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Abstract On the n-dimensional hypercube, for given k ∈ N, wavelet Riesz bases
are constructed for the subspace of divergence-free vector fields of the Sobolev space
Hk((0, 1)n)n with general homogeneous Dirichlet boundary conditions, including
slip or no-slip boundary conditions. Both primal and suitable dual wavelets can be
constructed to be locally supported. The construction of the isotropic wavelet bases is
restricted to the square, but that of the anisotropic wavelet bases applies for any space
dimension n.

Keywords Divergence-free wavelets · Biorthogonal space decompositions · Riesz
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1 Introduction

1.1 Overview

This paper concerns the construction of a Riesz basis, consisting of wavelets, for the
space
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H0(div0;�) := {v ∈ L2(�)n : div v = 0, v · n = 0 on ∂�},

where � ⊂ Rn , or for this space intersected with Hk(�)n , or with some closed
subspace of the latter that incorporates additional boundary conditions. We take � to
be the hypercube In , where I := (0, 1). The construction can be transferred to other
bounded domains by means of the Piola transform.

Divergence-free wavelet bases find their applications in approximating the solu-
tion of the incompressible (Navier–) Stokes equations. They can be used either for
solving these equations, see, e.g., [9,26,29], or for analyzing, or finding efficient rep-
resentations, of approximate solutions that were obtained by other means, see, e.g.,
[7,28].

Battle and Federbush [2] were the first who constructed an orthogonal wavelet basis
forH0(div0;Rn) = H(div0;Rn) := {v ∈ L2(R

n)n : div v = 0}. These wavelets were
globally supported and therefore cannot be applied on bounded domains.

The construction by Lemarié–Rieusset in [21] of a wavelet Riesz basis for
H(div0;Rn) relies on the availability of two pairs of biorthogonal Riesz bases (�, �̃)

and (
+
�,

−̃
�), both for the pair (L2(R), L2(R)), that, for some invertible diagonalmatrix

D, satisfy +
�
′ = D�, �̃

′ = −D
−̃
� (1.1)

(bases are formally viewed as (infinite) column vectors). Compactly supported primal
and dual wavelets that satisfy these conditions were constructed. Having such collec-
tions of univariate wavelets at hand, the coordinate functions of the divergence-free
wavelets are constructed as tensor products of the univariate wavelets (and possibly
scaling functions).

The construction from [21] on Rn can be mimicked on In once one has pairs
of biorthogonal Riesz bases (�, �̃) and (

+
�,

−̃
�), now for (L2(I), L2(I)), that satisfy

(1.1).Quite a fewpapers have been devoted to this approach, see, e.g., [8,14,15,19,27].
It seems, however, that results fully analogous to those on Rn have not been realized
for n ≥ 3. The reason for this can be understood as follows: Integration by parts shows
that (1.1) implies that for all

+
ψ ∈ +

� and ψ̃ ∈ �̃,

+
ψ(1)ψ̃(1) − +

ψ(0)ψ̃(0) = 0.

To obtain such vanishing boundary terms, one may consider, e.g.,
+
� ⊂ H1

0 (I). Yet,
then any element of � = D−1+� ′ has a vanishing mean, so that � can only be a basis
for L2,0(I) := {u ∈ L2(I) : ∫I u = 0}. When one ignores this defect and follows the
construction from [21], one ends up with a Riesz basis for

H0(div0; In) ∩ L2,0(In),

where
L2,0(In) := L2(I)⊗ L2,0(I)⊗ · · · ⊗L2,0(I)

× · · · × L2,0(I)⊗ · · · ⊗ L2,0(I)⊗L2(I).
(1.2)
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‘Coincidentally’, it holds thatH0(div0; I2)∩L2,0(I2) = H0(div0; I2), so that a Riesz
basis for H0(div0; I2) is obtained. For n ≥ 3, however, H0(div0; In) ∩ L2,0(In) is a
true subspace of H0(div0; In), with a co-dimension that is infinite.

To solve this problem, in [25] we made an orthogonal decomposition of L2(In)n

into 2n − 1 subspaces, each of them being isomorphic to L2,0(I�) for some � =
1, . . . , n. Using the approach from [21], the divergence-free parts of each of these
subspaces could be equipped with wavelet bases. Moreover, the union of these bases
was shown to be a Riesz basis for H0(div0; In).

Since functions in the aforementioned subspaces have components that are con-
stants as function of some variables, the divergence-free wavelets that were obtained
do not satisfy boundary conditions beyond having vanishing normals. Consequently,
this construction was restricted to slip boundary conditions.

The aim of the current paper is to extend the approach to general boundary con-
ditions, including no-slip boundary conditions. The key to achieve this will be the
replacement of the orthogonal decomposition of L2(In)n into 2n − 1 subspaces, by
a biorthogonal decomposition of (L2(In)n, L2(In)n) into 2n − 1 pairs of subspaces.
With this approach, we will be able to construct a wavelet Riesz basis forH0(div0; In)

that for given k, renormalized, will be a basis for
◦
Hk

(In) ∩H0(div0; In), with the
first space being the closed subspace of Hk(In)n defined by imposing (very) general
homogeneous Dirichlet boundary conditions up to order k.

1.2 The Construction from [21]

To further explain the difficulties and possibilities with transferring the construction
of a divergence-free wavelet basis on Rn from [21] to one on a hypercube, first we
describe it in some detail. To appreciate the steps that will be taken in the following
sections in an abstract framework, we expect that the reader will find it useful to go
through this description and the remainder of the introduction.

For ease of presentation, in this subsection we consider n = 2, and, although
in [21] isotropic bivariate wavelets are constructed, we consider the construction of
anisotropic bivariate wavelets. With an isotropic construction, a bivariate wavelet is
the tensor product of two univariate functions on the same scale, either bothwavelets or
a wavelet and a scaling function. With an anisotropic construction, a bivariate wavelet
is the tensor product of two univariate wavelets on arbitrary, unrelated scales. The idea
to construct anisotropic divergence-free wavelets originates from [8].

We write � = {ψλ : λ ∈ ∇}, with ∇ being a countable index set, and similarly
for the other three collections from (1.1), and D = diag[dλ]λ∈∇ . From L2(R

2) 

L2(R) ⊗ L2(R), and the fact that all four collections are Riesz bases for L2(R), we
infer that ⋃

λ,μ∈∇

{+
ψλ ⊗ ψμe1, ψλ ⊗ +

ψμe2
}
, (1.3)

⋃

λ,μ∈∇

{ −̃
ψλ ⊗ ψ̃μe1, ψ̃λ ⊗ −̃

ψμe2
}

(1.4)

are biorthogonal Riesz bases for (L2(R
2)2, L2(R

2)2). That is, denoting the elements
of the first (primal) and second (dual) basis as σλ,μ,i and σ̃λ,μ,i , where i ∈ {1, 2},
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it holds that 〈σλ,μ,i , σ̃λ′,μ′,i ′ 〉L2(R2)2 = 1 when (λ, μ, i) = (λ′, μ′, i ′), and it is zero
otherwise.

Using that 1√
d2λ+d2μ

[−dμ dλ

dλ dμ

]

is an orthogonal matrix, we find that also

⋃

λ,μ∈∇

⎧
⎨

⎩
−dμ

+
ψλ ⊗ ψμe1 + dλψλ ⊗ +

ψμe2√
d2λ + d2μ

,
dλ

+
ψλ ⊗ ψμe1 + dμψλ ⊗ +

ψμe2√
d2λ + d2μ

⎫
⎬

⎭
,

⋃

λ,μ∈∇

⎧
⎨

⎩
−dμ

−̃
ψλ ⊗ ψ̃μe1 + dλψ̃λ ⊗ −̃

ψμe2√
d2λ + d2μ

,
dλ

−̃
ψλ ⊗ ψ̃μe1 + dμψ̃λ ⊗ −̃

ψμe2√
d2λ + d2μ

⎫
⎬

⎭

(1.5)
are biorthogonal Riesz bases for (L2(R

2)2, L2(R
2)2). By the crucial relation (1.1), the

first element of each couple of primal basis functions is divergence-free, and the second
element of each couple of dual basis functions is equal to −1√

d2λ+d2μ
grad ψ̃λ ⊗ ψ̃μ ∈

grad H1(R2). So when writing v ∈ H(div0;R2) ⊂ L2(R
2)2 w.r.t. the primal basis,

the coefficient in front of the second element of any couple, being an inner product
of v with the second element of the corresponding dual couple, vanishes because of
H(div0;R2) ⊥L2(R2)2 grad H1(R2). Together, both observations imply that

⋃

λ,μ∈∇

⎧
⎨

⎩
−dμ

+
ψλ ⊗ ψμe1 + dλψλ ⊗ +

ψμe2√
d2λ + d2μ

⎫
⎬

⎭
is a Riesz basis for H(div0;R2),

(1.6)

with a dual basis given by
⋃

λ,μ∈∇
{
dλ

−̃
ψλ⊗ψ̃μe1+dμψ̃λ⊗

−̃
ψμe2√

d2λ+d2μ

}
.

Moreover, taking � and (thus)
+
� such that, renormalized, they are Riesz bases for

Hk(R) and Hk+1(R), respectively, then, renormalized, the collection from (1.6) is a
Riesz basis for Hk(R2)2 ∩H(div0;R2). In particular, the case k = 1 is most relevant
for the application in solving flow problems. This construction of a divergence-free
wavelet basis generalizes to Rn for n ≥ 2.

Note that here, and similarly in the remainder of the paper, for X ⊂ L2(R
n)n and

� being a Riesz basis for X ∩H(div0;Rn), we call �̃ ⊂ X
′
a dual basis when

�̃(�) = Id, and v �→ �̃(v) ∈ B(X, �2(�̃)). (1.7)

So, in view of some nonexistence results proven in [20,22], we do not impose that
�̃ ⊂ H(div0;Rn). Note that nevertheless, X → X : v �→ �̃(v)�� is an oblique, and
by the second property in (1.7), bounded projector onto X ∩H(div0;Rn).

For completeness, with �̃(v) and �̃(�), we mean the infinite column vector
[σ̃ (v)]σ̃∈�̃ , and the bi-infinite matrix [σ̃ (σ )]σ̃∈�̃,σ∈� (also denoted by 〈�̃,�〉L2(Rn)n

when �̃ ⊂ L2(R
n)n).

For the application of a wavelet basis � for solving an operator equation, in this
setting typically a flow problem, the availability of a corresponding dual basis �̃ is
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not required. For other applications of divergence-free wavelets, as the analysis or
compression of earlier computed approximate solutions, explicit knowledge of a dual
basis is essential. Moreover, for efficient implementations of such applications, it is
needed that, as the primal functions, the dual functions are locally supported.

1.3 Difficulties with Transferring the Construction from Rn to In

The key is to have available two pairs of biorthogonal Riesz bases (�, �̃) and (
+
�,

−̃
�),

now for (L2(I), L2(I)), that for some invertible diagonal matrix D, satisfy (1.1).
Under these assumptions, integration by parts shows that the bi-infinite matrix

+
�|x=1�̃|�x=1 −

+
�|x=0�̃|�x=0 = 〈+� ′

, �̃〉L2(I) + 〈+�, �̃
′ 〉L2(I)

= 〈D�, �̃〉L2(I) − 〈+�,D
−̃
�〉L2(I) = D ◦ Id − Id ◦ D = 0;

i.e., as has been claimed before, necessarily,

+
ψ(1)ψ̃(1) − +

ψ(0)ψ̃(0) = 0 (
+
ψ ∈ +

�, ψ̃ ∈ �̃). (1.8)

To obtain such vanishing boundary terms, one may consider
+
� ⊂ H1

0 (I). Yet, then
any element of � = D−1+� ′ has a vanishing mean, so that � cannot be a basis for
L2(I), the reason being that the mean value is a nonzero, continuous functional on
L2(I). (Taking the mean value is not continuous on L2(R), and therefore the latter
space can be equipped with a Riesz basis of functions all having a vanishing mean.
This difference can be seen as the main reason for the difficulties of transporting the
construction of a divergence-free wavelet basis on Rn to the hypercube.)

Alternatively, we may search �̃ in H1
0 (I). In this case, the same argument shows

that
−̃
� cannot be a basis for L2(I), and so neither can

+
�, and we end up with the same

problem.
A third possibility is to impose periodic boundary conditions for both

+
� and �̃. In

this case, any element from even both � and
−̃
� has vanishing mean, giving rise to the

same problem as above.
Finally, a valid choice, which was made in [24], is to search Riesz bases �̃ and

+
�

for L2(I) such that the elements of �̃ vanish at 1 and those of
+
� vanish at 0. With this

choice, (1.1) can be satisfied, and with that a divergence-free wavelet Riesz basis can
be constructed on In . In view of (1.3), it is, however, a basis for {v ∈ L2(I)n : div v =
0, v · n = 0 on ∂Rn+}, being the space of divergence-free functions on In subject to
the unusual boundary condition of having vanishing normal components on half of
the boundary of In .

A seemingly related solution was found in [18], where a wavelet basis was con-
structed for H0(div0;R2+).

1.4 A Remedy

Taking
+
� ⊂ H1

0 (I), the condition (1.1) can be satisfied for
+
�, �̃,

−̃
� being Riesz bases

for L2(I), and � being a Riesz basis for L2,0(I). Then, similarly to (1.3),
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⋃

λ

{+
ψλ1 ⊗ ψλ2 ⊗ · · · ⊗ ψλne1, . . . , ψλ1 ⊗ · · · ⊗ ψλn−1 ⊗

+
ψλnen

}
(1.9)

is a Riesz basis for L2,0(In). Now when from (1.9) a collection of divergence-free
wavelets is constructed, similarly as (1.6) was constructed from (1.3), then this col-
lection will be a Riesz basis for H0(div0; In) ∩ L2,0(In).

In [25], this fact was employed as follows: Consider the orthogonal decomposition

L2 = L2,0 ⊕⊥ �1�,

where 1 := x �→ 1, and where we used the shorthand notation L2 := L2(I), L2,0 :=
L2,0(I), and �·� := span{·}. It gives rise to an orthogonal decomposition of L2(In)n

into 2n − 1 subspaces,
(n
�

)
of them, for � = 1, . . . , n, being isomorphic to L2,0(I�).

For example, for n = 3, this decomposition into 7 subspaces reads as follows:

L2(I3)3 = L2⊗L2,0⊗L2,0×L2,0⊗L2⊗L2,0×L2,0⊗L2,0⊗L2 (= L2,0(I3))

⊕⊥L2⊗L2,0⊗�1� ×L2,0⊗L2⊗�1� × 0 (
 L2,0(I2))

⊕⊥L2⊗ �1�⊗L2,0× 0 ×L2,0⊗ �1�⊗L2 (
 L2,0(I2))

⊕⊥ 0 × �1�⊗L2⊗L2,0× �1�⊗L2,0⊗L2 (
 L2,0(I2))

⊕⊥L2⊗ �1�⊗�1� × 0 × 0 (
 L2,0(I))

⊕⊥ 0 × �1�⊗L2⊗�1� × 0 (
 L2,0(I))

⊕⊥ 0 × 0 × �1�⊗ �1�⊗L2 (
 L2,0(I))

(1.10)
(note L2(I) = L2,0(I)). The isomorphisms between the spaces L2,0(I�) and the
corresponding subspaces in this decomposition are of the simple type of adding n− �

zero coordinates to an �-dimensional vector field, and extending the nonzero coordinate
functions as a constant function of the additional n − � variables.

Building on the approach from [21], we can equip each of the spaces L2,0(I�),
or more precisely, each pair (L2,0(I�),L2,0(I�)), with biorthogonal Riesz bases that
split into two parts, the primals from the first part being divergence-free with vanishing
normals at the boundary, and the duals from the second part being gradient fields. The
embeddings of the spaces L2,0(I�) into L2(In)n preserve the properties of a vector
field being divergence-free and having a vanishing normal at the boundary, or, at the
dual side, being a gradient field. Consequently, we obtain biorthogonal Riesz bases
for (L2(In)n, L2(In)n) that split into two parts, the primals from the first part being
divergence-free with vanishing normals at the boundary, and the duals from the second
part being gradient fields. Together both observations imply that the primals from the
first part form a Riesz basis for H0(div0; In).

By applying suitable univariate biorthogonal wavelet bases, which serve as a build-
ing block of this construction, simultaneously one obtains a basis for Hk(In)n ∩
H0(div0; In) for a range of k, being most relevant for k = 1.

Remark 1.1 The aforementioned splitting of the biorthogonal bases for
(L2,0(I�),L2,0(I�)) into two parts yields for � = 1 a first part that is empty (indeed,
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u′ = 0 on I, and u = 0 on ∂I implies u = 0). As a consequence, in view of

L2(I2)2 = L2 ⊗ L2,0 × L2,0 ⊗ L2︸ ︷︷ ︸
L2,0(I2)

⊕⊥ L2 ⊗ �1�× 0
︸ ︷︷ ︸


L2,0(I)

⊕⊥ 0× �1�⊗ L2︸ ︷︷ ︸

L2,0(I)

,

we haveH0(div0; I2) = H0(div0; I2)∩L2,0(I2). For the cube, however, (1.10) shows
that H0(div0; I3) 
 H0(div0; I3) ∩ L2,0(I3) × H0(div0; I2)3, which confirms that
the co-dimension of H0(div0; I3) ∩ L2,0(I3) in H0(div0; I3) is infinite.

Because of the aforementioned constant extension of functions of � variables to a
functions of n variables, the divergence-free wavelets that are obtained do not satisfy
boundary conditions beyond having vanishing normals. Indeed, one verifies that, e.g.,
the tangential components at x3 = {0} or x3 = {1} of the divergence-free wavelets
on I3 that stem from the second subspace at the right-hand side of (1.10) span the
whole of H0(div0; I2). In other words, the construction from [25] is restricted to slip
boundary conditions.

The aim of the current paper is to extend the approach to general boundary con-
ditions, including no-slip boundary conditions. The key to achieving this will be
the replacement of the orthogonal decomposition L2(I) = L2,0(I) ⊕⊥ �1� by a
biorthogonal decomposition

L2(I) = (L2(I) ∩ �σ̃ �⊥) ⊕ �σ �, L2(I) = (L2(I) ∩ �σ �⊥)⊕ �σ̃ �,

with σ , σ̃ being some functions on I with
∫
I σ σ̃ �= 0. Any biorthogonal (wavelet)

basis for (L2(I), L2(I)) gives rise to such a decomposition by identifying one pair
of a primal and a dual wavelet as the pair (σ , σ̃ ). Starting from this biorthogonal
decomposition of (L2(I), L2(I)), we will construct a biorthogonal decomposition of
(L2(In)n, L2(In)n), with both instances of L2(In)n being split into 2n−1 subspaces.
For n = 3, this decomposition reads as (1.10) with, at the primal or dual side, L2,0
being replaced by L2(I)∩�σ̃ �⊥ or L2(I)∩�σ �⊥, and �1� by �σ � or �σ̃ �, respectively.
The pair (σ, σ̃ ) may be chosen differently for each coordinate direction.

Aswewill see, in view of constructing divergence-free wavelets, the role of σ̃ has to
be played by the function 1, because of its special property of having a zero derivative.
Since the sole condition on σ (or σi if it depends on the coordinate direction 1 ≤ i ≤ n)
is that

∫
I σ1 �= 0, the univariate primalwavelets, so in particular σ , can be arranged to

vanish at {0} and {1} to any given orders. As a consequence, wewill be able to construct
a wavelet Riesz basis for H0(div0; In), that for given k, renormalized, will be a basis
for

◦
Hk

(In) ∩H0(div0; In), with the first space being the closed subspace of Hk(In)n

defined by imposing (very) general homogeneous Dirichlet boundary conditions up
to order k.

1.5 Organization of this Paper

This paper is organized as follows: In the next short Sect. 2, we will recall that the con-
struction of divergence-free wavelet bases in two space dimensions is straightforward
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due to the special properties of the curl operator. This holds true for simply connected
Lipschitz domains � as long as one is not interested in properties of a corresponding
dual basis. It suffices to have available a wavelet Riesz basis for H1

0 (�), which is
known to be possible on arbitrary polygons.

Section 3 is devoted to the construction of the aforementioned biorthogonal space
decomposition of (L2(In)n, L2(In)n) with both instances of L2(In)n being split into
2n − 1 subspaces. A general framework is presented to construct a divergence-free
wavelet basis from divergence-free wavelet bases for the subspaces in the primal
decomposition, as well as a dual basis from dual bases inside the corresponding sub-
spaces in the dual decomposition.

To find such divergence-free wavelet bases for the primal subspaces, as well as dual
bases in the corresponding dual subspaces, as in [21], we need two pairs of univariate
biorthogonal wavelet Riesz bases on I, possibly different in the different coordinate
directions, that are related by integration or differentiation as in (1.1). In Sect. 4.1, we
will show that given one pair of biorthogonal wavelet Riesz bases, which plays the role
of (�, �̃) in (1.1), the related pair, being (

+
�,

−̃
�) in (1.1), can always be constructed.

Apart from being Riesz bases for the relevant Sobolev spaces, the sole condition on
the first pair is that 1 is a dual wavelet, and, when one aims at locally supported
divergence-free primal and/or dual wavelets, that the primal and/or dual wavelets of
the first pair are locally supported. The findings in this subsection generalize those
from [14], where such pairs of biorthogonal wavelet bases are constructed by adapting
translation invariant wavelet bases on R to the interval.

In combinationwith the results fromSect. 3, in Sect. 4.2,wewill end upwithwavelet
Riesz bases for

◦
Hk

(In) ∩H0(div0; In), as well as with dual bases. The multivariate
wavelets will be anisotropic, i.e., tensor products of univariate wavelets.

Finally, in Sect. 5, single-scale bases will be constructed for the spans of the various
univariate primal or dual wavelets up to a given level. Using these single-scale bases,
we will also construct an isotropic wavelet Riesz bases for

◦
Hk

(I2) ∩H0(div0; I2),
as well as a dual basis. Other than on Rn , we could not manage to do this on In for
n ≥ 3. Fortunately, anisotropic approximation has the advantage anyway that the best
possible convergence rate does not deteriorate with increasing n.

In this work, by C � D, we will mean that C can be bounded by a multiple of D,
independently of parameters on which C and D may depend. Obviously, C � D is
defined as D � C , and C � D as C � D and C � D.

2 Divergence-Free Wavelets in Two Dimensions

In this short section, we will recall that on two-dimensional domains, the construction
of Riesz bases of divergence-free wavelets is rather straightforward because of the
special properties of the curl operator in two dimensions.

For � ⊂ R2 being simply connected with a Lipschitz continuous boundary, it is
known that

curl : H1
0 (�) → H0(div0;�) is boundedly invertible. (2.1)
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Indeed, it is clear that for v ∈ H1
0 (�), curl v ∈ H0(div 0;�) and ‖ curl v‖L2(�)2 =

|v|H1(�) � ‖v‖H1(�) by Friedrich’s inequality. The remaining nontrivial part is to
show that curl is surjective, which is demonstrated in [11, § I.3.1].

As a consequence, for k ∈ N>0 and a measurable 	 ⊂ ∂�, we have that

curl : H1
0 (�) ∩ Hk+1

0,	 (�) → H0(div0;�) ∩ Hk
0,	(�)2 is boundedly invertible,

(2.2)

where H �
0,	(�) := closH�(�){u ∈ C(�) ∩ H �(�) : u = 0 on 	}. Indeed, for v ∈

H1
0 (�)∩Hk+1

0,	 (�), we have curl v ∈ H0(div0;�)∩Hk
0,	(�)2, and ‖ curl v‖2

Hk (�)2
=

∑
1≤|α|≤k+1 ‖∂αv‖2L2(�) � ‖v‖2

Hk+1(�)
by Friedrich’s inequality. To show surjectivity,

given w ∈ H0(div0;�) ∩ Hk
0,	(�)2, let v ∈ H1

0 (�) be such that curl v = w. Then
v ∈ Hk+1(�), and for 1 ≤ |α| ≤ k + 1, we have that ∂αv vanishes at 	, or v ∈
H1
0 (�) ∩ Hk+1

0,	 (�).

From (2.2), we conclude that if � is a Riesz basis for H1
0 (�) ∩ Hk+1

0,	 (�), e.g., of

wavelet type, then � := curl� is a Riesz basis for H0(div0;�) ∩ Hk
0,	(�)2.

With the approach of constructing a basis of divergence-free wavelets discussed so
far, there is no guarantee that a dual basis consisting of locally supported functions
exists. For � = I2, in the next sections, starting from biorthogonal univariate wavelet
bases, we will construct both anisotropic and isotropic divergence-free wavelet Riesz
bases, with duals that are locally supported whenever the univariate duals have this
property. The results for the anisotropic wavelets will be valid for� = In for arbitrary
dimension n, being the main point of this work.

3 A Biorthogonal Space Decomposition of (L2(In)n, L2(In)n)

In this section, we split (L2(In)n, L2(In)n) into 2n − 1 pairs of subspaces such that
the union of Riesz bases for the divergence-free parts of the primal subspaces is a
Riesz basis for H0(div 0; In). As we will see in the next section, such bases for the
subspaces can be constructed following the approach from [21].

Definition 3.1 For ∅ �= S = { j1, . . . , j#S} ⊂ {1, . . . , n}, let L2(IS) be the space of
functions of (x j1 , . . . , x j#S ) that are square integrable over I#S . With L2(IS)S , we
will denote the space of v = (v j1, . . . , v j#S ) for which v ji ∈ L2(IS) (∀i). Analogous
definitions will be used for Hk(IS) and Hk(IS)S . Note that L2(I{1,...,n}) = L2(In)

and L2(I{1,...,n}){1,...,n} = L2(In)n .
For each 1 ≤ i ≤ n, we fix two functions σi , σ̃i ∈ L2(I) with 〈σi , σ̃i 〉L2(I) = 1.

We set the biorthogonal projectors Pi , P̃i by

Piu := 〈u, σ̃i 〉L2(I)σi , P̃i u := 〈u, σi 〉L2(I)σ̃i .
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For any ∅ �= S = { j1, . . . , j#S} ⊂ {1, . . . , n}, we set

L2,0(IS)

:=
{
v ∈ L2(IS)S :

∫

I
v ji (x j1 , . . . , x j#S )σ̃ jk (x jk )dx jk = 0 (1 ≤ i �= k ≤ #S)

}
,

and L2,0(In) := L2,0(I{1,...,n}).
At the dual side, we get an analogous definition of L̃2,0(IS) by replacing σ̃ jk by

σ jk .

On many occasions, we will impose that σ̃i ∈ span{1} (∀i). Then L2,0(IS) is the
space of (v j1, . . . , v j#S ) ∈ L2(S)S , where, for any k �= i , v ji has zero mean as a
function of x jk when frozen in the other variables. So, in particular, in this case the
definition of L2,0(In) coincides with the one given earlier in the introduction in (1.2).

Next, we will construct an isomorphism between
∏

∅�=S⊂{1,...,n} L2,0(IS), and sim-

ilarly
∏

∅�=S⊂{1,...,n} L̃2,0(IS), and L2(In)n .

Definition 3.2 We define embeddings and projectors

E (S) : L2,0(IS) → L2(In)n, Q(S) : L2(In)n → L2,0(IS)

by

(E (S)v)(x) :=
#S∑

i=1

⎡

⎣v ji (x j1 , . . . , x j#S )
∏

k∈{1,...,n}\S
σk(xk)

⎤

⎦ e ji ,

where esi denotes the si th canonical unit vector in R
n , and

(Q(S)v)i :=
∫
In−#S Q

(S)
i1 ⊗ · · · ⊗ Q(S)

in vi dxk1 . . . dxkn−#S∏
k∈{1,...,n}\S

∫
I σk

(i ∈ S),

where {k1, . . . , kn−#S} := {1, . . . , n} \ S, and Q(S)
i j :=

⎧
⎨

⎩

I i = j
I − Pj i �= j ∈ S
Pj j /∈ S

⎫
⎬

⎭
.

At the dual side, we get an analogous definition of Ẽ (S) and Q̃(S) by replacing
(L2,0(IS), σk, Pj ) by (L̃2,0(IS), σ̃k, P̃j ).

Note that when σ̃i ∈ span{1} (∀i), then E (S) is the embedding that was discussed
in Sect. 1.4 below (1.10). It extends the nonzero coordinate functions v j1 , . . . , v j#S as
constant functions of the variables xi for i /∈ { j1, . . . , j#S}.
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Proposition 3.3 The bounded mappings

E :
∏

∅�=S⊂{1,...,n}
L2,0(IS) → L2(In)n : (v(S))S �→

∑

S

E (S)v(S),

Q : L2(In)n →
∏

∅�=S⊂{1,...,n}
L2,0(IS) : v �→ (Q(S)v)S

are each other’s inverse.
Defining Ẽ, Q̃ similarly by replacing (L2,0(IS), E (S), Q(S))by (L̃2,0(IS), Ẽ (S), Q̃(S)),
the analogous result is valid at the dual side.

Proof For ∅ �= S, S′ ⊂ {1, . . . , n}, consider (Q(S′)E (S)w)i for i ∈ S′. If i /∈ S,
then (· · · )i = 0 since (E (S)w)i = 0. If i ∈ S and ∃S′ � j �= i with j /∈ S, then
(· · · )i = 0 since (I − Pj )σ j = 0. If i ∈ S and S � j �= i with j /∈ S′, then (· · · )i = 0
since Pju = 0 when u ⊥L2(I) span{σ̃ j }. So Q(S′)E (S) = 0 when S′ �= S. Because
of Pjσ j = σ j , and (I − Pj )u = u when u ⊥L2(I) span{σ̃ j }, similarly we infer
Q(S)E (S) = I . We conclude that QE = I .

From
∑

∅�=S⊂{1,...,n}(E (S)Q(S)v)i =∑
{1,...,n}⊃S�{i} Q

(S)
i1 ⊗ · · ·⊗ Q(S)

in vi = vi , we
have EQ = I . ��

As an easy consequence of Proposition 3.3, we have the space decompositions

L2(In)n =
⊕

∅�=S⊂{1,...,n}
ran E (S), L2(In)n =

⊕

∅�=S⊂{1,...,n}
ran Ẽ (S). (3.1)

Example 3.4 Recalling the abbreviations L2 := L2(I) and �·� := span{·}, and setting

L(i)
2 := L2 ∩ �σ̃i �

⊥,

the decomposition L2(In)n =⊕
∅�=S⊂{1,...,n} ran E (S) for the cases n = 2 and n = 3

(the most relevant case) reads as follows:

L2(I2)2 = L2⊗L(2)
2 × L(1)

2 ⊗L2 (S = {1, 2})
⊕L2⊗�σ2� × 0 (S = {1})
⊕ 0 × �σ1�⊗L2 (S = {2}),

and

L2(I3)3 = L2⊗L(2)
2 ⊗L(3)

2 ×L(1)
2 ⊗L2⊗L(3)

2 ×L(1)
2 ⊗L(2)

2 ⊗L2 (S = {1, 2, 3})
⊕L2⊗L(2)

2 ⊗�σ3�×L(1)
2 ⊗L2⊗�σ3�× 0 (S = {1, 2})

⊕L2⊗�σ2�⊗L(3)
2 × 0 ×L(1)

2 ⊗�σ2�⊗L2 (S = {1, 3})
⊕ 0 ×�σ1�⊗L2⊗L(3)

2 ×�σ1�⊗L(2)
2 ⊗L2 (S = {2, 3})

⊕L2⊗�σ2�⊗�σ3�× 0 × 0 (S = {1})
⊕ 0 ×�σ1�⊗L2⊗�σ3�× 0 (S = {2})
⊕ 0 × 0 ×�σ1�⊗�σ3�⊗L2 (S = {3}).
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The decompositions at the dual side are obtained by replacing σi by σ̃i and L(i)
2 by

L̃(i)
2 := L2 ∩ �σi �

⊥.

As shown in the next proposition, the decompositions in (3.1) are biorthogonal.

Proposition 3.5 For ∅ �= S, S′ ⊂ {1, . . . , n}, we have (Q(S))∗ = Ẽ (S), (Q̃(S))∗ =
E (S), and (Ẽ (S′))∗E (S) =

{
I S = S′
0 S �= S′

}

.

Proof To show the first, and so the similar second statement, it is sufficient to consider
S = {1, . . . , �} for some 1 ≤ � ≤ n. For v ∈ L2(In)n andw ∈ L̃2,0(IS), it is sufficient
to verify whether for 1 ≤ i ≤ �, 〈(Q(S)v)i , wi 〉L2(I�) = 〈vi , (Ẽ (S)w)i 〉L2(In). Note

that (Q(S)v)i , (Ẽ (S)w)i depend only on vi , wi , respectively. W.l.o.g. let i = 1. It is
sufficient to consider v1 = ⊗n

i=1ri , w1 = ⊗�
i=1si , where ri , si ∈ L2(I) with, for

i ≥ 2, 〈si , σi 〉L2(I) = 0. Now from

(Q(S)v)1 =
(

n∏

i=�+1

〈ri , σ̃i 〉L2(I)

)

r1 ⊗ (I − P2)r2 ⊗ · · · ⊗ (I − P�)r�,

(Ẽ (S)w)1 = s1 ⊗ · · · ⊗ s� ⊗ σ̃�+1 ⊗ · · · ⊗ σ̃n,

the first, and so second statement follow.
The last statement follows from the first one using that QE = I . ��

Next, we define Sobolev spaces of divergence-free functions.

Definition 3.6 For ∅ �= S ⊂ {1, . . . , n}, on H1(IS) we set grad v = (∂x j1
v, . . . ,

∂x j#S
v)� ∈ L2(IS)S , and define

H0(div0; IS) =
{

v ∈ L2(IS)S :
∑

i∈S
∂xi vi = 0, vi |xi∈{0,1} = 0 (i ∈ S)

}

.

Note that H0(div0; IS) = {0} when #S = 1, and that

H0(div0; In) := H0(div0; I{1,...,n}) = {v ∈ L2(In) : div v = 0, v · n = 0 on ∂In}.

Furthermore, recall the Helmholtz decomposition

L2(IS)S = H0(div0; IS) ⊕⊥ grad H1(IS). (3.2)

It is an easy consequence of the fact that for u ∈ L2(IS)S , the solution v ∈ H̄1(IS) :=
{w ∈ H1(IS) : ∫IS w = 0} of ∫IS grad v · gradw = ∫

IS u · gradw (w ∈ H̄1(IS))
satisfies u− grad v ∈ H0(div0; IS).
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Proposition 3.7 For 1 ≤ i ≤ n, let 0 �= σ̃i ∈ span{1}. Then for ∅ �= S ⊂ {1, . . . , n},

Ẽ (S)(L̃2,0(IS) ∩ grad H1(IS)) ⊂ grad H1(In),

E (S)(L2,0(IS) ∩H0(div0; IS)) ⊂ H0(div0; In),

Q(S)(H0(div0; In)) ⊂ L2,0(IS) ∩H0(div0; IS),

Q̃(S)(grad H1(In)) ⊂ L̃2,0(IS) ∩ grad H1(IS).

Proof The first two results follow directly from the definitions of Ẽ (S) and E (S). For
the first one, it is used that the σ̃i ’s are multiples of 1.

For u ∈ H0(div0; In), v ∈ L2(In), Proposition 3.5, (3.2), and the first statement
show that

〈Q(S)u,∇v〉L2(IS)S = 〈u, Ẽ (S)∇v〉L2(In)n = 0,

which shows the third statement again by (3.2). The last statement is proved analo-
gously. ��

For ∅ �= S ⊂ {1, . . . , n}, we define Sobolev spaces, being subspaces of L2(S)S , of
vector fields whose coordinates satisfy homogeneous Dirichlet boundary conditions of
certain orders. Since we are working on the hypercube, these boundary conditions can
be identified as normal or tangential boundary conditions on the vector field. For any
1 ≤ i ≤ n and b ∈ {0, 1}, we will fix two integer parameters n(i)

b and t (i)b . They will be
the orders of the normal or of all tangential boundary conditions at xi = b, respectively,
when i ∈ S. So the orders of the boundary conditions in different Cartesian tangential
directions at xi = b cannot be chosen individually. Although the Sobolev spaces
depend on these 4n parameters, this will not be expressed in their notation, to avoid
making them too heavy.

Definition 3.8 Let k ∈ N := {0, 1, . . .}. Fixing, for 1 ≤ i ≤ n and b ∈ {0, 1},
n(i)
b , t (i)b ∈ {0, . . . , k}, for ∅ �= S ⊂ {1, . . . , n}, let
◦
Hk

(IS) =
{
v ∈ Hk(IS)S : ∂

p
xi vi |xi=b = 0 (i ∈ S, 0 ≤ p ≤ n(i)

b −1, b ∈ {0, 1}),
∂
p
x j vi |x j=b = 0 (i �= j ∈ S, 0 ≤ p ≤ t ( j)b −1, b ∈ {0, 1})

}
,

and
◦
Hk

(In) = ◦
Hk

(I{1,...,n}).
For p0, p1 ∈ {0, . . . , k}, we set

Hk
(p0,p1)

(I) =
{
u ∈ Hk(I) : u(p)(b) = 0(0 ≤ p ≤ pb−1, b ∈ {0, 1})

}
.

Note that Hk
(0,0)(I) = Hk(I) and Hk

(k,k)(I) = Hk
0 (I).

Remark 3.9 Although for ease of presentation, we consider only Sobolev spaces with
integer orders, everything can be generalized to noninteger orders, with some care for
orders inN+ 1

2 .
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The following proposition extends upon Proposition 3.3.

Proposition 3.10 For 1 ≤ i ≤ n, let σi ∈ Hk
(t (i)0 ,t (i)1 )

(I). Then

E :
∏

∅�=S⊂{1,...,n}
L2,0(IS) ∩ ◦

Hk
(IS) → ◦

Hk
(In) is boundedly invertible.

Proof Thanks to the condition on the σi , E (S) : L2,0(IS) ∩ ◦
Hk

(IS) → ◦
Hk

(In) and
Q(S) : ◦

Hk
(In) → L2,0(IS) ∩ ◦

Hk
(IS) are bounded. Now use that E−1 = Q by Propo-

sition 3.3. ��
Below,wewill assume that σ̃i ∈ span{1} (∀i).Obviously these functions are smooth

but do not satisfy homogeneous boundary conditions of any order. Consequently, the
corresponding statement of Proposition 3.10 at the dual side reads as

Ẽ :
∏

∅�=S⊂{1,...,n}
L̃2,0(IS) ∩ Hk(IS)S → Hk(In)n is boundedly invertible.

As a consequence of Propositions 3.7 and 3.10, we have:

Corollary 3.11 For 1 ≤ i ≤ n, let σi ∈ Hk
(t (i)0 ,t (i)1 )

(I) and 0 �= σ̃i ∈ span{1}. Then
both

E :
∏

{S⊂{1,...,n} : #S≥2}
L2,0(IS) ∩ ◦

Hk
(IS) ∩H0(div0; IS) → ◦

Hk
(In) ∩H0(div0; In),

Ẽ :
∏

∅�=S⊂{1,...,n}
L̃2,0(IS) ∩ Hk(IS)S ∩ grad H1(IS) → Hk(In)n ∩ grad H1(In),

are boundedly invertible.

We are ready to formulate one of the two main ingredients for the construction of
the divergence-free wavelet basis (the other one is the construction of the collections
�

(S)
df that is given in the forthcoming Theorem 4.4).

Corollary 3.12 For 1 ≤ i ≤ n, let σi ∈ Hk
(t (i)0 ,t (i)1 )

(I) and 0 �= σ̃i ∈ span{1}. For S ⊂
{1, . . . , n}, #S ≥ 2, let �(S)

df be a Riesz basis for L2,0(IS) ∩ ◦
Hk

(IS) ∩H0(div0; IS).
Then

⋃

{S⊂{1,...,n} : #S≥2}
E (S)�

(S)
df is a Riesz basis for

◦
Hk

(In) ∩H0(div0; In).

If, furthermore, �̃
(S)

df ⊂ L̃2,0(IS) is a dual basis for �
(S)
df , then a dual basis is given

by

⋃

{S⊂{1,...,n} : #S≥2}
Ẽ (S)�̃

(S)

df .
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Proof The first statement is obvious, and the biorthogonality is a consequence of
Proposition 3.5.

The collection �̃
(S)

df being a dual basis additionally means that for

v ∈ L2,0(IS) ∩ ◦
Hk

(IS), ‖〈v, �̃(S)

df 〉L2(S)S‖�2 � ‖v‖Hk (IS)S . Now let u ∈ ◦
Hk

(In)n .
Then

∑

{S⊂{1,...,n} : #S≥2}
‖〈u, Ẽ (S)�̃

(S)

df 〉L2(In)n‖2�2=
∑

{S⊂{1,...,n} : #S≥2}
‖〈Q(S)u, �̃

(S)

df 〉L2(S)S‖2�2

�
∑

{S⊂{1,...,n} : #S≥2}
‖Q(S)u‖2Hk (IS)S

� ‖u‖2Hk (In)n
,

which completes the proof of
⋃

{S⊂{1,...,n} : #S≥2} Ẽ (S)�̃
(S)

df being a dual basis. ��
Obviously, a similar result can be formulated for the construction of a Riesz basis

for Hk(In)n ∩ grad H1(In).

4 Construction of Divergence-Free Wavelets on the Subspaces

For S ⊂ {1, . . . , n}, #S ≥ 2, biorthogonal collections (�
(S)
df , �̃

(S)

df ) ⊂ L2,0(IS) ×
L̃2,0(IS) are constructed as needed in Corollary 3.12. As building blocks, first two
pairs of univariate biorthogonal wavelet bases will be constructed, possibly different
for each coordinate direction.

4.1 Pairs of Biorthogonal Riesz Bases on the Interval Related via
Differentiation/Integration

Starting from a general pair of biorthogonal univariate wavelet bases (�(i), �̃(i))

(1 ≤ i ≤ n) for (L2(I), L2(I)), in this subsection a new pair is constructed by
integration/differentiation. This construction generalizes the one from [21] for the
stationary multiresolution case on the line, as well as those from [14] for stationary
multiresolution analyses adapted to the interval.

We will require that the collection of dual wavelets is such that there exists a dual
wavelet that is amultiple of1. This conditionmeans that all primalwavelets, except for
the one that forms a biorthogonal pairwith themultiple of1, have at least one vanishing
moment, and that noDirichlet boundary conditions are incorporated in the dual system.
The special biorthogonal pair will play the role of (σi , σ̃i ) in the construction of the
biorthogonal space decomposition of (L2(In)n, L2(In)n) discussed in Sect. 3, and
will be excluded from the integration/differentiation process.

Theorem 4.1 For 1 ≤ i ≤ n, k ∈ N, and t (i)0 , t (i)1 ∈ {0, . . . , k}, assume that:
(1) �(i) = {ψ(i)

λ : λ ∈ ∇(i)}, �̃(i) = {ψ̃(i)
λ : λ ∈ ∇(i)} are L2(I)-biorthogonal

collections,
(2) ∃λ̂(i) ∈ ∇(i) such that for (σi , σ̃i ) := (ψ

(i)
λ̂(i) , ψ̃

(i)
λ̂(i) ), it holds that σ̃i ∈ span{1},
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Fig. 1 Schematic relation between �(i), �̃(i),
+
�

(i), and
−̃
�

(i)

(3) {2−|λ|ψ̃(i)
λ : λ ∈ ∇(i)} is a Riesz basis for H1(I),

(4) {2−|λ|kψ(i)
λ : λ ∈ ∇(i)} is a Riesz basis for Hk

(t (i)0 ,t (i)1 )
(I).

Here, as usual, |λ| ∈ N denotes the level of λ ∈ ∇(i) (or that of ψ(i)
λ or ψ̃

(i)
λ ).

Then setting, for λ ∈ ◦∇(i) := ∇(i) \ {λ̂(i)},

+
ψ

(i)
λ := x �→

∫ x

0
2|λ|ψ(i)

λ (y)dy,
−̃
ψ

(i)
λ := −2−|λ|ψ̃(i)

λ

′
, (4.1)

cf. Fig. 1, it holds that:

(5)
+
�

(i) = {+ψ(i)
λ : λ ∈ ◦∇(i)}, −̃�(i) = {−̃ψ(i)

λ : λ ∈ ◦∇(i)} are L2(I)-biorthogonal Riesz
bases,

(6) {2−|λ|(k+1)+ψ(i)
λ : λ ∈ ◦∇(i)} is a Riesz basis for Hk+1

(t (i)0 +1,t (i)1 +1)
(I).

Moreover, supp
−̃
ψ

(i)
λ ⊂ supp ψ̃

(i)
λ , and supp

+
ψ

(i)
λ ⊂ convhull(suppψ

(i)
λ ).

Conversely, when (
+
�

(i)
,
−̃
�

(i)
) satisfy (5)-(6), then setting ∇(i) := ◦∇(i) ∪ {λ̂(i)},

selecting a ψ
(i)
λ̂(i) = σi ∈ Hk

(t (i)0 ,t (i)1 )
(I) with

∫
I σi �= 0, taking ψ̃

(i)
λ̂(i) = σ̃i := 1/

∫
I σi ,

and, for λ ∈ ◦∇(i), taking

ψ
(i)
λ := 2−|λ|

+
ψ

(i)
λ

′
, ψ̃

(i)
λ (4.2)

:= x �→ −2|λ|
(∫ x

0

−̃
ψ

(i)
λ (y)dy −

∫ 1
0

∫ z
0

−̃
ψ

(i)
λ (y)dyσi (z)dz
∫ 1
0 σi (z)dz

)

,

the conditions (1)–(4) are valid.

The relations indicated by the boxes are the analogues on the interval of (1.1) on
the line.

Proof Either by (1), (2), and (4), or by the assumptions in the last paragraph of the the-
orem, we have 〈σi , σ̃i 〉L2(I) = 1, σi ∈ Hk

(t (i)0 ,t (i)1 )
(I), and σ̃i ∈ span{1}. Consequently,
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u �→ 〈u, σ̃i 〉L2(I)σi and u �→ 〈u, σi 〉L2(I)σ̃i are projectors, which are bounded
on Hk

(t (i)0 ,t (i)1 )
(I) and H1(I), respectively. They give rise to the stable, biorthogo-

nal decompositions Hk
(t (i)0 ,t (i)1 )

(I) = span{σi } ⊕
(
Hk

(t (i)0 ,t (i)1 )
(I) ∩ span{1}⊥L2(I)

)
and

H1(I) = span{1} ⊕ (H1(I) ∩ span{σi }⊥L2(I)
)
.

With this at hand, the conditions (1), (3), and (4) reduce to:

(i) {ψ(i)
λ : λ ∈ ◦∇(i)}, {ψ̃(i)

λ : λ ∈ ◦∇(i)} are L2(I)-biorthogonal collections,

(ii) {2−|λ|ψ̃(i)
λ : λ ∈ ◦∇(i)} is a Riesz basis for H1(I) ∩ span{σi }⊥L2(I) ,

(iii) {2−|λ|kψ(i)
λ : λ ∈ ◦∇(i)} is a Riesz basis for Hk

(t (i)0 ,t (i)1 )
(I) ∩ span{1}⊥L2(I) .

The mapping H1(I) ∩ span{σi }⊥L2(I) → L2(I) : f → f ′ is bounded, with

bounded inverse g �→
(
x �→ ∫ x

0 g(y)dy −
∫ 1
0

∫ z
0 g(y)dyσi (z)dz
∫ 1
0 σi (z)dz

)
. The mapping

Hk
(t (i)0 ,t (i)1 )

(I) ∩ span{1}⊥L2(I) → Hk+1
(t (i)0 +1,t (i)1 +1)

(I) : g �→ (x �→ ∫ x
0 g(y)dy) is

bounded, with bounded inverse f �→ f ′. These facts show that the definitions (4.1)
and (4.2) are equivalent. Furthermore, they show that (ii) is equivalent to

−̃
�

(i) being a
Riesz basis for L2(I), and that (iii) is equivalent to (6).

From (iii), or (6), we have
+
�

(i) ⊂ H1
0 (I), and so for λ,μ ∈ ◦∇(i),

〈+ψ(i)
λ ,

−̃
ψ(i)

μ 〉L2(I) = 〈+ψ(i)
λ ,−2−|μ|ψ̃(i)

μ

′ 〉L2(I) = 2|λ|−|μ|〈ψ(i)
λ , ψ̃(i)

μ 〉L2(I);

i.e., (iii) is equivalent to biorthogonality of (
+
�

(i)
,
−̃
�

(i)
).

Finally, both supp
−̃
ψ

(i)
λ ⊂ supp ψ̃

(i)
λ and supp

+
ψ

(i)
λ ⊂ convhull(suppψ

(i)
λ ) follow

from (4.1), for the latter using that
∫
I ψ

(i)
λ = 0 by (iii). ��

Corollary 4.2 Assuming (1)-(4), then for q ∈ {1, . . . , k + 1},

{2|λ|(1−q)ψ
(i)
λ : λ ∈ ∇(i)} is a Riesz basis for Hq−1

(min(t (i)0 ,q−1),min(t (i)1 ,q−1))
(I),

and so {2|λ|(1−q)ψ
(i)
λ : λ ∈ ◦∇(i)} is aRiesz basis for this space intersectedwith L2,0(I);

and, for q ∈ {0, . . . , k + 1},

{2−|λ|q +ψ(i)
λ : λ ∈ ◦∇(i)} is a Riesz basis for Hq

(min(t (i)0 +1,q),min(t (i)1 +1,q))
(I).

Proof Conditions (3) and (1) show that {2|λ|ψ(i)
λ : λ ∈ ∇(i)} is a Riesz basis for

H1(I)′. Together with (4), it shows that {2|λ|(1−q)ψ
(i)
λ : λ ∈ ∇(i)} is a Riesz basis for

the interpolation space [H1(I)′, Hk
(t (i)0 ,t (i)1 )

(I)] q
k+1 ,2 
 Hq−1

(min(t (i)0 ,q−1),min(t (i)1 ,q−1))
(I)

for q ∈ {1, . . . , k + 1}.
Properties (5)–(6) show that for q ∈ {0, . . . , k + 1}, {2−|λ|q +ψ(i)

λ : λ ∈ ◦∇(i)} is a
Riesz basis for [L2(I), Hk+1

(t (i)0 +1,t (i)1 +1)
(I)] q

k+1 ,2 
 Hq

(min(t (i)0 +1,q),min(t (i)1 +1,q))
(I). ��
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If �(i), �̃(i) that satisfy (1)–(4) are local, in the sense that diam suppψ
(i)
λ � 2−|λ|,

diam supp ψ̃
(i)
λ � 2−|λ|, then the same holds true for

+
�

(i) and
−̃
�

(i) defined by (4.1).

Alternatively, one may start with (
+
�

(i)
,
−̃
�

(i)
) that satisfy (5)–(6), and then, using a

suitable σ (i), define �(i) and �̃(i) by (4.2). Following this approach, however,
−̃
�

(i)

being local does not imply this property for �̃(i).
Finally in this subsection, we note that it is well known how to construct pairs

(�(i), �̃(i)) that satisfy (1)–(4) for any k ∈ N and t (i)0 , t (i)1 ∈ {0, . . . , k} and that
additionally are local. We refer to the discussion in Sect. 5.1, where additionally the
existence of suitable single-scale bases will be discussed.

4.2 The (Anisotropic) Divergence-Free Wavelets

For some k ∈ N, and, for 1 ≤ i ≤ n and b ∈ {0, 1}, t (i)b ∈ {0, . . . , k}, from now on

we fix biorthogonal pairs (�(i), �̃(i)) and (
+
�

(i),
−̃
�

(i)
) as in Theorem 4.1.

Then the pairs (σi , σ̃i ), and so the spaces L2,0(IS) and L̃2,0(IS) in Definition 3.1,
and the embeddings E (S), Ẽ (S) and projectors Q(S), Q̃(S) in Definition 3.2 have
all been determined. Upon setting n(i)

b := min(t (i)b + 1, k), the spaces
◦
Hk

(IS) in
Definition 3.8 have been fixed as well.

Note that the conditions σ̃i ∈ span{1} and σi ∈ Hk
(t (i)0 ,t (i)1 )

(I) required in Corol-

lary 3.12 are guaranteed by Theorem 4.1.
Using the pairs (�(i) \ {σ (i)}, �̃(i) \ {σ̃ (i)}) and (

+
�

(i),
−̃
�

(i)), in this subsection we

construct, for any S ⊂ {1, . . . , n} with #S ≥ 2, bases �
(S)
df and �̃

(S)

df as needed in

in Corollary 3.12. The key will be to make a Riesz basis �(S) = {ψ (S)
λ : λ ∈ ∇(S)}

for L2,0(IS) ∩ ◦
Hk

(IS) with dual collection �̃
(S) ⊂ L̃2,0(IS), such that ∇(S) splits

into two disjoint subsets, with the primals with indices from the first subset being
divergence-fee and having vanishing normals at the boundary, and the duals with
indices from the second subset being gradients.

For notational simplicity,

w.l.o.g., we consider S = {1, . . . , n}. (4.3)

Lemma 4.3 For λ ∈ ∇ := ◦∇(1) × · · · × ◦∇(n) and 1 ≤ i ≤ n, let

ψ
λ,i

:=ψ
(1)
λ1

⊗ · · · ⊗ ψ
(i−1)
λi−1

⊗ +
ψ

(i)
λi

⊗ ψ
(i+1)
λi+1

⊗ · · · ⊗ ψ
(n)
λn

ei ,

ψ̃
λ,i

:= ψ̃
(1)
λ1

⊗ · · · ⊗ ψ̃
(i−1)
λi−1

⊗ −̃
ψ

(i)
λi

⊗ ψ̃
(i+1)
λi+1

⊗ · · · ⊗ ψ̃
(n)
λn

ei .
(4.4)

Then
⎧
⎪⎨

⎪⎩

⎛

⎝
n∑

j=1

4|λ j |k
⎞

⎠

− 1
2

ψ
λ,i

: λ∈∇, 1 ≤ i ≤ n

⎫
⎪⎬

⎪⎭
,

⎧
⎪⎨

⎪⎩

⎛

⎝
n∑

j=1

4|λ j |k
⎞

⎠

1
2

ψ̃
λ,i

: λ ∈ ∇, 1≤i ≤ n

⎫
⎪⎬

⎪⎭
,

(4.5)
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are L2(In)n-biorthogonal collections; the first collection is a Riesz basis for
L2,0(In) ∩ ◦

Hk
(In), and the second collection is in L̃2,0(In).

Proof The biorthogonality is obvious.

Let 1 ≤ i ≤ n be fixed. For 1 ≤ j ≤ n, setting pb :=
{
t ( j)b j �= i

n( j)
b j = i

}

,

{
2−|λ j |kψ(1)

λ1
⊗ · · · ⊗ ψ

(i−1)
λi−1

⊗ +
ψ

(i)
λi

⊗ ψ
(i+1)
λi+1

⊗ · · · ⊗ ψ
(n)
λn

: λ ∈ ∇
}

is a Riesz basis for

⎧
⎪⎪⎨

⎪⎪⎩
u∈ L2(I)⊗ · · · ⊗ Hk

(p0,p1)
(I)

︸ ︷︷ ︸
j th position

⊗ · · · ⊗ L2(I) :
∫

I
u(x1, . . . , xn)dxm=0 (m �= i)

⎫
⎪⎪⎬

⎪⎪⎭
,

by Corollary 4.2, and the definition of n( j)
b given at the beginning of this subsection.

Consequently,

⎧
⎪⎨

⎪⎩

⎛

⎝
n∑

j=1

4|λ j |k
⎞

⎠

− 1
2

ψ
(1)
λ1

⊗ · · · ⊗ ψ
(i−1)
λi−1

⊗ +
ψ

(i)
λi

⊗ ψ
(i+1)
λi+1

⊗ · · · ⊗ ψ
(n)
λn

: λ ∈ ∇

⎫
⎪⎬

⎪⎭

is a Riesz basis for the intersection of these spaces over 1 ≤ j ≤ n (cf. [13, Proposi-
tion 2]), being

{
u ∈ Hk(In) : ∂

p
xi u|xi=b = 0 (p ∈ {0, . . . , n(i)

b −1}) (b ∈ {0, 1}),
∂
p
x j u|x j=b = 0 (p ∈ {0, . . . , t ( j)b −1}) (b ∈ {0, 1}, j �= i),
∫

I
u(x1, . . . , xn)dx j = 0 ( j �= i)

}

.

In view of the definitions of L2,0(In), L̃2,0(In), and
◦
Hk

(In), the proof is completed.
��

Next we are going to orthogonally transform the biorthogonal system of Lemma 4.3
into a new biorthogonal system that splits into two parts, with the primals from the first
part being divergence-free, and the duals from the second part being gradients. This
transformation generalizes upon the one that was used in the introduction to arrive at
(1.5).

For any λ ∈ ∇, we transform the biorthogonal system {ψ
λ,i

: 1 ≤ i ≤ n},
{ψ̃

λ,i
: 1 ≤ i ≤ n}. We select an orthogonal A(λ) ∈ Rn×n with its nth row given

by
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A(λ)
n• = α(λ)�, where α(λ) := [2|λ1| · · · 2|λn |]�

/(
n∑

i=1

4|λi |
) 1

2

. (4.6)

An example of such a matrix A(λ) is given by the Householder transformation

A(λ) = I − 2(α(λ) − en)(α(λ) − en)�

(α(λ) − en)�(α(λ) − en)
,

which for n = 2, 3 reads as

[
−α

(λ)
2 α

(λ)
1

α
(λ)
1 α

(λ)
2

]

,

⎡

⎢
⎢
⎢
⎣

1− (α
(λ)
1 )2

1−α
(λ)
3

−α
(λ)
1 α

(λ)
2

1−α
(λ)
3

α
(λ)
1

−α
(λ)
1 α

(λ)
2

1−α
(λ)
3

1− (α
(λ)
2 )2

1−α
(λ)
3

α
(λ)
2

α
(λ)
1 α

(λ)
2 α

(λ)
3

⎤

⎥
⎥
⎥
⎦

,

respectively. The transformed system is now defined by

⎡

⎢
⎣

ψλ,1
...

ψλ,n

⎤

⎥
⎦ := A(λ)

⎡

⎢
⎢
⎣

ψ
λ,1
...

ψ
λ,n

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎣

ψ̃λ,1
...

ψ̃λ,n

⎤

⎥
⎦ := A(λ)

⎡

⎢
⎢
⎣

ψ̃
λ,1
...

ψ̃
λ,n

⎤

⎥
⎥
⎦ . (4.7)

Note that since A(λ) applies to a group of basis functions that correspond to the same
λ, this transformation does not affect possible locality of the basis functions.

Theorem 4.4 In the situation of Lemma 4.3, we have that

�df :=

⎧
⎪⎨

⎪⎩

⎛

⎝
n∑

j=1

4|λ j |k
⎞

⎠

− 1
2

ψλ,i : λ ∈ ∇, 1 ≤ i ≤ n − 1

⎫
⎪⎬

⎪⎭

is a Riesz basis for L2,0(In) ∩ ◦
Hk

(In) ∩H0(div0; In), with dual basis

�̃df :=

⎧
⎪⎨

⎪⎩

⎛

⎝
n∑

j=1

4|λ j |k
⎞

⎠

1
2

ψ̃λ,i : λ ∈ ∇, 1 ≤ i ≤ n − 1

⎫
⎪⎬

⎪⎭
⊂ L̃2,0(In).

Proof FromA(λ) being an orthogonal transformation, and the fact that the normaliza-
tion factors of ψλ,i and ψ̃λ,i in Lemma 4.3 are independent of i , this lemma shows
that
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⎧
⎪⎨

⎪⎩

⎛

⎝
n∑

j=1

4|λ j |k
⎞

⎠

− 1
2

ψλ,i : λ ∈ ∇, 1 ≤ i ≤ n

⎫
⎪⎬

⎪⎭
,

⎧
⎪⎨

⎪⎩

⎛

⎝
n∑

j=1

4|λ j |k
⎞

⎠

1
2

ψ̃λ,i : λ ∈ ∇, 1 ≤ i ≤ n

⎫
⎪⎬

⎪⎭
, (4.8)

are L2(In)n-biorthogonal collections; the first collection is a Riesz basis for
L2,0(In) ∩ ◦

Hk
(In), and the second collection is in L̃2,0(In).

By definition of the nth row of the orthogonal A(λ), and
+
ψ

( j)
λ j

′ = 2|λ j |ψ( j)
λ j

, for

1 ≤ i ≤ n − 1,

divψλ,i =
n∑

j=1

A(λ)
i j divψ

λ, j
=
⎛

⎝
n∑

j=1

A(λ)
i j 2

|λ j |
⎞

⎠ ψ
(1)
λ1

⊗ · · · ⊗ ψ
(n)
λn

= 0.

Since for 1 ≤ i ≤ n, it holds that
+
�

(i) ⊂ H1
0 (I), furthermore we have ψ

λ,i
·n = 0 on

∂In , and soψλ,i ·n = 0 on ∂In , which thus in particular holds true for 1 ≤ i ≤ n−1.

From 2|λ j | −̃ψ( j)
λ j

= −ψ̃
( j)
λ j

′
, it holds that

⎛

⎝
n∑

j=1

4|λ j |
⎞

⎠

1
2

ψ̃λ,n =
n∑

j=1

2|λ j |ψ̃
λ, j

= − grad ψ̃
(1)
λ1

⊗ · · · ⊗ ψ̃
(n)
λn

. (4.9)

We infer that for u ∈ L2,0(In) ∩ ◦
Hk

(In) ∩H0(div0; In),

u =
∑

λ∈∇

n−1∑

i=1

〈

u,

⎛

⎝
n∑

j=1

4|λ j |k
⎞

⎠

1
2

ψ̃λ,i

〉⎛

⎝
n∑

j=1

4|λ j |k
⎞

⎠

− 1
2

ψλ,i

and
∑

λ∈∇
∑n−1

i=1 |〈u, (
∑n

j=1 4
|λ j |k) 1

2 ψ̃λ,i 〉|2 � ‖u‖2
Hk (In)n

, which completes the
proof. ��

Together, Corollary 3.12 and Theorem 4.4 yield anisotropic wavelet Riesz bases for◦
Hk

(In) ∩H0(div0; In) constructed from the biorthogonal pairs of univariate wavelet
bases (�(i), �̃(i)) and (

+
�

(i)
,
−̃
�

(i)
) from Theorem 4.1. We exemplify the construction

for space dimensions n = 2 and n = 3.
For n = 2, a similar construction was presented in [15,16] based on the properties

of the curl-operator (cf. Sect. 2).
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Example 4.5 For n = 2,

{−2|λ2|
+
ψ

(1)
λ1

⊗ ψ
(2)
λ2

e1 + 2|λ1|ψ(1)
λ1

⊗ +
ψ

(2)
λ2

e2

(4|λ1|k + 4|λ2|k) 1
2
(
4|λ1| + 4|λ2|) 1

2

: (λ1, λ2) ∈
◦∇(1) × ◦∇(2)

}

(4.10)

is a Riesz basis for
◦
Hk

(I2) ∩H0(div0; I2), with a dual basis given by

{−2|λ2|
−̃
ψ

(1)
λ1

⊗ ψ̃
(2)
λ2

e1 + 2|λ1|ψ̃(1)
λ1

⊗ −̃
ψ

(2)
λ2

e2

(4|λ1|k + 4|λ2|k)− 1
2
(
4|λ1| + 4|λ2|) 1

2

: (λ1, λ2) ∈
◦∇(1) × ◦∇(2)

}

. (4.11)

For n = 3, with α(λ) as in (4.6) (reading n = 3),
⎧
⎪⎪⎨

⎪⎪⎩

(1− (α
(λ)
1 )2

1−α
(λ)
3

)
+
ψ

(1)
λ1
⊗ψ

(2)
λ2
⊗ψ

(3)
λ3

e1 − α
(λ)
1 α

(λ)
2

1−α
(λ)
3

ψ
(1)
λ1
⊗+

ψ
(2)
λ2
⊗ψ

(3)
λ3

e2 + α
(λ)
1 ψ

(1)
λ1
⊗ψ

(2)
λ2
⊗+

ψ
(3)
λ3

e3

(4|λ1|k + 4|λ2|k + 4|λ3|k) 1
2

: (λ1, λ2, λ3) ∈
◦∇(1) × ◦∇(2) × ◦∇(3)

⎫
⎪⎪⎬

⎪⎪⎭

⋃

⎧
⎪⎪⎨

⎪⎪⎩

α
(λ)
1 α

(λ)
2

α
(λ)
3 −1

+
ψ

(1)
λ1
⊗ψ

(2)
λ2
⊗ψ

(3)
λ3

e1 + (1− (α
(λ)
2 )2

1−α
(λ)
3

)ψ
(1)
λ1
⊗+

ψ
(2)
λ2
⊗ψ

(3)
λ3

e2 + α
(λ)
2 ψ

(1)
λ1
⊗ψ

(2)
λ2
⊗+

ψ
(3)
λ3

e3

(4|λ1|k + 4|λ2|k + 4|λ3|k) 1
2

: (λ1, λ2, λ3) ∈
◦∇(1) × ◦∇(2) × ◦∇(3)

⎫
⎪⎪⎬

⎪⎪⎭

⋃
{−2|λ2|

+
ψ

(1)
λ1

⊗ ψ
(2)
λ2

⊗ σ3e1 + 2|λ1|ψ(1)
λ1

⊗ +
ψ

(2)
λ2

⊗ σ3e2

(4|λ1|k + 4|λ2|k) 1
2
(
4|λ1| + 4|λ2|) 1

2

: (λ1, λ2) ∈
◦∇(1) × ◦∇(2)

}

(4.12)

⋃
{−2|λ3|

+
ψ

(1)
λ1

⊗ σ2 ⊗ ψ
(3)
λ3

e1 + 2|λ1|ψ(1)
λ1

⊗ σ2 ⊗ +
ψ

(3)
λ3
e3

(4|λ1|k + 4|λ3|k) 1
2
(
4|λ1| + 4|λ3|) 1

2

: (λ1, λ3) ∈
◦∇(1) × ◦∇(3)

}

(4.13)

⋃
{−2|λ3|σ1 ⊗ +

ψ
(2)
λ2

⊗ ψ
(3)
λ3

e2 + 2|λ2|σ1 ⊗ ψ
(2)
λ2

⊗ +
ψ

(3)
λ3
e3

(4|λ2|k + 4|λ3|k) 1
2
(
4|λ2| + 4|λ3|) 1

2

: (λ2, λ3) ∈
◦∇(2) × ◦∇(3)

}

(4.14)

is a Riesz basis for
◦
Hk

(I3) ∩H0(div0; I3).
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A dual basis is obtained by replacing, in all places,
+
ψ

(i)
λi

by
−̃
ψ

(i)
λi
, ψ(i)

λi
by ψ̃

(i)
λi
, and

(4|λ1|k + 4|λ2|k + 4|λ3|k) 1
2 , (4|λ1|k + 4|λ2|k) 1

2 , (4|λ1|k + 4|λ3|k) 1
2 , and (4|λ2|k + 4|λ3|k) 1

2

by their reciprocals.

Remark 4.6 The biorthogonal collections constructed in Theorem 4.4 are clearly not
unique.W.r.t. the splitting {1, . . . , n}×∇ = {1, . . . , n−1}×∇⋃{n}×∇, let us write

the primal and dual bases from (4.8) as

[
�df
�gr

]

and

[
�̃df

�̃gr

]

. Then for A11, A22 bound-

edly invertible, and A21 boundedmatrices (w.r.t. �2 topologies andwith the appropriate

dimensions), the transformed systems

[
�df
�gr

]

=
[
A11 0
A21 A22

] [
�df
�gr

]

,

[
�̃df
�̃gr

]

=
[
A−�11 −A−�11 A�12A

−�
22

0 A−�22

] [
�̃df

�̃gr

]

share the properties with the original systems. That

is, they are biorthogonal,

[
�df
�gr

]

is a Riesz basis for L2,0(In) ∩ ◦
Hk

(In),

[
�̃df
�̃gr

]

⊂
L̃2,0(In), �df ⊂ H0(div0; In), and �̃gr ⊂ grad H1(In). Consequently, �df is a

Riesz basis for L2,0(In) ∩ ◦
Hk

(In) ∩H0(div0; In) with dual basis �̃df ⊂ L̃2,0(In).

5 Single-Scale Bases, and Isotropic Divergence-Free Wavelets

To compute an approximation to a function u ∈ ◦
Hk

(In) ∩H0(div0; In) from our
divergence-free wavelet basis, one has to select a subset of its infinite index set.
For sufficiently smooth u, choosing a so-called sparse-grid index set, reading as
the union of all indices (λ1, . . . , λn) that for some � ∈ N satisfy

∑m
i=1 |λi | ≤ �

(where the absolute values of “lacking coordinates” λi , cf. (4.12)–(4.14), should
read as zero), the approximation error in Hk(In)n is of order N−(d+1−k), up to
log-factors. Here N is the cardinality of the sparse-grid index set, and d is the
order of the univariate wavelets. For k > 0, the log-factors can even be avoided
by applying a somewhat modified index set known as an optimized sparse grid
([12], [10, Ch.4]). These results should be compared with the generally best pos-
sible approximation error realized with isotropic approximation which is of order

N− d+1−k
n .

When u is the solution of a PDE, say the (Navier-) Stokes equations, then a
near-best approximation from the span of the wavelets with indices in a given
index subset is given by its corresponding Galerkin approximation. Since the
basis is Riesz, the stiffness matrix is well-conditioned, uniformly in the index
subset. Consequently, the Galerkin system can be solved by the application of
a simple iterative scheme. Due to the anisotropic nature of the basis functions,
the stiffness matrix is, however, generally far from being sparse. Nevertheless,
for (optimized) sparse grid index sets, the application of this matrix to a vector
can be computed in linear complexity using the so-called unidirectional approach
[1]. This approach relies on the availability of locally supported single scale
bases and corresponding refinement relations for the univariate wavelets that are
used as building blocks of the divergence-free wavelets. This is the topic of
Sect. 5.1.

123



256 Constr Approx (2016) 44:233–267

The above considerations apply under the assumption that u is sufficiently
smooth. For a much larger class of functions, an error of order N−(d+1−k)

can be realized by a Galerkin approximation w.r.t. an adaptively created index
set [6]. For index sets that have a certain multi-tree structure, the application
of the stiffness matrix to a vector can still be applied in linear complexity
[17].

Although the application of anisotropic basis functions clearly offers important
advantages, it is fair to say that their implementation is more demanding than that
of isotropic basis functions. Therefore, in Sect. 5.2, a construction will be presented
of an isotropic Riesz basis for

◦
Hk

(I2) ∩H0(div0; I2), so unfortunately only for n =
2.

5.1 Single Scale Bases and Refinement Equations

In this subsection, we fix the index 1 ≤ i ≤ n, and drop it from our notations.

Assuming that biorthogonal (locally supported) single scale bases are available for the
univariate primal and dual wavelet collections � and �̃, in this section we construct
biorthogonal (locally supported) single scale bases for

+
� and

−̃
�.

Proposition 5.1 (single-scale bases) Let �, �̃,
+
�,

−̃
� be as in Theorem 4.1, and so in

particular with σ̃ = ψ̃
λ̂
∈ span{1}. W.l.o.g. we may assume that |λ̂| = 0.

(a). For � ∈ N, let

�� = {φλ : λ = (|λ|, q) ∈ �� := {�} × {1, . . . N�}},
�̃� = {φ̃λ : λ ∈ ��}

be biorthogonal bases for {ψλ : λ ∈ ∇, |λ| ≤ �}, span{ψ̃λ : λ ∈ ∇, |λ| ≤ �}, scaled
such that for each �, ∫

I
φλ is independent of λ ∈ ��. (5.1)

Then

+
�� = {+φλ : λ = (�, q) ∈ ◦

�� := {�} × {1, . . . N� − 1}},
−̃
�� = {−̃φλ : λ ∈ ◦

��},

defined by

+
φ�,q := x �→

∫ x

0
2�+1(φ�,q+1(y) − φ�,q(y))dy,

−̃
φ�,q := −2−(�+1)

N�∑

p=q+1

φ̃
′
�,p,

are biorthogonal bases for span{+ψλ : λ ∈ ◦∇, |λ| ≤ �}, span{ −̃ψλ : λ ∈ ◦∇, |λ| ≤ �}.
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(b). In addition, let ‖φ�,q‖L2(I), ‖φ̃�,q‖L2(I) � 1, and let��, �̃� be uniformly local
and locally finite, meaning that the diameters of the supports of the basis functions
are of order 2−�, and that each interval of length 2−� intersects the supports of a
(uniformly) bounded number of basis functions.

Then, numbering the basis functions such that inf suppφ�,q ≤ inf suppφ�,q+1, it
holds that

+
��,

−̃
�� are uniformly local and locally finite. Moreover, ��, �̃�,

+
��,

−̃
��

are uniform L2(I)-Riesz bases for their spans. E.g., for
+
��, the latter means that

‖c�+
��‖L2(I) � ‖c‖ (c ∈ RN�−1).

Proof (a). An application of a basis transform shows that

{φ�,1, φ�,2 − φ�,1, . . . , φ�,N�
− φ�,N�−1},

⎧
⎨

⎩

N�∑

q=1

φ̃�,q ,

N�∑

q=2

φ̃�,q , . . . , φ̃�,N�

⎫
⎬

⎭
(5.2)

are biorthogonal bases for span��, span �̃�.
Because of

∫
I φ�,q+1−φ�,q = 0 by (5.1), and so

+
�� ⊂ H1

0 (I), integration by parts
now shows that

+
��,

−̃
�� are biorthogonal.

Again (5.1) and 1 ∈ span �̃� show that
∑N�

q=1 φ̃�,q ∈ span{1}. So for λ ∈ ◦∇,
|λ| ≤ �, we have ψλ ∈ span{φ�,2−φ�,1, . . . , φ�,N�

−φ�,N�−1}, and so +
ψλ ∈ span

+
��.

Finally, since
∑N�

q=1 φ̃
′
�,q = 0, for λ ∈ ◦∇, |λ| ≤ � we have

−̃
ψλ ∈ span

−̃
��.

(b). By supp
+
φ�,q ⊂ convhull(suppφ�,q+1 ∪ suppφ�,q) by (5.1), the assumption on

the numbering of the basis functions, and �� being uniformly local and locally finite,
we have that

+
�� is uniformly local and locally finite. Together with ‖φ�,q‖L2(I) � 1,

it shows that ‖+φ�,q‖L2(I) � 1, and so

‖c�+
��‖L2(I) � ‖c‖. (5.3)

By the assumption on the numbering of the basis functions, supp φ̃�,q∩suppφ�,q �=
∅, and the uniform locality and local finiteness of�� and �̃�, it follows that at the left of
someneighborhoodwith diameter of order 2−� of supp φ̃�,q , the function

∑N�

p=q+1 φ̃�,p

is identically zero, whereas at the right of this neighborhood it is equal to
∑N�

p=1 φ̃�,p.

From
∑N�

p=1 φ̃
′
�,p = 0, it follows that

−̃
�� is uniformly local and locally finite.

Any u ∈ span �̃� can be written as
∑

{λ∈∇ : |λ|≤�} cλ2−|λ|ψ̃λ. From {2−|λ|ψ̃λ : λ ∈
∇} and �̃ being Riesz bases for H1(I) and L2(I), respectively, by Corollary 4.2, we
have ‖u‖2

H1(I)
�

∑
{λ∈∇ : |λ|≤�} |cλ|2 ≤ 4�

∑
{λ∈∇ : |λ|≤�} |cλ2−|λ||2 � 4�‖u‖2L2(I)

. So

on span �̃�, a so-called inverse inequality applies.
Writing

−̃
φ�,q := −2−(�+1)∑N�

p=q+1 φ̃
′
�,p|supp −̃φ�,q

, and noting that the number of

nonzero terms is uniformly bounded, we conclude that ‖−̃φ�,q‖L2(I) � 1. From
−̃
��

being uniformly local and locally finite, we infer

‖c� −̃
��‖L2(I) � ‖c‖.
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Given avector c=(cq)q , letu = c�
+
��. Then |cq | = |〈u,

−̃
φ�,q〉L2(I)| � ‖u‖L2(supp

−̃
φ�,q )

.

From
−̃
�� being uniformly locally finite, we conclude that ‖c‖ � ‖c�+

��‖L2(I). Simi-
larly, (5.3) shows that ‖c‖ � ‖c� −̃

��‖L2(I).
The proof of ��, �̃� being uniform L2(I)-Riesz bases for their spans is similar. ��

Proposition 5.2 (refinement equations) In the situation of Proposition 5.1(a), let
M� = [M�,0 M�,1] withM�,0 ∈ RN�+1×N� , M�,1 ∈ RN�+1×(N�+1−N�) be such that

[
��

� ��
�+1

] = ��
�+1M� ,

where ��+1 := {ψλ : λ ∈ ∇, |λ| = �+ 1}.
Putting

+
��+1 := {+ψλ : λ ∈ ◦∇, |λ| = �+ 1}, and defining A� ∈ RN�×(N�−1) by

(A�)pq =
⎧
⎨

⎩

−1 p = q,

1 p = q + 1,
0 otherwise,

and B� ∈ R(N�−1)×N� by (B�)pq =
{
1 p < q,

0 otherwise,

we have

[+
�
�
�

+
�
�
�+1

] = +
�
�
�+1

[ 1
2B�+1M�,0A�

1
2B�+1M�,1

]
.

Proof We set
+
�� =

[
x �→ ∫ x

0 2�+1φ�,1(y)dy
+
�
�
�

]�, and T� =

⎡

⎢
⎢
⎢
⎣

1
−1 1

. . .

−1 1

⎤

⎥
⎥
⎥
⎦

∈

RN�×N� . From
+
��(x) = 2�+1T�

∫ x
0 ��(z)dz and

+
��(x) = 2�

∫ x
0 ��(z)dz, we infer

that

[+
�
�
�

+
�
�
�+1

] = +
�
�
�+1

[ 1
2T

−�
�+1M�,0T�

�
1
2T

−�
�+1M�,1

]
.

By deleting the first column of 1
2T

−�
�+1M�,0T�

� , and by realizing that by span
+
��∪+

��+1

= span
+
��+1, and

+
��+1 being independent, the first row of 1

2T
−�
�+1M�,0T�

� , without

its first column, and that of 1
2T

−�
�+1M�,1 are zero, we get the expressions of

+
�
�
� and

+
�
�
�+1 in terms of

+
�
�
�+1. ��

Remark 5.3 Biorthogonality shows that in the situation of Proposition 5.2, we also
have

[
�̃�

� �̃�
�+1

] = �̃�
�+1M

−�
�

and

[ −̃
�
�
�

−̃
�
�
�+1

] = −̃
�
�
�+1

[ 1
2B�+1M�,0A�

1
2B�+1M�,1

]−�
.

In the situation of Proposition 5.1(b), all these four basis transformations are uniformly
“sparse” (despite of the fact that B� is not sparse), and uniformly well-conditioned.
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At this point, we note that for any k ∈ N0 and t0, t1 ∈ {0, . . . , k}, �, �̃ as in
Theorem 4.1, with corresponding single-scale bases��, �̃� as in Proposition 5.1 have
been constructed in [5]. ChoosingN � d̃ ≥ d > k, with d+ d̃ even, and d̃ sufficiently
large to ensure Theorem 4.1(3) (valid choices are, e.g., (d, d̃) = (2, 4), (3, 7), (4, 10)),
span�� is the space of splines of order d w.r.t. knot sequence

(0, . . . , 0︸ ︷︷ ︸
d−t0 times

, r2−�, (r + 1)2−�, . . . , 1− r2−�, 1, . . . , 1︸ ︷︷ ︸
d−t1 times

),

for some N � r ≥ d − 1.
The dual space span �̃� is a subspace of span{d,d̃ φ̃(2� ·−m)|[0,1] : m ∈ Z}, where,

with dφ denoting the cardinal B-spline of order d, d,d̃ φ̃ is a compactly supported

refinable function with 〈dφ, d,d̃ φ̃(· − m)〉L2(R) = δ0,m (m ∈ Z) constructed in [4].

Since it holds that Pd̃−1 ⊂ span �̃0, in particular we have that 1 ∈ span �̃0. After
making a simple basis transformation, which involves only primal and dual wavelets
at the coarsest level, we have that for some λ̂ ∈ ∇ with |λ̂| = 0, ψ̃

λ̂
∈ span1, as

required.
In [3,23], [10, Ch. 2], modified constructions were proposed yielding quantitatively

better conditioned bases. With these constructions, span�� is the space of splines of
order d w.r.t. uniform knot sequence

(0, . . . , 0︸ ︷︷ ︸
d−t0 times

, 2−�, . . . , 1− 2−�, 1, . . . , 1︸ ︷︷ ︸
d−t1 times

).

Refinement matrices M�,0 and M�,1, as defined in Proposition 5.2, which determine
the whole construction of the anisotropic (and forthcoming isotropic) divergence-free
wavelet basis, can be found in these references.

Finally in this subsection, recall that the collection �� (�̃�) is not a basis
for {ψλ : λ ∈ ◦∇, |λ| ≤ �} ({ψ̃λ : λ ∈ ◦∇, |λ| ≤ �}), but for the slightly bigger space
{ψλ : λ ∈ ∇, |λ| ≤ �} ({ψ̃λ : λ ∈ ∇, |λ| ≤ �}). This is not a problem for the appli-
cation of multi-to-single scale transforms to facilitate an efficient application of a
stiffness matrix in (anisotropic) wavelets coordinates. In order to construct isotropic
divergence-freewavelet bases, however, biorthogonal single scale bases for the smaller
spaces will be needed, which issue we take up now.

From (5.2), and
∑N�

q=1 φ̃�,q ∈ span{1}, it follows that

�� = {θ�,q := φ�,q+1 − φ�,q : (�, q) = λ ∈ ◦
��} (5.4)

is a basis for span{ψλ : λ ∈ ◦∇, |λ| ≤ �} = span{ψλ : λ ∈ ∇, |λ| ≤ �} ∩ 1⊥. Let

�̃� = {θ̃λ : λ ∈ ◦
��}

denote the basis for span{ψ̃λ : λ ∈ ◦∇, |λ| ≤ �} that is biorthogonal to ��.
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It holds that

+
φλ

′ = 2|λ|+1θλ, θ̃λ
′ = −2|λ|+1−̃φλ (λ ∈ ◦

��), (5.5)

where the first equality follows from the definitions of
+
�� and��. The second equation

is a consequence of

δλμ=〈θλ, θ̃μ〉L2(I)=2−(|λ|+1)〈+φλ

′
, θ̃μ〉L2(I)=− 2−(|λ|+1)〈+φλ, θ̃

′
μ〉L2(I) (λ, μ∈ ◦

��),

the fact that θ̃
′
μ

(4.1)∈ span{ −̃ψλ : λ∈ ◦∇, |λ| ≤ �} = span{−̃φλ : λ∈ ◦
��}, and the biorthog-

onality of
+
��,

−̃
��.

Recall that if �� is uniformly local and locally finite, then
+
�� is uniformly local

and locally finite. Obviously, then also �� is uniformly local and locally finite. It can,
however, not be expected that �̃� is uniformly local and locally finite, or that �� (or a
rescaled version) is a uniform L2(I)-Riesz basis for its span. Indeed, if the latter would
be true, then from the fact that f �→ f ′ : H1

0 (I) → L2(I) ∩ 1⊥ is an isomorphism,
the first relation in (5.5) would imply that

+
�� is a uniform H1(I)-Riesz basis for its

span, which cannot be expected for uniformly local and locally finite collection nested
collections

+
��, with∪�∈N

+
�� being dense in H1

0 (I). As wewill see in the next section,
this fact will hamper the construction of an isotropic divergence-free wavelet Riesz
basis for dimensions n ≥ 3.

5.2 Isotropic Divergence-Free Wavelets

In this subsection, we discuss the construction of isotropic divergence-free wavelet
bases.

In Corollary 3.12, it was shown that a Riesz basis for
◦
Hk

(In) ∩H0(div0; In) is
given by ⋃

{S⊂{1,...,n} : #S≥2}
E (S)ϒ(S), (5.6)

whenever ϒ(S) are Riesz bases for
◦
Hk

(IS) ∩H0(div0; IS) ∩ L2,0(IS).
W.l.o.g. considering S = {1, . . . , n}, in Theorem 4.4 we constructed ϒ({1,...,n}) of

the form

⋃

λ∈∇
	λ,

with 	λ being a uniform Hk(In)n-Riesz basis for the (n − 1)-dimensional space

span{ψ
λ,i

: 1 ≤ i ≤ n} ∩H0(div0; In).

To find a single scale substitute for this basis ϒ({1,...,n}), let us think of ∇ being
partitioned into a collection of finite subsets {� : � ∈ �}, and let 
� be a uniform
Hk(In)n-Riesz basis for
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span{ψ
λ,i

: λ ∈ �, 1 ≤ i ≤ n} ∩H0(div0; In). (5.7)

Clearly, the latter space includes

⊕

λ∈�
span{ψ

λ,i
: 1 ≤ i ≤ n} ∩H0(div0; In), (5.8)

being a space of dimension (n−1)×#�. So if #
� = (n−1)×# , then both spaces are
equal. Since the dimension of the first space in (5.7) is equal to n × # , the condition
to be verified is that its dimension is reduced by a factor n−1

n by the intersection with
H0(div0; In). Although we verify this in the application below, actually, using the
dual wavelets, this can be proved to be always true. Anyway, in this case, 
� provides
a uniform Hk(In)n-Riesz basis for the space in (5.8) as an alternative for

⋃
λ∈� 	λ.

Consequently,
⋃

�∈� 
� is a Riesz basis for
◦
Hk

(IS) ∩H0(div0; IS) ∩ L2,0(IS) that
can be used as the collection ϒ(S) in (5.6).

Again w.l.o.g. still focussing on the case S = {1, . . . , n}, we are going to apply the
above for sets � of the form {λ ∈ ∇ : max j |λ j | = �} for � ∈ N. Let

V � := span{ψ
λ,i

: 1 ≤ i ≤ n, λ ∈ ∇, max
j

|λ j | = �},
Ṽ � := span{ψ̃

λ,i
: 1 ≤ i ≤ n, λ ∈ ∇, max

j
|λ j | = �}.

So V � is the first space in (5.7) corresponding to this choice of  , and our task is to
find a uniform Hk(In)n-Riesz basis (i.e., 
 ) for V � ∩H0(div0; In).

Since a Riesz basis for L2,0(In) ∩ ◦
Hk

(In) is given by
{
(
∑n

j=1 4
|λ j |k)− 1

2 ψ
λ,i

: 1 ≤
i ≤ n, λ ∈ ∇}, and, thanks to Corollary 4.2,

{
ψ

λ,i
: 1 ≤ i ≤ n, λ ∈ ∇} is a Riesz

basis for L2,0(In), from (
∑n

j=1 4
|λ j |k)− 1

2 � 2−�k when max j |λ j | = �, we infer that

‖ · ‖Hk (In)n � 2k�‖ · ‖L2(In)n on V �. (5.9)

So it suffices to find a uniform L2(In)n-Riesz basis for V � ∩H0(div0; In), and then
to scale it with 2−k�.

The spaces V � and Ṽ � were defined as spans of biorthogonal anisotropic wavelets.
We now construct biorthogonal isotropic wavelet bases for these spaces. The start-
ing point are the biorthogonal univariate two-level bases �

(i)
�−1 ∪ �

(i)
� , �̃

(i)
�−1 ∪

�̃
(i)
� for span{ψ(i)

λ : λ ∈ ◦∇, |λ| ≤ �}, span{ψ̃(i)
λ : λ ∈ ◦∇, |λ| ≤ �}, and +

�
(i)
�−1 ∪

+
�

(i)
� ,

−̃
�

(i)
�−1 ∪

−̃
�

(i)
� for span{+ψ(i)

λ : λ ∈ ◦∇, |λ| ≤ �}, span{ −̃ψ(i)
λ : λ ∈ ◦∇, |λ| ≤ �}.
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We set

η
( j)
λ,δ :=

{
θ

( j)
λ if δ = 0,

ψ
( j)
λ if δ = 1,

η̃
( j)
λ,δ :=

{
θ̃

( j)
λ if δ = 0,

ψ̃
( j)
λ if δ = 1,

+
η

( j)
λ,δ :=

{ +
φ

( j)
λ if δ = 0,+

ψ
( j)
λ if δ = 1,

−̃
η

( j)
λ,δ:=

{ −̃
φ

( j)
λ if δ = 0,−̃

ψ
( j)
λ if δ = 1,

�( j)
�,δ :=

{ ◦
�

( j)
�−1 if δ = 0,

{λ ∈ ◦∇( j) : |λ| = �} if δ = 1,

where
◦
�

( j)
−1 := ∅. Then from Theorem 4.1 and (5.5), we have the key relations

+
η( j) ′

λ,δ = 2�η
( j)
λ,δ, η̃( j) ′

λ,δ = −2� −̃
η

( j)
λ,δ (λ ∈ �( j)

�,0 ∪�( j)
�,1). (5.10)

With

η
λ,δ,i

:= η
(1)
λ1,δ1

⊗ · · · ⊗ +
η

(i)
λi ,δi

⊗ · · · ⊗ η
(n)
λn ,δn

ei ,

η̃
λ,δ,i

:= η̃
(1)
λ1,δ1

⊗ · · ·⊗ −̃
η

(i)
λi ,δi

⊗ · · · ⊗ η̃
(n)
λn ,δn

ei ,

biorthogonal isotropic wavelet bases for V � and Ṽ � are now given by

⎧
⎨

⎩
η

λ,δ,i
: !0 �= δ ∈ {0, 1}n, λ ∈

n∏

j=1

�( j)
�,δ j

, 1 ≤ i ≤ n

⎫
⎬

⎭
,

⎧
⎨

⎩
η̃

λ,δ,i
: !0 �= δ ∈ {0, 1}n, λ ∈

n∏

j=1

�( j)
�,δ j

, 1 ≤ i ≤ n

⎫
⎬

⎭
.

Next, analogously to Theorem 4.4, we are going to transform these bases to identify
divergence-free primal wavelets, and dual wavelets that are gradients. Let Q ∈ Rn×n

be orthogonal with its nth row given by [1 . . . 1]/√n. We define

⎡

⎢
⎣

ηλ,δ,1
...

ηλ,δ,n

⎤

⎥
⎦ := Q

⎡

⎢
⎢
⎣

η
λ,δ,1
...

η
λ,δ,n

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎣

η̃λ,δ,1
...

η̃λ,δ,n

⎤

⎥
⎦ := Q

⎡

⎢
⎢
⎣

η̃
λ,δ,1
...

η̃
λ,δ,n

⎤

⎥
⎥
⎦ .

123



Constr Approx (2016) 44:233–267 263

Proposition 5.4 Biorthogonal bases for V � and Ṽ � are given by

� iso,� :=
⎧
⎨

⎩
ηλ,δ,i : !0 �= δ ∈ {0, 1}n, λ ∈

n∏

j=1

�( j)
�,δ j

, 1 ≤ i ≤ n

⎫
⎬

⎭
,

�̃ iso,� :=
⎧
⎨

⎩
η̃λ,δ,i : !0 �= δ ∈ {0, 1}n, λ ∈

n∏

j=1

�( j)
�,δ j

, 1 ≤ i ≤ n

⎫
⎬

⎭
.

Furthermore, for 1 ≤ i ≤ n − 1, ηλ,δ,i ∈ H0(div 0; In), and η̃λ,δ,n ∈ grad H1(In).

Proof For 1 ≤ i ≤ n − 1, it holds that

div ηλ,δ,i =
n∑

j=1

Qi j div η
λ,δ,i

(5.10)=
⎛

⎝
n∑

j=1

Qi j2
�

⎞

⎠ η
(1)
λ1,δ1

⊗ · · · ⊗ η
(n)
λn ,δn

= 0,

and

√
n η̃λ,δ,n =

n∑

i=1

η̃λ,δ,i
(5.10)= −2−� grad η̃

(1)
λ1,δ1

⊗ · · · ⊗ η̃
(n)
λn ,δn

.

��
Consequently,

�
(df)
iso,� :=

⎧
⎨

⎩
ηλ,δ,i : !0 �= δ ∈ {0, 1}n, λ ∈

n∏

j=1

�( j)
�,δ j

, 1 ≤ i ≤ n − 1

⎫
⎬

⎭

is a basis for V � ∩H0(div0; In), and apparently dim V �∩H0(div0;In)
dim V �

= n−1
n as required.

We conclude that, possibly after an L2(In)n-stabilization of�(df)
iso,�, by Gram-Schmidt

or otherwise, so that it becomes a uniform (in �) L2(In)n-Riesz basis of its span, the
collection ∑

�∈N
2−k��

(df)
iso,� (5.11)

can serve as the Riesz basis ϒ(S) for
◦
Hk

(IS) ∩H0(div0; IS) ∩ L2,0(IS) as needed in
(5.6) (here for S = {1, . . . , n}).

Unfortunately, due to the presence of factors θ
( j)
λ in the definition of η

λ,δ,i
, and the

fact that the �
( j)
� are not uniform L2(I)-Riesz bases for their spans, for n ≥ 3, the

aforementioned L2(In)n-stabilization of �
(df)
iso,� is required, and it spoils locality of

the basis functions.
As we will show below, for n = 2, however, �

(df)
iso,� is already an L2(In)n-Riesz

basis of its span, and a further stabilization is not required. Related to this is the fact that
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for n = 2, we can use the freedom in the construction of a dual basis (cf. Remark 4.6)
such that it becomes a local one, despite the fact that �̃� is not local.

Theorem 5.5 For i ∈ {1, 2}, consider the situation as in Theorem 4.1. Let �(i), �̃(i),
and so

+
�

(i),
−̃
�

(i), be local. In the situation as in Proposition 5.1, let �
(i)
� , �̃(i)

� , and

so
+
�

(i)
� , �̃(i)

� , and �
(i)
� defined in (5.4), be uniformly local and locally finite. Then

⋃

�∈N
2−�k

{{+
ψ

(1)
λ1

⊗ ψ
(2)
λ2

e1−ψ
(1)
λ1

⊗ +
ψ

(2)
λ2

e2 : (λ1, λ2) ∈
◦∇(1) × ◦∇(2)

, |λ1|=|λ2|=�
}

∪{+ψ(1)
λ1

⊗ θ
(2)
λ2

e1 − ψ
(1)
λ1

⊗ +
φ

(2)
λ2

e2 : (λ1, λ2) ∈
◦∇(1) × ◦

�
(2)
�−1, |λ1| = �

}

∪{+φ(1)
λ1

⊗ ψ
(2)
λ2

e1 − θ
(1)
λ1

⊗ +
ψ

(2)
λ2

e2 : (λ1, λ2) ∈
◦
�

(1)
�−1 ×

◦∇(2)
, |λ2| = �

}}

is a Riesz basis for
◦
Hk

(I2) ∩H0(div0; I2), with dual basis

⋃

�∈N
2�k

{{ −̃
ψ

(1)
λ1

⊗ ψ̃
(2)
λ2

e1 − ψ̃
(1)
λ1

⊗ −̃
ψ

(2)
λ2

e2√
2

: (λ1, λ2) ∈
◦∇(1) × ◦∇(2)

, |λ1| = |λ2| = �

}

∪{ψ̃(1)
λ1

⊗ −̃
φ

(2)
λ2

e2 : (λ1, λ2) ∈
◦∇(1) × ◦

�
(2)
�−1, |λ1| = �

}

∪ {−̃φ(1)
λ1

⊗ ψ̃
(2)
λ2

e1 : (λ1, λ2) ∈
◦
�

(1)
�−1 ×

◦∇(2)
, |λ2| = �

}
}

.

Proof Let us denote the primal and dual collections as
⋃

�∈N 2−�k{�(11)
� ∪ �

(10)
� ∪

�
(01)
� } and⋃�∈N 2�k{�̃(11)

� ∪ �̃
(10)
� ∪ �̃

(01)
� }.

The biorthogonality follows from the biorthogonality of the pairs (�(i), �̃(i)),
(
+
�

(i)
,
−̃
�

(i)
), (�

(i)
� , �̃

(i)
� ), (

+
�

(i)
� ,

−̃
�

(i)
� ), and from span

+
�

(i)
� = span{+ψ(i)

λ : λ

∈ ◦∇(i)
, |λ| ≤ �}, span

−̃
�

(i)
� = span{ −̃ψ(i)

λ : λ ∈ ◦∇(i)
, |λ| ≤ �}, and span�

(i)
� =

span{ψ(i)
λ : λ ∈ ◦∇(i)

, |λ| ≤ �}.
Apart from a harmless factor

√
2, the primal collection is equal to that from (5.11).

Since for n = 2, (5.6) reads as ϒ({1,2}), in order to conclude that the primal collection
is a Riesz basis for

◦
Hk

(I2) ∩H0(div0; I2), in view of the preceding analysis in this
subsection, what remains to show is that

⋃
0 �=δ∈{0,1}2 �

(δ)
� is a uniform L2(I2)-Riesz

basis for its span.
From the collections being uniformly local and locally finite, and the functions hav-

ing uniformly bounded L2(I2)2-norms, it follows that u� := ∑
0 �=δ∈{0,1}2 c

(δ)
�

�
�

(δ)
�

satisfies ‖u�‖2L2(I2)
�
∑

0 �=δ∈{0,1}2 ‖c(δ)‖2�2 . Below we will show that the dual collec-

tion is a dual basis in the sense of (1.7). Then, ‖c(δ)‖�2 = ‖〈u�, �̃
(δ)

� 〉L2(I2)2‖�2 �
‖2−k�u�‖Hk (I2)2 � ‖u�‖L2(I2)2 by (5.9), with which the proof is completed.

Since, up to a harmless difference in scaling,
⋃

�∈N 2�k�̃
(11)
� is a subset of the

collection in (4.11), we infer that for u ∈ Hk(I2)2,
∑

�∈N ‖〈u, 2�k�̃
(11)
� 〉L2(I2)2‖2�2 �

‖u‖2
Hk (I2)2

.
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To show that the dual collection is a dual basis, it remains to prove that for u ∈
Hk(I2)2, ∑

�∈N
‖〈u, 2�k�̃

(10)
� 〉L2(I2)2‖2�2 � ‖u · e2‖2Hk (I2)

, (5.12)

because the proof for �̃
(10)
� reading as �̃

(01)
� is similar.

From �(1) and {2−|λ|kψ(1)
λ : λ ∈ ∇(1)} being Riesz bases for L2(I) and

Hk
(t (1)0 ,t (1)1 )

(I), respectively, and
+
�

(2) and {2−|λ|k +ψ(2)
λ : λ ∈ ◦∇(2)} being Riesz bases

for L2(I) and Hk
(n(2)

0 ,n(2)
1 )

(I), respectively, we have that

⎧
⎪⎨

⎪⎩

⎛

⎝
2∑

j=1

4|λ j |k
⎞

⎠

− 1
2

ψ
(1)
λ1

⊗ +
ψ

(2)
λ2

: (λ1, λ2) ∈ ∇(1) × ◦∇(1)

⎫
⎪⎬

⎪⎭
is a Riesz basis for

{u · e2 : u ∈ ◦
Hk

(I2)} 
 Hk
(t (1)0 ,t (1)1 )

(I)⊗ L2(I) ∩ L2(I) ⊗ Hk
(n(2)

0 ,n(2)
1 )

(I).

(5.13)
Since {ψ(1)

λ1
⊗ +

ψ
(2)
λ2

: (λ1, λ2) ∈ ∇(1) × ◦∇(2)} is a Riesz basis for L2(I2), we have
for � ∈ N,

‖ · ‖Hk (I2) � 2k�‖ · ‖L2(I2) on

span{ψ(1)
λ1

⊗ +
ψ

(2)
λ2

: (λ1, λ2) ∈ ∇(1) × ◦∇(2)
, max(|λ1|, |λ2|) = �}. (5.14)

An alternative, uniform L2(I2)-basis for the space from (5.14) is given by

�
(1)
� ⊗ +

�
(2)
�−1 ∪ �

(1)
�−1 ⊗

+
�

(2)
� ∪ �

(1)
� ⊗ +

�
(2)
� .

The latter result, (5.14), and (5.13) show that

⋃

�∈N0

2−k�(�(1)
� ⊗ +

�
(2)
�−1 ∪�

(1)
�−1 ⊗

+
�

(2)
� ∪�

(1)
� ⊗ +

�
(2)
�

)

is a Riesz basis for {u · e2 : u ∈ ◦
Hk

(I2)}.
Its unique dual basis in L2(I2) reads as

⋃

�∈N
2k�
(
�̃

(1)
� ⊗ −̃

�
(2)
�−1 ∪ �̃

(1)
�−1 ⊗

−̃
�

(2)
� ∪ �̃

(1)
� ⊗ −̃

�
(2)
�

)
.

Since �̃
(10)
� = �̃

(1)
� ⊗ −̃

�
(2)
�−1e2, we conclude (5.12), which completes the proof. ��

6 Conclusion

Anisotropic wavelet Riesz bases were constructed for the space of divergence-free
vector fields on the n-dimensional hypercube that have vanishing normal components,
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or for this space intersected with higher order Sobolev spaces that may incorporate
additional boundary conditions, e.g., no-slip boundary conditions. The construction
relies on a principle introduced by Lemarié–Rieusset in [21] for the construction
of divergence-free wavelet bases onRn , but only after making an initial biorthogonal
decomposition of (L2(0, 1)n)n, L2(0, 1)n)n) into 2n−1 pairs of subspaces. For n = 2,
an alternative isotropic wavelet basis was constructed.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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