (a) If n ≥ 3 and k ≥ k1(n), then

E(n, N ; h) ≥ R2k−1(n, N ; h) − εN 2Q2k+3(n, s)

for every N ∈ (D(n, 2k − 1), D(n, 2k)), where ε is chosen as in Theorem 4.1.
(b) If n ≥ 3 and k ≥ k2(n), then

E(n, N ; h) ≥ R2k(n, N ; h) − εN 2Q2k+3(n, s)

for every N ∈ (D(n, 2k), D(n, 2k + 1)), where ε is chosen as in Theorem 4.1.

Proof This follows from (33) and the fact that Theorem 4.4 is based on the inequality
Q2k+3(n, s) < 0, which holds true for the mentioned values of n and τ . 
�

Another application of Theorem 4.4 concerns the sharp configurations. Recall from
Remark 3.3 that the h-energy for any sharp configuration attains the ULB in (28) for
any absolutelymonotone potential h, in particular, forRieszα-potentials. Thus, a sharp
configuration is also a maximal spherical (n, L2k−1(n, s), s) =(dimension, cardinality,
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maximal cosine) code, i.e., a code that attains the odd Levenshtein bound L2k−1(n, s)
(cf. [26]). In fact, the next corollary is implicit in [12] and follows from the main result
of [28] as well.

Corollary 4.7 For any fixed dimension n ≥ 3, there are only finitely many values of
N for which there is a sharp configuration of cardinality N .

Proof Theorem 4.4 implies that in every fixed dimension n ≥ 3, every Levenshtein

bound L2k−1(n, s) can be improved in the whole open interval
(

t1,0k , t1,1k

)
provided k

is large enough. The remaining end points correspond to tight spherical designs, which
means (among many other things) that k ≤ 6 [3,4]. This leaves only finitely many
possible intervals I2k−1 where the Levenshtein bound L2k−1(n, s) can be attained.
Every such interval contains finitely many s, corresponding to cardinalities N , which
completes the proof. 
�

We complete the subsection with the following conjecture, based on the above
results andnumerous investigations of the test functions as related tomaximal spherical
codes.

Conjecture 4.8 If Q j (n, s) ≥ 0 for j = τ(n, N )+3and τ(n, N )+4, then Q j (n, s) ≥
0 for all j > τ(n, N ).

4.3 Test Functions and LP Universality

We now apply the test functions to the study of universal configurations.

Definition 4.9 A spherical code C ⊂ S
n−1 of cardinality |C | = N is called LP-

universally optimal if

E(C; h) = W(n, N ,P; h) for all absolutely monotone h,

where P is the subspace of polynomials.

Remark 4.10 Observe that from (10) and (12), one infers that LP-universally optimal
codes are in fact universally optimal. If the conjecture in Ballinger et al. [2] is true,
then Theorem 4.12 below implies that the converse does not hold.

Wederive a criterion for positivity of test functions of large enough j that canbeused
for proving that certain spherical codes of given dimension n and cardinality N are not
LP-universally optimal. We utilize (n, N ) to denote2 codes C ⊂ R

n with cardinality
|C | = N . As examples, the cases (n, N ) = (10, 40), (14, 64), and (15, 128) are
analyzed.

Sharp estimations for Gegenbauer polynomials can be derived from [19] (see also
[24]). In [19, Theorem 1], the following inequality is given:

max
t∈[−1,1]

√
1 − t2w(t)p2j (t) ≤

2e
(
2 + √

α2 + β2
)

π
, (34)

2 We note that [2] uses the notation (N , n) instead.
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where {p j (t)} are the orthonormal Jacobi polynomialswithweightw(t) = (1−t)α(1+
t)β . Utilizing α = β = n−3

2 to get Gegenbauer polynomials and the normalization

P(n)
j (1) = 1, we rewrite (34) as

|P(n)
j (t)| ≤ �

( n−1
2

)

(1 − t2)(n−2)/4

√
2n−2e(4 + (n − 3)

√
2) j !

π(2 j + n − 2) ( j + n − 3)! , (35)

where �(x) is the Gamma function [34]. Note that for every fixed n ≥ 3 and t ∈
(−1, 1), the right-hand side of (35) is strictly monotone decreasing in j .

Let k, α1, α2, and ρ1 be as in Theorem 3.1. Denote by j0(n, N ) the smallest degree
j > τ(n, N ) such that the right-hand side of (35) is less than 1

N−1 when

t =
{

α1 if α1 > −1,

α2 if α1 = −1 and ρ1 < 1
N ,

(36)

or less than 2
N−2 when t = α2 if α1 = −1 and ρ1 = 1/N .

Theorem 4.11 Let n ≥ 3, N ≥ 2, and let k, α1, α2, and ρ1 be as in Theorem 3.1.
Then Q j (n, αk) ≥ 0 for all j ≥ j0(n, N ).

Proof As the comments on the dynamical behavior of the quadrature nodes {αi } at the
end of Sect. 2 indicate, we have |α1| ≥ |αi | for i = 2, . . . , k, and in the case α1 = −1,
we further have |α2| ≥ |αi | for i = 3, . . . , k.

We first consider the case |α1| < 1; i.e., α1 > −1. If j ≥ j0(n, N ), then we have

Q j (n, s) ≥ 1

N
−

k∑

i=1

ρi |P(n)
j (αi )| ≥ 1

N
−
(
1 − 1

N

)
· 1

N − 1
= 0

(we used N
∑k

i=1 ρi = N − 1 following from (13) for f (t) = 1). The case α1 = −1
and ρ1 < 1/N is handled similarly using (35) as suggested by the second line of (36).

For the final special case α1 = −1 and ρ1 = 1/N , it is clear (cf. [12]) that
Q j (n, s) = 0 for odd j . The case of even j follows similarly as above using the facts

that P(n)
j (−1) = 1 and that |αi | ≤ |α2| for i = 3, . . . , k. 
�

Theorem 4.11 gives a useful tool for disproving LP-universal optimality. For given
n and N and numerics suggesting that Corollary 4.2 may hold, one finds explicitly
j0(n, N ) and calculates the remaining test functions Q j (n, s) for every j ∈ {τ(n, N )+
3, τ (n, N )+4, . . . , j0(n, N )−1}. This will be applied in the next subsection for some
codes from [2].

4.4 Examples

Table 3 lists the first twenty test functions for some interesting configurations with
negative values in bold. We utilize (n, N ) to denote codes C ⊂ R

n with cardinality
|C | = N .
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Table 3 Test functions for some special (n, N ) spherical codes

j (4, 24) (10, 40) (14, 64) (15, 128) (7, 182) (4, 120)

0 1 1 1 1 1 1

1 0 0 0 0 0 0

2 0 0 0 0 0 0

3 0 0 0 0 0 0

4 0 0.021943574 0.013744273 0.000659722 0 0

5 0 0.043584477 0.023867606 0.012122396 0 0

6 0.085714286 0.024962302 0.015879248 0.010927837 0 0

7 0.16 0.015883951 0.012369147 0.005957261 0 0

8 −0.024 0.026086948 0.015845575 0.006751842 0.022598277 0

9 −0.02048 0.02824122 0.016679926 0.008493915 0.011864096 0

10 0.064232727 0.024663991 0.015516168 0.00811866 −0.00835109 0

11 0.036864 0.024338487 0.015376208 0.007630277 0.003071311 0

12 0.059833108 0.024442076 0.01558101 0.007746238 0.009459538 0.053050398

13 0.06340608 0.024976926 0.015644873 0.007809405 0.0065461 0.066587396

14 0.054456422 0.025919671 0.015734138 0.007817465 0.005369545 −0.046646712

15 −0.003869491 0.02498472 0.015637274 0.007865499 0.006137772 −0.018428319

16 0.008598724 0.024214119 0.015521057 0.007815602 0.005268455 0.020868837

17 0.091970863 0.025123445 0.01562458 0.007761374 0.005134928 −0.000422871

18 0.049262707 0.025449746 0.015694798 0.007812225 0.004722806 0.012656294

19 0.035330484 0.024905002 0.015617497 0.00784714 0.003857119 0.006371173

20 0.048230925 0.024837415 0.015589583 0.00781076 0.007863772 0.011244953

Judging by the behavior of the test functions, the linear programming method will
provide improvements on our ULB for (4, 24) and (7, 182), but it is unlikely to give
a solution similar to the case with the 600-cell (4, 120), where a polynomial in P17
served as an exact lower bound. Indeed, the fact that the test functions Q14, Q15, and
Q17 are negative provides additional insight on the unique status of the 600-cell as the
only universally optimal code known that is not a sharp configuration.

The first configuration (4, 24) is the D4 root system, or the so-called kissing number
configuration in R

4 (see [30]), which was shown by Cohn et al. (see [13]) not to be
universal. The negative test functions Q8(4, s) and Q9(4, s), s = α2 ≈ 0.4749504897,
suggest searching for a polynomial f (t) = ∑9

i=0 fi P(4)
i (t) with f6 = f7 = 0 and

four touching points of the graphs of f (t) and the potential h(t). We have developed
a numerical algorithm for handling such situations. For example, if h(t) = 1

2(1−t) is
the Newton potential, our numerical calculations led to the polynomial

f (t) = 0.4987 + 0.4852t + 0.4535t2 + 0.5546t3 + 0.9401t4 + 0.8425t5

− 0.3305t6 − 0.7479t7 + 0.1889t8 + 0.37394t9

= 0.0073P(4)
9 (t) + 0.0066P(4)

8 (t) + 0.0659P(4)
5 (t) + 0.2384P(4)

4 (t)

+ 0.5116P(4)
3 (t) + 0.7915P(4)

2 (t) + 0.9236P(4)
1 (t) + 0.7142P(4)

0 (t).
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The Hermite interpolation points are approximately −0.860297, −0.489872,
−0.195724, and 0.47850. The bound obtained from f (t) is 333.1575, while the uni-
versal lower bound (28) gives R5(4, 24; 1/(2(1− t)) = 333 and the energy of the D4
root system is 334. Theoretical and computational aspects of the aforementioned algo-
rithm for improvements (when possible) of our ULB and their nature will be discussed
elsewhere.

Theorem 4.12 The spherical codes (n, N ) = (10, 40), (14, 64), and (15, 128) are
not LP-universally optimal.

Remark 4.13 The codes (10, 40) and (14, 64) were conjectured by Ballinger et al. in
[2] to be universally optimal.

Proof It follows fromTheorem4.11 and numerical calculations as explained in the end
of the last subsection that the codes listed in the theoremare notLP-universally optimal.
Indeed, we have τ(10, 40) = 3 (soα1 > −1), j0(10, 40) = 10, and the second column
in Table 3 shows that this code is not LP-universally optimal. Similarly, τ(14, 64) = 3,
j0(14, 64) = 8, and the inspection of the third column of Table 3 suffices. The code
(15, 128)was not conjectured to be universally optimal (but not eliminated) in [2] and
we see that it is not LP-universally optimal because of τ(15, 128) = 3, j0(14, 64) = 9,
and the fourth column in Table 3. 
�
Acknowledgments Wewould like to thank Dr. Silvia Boumova for kindly allowing us to include the proof
of Theorem 4.4(b) so as to make this article self-contained.

Appendix

In this appendix, we give the proof of Theorem 4.4(b), which has appeared so far only

in the dissertation of Boumova [7]. We set P
( n−1

2 , n−3
2 )

i (t) := P1,0
i (t) for short and use

the Christoffel–Darboux formula (see [27, Equation (5.65)])

P1,0
i (t)

i∑

j=0

r j =
i∑

j=0

r j P(n)
j (t) =

(
n + i − 2

i

)
P(n)

i (t) − P(n)
i+1(t)

1 − t
. (37)

We also set P(n)
i (t) = ∑i

j=0 ai, j t j .
For the proof of Theorem 4.4(b), we show for each n ≥ 3 and s in the interior

of I2k−1 that Q2k+3(n, s) < 0 for k sufficiently large, and thus, by Theorem 4.1, the
bound R2k−1(n, N ; h) can be improved. For this purpose, we present several lemmas.

Lemma 4.14 Let n ≥ 3, s ∈
(

t1,1k−1, t1,0k

)
, and αi = αi (s), i = 1, . . . , k be the

associated Levenshtein quadrature nodes, see (22). Then Q2k+3(n, s) < 0 if and only
if

k∑

i=1

α2
i <

2k2 + k + 1 − n

n + 4k + 2
.
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Proof This is Corollary 4.4(a) from [11]. 
�
To find the sum

∑k
i=1 α2

i appearing in Lemma 4.14, we express the sums
∑k

i=1 αi

and
∑

1≤i< j≤k αiα j as functions of n, k, and s.

Lemma 4.15 For every s ∈ I2k−1, k ≥ 2, the numbers α1, α2, . . . , αk satisfy the
equalities

k∑

i=1

αi = − k

n + 2k − 2
X, (38)

∑

1≤i< j≤k

αiα j = − k2 − k

2(n + 2k − 4)
+ k(k − 1)

(n + 2k − 2)(n + 2k − 4)
X, (39)

where

X = 1 − (n + 2k − 1)(n + k − 2)

k(n + 2k − 3)
· P1,0

k (s)

P1,0
k−1(s)

.

Proof The numbers α1, α2, . . . , αk are the roots of the equation (24)

q(t) = P1,0
k (t)P1,0

k−1(s) − P1,0
k (s)P1,0

k−1(t) = 0.

Comparing the coefficients in (37), we obtain

q(t) = ak,krk P1,0
k−1(s)∑k

i=0 ri
tk

+ ak−1,k−1rk−1

(
P1,0

k−1(s)∑k
i=0 ri

− P1,0
k (s)

∑k−1
i=0 ri

)
tk−1

+
[

(ak,k−2rk + ak−2,k−2rk−2)P1,0
k−1(s)∑k

i=0 ri
− ak−2,k−2rk−2P1,0

k (s)
∑k−1

i=0 ri

]
tk−2 + · · ·

Therefore, we have

k∑

i=1

αi = −
ak−1,k−1rk−1

(
P1,0

k−1(s)∑k
i=0 ri

− P1,0
k (s)

∑k−1
i=0 ri

)

ak,krk P1,0
k−1(s)∑k

i=0 ri

= − ak−1,k−1rk−1

ak,krk

(
1 −

∑k
i=0 ri∑k−1
i=0 ri

· P1,0
k (s)

P1,0
k−1(s)

)

= − k

n + 2k − 2

(
1 − (n + 2k − 1)(n + k − 2)

k(n + 2k − 3)
· P1,0

k (s)

P1,0
k−1(s)

)
.
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Here, we used that

ak−1,k−1

ak,k
= n + k − 3

n + 2k − 4

from (1), the constants ri as in (2), and
∑ j

i=0 ri , which is equal to the Delsarte–
Goethals–Seidel bound D(n, 2 j) (this is for j = k and j = k − 1).

Similarly, we obtain

∑

1≤i< j≤k

αiα j =
(ak,k−2rk+ak−2,k−2rk−2)P1,0

k−1(s)∑k
i=0 ri

− ak−2,k−2rk−2P1,0
k (s)

∑k−1
i=0 ri

ak,krk P1,0
k−1(s)∑k

i=0 ri

= ak,k−2

ak,k
+ ak−2,k−2rk−2

ak,krk

(
1 −

∑k
i=0 ri∑k−1
i=0 ri

P1,0
k (s)

P1,0
k−1(s)

)

= − k2 − k

2(n + 2k − 4)
+ k(k − 1)

(n + 2k − 2)(n + 2k − 4)

×
(
1 − (n + 2k − 1)(n + k − 2)

k(n + 2k − 3)

P1,0
k (s)

P1,0
k−1(s)

)
.


�
It follows from Lemma 4.14 and equalities (38) and (39) that we have to investigate

the sign of the function

G(n, k, s) =
k∑

i=1

α2
i − 2k2 + k + 1 − n

n + 4k + 2

=
(

k∑

i=1

αi

)2

− 2
∑

1≤i< j≤k

αiα j − 2k2 + k + 1 − n

n + 4k + 2

= k2

(n + 2k − 2)2
X2 − 2k(k − 1)

(n + 2k − 2)(n + 2k − 4)
X

+ k(k − 1)

n + 2k − 4
− 2k2 + k + 1 − n

n + 4k + 2
,

where X is as in Lemma 4.15 and s ∈ I2k−1 =
[
t1,1k−1, t1,0k

]
.

Lemma 4.16 For fixed n and k, the function G(n, k, s) is decreasing for s ∈ I2k−1.

Proof The function G(n, k, s) is quadratic with respect to X . Since s ∈
[
t1,1k−1, t1,0k

]
⊂

(
t1,0k−1, t1,0k

]
, the ratio P1,0

k (s)/P1,0
k−1(s) increases in I2k−1 (see [26, Corollary 2.1]).
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Therefore X decreases in s in the same interval, andwe need to determine the numbers

X1 = 1 − (n + 2k − 1)(n + k − 2)

k(n + 2k − 3)
·

P1,0
k

(
t1,1k−1

)

P1,0
k−1

(
t1,1k−1

)

and

X2 = 1 − (n + 2k − 1)(n + k − 2)

k(n + 2k − 3)
·

P1,0
k

(
t1,0k

)

P1,0
k−1

(
t1,0k

)

(the end points of the interval of variation of X ). We obtain

X1 = 1 + (n + 2k − 1)(n + k − 2)(n + 2k − 3)

k(n + 2k − 3)(n + 2k − 1)
= n + 2k − 2

k

using (30) and

X2 = 1,

because P1,0
k

(
t1,0k

)
= 0.

We can already locate the numbers X1 and X2 with respect to the minimum of the
graph of the quadratic function

g(X) = G(n, k, s)

= k2

(n + 2k − 2)2
X2 − 2k(k − 1)

(n + 2k − 2)(n + 2k − 4)
X

+ k(k − 1)

n + 2k − 4
− 2k2 + k − n + 1

n + 4k + 2
.

The minimum of g(X) is attained at the point

X0 = (k − 1)(n + 2k − 2)

k(n + 2k − 4)
.

We have

X0 − X2 = X0 − 1 = − n − 2

k(n + 2k − 4)
< 0

for every n ≥ 3 and k ≥ 2. This shows that X0 < 1 = X2 < X1; i.e., X2 and X1 lie
on the left side of X0. Hence g(X) decreases from g(X1) to g(X2) when X decreases
from X1 to X2. This means that G(n, k, s) decreases in s in the whole interval I2k−1.
This completes the proof. 
�
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Thus we need to consider the sign of the function G(n, k, s) in the end points of
the interval I2k−1 = [t1,1k−1, t1,0k ]. Define the functions

ϕ1(n, k) = G
(

n, k, t1,1k−1

)
= g(X1)

and

ϕ2(n, k) = G
(

n, k, t1,0k

)
= g(X2).

From the above, we have

ϕ1(n, k) > G(n, k, s) > ϕ2(n, k)

for all s ∈
(

t1,1k−1, t1,0k

)
. We calculate ϕ1(n, k) and ϕ2(n, k).

Lemma 4.17 For every n ≥ 3 and k ≥ 2, we have

ϕ1(n, k) = (4 − n)k2 + 4(n − 2)k + 2n2 − 5n

(n + 2k − 4)(n + 4k + 2)
,

ϕ2(n, k) = (n − 2)(n + 2k − 1)(n − k2 − 2)

(n + 4k + 2)(n + 2k − 2)2
. (40)

Proof Plug X1 = n+2k−2
k and X2 = 1 into g(X). 
�

Theorem 4.18 Let n ≥ 3 and k ≥ 9 satisfy

n ≤ k2 − 4k + 5 + √
k4 − 8k3 − 6k2 + 24k + 25

4
.

Then Q2k+3(n, s) < 0 for all s ∈
(

t1,1k−1, t1,0k

)
.

Proof For k ≥ 9, all values of n such that

3 ≤ n ≤ k2 − 4k + 5 + √
k4 − 8k3 − 6k2 + 24k + 25

4

are solutions of the inequality ϕ1(n, k) < 0 (see (40)). Therefore G(n, k, s) < 0 for

all s ∈
(

t1,0k , t1,1k

)
in this case. This means that Q2k+3(n, s) < 0 for s ∈

(
t1,1k−1, t1,0k

)
.


�
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