
Constr Approx (2017) 45:217–241
DOI 10.1007/s00365-016-9323-9

From Schoenberg Coefficients to Schoenberg Functions

Christian Berg1 · Emilio Porcu2

Received: 10 July 2015 / Revised: 22 October 2015 / Accepted: 23 November 2015 /
Published online: 21 January 2016
© Springer Science+Business Media New York 2016

Abstract In his seminal paper, Schoenberg (DukeMath J 9:96–108, 1942) character-
ized the classP(Sd) of continuous functions f : [−1, 1] → R such that f (cos θ(ξ, η))

is positive definite on the product space S
d × S

d , with S
d being the unit sphere of

R
d+1 and θ(ξ, η) being the great circle distance between ξ, η ∈ S

d . In the present
paper, we consider the product space S

d × G, for G a locally compact group, and
define the class P(Sd ,G) of continuous functions f : [−1, 1] × G → C such that
f (cos θ(ξ, η), u−1v) is positive definite on S

d × S
d × G × G. This offers a natural

extension of Schoenberg’s theorem. Schoenberg’s second theorem corresponding to
the Hilbert sphere S∞ is also extended to this context. The case G = R is of special
importance for probability theory and stochastic processes, because it characterizes
completely the class of space-time covariance functions where the space is the sphere,
being an approximation of planet Earth.
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1 Introduction

Positive definite functions on groups or semigroups have a long history and are present
in many applications in operator theory, potential theory, moment problems, and sev-
eral other areas, such as spatial statistics. They enter as an important chapter in all
treatments of harmonic analysis and can be traced back to papers by Carathéodory,
Herglotz, Bernstein, andMatthias, culminating in Bochner’s theorem from 1932–1933
and their connection to unitary group representations. See [23] and the survey in [5] for
details. In his tour de force, Schoenberg [24] considered the classP(Sd) of continuous
functions f : [−1, 1] → R such that the kernel C : Sd × S

d → R defined by

C(ξ, η) = f (cos θ(ξ, η)) = f (ξ · η), ξ, η ∈ S
d , (1)

is positive definite on the d-dimensional unit sphere of Rd+1, given as

S
d =

{
x ∈ R

d+1 |
d+1∑
k=1

x2k = 1

}
, d ≥ 1.

The positive definiteness of C means that for any n ∈ N and for any ξ1, . . . , ξn ∈ S
d ,

the n × n symmetric matrix

[C(ξk, ξl)]
n
k,l=1

is positive semidefinite; i.e., for any (a1, . . . , an) ∈ R
n ,

n∑
k,l=1

C(ξk, ξl)akal ≥ 0.

Concerning the notation above, θ(ξ, η) = arccos(ξ ·η) and · denotes the scalar product
inRd+1. Themapping θ is known under the name of geodesic (or great circle) distance,
and the mapping C above is called isotropic, because it only depends on the angle
between any two points ξ, η on the d-dimensional sphere of Rd+1. Throughout, we
shall make equivalent use of θ ∈ [0, π ] and θ(ξ, η), whenever no confusion can
arise. In recent geostatistical literature, the notation �d from [12] has been used for
Schoenberg’s class P(Sd).

Schoenberg [24] characterized the members of the class P(Sd) as the functions of
the form

f (cos θ) =
∞∑
n=0

bn,dcn(d, cos θ), bn,d ≥ 0, θ ∈ [0, π ],

with
∑∞

n=0 bn,d < ∞, where cn(d, x) are certain polynomials of degree n associated
with S

d , often called ultraspherical polynomials, see Eq. (15). Further details about
this representation will be given later. The class P(Sd) has received considerable
attention in the last 2years, thanks to the review in Gneiting [12], where an impressive
list of references is offered. Statistical and probabilistic communities are especially
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interested in this class, because the functions C as in Eq. (1) are the autocorrelation
functions of isotropic Gaussian fields in Sd .

Gneiting finishes his essay [12] with a list of open problems contained in [13].
Problem number 16 is related to the representation of correlation functions ofGaussian
fields Z(ξ, u) defined over the sphere cross time S

d × R, and being isotropic with
respect to ξ and stationary with respect to time u. This leads to considering functions
defined on the product space Sd × S

d × R × R, so that the covariance of the random
variables Z(ξ, u), Z(η, v) can be written as

cov (Z(ξ, u), Z(η, v)) = f (cos θ(ξ, η), u − v), (ξ, u), (η, v) ∈ S
d × R, (2)

for a continuous function f : [−1, 1] × R → R. Porcu et al. [20] offer parametric
models for such functions that represent the covariances ofGaussian fields overSd×R.

Our characterization of the functions f entering in Eq. (2) is the following extension
of Schoenberg’s theorem:

f (cos θ, u) =
∞∑
n=0

ϕn,d(u)cn(d, cos θ), (θ, u) ∈ [0, π ] × R,

where ϕn,d is a sequence of real-valued continuous positive definite functions on R.
The series is uniformly convergent, which is equivalent to

∑∞
n=0 ϕn,d(0) < ∞.

We get only real-valued positive definite functions ϕn,d because the covariance in
Eq. (2) is real and symmetric in u, v.

It turns out that in our characterization, we can consider complex-valued functions
f : [−1, 1] × R → C such that the kernel

f (cos θ(ξ, η), u − v)

is positive definite on (Sd ×R)2, and, furthermore, R can be replaced by an arbitrary
locally compact group G.

In other words, we shall characterize the set P(Sd ,G) of continuous functions
f : [−1, 1] × G → C such that the kernel

f (ξ · η, u−1v) = f (cos θ(ξ, η), u−1v), ξ, η ∈ S
d , u, v ∈ G (3)

is positive definite in the sense that for any n ∈ N and any (ξ1, u1), . . . (ξn, un) ∈
S
d × G, the n × n-matrix

[
f (cos θ(ξk, ξl), u

−1
k ul)

]n
k,l=1

(4)

is positive semidefinite; i.e., for any (a1, . . . , an) ∈ C
n ,

n∑
k,l=1

f (cos θ(ξk, ξl), u
−1
k ul)akal ≥ 0,
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which is equivalent to the matrix of Eq. (4) being Hermitian and having nonnegative
eigenvalues. Here we follow the terminology of [6] and [16].

The characterization is given in Theorem 3.3. If we restrict the vectors ξ1, . . . , ξn ∈
S
d from (4) to lie on the subsphere Sd−1, identified with the equator of Sd , we see that

P(Sd ,G) ⊆ P(Sd−1,G). The inclusion is in fact strict, see Remark 3.4 (iii).
We also consider

P(S∞,G) :=
∞⋂
d=1

P(Sd ,G), (5)

which is the set of continuous functions f : [−1, 1] × G → C such that the matrix
in Eq. (4) is positive semidefinite for any d ∈ N. We note in passing that the notation
P(S∞,G) suggests an intrinsic definition using the Hilbert sphere

S
∞ =

{
(xk)k∈N ∈ R

N|
∞∑
k=1

x2k = 1

}
,

which is the unit sphere in the Hilbert sequence space �2 of square summable real
sequences. The intrinsic definition of P(S∞,G) is as the set of continuous functions
f : [−1, 1] × G → C such that all matrices (4) are positive semidefinite when
(ξ1, u1), . . . , (ξn, un) ∈ S

∞ × G.
That these two definitions are equivalent follows on the one hand from the fact that

any S
d can be embedded in S∞ by the mapping

(x1, . . . , xd+1) ∈ S
d �→ (x1, . . . , xd+1, 0, 0, . . .) ∈ S

∞,

and on the other hand from using that any ξ = (xk)k∈N ∈ S
∞ is the limit for d → ∞

of the sequence of vectors ξ (d) embedded from S
d , where

ξ (d) := (x1, . . . , xd+1, 0, 0, . . .)√
x21 + · · · + x2d+1

∈ S
∞.

Weprove a characterization ofP(S∞,G) that is completely analogous toSchoenberg’s
theorem 2 in [24], see Theorem 3.10. It builds on Ziegel’s result in [26] that functions
inP(Sd) admit a continuous derivative of order [(d −1)/2] in ]−1, 1[, and this result
can be extended to our context. Here [a] denotes the largest integer ≤ a.

At this point, let us make some comments about the relation of our results to the
existing literature. As we shall see, Theorem 3.3 has been proved for certain special
compact groups G, but apparently not for noncompact groups like R or Rn , which
was the main motivation for the present paper. The compact cases lead to double
sums with nonnegative coefficients. The main difficulty in the noncompact case is the
mixture of a sum and an integral, which was overcome by the crucial technical result
in Lemma 4.3. This is inspired by Proposition 13.4.4 in [11].

The paper by Barbosa and Menegatto [3] extends Ziegel’s result from S
d to two-

point homogeneous compact spacesMd . Although there is a formal analogy between
these results and our extension of Ziegel’s result, it does not seem to be possible to
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deduce one of these results from the other. However, one should expect that their
results can be extended to the classes P(Md ,G), obtained by replacing the sphere Sd

by an arbitrary compact two-point homogeneous spaceMd , andG is a locally compact
group as above.

Chapter 4 in Shapiro [25] discusses Schoenberg’s theorem. An extension to real-
valued continuous positive definite functions on Sd×T

N is given in [25, Theorem 3.1].
This result corresponds to our result when the locally compact group G is the N -
dimensional torus TN .

In a recent paper [15], Guella et al. consider isotropic kernels

K ((ξ, ζ ), (η, χ) = f (ξ · η, ζ · χ), ξ, η ∈ S
d , ζ, χ ∈ S

d ′
, (6)

which are positive definite on the product of two spheres Sd × S
d ′
, where d, d ′ ∈

N ∪ {∞}.
Using that the sphere Sd

′
, d ′ < ∞ can be identified with the homogeneous space

O(d ′ +1)/O(d ′), their characterization of these functions can be obtained as a special
case of our main theorems, see Sect. 6 for details. Here O(d ′) is the compact group
of orthogonal d ′ × d ′-matrices.

The result of [15] for the case d, d ′ < ∞ can also be obtained as a special case of
Theorem 4.11 in [2], which is an adaptation of the Peter–Weyl theorem to compact
homogeneous spaces X = G/K , where G is a compact group and K a compact
subgroup. In addition, Theorem 4.11 uses results from Bochner [8]. It does not seem
possible to obtain [2, Th. 4.11] from our results or vice versa.

The plan for the present paper is the following. Section 2 discusses some necessary
background material. Section 3 reports the main results, and Sect. 4 is devoted to
the proofs. In Sect. 5, we use the nonnegative connection coefficients between the
monomials and theGegenbauer polynomials—a result given inBingham [7]—to prove
a formula relating the power series coefficients for f ∈ P(S∞,G) to the expansion
coefficients for f with respect to the ultraspherical polynomials, see Theorem 5.4.
Finally, in Sect. 6 we show how some results from [15] can be obtained from our main
results.

2 Background

We start with some expository material related to positive definiteness and to the
Schoenberg class P(Sd) as described in [12].

We recall that for a locally compact group G, a function ϕ : G → C is called
positive definite if for any n ∈ N and any u1, . . . , un ∈ G, the n × n-matrix

[ϕ(u−1
k ul)]nk,l=1

is positive semidefinite, see, e.g., [11, p. 255] (there called Hermitian and positive)
or [23, p. 14]. The set of continuous and positive definite functions on G is denoted
by P(G). It is known that any ϕ ∈ P(G) satisfies |ϕ(u)| ≤ ϕ(e), where e denotes the
neutral element of the group. In the case of an abelian group G, we use the additive
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notation, and the neutral element is denoted by 0. In this case, the continuous positive
definite functions are characterized by Bochner’s theorem, cf. [21], as the Fourier
transforms

ϕ(u) =
∫
Ĝ
(u, γ ) dμ(γ ), u ∈ G,

whereμ is a positivefiniteRadonmeasure on the dual group Ĝ of continuous characters
γ : G → T. Here T is the unit circle in the complex plane.

In order to describe Schoenberg’s characterization of the class P(Sd), we recall
that the Gegenbauer polynomials C (λ)

n are given by the generating function (see [14])

(1 − 2xr + r2)−λ =
∞∑
n=0

C (λ)
n (x)rn, |r | < 1, x ∈ C. (7)

One has to assume λ > 0, and for λ = 0, (7) has to be replaced by

1 − xr

1 − 2xr + r2
=

∞∑
n=0

C (0)
n (x)rn, |r | < 1, x ∈ C. (8)

It is well known that

C (0)
n (x) = Tn(x) = cos(n arccos x), n = 0, 1, . . .

are the Chebyshev polynomials of the first kind. For λ > 0, we have the classical
orthogonality relation

∫ 1

−1
(1 − x2)λ−1/2C (λ)

n (x)C (λ)
m (x) dx = π(n + 2λ)21−2λ

2(λ)(n + λ)n! δm,n, (9)

with δm,n denoting the Kronecker delta. When λ = 0, Eq. (9) is replaced by

∫ 1

−1
(1 − x2)−1/2Tn(x)Tm(x) dx =

{
π
2 δm,n if n > 0,
πδm,n if n = 0,

(10)

which is equivalent to the classical orthogonality relations of the family cos(nx), n =
0, 1, . . . .

Putting x = 1 in (7), one easily gets C (λ)
n (1) = (2λ)n/n! valid for λ > 0, while

Tn(1) = 1. For the benefit of the reader, we recall that for a ∈ C,

(a)n = a(a + 1) · · · (a + n − 1), n ≥ 1, (a)0 = 1.

It is of fundamental importance that

|C (λ)
n (x)| ≤ C (λ)

n (1), x ∈ [−1, 1].
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Schoenberg used the notation P(λ)
n = C (λ)

n in [24]. The special value λ = (d −1)/2 is
relevant for the sphere Sd because of the relation to spherical harmonics, which will
be explained now. A spherical harmonic of degree n for Sd is the restriction to S

d of
a real-valued harmonic homogeneous polynomial in Rd+1 of degree n. Together with
the zero function, the spherical harmonics of degree n form a finite dimensional vector
space denoted by Hn(d). It is a subspace of the space C(Sd) of continuous functions
on Sd . We have

Nn(d) := dimHn(d) = (d)n−1

n! (2n + d − 1), n ≥ 1, N0(d) = 1, (11)

cf. [18, p. 4] or [10, p. 3].
The surface measure of the sphere is denoted by ωd , and it is of total mass

σd = ωd(S
d) = 2π(d+1)/2

((d + 1)/2)
. (12)

The orthogonal group O(d + 1) of orthogonal (d + 1) × (d + 1) matrices operates
on Sd , and ωd is invariant under O(d + 1).

The spaces Hn(d) are mutually orthogonal subspaces of the Hilbert space
L2(Sd , ωd). The norm of F ∈ L2(Sd , ωd) is denoted by ||F ||2.

For any F ∈ L2(Sd , ωd), we have the orthogonal expansion

F =
∞∑
n=0

Sn, Sn ∈ Hn(d), ||F ||22 =
∞∑
n=0

||Sn||22, (13)

where the first series converges in L2(Sd , ωd) and the second series is Parseval’s
equation. Here Sn is the orthogonal projection of F onto Hn(d) given as

Sn(ξ) = Nn(d)

σd

∫
Sd

cn(d, ξ · η)F(η) dωd(η). (14)

See the addition theorem for spherical harmonics, [18, p. 10] or [24, (2.4) p. 98]. Here
cn(d, x) is defined as the normalized Gegenbauer polynomial being 1 for x = 1 when
λ = (d − 1)/2, i.e., by

cn(d, x) = C ((d−1)/2)
n (x)/C ((d−1)/2)

n (1) = n!
(d − 1)n

C ((d−1)/2)
n (x). (15)

Since the Chebyshev polynomials Tn = C (0)
n are already normalized, the last expres-

sion is not valid for d = 1 and cn(1, x) = Tn(x).
Specializing the orthogonality relation (9) to λ = (d − 1)/2 and using Eqs. (11)

and (12), we get for d ∈ N,

∫ 1

−1
(1 − x2)d/2−1cn(d, x)cm(d, x) dx = σd

Nn(d)σd−1
δm,n . (16)
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(Define σ0 = 2). All these formulas can also be found in [4], where the notation is
pn(d + 1, x) = cn(d, x).

This makes it possible to formulate the celebrated theorem of Schoenberg, cf. [24]:

Theorem 2.1 (Schoenberg [24]) Let d ∈ N be fixed. A continuous function f :
[−1, 1] → R belongs to the class P(Sd) if and only if

f (cos θ) =
∞∑
n=0

bn,dcn(d, cos θ), bn,d ≥ 0, θ ∈ [0, π ], (17)

for a sequence (bn,d)
∞
n=0 with

∑∞
n=0 bn,d < ∞ given as

bn,d = Nn(d)σd−1

σd

∫ 1

−1
f (x)cn(d, x)(1 − x2)d/2−1 dx . (18)

Some comments are in order. As already noted, P(Sd) ⊆ P(Sd−1), and therefore
f ∈ P(Sd) has d different expansions like Eq. (17). In [12] it is proved that P(Sd) is
strictly included in P(Sd−1) by showing that cn(d − 1, ·) ∈ P(Sd−1) \ P(Sd) when
n ≥ 2.

When f (1) = 1, then (bn,d) is a probability sequence, and by analogy with what
was done in Daley and Porcu [9], the coefficients bn,d were called d-Schoenberg
coefficients and the sequence (bn,d)n≥0 a d-Schoenberg sequence in [12]. This stresses
the fact that such a sequence is also related to the dimension of the sphere Sd , where
positive definiteness is attained. When d = 1, then the representation in Eq. (17)
reduces to

f (cos θ) =
∞∑
n=0

bn,1 cos(nθ), bn,1 ≥ 0, θ ∈ [0, π ],

and for d = 2, the Gegenbauer polynomials simplify to Legendre polynomials.
Schoenberg also studied P(S∞) := ⋂

d≥1 P(Sd), which can be considered as the
set of continuous functions f : [−1, 1] → R such that the matrix

[ f (ξk · ξl)]nk,l=1

is positive semidefinite for any n ∈ N and any ξ1, . . . , ξn ∈ S
∞. See the discussion

after Eq. (5).
A second theorem of Schoenberg, see [24, p. 102], states that f ∈ P(S∞) if and

only if

f (cos θ) =
∞∑
n=0

bn(cos θ)n, bn ≥ 0, θ ∈ [0, π ], (19)

where
∑∞

n=0 bn < ∞.
A wealth of examples and interesting results can be found in [12]. Observe that

Gneiting makes explicit distinction between strictly and nonstrictly positive definite
functions on spheres. When d ≥ 2, the former class occurs when, in Eq. (17), the
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d-Schoenberg coefficients are strictly positive for infinitely many even and odd n. The
latter class occurs when the d-Schoenberg coefficients are just nonnegative. Such a
distinction is beyond the scope of this paper.

3 Main Results

We start with a formal definition of the main classes to be discussed.

Definition 3.1 Let G denote a locally compact group with neutral element e, and let
d = 1, 2, . . . ,∞. The set of continuous functions f : [−1, 1] ×G → C such that all
matrices of the form (4) are positive semidefinite is denoted by P(Sd ,G).

We recall from the introduction that P(S∞,G) = ⋂
d≥1 P(Sd ,G). The following

proposition states some properties of P(Sd ,G) that are easily obtained. The proofs
are left to the reader.

Proposition 3.2 (i) For f1, f2 ∈ P(Sd ,G) and r ≥ 0, we have r f1, f1 + f2, f1 f2 ∈
P(Sd ,G).

(ii) For a net of functions ( fi )i∈I fromP(Sd ,G) converging pointwise to a continuous
function f : [−1, 1] × G → C, we have f ∈ P(Sd ,G).

(iii) For f ∈ P(Sd ,G), we have f (·, e) ∈ P(Sd) and f (1, ·) ∈ P(G).
(iv) For f ∈ P(Sd) and g ∈ P(G), we have f ⊗g ∈ P(Sd ,G), where f ⊗g(x, u) :=

f (x)g(u) for (x, u) ∈ [−1, 1] × G. In particular, we have f ⊗ 1G ∈ P(Sd ,G),
and f �→ f ⊗ 1G is an embedding of P(Sd) into P(Sd ,G).

Our first main theorem can be stated as follows. The proof will be given in Sect. 4.

Theorem 3.3 Let d ∈ N, and let f : [−1, 1] × G → C be a continuous function.
Then f belongs to P(Sd ,G) if and only if there exists a sequence (ϕn,d)n≥0 from
P(G) with

∑
ϕn,d(e) < ∞ such that

f (cos θ, u) =
∞∑
n=0

ϕn,d(u)cn(d, cos θ), θ ∈ [0, π ], u ∈ G. (20)

The above expansion is uniformly convergent for (θ, u) ∈ [0, π ] × G, and we have

ϕn,d(u) = Nn(d)σd−1

σd

∫ 1

−1
f (x, u)cn(d, x)(1 − x2)d/2−1 dx . (21)

We call the coefficient functions ϕn,d d-Schoenberg functions for f ∈ P(Sd ,G),
and the sequence (ϕn,d)n≥0 a d-Schoenberg sequence of functions.

As in Schoenberg’s theorem, any function f ∈ P(Sd ,G) has d expansions like
Eq. (20).

Remark 3.4 (i) For a function f ∈ P(Sd ,G), the d-Schoenberg coefficients of
f (·, e) ∈ P(Sd) are bn,d = ϕn,d(e), where ϕn,d are the d-Schoenberg functions
for f .
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(ii) For a function f ⊗ g ∈ P(Sd ,G) given in Proposition 3.2 part (iv), we have
ϕn,d = bn,dg, where ϕn,d are the d-Schoenberg functions for f ⊗ g and bn,d are
the d-Schoenberg coefficients for f . In particular, for f ⊗ 1G ∈ P(Sd ,G), we
have ϕn,d(u) = bn,d .

(iii) We can now see that P(Sd ,G) is strictly included in P(Sd−1,G) for any locally
compact group G. In fact, Gneiting [12] showed the existence of f ∈ P(Sd−1) \
P(Sd), and for any such f , we have f ⊗ 1G ∈ P(Sd−1,G) \P(Sd ,G), because
if f ⊗ 1G ∈ P(Sd ,G), then necessarily f ∈ P(Sd) by (ii).

Corollary 3.5 Let d ∈ N, let G denote a locally compact abelian group, and let
f : [−1, 1] × G → C be a continuous function. Then f belongs to P(Sd ,G) if and
only if there exists a sequence (μn,d)n≥0 of finite positive Radon measures on Ĝ with∑

μn,d(Ĝ) < ∞ such that

f (cos θ, u) =
∞∑
n=0

cn(d, cos θ)

∫
Ĝ
(u, γ ) dμn,d(γ ).

The above expansion is uniformly convergent for (θ, u) ∈ [0, π ] × G.

When G denotes the group consisting just of the neutral element, Theorem 3.3
reduces to Schoenberg’s characterization of positive definite functions on Sd as given
in Theorem 2.1.

We give the proof in the next section, but notice that the infinite series in Eq. (20)
is uniformly convergent by Weierstrass’ M test since |ϕn,d(u)| ≤ ϕn,d(e) and
|cn(d, cos θ)| ≤ 1 for u ∈ G, θ ∈ [0, π ]. It is also clear that any function given by (20)
belongs to P(Sd ,G) because of Proposition 3.2 and the fact that cn(d, ·) ∈ P(Sd) by
Schoenberg’s theorem. Themain point in Theorem 3.3 is that all functions inP(Sd ,G)

have an expansion (20).

Remark 3.6 Formula (20) with x = cos θ can be interpreted as the expansion of
x �→ f (x, u) in the orthonormal system of Gegenbauer polynomials

(
σd

Nn(d)σd−1

)−1/2

cn(d, x),

cf. Eq. (16).

Analogously to [12, Corollary 3] and with the same proof, we have the following
relation between the d- and (d + 2)-Schoenberg functions ϕn,d and ϕn,d+2 for f ∈
P(Sd+2,G):

Proposition 3.7 Let d ∈ N, and suppose that f ∈ P(Sd+2,G) ⊂ P(Sd ,G). Then
we have:

(a) For d = 1,

ϕ0,3 = ϕ0,1 − 1

2
ϕ2,1
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and

ϕn,3 = 1

2
(n + 1)(ϕn,1 − ϕn+2,1), n ≥ 1.

(b) For d ≥ 2,

ϕn,d+2 = (n + d − 1)(n + d)

d(2n + d − 1)
ϕn,d − (n + 1)(n + 2)

d(2n + d + 3)
ϕn+2,d , n ≥ 0. (22)

Analogously to Proposition 4.1 in [26], we have the following result:

Proposition 3.8 Let d ∈ N, and suppose that f ∈ P(Sd+2,G). Then f (x, u) is
continuously differentiable with respect to x in ] − 1, 1[ and

∂ f (x, u)

∂x
= f1(x, u) − f2(x, u)

1 − x2
, (x, u) ∈] − 1, 1[×G,

for functions f1, f2 ∈ P(Sd ,G). In particular, ∂ f (x,u)
∂x is continuous on ] − 1, 1[×G.

Corollary 3.9 Let d ∈ N and f ∈ P(Sd ,G). Then ∂n f (x,u)
∂xn exists and is continuous

on ] − 1, 1[×G for n ≤ [(d − 1)/2].
Our secondmain result is the following extension of Schoenberg’s second theorem:

Theorem 3.10 Let G denote a locally compact group, and let f : [−1, 1] × G → C

be a continuous function. Then f belongs to P(S∞,G) if and only if there exists a
sequence (ϕn)n≥0 from P(G) with

∑
ϕn(e) < ∞ such that

f (cos θ, u) =
∞∑
n=0

ϕn(u) cosn θ. (23)

The above expansion is uniformly convergent for (θ, u) ∈ [0, π ] × G.
Moreover,

lim
d→∞ ϕn,d(u) = ϕn(u) for all (n, u) ∈ N0 × G. (24)

The proof is given in Sect. 4.

Remark 3.11 In the special case G = {e}, where P(Sd ,G) = P(Sd), the Eq. (24)
states that the d-Schoenberg coefficients bn,d converge to bn from (19) when d → ∞.
This observation is apparently not noticed by Schoenberg, who only obtains bn by a
“Cantor-diagonal process.” Our proof uses Corollary 3.9 based on Ziegel’s result that
f ∈ P(S∞) is C∞ on the open interval ] − 1, 1[, a result that Schoenberg did not
know.

4 Proofs

Lemma 4.1 Let d ∈ N ∪ {∞}. Any f ∈ P(Sd ,G) satisfies

f (x, u−1) = f (x, u), | f (x, u)| ≤ f (1, e), (x, u) ∈ [−1, 1] × G.
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Proof Given (x, u) ∈ [−1, 1] × G, we choose vectors ξ, η ∈ S
d such that ξ · η = x .

We next apply (4) for n = 2 and the pair of points (ξ, u), (η, e) giving that the matrix

(
f (1, e) f (x, u)

f (x, u−1) f (1, e)

)

is positive semidefinite, in particular Hermitian and having a nonnegative determinant.
The result follows. �

In the following two lemmas, we assume d ∈ N.

Lemma 4.2 Let K ⊂ G be a nonempty compact set, and let δ > 0 and an open
neighbourhood U of e ∈ G be given. Then there exists a partition of Sd ×K in finitely
many nonempty disjoint Borel sets, say M j , j = 1, . . . , r , with the property:

For (ξ, u), (η, v) ∈ Mj , one has θ(ξ, η) < δ, u−1v ∈ U.

Proof By [17, Theorem 45.1] there exists a finite covering of the compact metric space
(Sd , θ) by open balls B(ξ j , δ/2), ξ j ∈ S

d . Defining B1 = B(ξ1, δ/2) and

Bj = B(ξ j , δ/2) \ ∪ j−1
k=1B(ξk, δ/2), j ≥ 2,

the nonempty sets among Bj will form a finite partition S1, . . . , Sp of Sd such that for
ξ, η ∈ S j , we have θ(ξ, η) < δ.

Given an open neighborhoodU of e ∈ G, there exists a smaller open neighborhood
V of e ∈ G such that V−1V ⊂ U . By the definition of compactness, see [17, p. 164],
there exists a finite covering of the compact set K by left translates u j V , and from
this we can as above produce a partition of K in finitely many nonempty disjoint
Borel sets, say T1, . . . , Tq , such that each Tk is contained in a left translate of V , and
therefore we have

u−1v ∈ V−1V ⊂ U, u, v ∈ Tk, k = 1, . . . , q.

Finally the sets Mj,k := S j × Tk will form a finite partition of Sd × K with the
desired properties. �
Lemma 4.3 For a continuous function f : [−1, 1] × G → C, the following are
equivalent:

(i) f ∈ P(Sd ,G).
(ii) f is bounded, and for any complex Radon measure μ on S

d × G of compact
support, we have

∫
Sd×G

∫
Sd×G

f (cos θ(ξ, η), u−1v) dμ(ξ, u) dμ(η, v) ≥ 0. (25)
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Proof “(i) �⇒ (ii).” Suppose first that (i) holds. By Lemma 4.1, we know that f is
bounded, and for any discrete complex Radon measure of the form

σ =
n∑
j=1

α jδ(ξ j ,u j ),

where (ξ1, u1), . . . (ξn, un) ∈ S
d × G, α1, . . . , αn ∈ C, we have

∫
Sd×G

∫
Sd×G

f (cos θ(ξ, η), u−1v) dσ(ξ, u) dσ(η, v)

=
n∑

k,l=1

f (cos θ(ξk, ξl), u
−1
k ul)αkαl ≥ 0.

Now let μ denote an arbitrary complex Radon measure on S
d × G with compact

support. We may therefore suppose that the support of μ is contained in Sd × K for a
compact set K ⊂ G. Let Mj , j = 1, . . . , r be a partition of Sd × K corresponding to
given δ > 0 and open U as in Lemma 4.2.

Let us now consider the number

I :=
∫
Sd×G

∫
Sd×G

f (cos θ(ξ, η), u−1v) dμ(ξ, u) dμ(η, v),

which is clearly real. We shall prove that I ≥ 0, by showing that for any ε > 0, there
exists J ≥ 0 such that |I − J | < ε||μ||2, where ||μ|| is the total variation of the
complex measure μ, cf. [22].

First of all, f (cos θ(ξ, η), u−1v) is uniformly continuous on the compact set (Sd ×
K )2, and for given ε > 0, we therefore know that there exists δ > 0 and an open
neighborhood U of e ∈ G such that for all quadruples (ξ, u, η, v), (ξ̃ , ũ, η̃, ṽ) ∈
(Sd × K )2 satisfying

θ(ξ, ξ̃ ) < δ, θ(η, η̃) < δ, u−1ũ ∈ U, v−1ṽ ∈ U,

we have

| f (cos θ(ξ, η), u−1v) − f (cos θ(ξ̃ , η̃), ũ−1ṽ)| < ε,

in particular,

| f (cos θ(ξ, η), u−1v) − f (cos θ(ξ̃ , η̃), ũ−1ṽ)| < ε

if

(ξ, u, η, v), (ξ̃ , ũ, η̃, ṽ) ∈ Mk × Ml .
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Next

I =
r∑

k,l=1

∫
Mk

∫
Ml

f (cos θ(ξ, η), u−1v) dμ(ξ, u) dμ(η, v),

and if we choose an arbitrary point (ξ j , u j ) ∈ Mj and define α j = μ(Mj ), j =
1, . . . , r , then

J :=
r∑

k,l=1

f (cos θ(ξk, ξl), u
−1
k ul)αkαl ≥ 0.

Furthermore,

I − J =
r∑

k,l=1

∫
Mk

∫
Ml

[ f (cos θ(ξ, η), u−1v)

− f (cos θ(ξk, ξl), u
−1
k ul)] dμ(ξ, u) dμ(η, v),

and by the uniform continuity,

|I − J | ≤ ε

r∑
k,l=1

|μ|(Mk)|μ|(Ml) = ε||μ||2,

where |μ| denotes the total variation measure and ||μ|| its total mass called the total
variation of μ.

The implication “(ii) �⇒ (i)” is easy by specializing the measure μ to a complex
discrete measure concentrated in finitely many points. �
Remark 4.4 In Lemma 4.3, it is possible to add the following equivalent condition:

(iii) f is bounded, and for any bounded complex Radon measure μ on Sd ×G, we
have ∫

Sd×G

∫
Sd×G

f (cos θ(ξ, η), u−1v) dμ(ξ, u) dμ(η, v) ≥ 0. (26)

The equivalence follows by approximatingμwithmeasures of compact support. Since
the result is not needed, we leave the details to the reader.

Proof of Theorem 3.3 Suppose that f belongs to P(Sd ,G), and let us consider the
product measure μ := ωd ⊗ σ on S

d × G, where σ is an arbitrary complex Radon
measure on G of compact support. By Lemma 4.3 applied to μ, we get∫

Sd

∫
Sd

∫
G

∫
G

f (cos θ(ξ, η), u−1v) dωd(ξ) dωd(η) dσ(u) dσ(v) ≥ 0. (27)

The integral with respect to ξ, η can be simplified to∫
Sd

∫
Sd

f (cos θ(ξ, η), u−1v) dωd(ξ) dωd(η) = σd

∫
Sd

f (ε1 · η, u−1v) dωd(η),
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where ε1 is the unit vector (1, 0, . . . , 0) ∈ R
d+1. This is because∫

Sd
f (ξ · η, u−1v) dωd(η)

is independent of ξ ∈ S
d due to the rotation invariance of ωd , so we can put ξ = ε1.

When we next integrate this constant function with respect to ξ , we just multiply the
function with the total mass σd .

Therefore Eq. (27) amounts to∫
Sd

∫
G

∫
G

f (ε1 · η, u−1v) dωd(η) dσ(u) dσ(v) ≥ 0. (28)

We next apply Eq. (28) to the function f (x, u)cn(d, x) that belongs to P(Sd ,G)

by Proposition 3.2. This gives∫
Sd

∫
G

∫
G

f (ε1 · η, u−1v)cn(d, ε1 · η) dωd(η) dσ(u) dσ(v) ≥ 0. (29)

The function ϕn,d : G → C defined by

ϕn,d(u) := Nn(d)

σd

∫
Sd

f (ε1 · η, u)cn(d, ε1 · η) dωd(η) (30)

is clearly continuous and bounded, and it is positive definite on G, because Eq. (29)
holds for all complex Radon measures σ on G with compact support. The integral
(30) can be reduced to

ϕn,d(u) = Nn(d)σd−1

σd

∫ 1

−1
f (x, u)cn(d, x)(1 − x2)d/2−1 dx, (31)

cf. [18, p. 1].
For each u ∈ G, the function ξ �→ f (ε1 · ξ, u) belongs to C(Sd) and has by (13)

and (14) an expansion in spherical harmonics

f (ε1 · ξ, u) =
∞∑
n=0

Sn(ξ, u)

known to be Abel-summable to the left-hand side for each u ∈ G, cf. [18, Theorem 9],
and

Sn(ξ, u) = Nn(d)

σd

∫
Sd

cn(d, ξ · η) f (ε1 · η, u) dωd(η).

By the Funk–Hecke formula [18, p. 20] and Eq. (31), we get

Sn(ξ, u) = ϕn,d(u)cn(d, ε1 · ξ);
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hence

f (ε1 · ξ, u) =
∞∑
n=0

ϕn,d(u)cn(d, ε1 · ξ),

and the series is Abel-summable to the left-hand side for each u ∈ G and each ξ ∈ S
d .

For u = e and ξ = ε1, we have in particular

lim
r→1−

∞∑
n=0

rnϕn,d(e) = f (1, e),

but since ϕn,d(e) ≥ 0, the limit above is equal to
∑∞

n=0 ϕn,d(e) by Lebesgue’s
monotonicity theorem; hence

∞∑
n=0

ϕn,d(e) = f (1, e) < ∞.

Since

|ϕn,d(u)cn(d, x)| ≤ ϕn,d(e),

the M test of Weierstrass shows that the series

∞∑
n=0

ϕn,d(u)cn(d, x), (x, u) ∈ [−1, 1] × G, (32)

converges uniformly to a continuous function f̃ (x, u). By Abel’s theorem, the series
in (32) is also Abel-summable with sum f̃ (x, u), and therefore f (x, u) = f̃ (x, u) for
all x ∈ [−1, 1], u ∈ G, and Theorem 3.3 is proved. �
Proof of Proposition 3.8: Although the proof is very similar to the proof given in [26],
we shall indicate the main steps, where it is crucial that the d-Schoenberg functions
of f ∈ P(Sd ,G) satisfy |ϕn,d(u)| ≤ ϕn,d(e).

First of all, we note two formulas for the polynomials cn(d, x) that are special cases
of formulas for general Gegenbauer polynomials C (λ)

n (x):

dc′
n(d, x) = n(n + d − 1)cn−1(d + 2, x), (33)

(1 − x2)cn(d + 2, x) = d

2n + d + 1
(cn(d, x) − cn+2(d, x)) . (34)

These formulas lead to

(1 − x2)
N∑

n=1

ϕn,d(u)c′
n(d, x)
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=
N∑

n=1

ϕn,d(u)
n(n + d − 1)

2n + d − 1
(cn−1(d, x) − cn+1(d, x))

=
N∑

n=0

(
ϕn+2,d(u)

(n + 2)(n + d + 1)

2n + d + 3
− ϕn,d(u)

n(n + d − 1)

2n + d − 1

)
cn+1(d, x)

+ϕ1,d(u)
d

d + 1
−

N∑
n=N−1

ϕn+2,d(u)
(n + 2)(n + d + 1)

2n + d + 3
cn+1(d, x)

=
N∑

n=0

(
d(2n + d + 1)(n + 2)

(2n + d + 3)(n + d)
ϕn+2,d(u) − dn

n + d
ϕn,d+2(u)

)
cn+1(d, x)

+ϕ1,d(u)
d

d + 1
−

N∑
n=N−1

ϕn+2,d(u)
(n + 2)(n + d + 1)

2n + d + 3
cn+1(d, x).

In the last equality, we have used Eq. (22), and we have for simplicity assumed d ≥ 2,
otherwise we shall use the other equations of Proposition 3.7. The point is now that
the coefficients in front of ϕn+2,d(u) and ϕn,d+2(u) form a bounded sequence of
nonnegative numbers, and since

∑
ϕn+2,d(e) < ∞,

∑
ϕn,d+2(e) < ∞, we can let

N → ∞. The second trick of Ziegel is to notice that the two terms in
∑N

n=N−1 tend
to 0 for N → ∞. To see this, it is enough to prove that nϕn,d(e) → 0, and this is done
as in [26]. �
Proof of Theorem 3.10: As preparation for the proof, we need the following lemma.

Lemma 4.5 (Lemma 1 in [24]) Let c(λ)
n (x) = C (λ)

n (x)/C (λ)
n (1) denote the normalized

Gegenbauer polynomial. For each x such that −1 < x < 1 and ε > 0, there exists
L = L(x, ε) > 0 such that

|c(λ)
n (x) − xn| < ε, n = 0, 1, . . . ,

provided λ > L.

For each d = 1, 2, . . ., we have the series expansion

f (x, u) =
∞∑
n=0

ϕn,d(u)cn(d, x), x ∈ [−1, 1], u ∈ G,

and we know that |ϕn,d(u)| ≤ ϕn,d(e) ≤ f (1, e).
For a topological space X and an index set J , we denote as in [17, p. 113] by X J

the product set of J -tuples (x j ) j∈J , or equivalently as the set of functions x : J → X ,
where we write x( j) = x j for j ∈ J . We equip X J with the product topology.

Now let X = {z ∈ C | |z| ≤ f (1, e)}, which is a compact disc in C, and consider
the index set J = N0 × G, where N0 = {0, 1, . . .}. The product set XN0×G equipped
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with the product topology is compact by Tychonoff’s theorem, and this implies that
the sequence

d → (ϕn,d(u))(n,u)∈N0×G (35)

has an accumulation point in XN0×G , which can be considered as a sequence of
functions ϕn : G → X, n ∈ N0. Being an accumulation point means that for each
ε > 0 and each finite set F ⊂ N0 × G, we have

|ϕn,d(u) − ϕn(u)| < ε, (n, u) ∈ F (36)

for infinitely many values of d. Therefore each ϕn is a positive definite function on G.
We stress that it is not clear at all at this point that they are continuous.

We now fix x such that −1 < x < 1 and u0 ∈ G, and shall prove that

f (x, u0) =
∞∑
n=0

ϕn(u0)x
n . (37)

We first note that the right-hand side converges because |ϕn(u0)| ≤ f (1, e), and
similarly

∑
ϕn,d(u0)xn converges for each d.

Now let ε > 0 be given, and let L = L(x, ε) be the number from Lemma 4.5. We
next choose N ∈ N such that

∞∑
n=N+1

|x |n < ε.

From Eq. (36) (with F = {0, 1, . . . , N } × {u0}), it follows that we can choose d ∈ N

such that (d − 1)/2 > L and such that

|ϕn,d(u0) − ϕn(u0)| < ε, n = 0, 1, . . . , N .

We then have

f (x, u0) −
∞∑
n=0

ϕn(u0)x
n =

∞∑
n=0

ϕn,d(u0)(cn(d, x) − xn)+
∞∑
n=0

(ϕn,d(u0)−ϕn(u0))x
n;

hence

| f (x, u0) −
∞∑
n=0

ϕn(u0)x
n|

≤
∞∑
n=0

ϕn,d(e)|cn(d, x) − xn| +
N∑

n=0

|ϕn,d(u0)−ϕn(u0)||x |n+
∞∑

n=N+1

2 f (1, e)|x |n

< ε f (1, e) + ε

1 − |x | + 2ε f (1, e),
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where we have used Lemma 4.5.
Since the right-hand side can be made arbitrarily small, we have proved (37).
Putting u0 = e in Eq. (37), we have in particular

f (x, e) =
∞∑
n=0

ϕn(e)x
n, −1 < x < 1,

and since ϕn(e) ≥ 0, we get by Lebesgue’s monotonicity theorem that

f (1, e) = lim
x→1− f (x, e) =

∞∑
n=0

ϕn(e).

In particular,
∑∞

n=0 ϕn(e) < ∞. Combined with the inequality |ϕn(u)| ≤ ϕn(e), u ∈
G for the positive definite function ϕn , this shows that the right-hand side of (37) is
continuous for x ∈ [−1, 1], and finally (37) holds for all (x, u) ∈ [−1, 1] × G.

By Corollary 3.9, we know that ∂n f (x, u)/∂xn is continuous on ] − 1, 1[×G for
all n and in particular,

∂n f (0,u)
∂xn

n! = ϕn(u) (38)

is continuous.
We finally have to prove Eq. (24). We have shown the identity

f (x, u) =
∞∑
n=0

ϕn(u)xn, (x, u) ∈ [−1, 1] × G

for any accumulation point (ϕn(u)) in XN0×G of the sequence

d → (ϕn,d(u))(n,u)∈N0×G .

However, because of (38), the accumulation point is uniquely determined, and then
it is easy to see that the sequence (35) converges to the unique accumulation point in
the compact space XN0×G . In fact, if the convergence does not take place, there exists
an open neighborhood U of (ϕn(u)) in XN0×G and a subsequence

(ϕn,dk (u)), d1 < d2 < · · ·

such that (ϕn,dk (u)) /∈ U for all k ∈ N. By compactness of XN0×G \ U , this subse-
quence has an accumulation point in XN0×G \ U , but this accumulation point is also
an accumulation point of the sequence (35) and hence equal to (ϕn(u)), which is a
contradiction. �
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5 d-Schoenberg Functions for f ∈ P(S∞, G)

In this section, we shall describe the d-Schoenberg functions for f ∈ P(S∞,G).
Although this is quite elementary, we have included it because of the potential appli-
cations in geostatistics. We need the connection coefficients between the monomials
and the normalized Gegenbauer polynomials cn(d, x). These are given, e.g., in Bing-
ham [7, Lemma 1]. We recall Gegenbauer’s formula for the connection coefficients
between two different Gegenbauer polynomials:

Lemma 5.1 For λ,μ > 0, we have

C (λ)
n (x) =

[n/2]∑
k=0

(λ)n−k(λ − μ)k(n + μ − 2k)

(μ)n−k+1k! C (μ)
n−2k(x).

A simple proof can be found in [1, p. 360]. It is important to notice that the con-
nection coefficients are nonnegative when λ > μ.

Lemma 5.2 For μ > 0, we have

xn =
[n/2]∑
k=0

n!(n + μ − 2k)

2n(μ)n−k+1k! C (μ)
n−2k(x), (39)

and for μ = 0, we have

xn =
[n/2]∑
k=0

(n
k

)
2n

Nn−2k(1)Tn−2k(x), (40)

where Nn(1) = 2 for n ≥ 1 and N0(1) = 1, cf. (11).

Proof We refer to [7, Lemma 1], but for the convenience of the reader we indicate a
proof. Divide the formula in Lemma 5.1 by (2λ)n/n! in order to get the normalized
Gegenbauer polynomials c(λ)

n (x), and next use that the n’th normalized Gegenbauer
polynomial tends to xn for λ → ∞ when −1 < x < 1, cf. Lemma 4.5. This shows
formula (39) for these values of x , but as an identity between polynomials, it then
holds for all values of x . Formula (40) can be found, e.g., in [14]. �

It is important to notice that the connection coefficients of Lemma5.2 are alternating
strictly positive and 0.

Specializing toμ = (d−1)/2, d ∈ N, we can simplify Lemma 5.2 to the following:

Corollary 5.3 For d ∈ N and n ∈ N0, we have

xn =
[n/2]∑
k=0

γ (d)(n, k)cn−2k(d, x),
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where

γ (d)(n, k) =
⎧⎨
⎩

n!(d−1)n−2k(n−2k+(d−1)/2)
2nk!(n−2k)!((d−1)/2)n−k+1

if d ≥ 2,

(nk)
2n Nn−2k(1) if d = 1.

(41)

Using the notation above, we can now give the main result of this section.

Theorem 5.4 For f ∈ P(S∞,G) with the representation

f (x, u) =
∞∑
n=0

ϕn(u)xn, (x, u) ∈ [−1, 1] × G, (42)

the d-Schoenberg functions in the representation of f ∈ P(Sd ,G) as

f (x, u) =
∞∑
n=0

ϕn,d(u)cn(d, x), (x, u) ∈ [−1, 1] × G,

are given as

ϕn,d(u) =
∞∑
j=0

ϕn+2 j (u)γ (d)(n + 2 j, j), u ∈ G, (43)

and the series is uniformly convergent for u ∈ G. Here

γ (d)(n + 2 j, j) =
⎧⎨
⎩

(n+2 j)!(d−1)n(n+(d−1)/2)
n!2n+2 j j !((d−1)/2)n+ j+1

if d ≥ 2,

(n+2 j
j )

2n+2 j Nn(1) if d = 1.
(44)

Proof Inserting the uniformly convergent expansion (42) in Eq. (21) for ϕn,d(u), we
get after interchanging integration and summation

ϕn,d(u)

=
∞∑
p=0

ϕp(u)
Nn(d)σd−1

σd

∫ 1

−1
x pcn(d, x)(1 − x2)d/2−1 dx

=
∞∑
p=0

ϕp(u)

[p/2]∑
j=0

γ (d)(p, j)
Nn(d)σd−1

σd

∫ 1

−1
cp−2 j (d, x)cn(d, x)(1−x2)d/2−1 dx,

where we have used Corollary 5.3.
The last integral is zero unless p − 2 j = n, which requires p = n + 2 j, j ∈ N0.

Using (16), we get

ϕn,d(u) =
∞∑
j=0

ϕn+2 j (u)γ (d)(n + 2 j, j),
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and the expression in (44) is obvious from Corollary 5.3. By Stirling’s formula, the
expression γ (d)(n + 2 j, j) is easily seen to be bounded for j ∈ N0, and therefore the
series in Eq. (43) is uniformly convergent. �

The special case of Eq. (43) where G = {e} is given in [19, Theorem 4.2(b)].

6 Applications to Some Homogeneous Spaces

In a recent manuscript [15], the authors prove characterization results for isotropic
positive definite kernels on S

d × S
d ′

for d, d ′ ∈ N ∪ {∞}. They consider the set
P(Sd ,Sd

′
) of continuous functions f : [−1, 1]2 → R such that the kernel K of

Eq. (6) is positive definite.
Specializing Theorem 3.3 and Theorem 3.10 to the compact group G = O(d ′ +

1), d ′ ∈ N, of orthogonal transformations of Rd ′+1, we can deduce Theorem 2.9
and Theorem 3.4 from [15]. Their Theorem 3.5 corresponding to the case where
d = d ′ = ∞ cannot be deduced from our result, since the group of unitary operators
in an infinite dimensional Hilbert space is not compact.

Theorem 6.1 (Theorem 2.9 of [15]) Let d, d ′ ∈ N, and let f : [−1, 1]2 → R be a
continuous function. Then f ∈ P(Sd ,Sd

′
) if and only if

f (x, y) =
∞∑

n,m=0

f̂n,mcn(d, x)cm(d ′, y), x, y ∈ [−1, 1], (45)

where f̂n,m ≥ 0 such that
∑

f̂n,m < ∞.
The above expansion is uniformly convergent, and we have

f̂n,m = Nn(d)σd−1

σd

Nm(d ′)σd ′−1

σd ′

×
∫ 1

−1

∫ 1

−1
f (x, y)cn(d, x)cm(d ′, y)(1 − x2)d/2−1(1 − y2)d

′/2−1 dx dy.

(46)

Proof It is elementary to see that the right-hand side of (45) defines a function f ∈
P(Sd ,Sd

′
).

Let us next consider f ∈ P(Sd ,Sd
′
) and define F : [−1, 1] × O(d ′ + 1) → R by

F(x, A) = f (x, Aε1 · ε1), x ∈ [−1, 1], A ∈ O(d ′ + 1),

where ε1 = (1, 0, . . . , 0) ∈ S
d ′
. Then F ∈ P(Sd , O(d ′ + 1)) because

F(x, B−1A) = f (x, Aε1 · Bε1), A, B ∈ O(d ′ + 1).
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By Theorem 3.3,

F(x, A) =
∞∑
n=0

ϕn,d(A)cn(d, x), x ∈ [−1, 1], A ∈ O(d ′ + 1), (47)

and

ϕn,d(A) = Nn(d)σd−1

σd

∫ 1

−1
f (x, Aε1 · ε1)cn(d, x)(1 − x2)d/2−1 dx (48)

belongs to P(O(d ′ + 1)).
The fixed point group of ε1,

{A ∈ O(d ′ + 1) | Aε1 = ε1},

is isomorphic to O(d ′), so we denote it by O(d ′).
The function ϕn,d is bi-invariant under O(d ′); i.e.,

ϕn,d(K AL) = ϕn,d(A), A ∈ O(d ′ + 1), K , L ∈ O(d ′).

This is simply because f (x, K ALε1 · ε1) = f (x, Aε1 · ε1).
The mapping A �→ Aε1 is a continuous surjection of O(d ′ + 1) onto S

d ′
, and it

induces a homeomorphism of the homogeneous space O(d ′ + 1)/O(d ′) onto S
d ′
.

It is easy to see that as a bi-invariant function, ϕn,d has the form

ϕn,d(A) = gn,d(Aε1 · ε1)

for a uniquely determined continuous function gn,d : [−1, 1] → R. We have in
addition gn,d ∈ P(Sd

′
), because for ξ1, . . . , ξn ∈ S

d ′
, there exist A1, . . . , An ∈

O(d ′ + 1) such that ξ j = A jε1, j = 1, . . . , n; hence

gn,d(ξk · ξl) = gn,d(A
−1
l Akε1 · ε1) = ϕn,d(A

−1
l Ak).

This means that Eq. (48) can be written

gn,d(y) = Nn(d)σd−1

σd

∫ 1

−1
f (x, y)cn(d, x)(1 − x2)d/2−1 dx, y ∈ [−1, 1].

By Schoenberg’s Theorem 2.1,

gn,d(y) =
∞∑

m=0

b(n,d)

m,d ′ cm(d ′, y), y ∈ [−1, 1], (49)

where

b(n,d)

m,d ′ = Nm(d ′)σd ′−1

σd ′

∫ 1

−1
gn,d(y)cm(d ′, y)(1 − y2)d

′/2−1 dy;
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hence by Eqs. (47), (49),

F(x, A) = f (x, Aε1 · ε1) =
∞∑
n=0

( ∞∑
m=0

b(n,d)

m,d ′ cm(d ′, Aε1 · ε1)

)
cn(d, x),

which is equivalent to Eq. (45), and f̂n,m = b(n,d)

m,d ′ is given by Eq. (46).

Theorem 6.2 (Theorem 3.4 of [15])] Let d ′ ∈ N, and let f : [−1, 1]2 → R be a
continuous function. Then f ∈ P(S∞,Sd

′
) if and only if

f (x, y) =
∞∑

n,m=0

f̃n,mx
ncm(d ′, y), x, y ∈ [−1, 1], (50)

where f̃n,m ≥ 0 such that
∑

f̃n,m < ∞.
The above expansion is uniformly convergent, and we have

f̃n,m = Nm(d ′)σd ′−1

σd ′n!
∫ 1

−1

∂n f (x, y)

∂xn
|x=0 cm(d ′, y)(1 − y2)d

′/2−1 dy.

The proof is analogous to the proof of the previous theorem.
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