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Abstract We consider polynomials Pn orthogonal with respect to the weight Jν on
[0,∞), where Jν is the Bessel function of order ν. Asheim and Huybrechs considered
these polynomials in connection with complex Gaussian quadrature for oscillatory
integrals. They observed that the zeros of Pn are complex and accumulate as n → ∞
near the vertical line Re z = νπ

2 . We prove this fact for the case 0 ≤ ν ≤ 1/2 from
strong asymptotic formulas that we derive for the polynomials Pn in the complex
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plane. Our main tool is the Riemann–Hilbert problem for orthogonal polynomials,
suitably modified to cover the present situation, and the Deift–Zhou steepest descent
method. A major part of the work is devoted to the construction of a local parametrix
at the origin, for which we give an existence proof that only works for ν ≤ 1/2.

Keywords Orthogonal polynomials · Riemann–Hilbert problems · Asymptotic
representations in the complex domain · Limiting zero distribution · Bessel functions

Mathematics Subject Classification 33C47 · 34M50 · 30E15 · 33C10

1 Introduction

In this paper, we are interested in the polynomials Pn that are orthogonal with respect
to the weight function Jν on [0,∞), where Jν is the Bessel function of order ν ≥ 0.
The Bessel function is oscillatory with an amplitude that decays like O(x−1/2) as
x → ∞, and therefore the moments

∫ ∞

0
x j Jν(x)dx

do not exist. It follows that the polynomials Pn cannot be defined by the usual orthog-
onality property

∫ ∞

0
Pn(x)x

j Jν(x)dx = 0, j = 0, 1, . . . , n − 1.

Asheim and Huybrechs [1] introduced the polynomials Pn via a regularization of the
weight with an exponential factor. For each s > 0, they consider themonic polynomial
Pn(x; s) of degree n that is orthogonal with respect to the weight function Jν(x)e−sx ,
in the following sense:

∫ ∞

0
Pn(x; s)x j Jν(x)e

−sxdx = 0, j = 0, 1, . . . , n − 1, (1.1)

and they take the limit
Pn(x) = lim

s→0+ Pn(x; s), (1.2)

provided that the limit exists. Since the weight function Jν(x)e−sx changes sign on
the positive real axis, there is actually no guarantee for existence or uniqueness of
Pn(x; s). Therefore, for the limit (1.2), we also have to assume that Pn(x; s) exists
and is unique for n large enough.

The polynomials Pn can alternatively be defined by the moments, since the limiting
moments for the Bessel function of order ν ≥ 0 are known, namely
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m j := lim
s→0+

∫ ∞

0
x j Jν(x)e

−sxdx = 2 j
Γ

(
1+ν+ j

2

)

Γ
(
1+ν− j

2

) ,

see [1, section 3.4]. Thus we have the determinantal formula (which is familiar from
the general theory of orthogonal polynomials)

Pn(x) = 1

Δn

∣∣∣∣∣∣∣∣∣∣∣

m0 m1 · · · mn−1 mn

m1 m2 · · · mn mn+1
...

...
. . .

...
...

mn−1 mn · · · m2n−2 m2n−1

1 x · · · xn−1 xn

∣∣∣∣∣∣∣∣∣∣∣
(1.3)

with a Hankel determinant Δn = det
[
mi+ j

]n−1
i, j=0. The polynomial Pn thus exists if

and only if Δn �= 0.
Asheim and Huybrechs [1] analyze Gaussian quadrature rules with oscillatory

weight functions, such as complex exponentials, Airy and Bessel functions. The nodes
for the Gaussian quadrature rule are the zeros of the orthogonal polynomials. Since
the weight is not real and positive on the interval of orthogonality, there is a problem
of existence and uniqueness of the orthogonal polynomials. In addition, even when
the orthogonal polynomial exists, its zeros may not be real, and they may distribute
themselves on some curve or union of curves in the complex plane as the degree tends
to infinity. Examples of this kind of behavior are known in the literature, for instance
with Laguerre or Jacobi polynomials with nonstandard parameters, see [2,14,16], and
for complex exponentials [4].

In the present case, with orthogonality defined as (1.1)–(1.2), it was shown in [1,
Theorem 3.5] that the zeros of Pn are on the imaginary axis in case ν = 0 and n is
even. Namely, if t1, . . . , tn/2 are the zeros of the orthogonal polynomial of degree n/2
(where n is even) with respect to the positive weight K0(

√
t)t−1/2 on [0,∞), then the

zeros of Pn are ±i
√
t1, . . . ,±i

√
tn/2. Here K0 is the modified Bessel function of the

second kind.
For ν > 0, the zeros of Pn are not on the imaginary axis, as is clear from the

illustrations given in [1], see also Figs. 1 and 2. The computations have been carried
out in Maple, using extended precision. From these numerical experiments Asheim
and Huybrechs [1] concluded that the zeros seem to cluster along the vertical line
Re z = νπ

2 . More precisely, for ν ≤ 1
2 , one sees in Fig. 1 that the vast majority of

zeros are near a vertical line, which is indeed at Re z = νπ
2 .

For ν > 1
2 , one sees in Fig. 2 that the zeros with large imaginary part are close to

the vertical line Re z = νπ
2 , although they are not as close to the vertical line as the

zeros in Fig. 1.
We were intrigued by these figures, and the aim of this paper is to give a partial

explanation of the observed behavior of zeros. We are able to analyze the polynomials
Pn when 0 ≤ ν ≤ 1

2 in the large n limit by means of a Riemann–Hilbert analysis.
The result is that we indeed find that the real parts of most of the zeros tend to νπ

2 as
n → ∞.
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Fig. 1 Plot of the zeros of the polynomials Pn for n = 200 and ν = 0.25 (left), ν = 0.5 (right)

Fig. 2 Plot of the zeros of the polynomials Pn for n = 200 and ν = 0.8 (left), ν = 1.3 (right)

We are not able to handle the case ν > 1
2 , since in this case our method to construct

a local parametrix at the origin fails. This difficulty may very well be related to the
different behavior of the zeros in the case ν > 1

2 . It would be very interesting to
analyze this case as well. From the figures, it seems that there is a limiting curve for
the scaled zeros, if we divide the imaginary parts of the zeros by n and keep the real
parts fixed. This limiting curve is a vertical line segment if ν ≤ 1

2 (this will follow
from our results), but we do not know the nature of this curve if ν > 1

2 .

2 Statement of Main Results

2.1 Convergence of Zeros

Our first result is about the weak limit of zeros.
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Theorem 2.1 Let 0 < ν ≤ 1
2 . Then the polynomials Pn exist for n large enough. In

addition, the zeros of Pn(inπ z) all tend to the interval [−1, 1] and have the limiting
density

ψ(x) = 1

π
log

1 + √
1 − x2

|x | , x ∈ [−1, 1]. (2.1)

The convergence of zeros to the limiting density (2.1) is in the sense of weak
convergence of normalized zero counting measures. This means that if z1,n, . . . , zn,n

denote the n zeros of Pn , then

lim
n→∞

1

n

n∑
j=1

δ z j,n
iπn

= ψ(x)dx

in the sense of weak-star convergence of probability measures. Equivalently, we have

lim
n→∞

1

n

n∑
j=1

f
( z j,n
iπn

)
=

∫ 1

−1
f (x)ψ(x)dx

for every function f that is defined and continuous in a neighborhood of [−1, 1] in
the complex plane.

The weak limit of zeros, if we rescale them by a factor iπn, exists and does not
depend on the value of ν. Theorem 2.1 is known to hold for ν = 0, and we believe
that it also holds true for ν > 1

2 .
Regarding the real parts of the zeros of Pn as n → ∞, we have the following result.

Theorem 2.2 Let 0 < ν ≤ 1/2, and let δ > 0 be fixed. Then there exist n0 ∈ N and
C > 0 such that for n ≥ n0, every zero z j,n of Pn outside the disks D(0, nδ) and
D(±nπ i, nδ) satisfies ∣∣∣Re z j,n − νπ

2

∣∣∣ ≤ Cεn, (2.2)

where

εn = nν−1/2

(log n)ν+1/2 . (2.3)

Remark 2.3 For each fixed δ > 0, there are approximately εn zeros of Pn in the disks
D(0, nδ) and D(±nπ i, nδ) as n is large, where

ε =
∫ −1+δ/π

−1
ψ(x)dx +

∫ δ/π

−δ/π

ψ(x)dx +
∫ 1

1−δ/π

ψ(x)dx .

This is a consequence of the weak convergence of zeros, see Theorem 2.1.
Clearly, ε → 0 as δ → 0, and so it follows from Theorem 2.2 by taking δ arbitrarily

small that for all but o(n) zeros, one has that the real part tends to νπ
2 as n → ∞.

Remark 2.4 We do not have information about the zeros in the disk D(0, nδ). In our
Riemann–Hilbert analysis we prove the existence of a local parametrix around the
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origin, but we do not have an explicit construction with special functions. Therefore
we cannot analyze the zeros near the origin.

On the other hand, we do have potential access to the extreme zeros in the disks
D(±nπ i, nδ), since the asymptotics of the polynomials Pn(inπ z) is given in terms
of Airy functions. From the figures, it seems that the result (2.2) also holds for the
extreme zeros, but we omit this asymptotic result in Theorem 2.6, since it does not
follow clearly from the construction of the local parametrices in this case.

2.2 Orthogonality of Pn(inπ z) and Discussion

Theorems 2.1 and 2.2 follow from strong asymptotic formulas for the rescaled poly-
nomials

P̃n(z) = (inπ)−n Pn(inπ z). (2.4)

These polynomials are orthogonal polynomials on the real line, but with a complex
weight function.

Proposition 2.5 Let 0 ≤ ν < 1. Then the polynomial P̃n, if it exists uniquely, is the
monic orthogonal polynomial of degree n for the weight

{
eνπ i/2Kν(−nπx) for x < 0,

e−νπ i/2Kν(nπx) for x > 0,
(2.5)

on the real line. That is,

∫ ∞

−∞
P̃n(z)x

je− sgn(x)νπ i/2Kν(nπ |x |)dx = 0, j = 0, 1 . . . , n − 1. (2.6)

The function Kν in (2.5) is the modified Bessel function of second kind of order ν.
Proposition 2.5 is proved in Sect. 3.3.

Since Kν(x) ∼ x−ν as x → 0, see for instance [17,18, 10.30.2], the condition
ν < 1 is necessary for the convergence of the integral (2.6) with j = 0. In case ν = 0,
then (2.5) is the real and positive weight function K0(nπ |x |). Then P̃n has all its zeros
on the real line, and consequently the zeros of Pn are on the imaginary axis. This way
we recover the result of [1].

If ν = 1/2, the modified Bessel function reduces to an elementary function and the
weight function (2.5) is

{
eπ i/4(2n|x |)−1/2e−nπ |x |, x < 0,

e−π i/4(2n|x |)−1/2e−nπ |x |, x > 0.
(2.7)

The weight (2.7) has three components:

– An exponential varying weight e−nπ |x | with a potential function V (x) = π |x | that
is convex but nonsmooth at the origin.

– A square root singularity at the origin |x |−1/2.
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– A complex phase factor e±π i/4 with a jump discontinuity at the origin.

The exponential varying weight determines the limiting density (2.1). Indeed, we
have that ψ(x)dx is the minimizer of the logarithmic energy in the external field π |x |
among probability measures on the real line, see [19], and as is well known, the zeros
of the orthogonal polynomials with varyingweight function e−nπ |x | haveψ as limiting
density. This continues to be the case for the weights (2.5) as is claimed by Theorem
2.1. A Riemann–Hilbert analysis for the weight e−nπ |x | and other Freud weights are
in [13].

The square root singularity and the jumpdiscontinuity are known as Fisher–Hartwig
singularities in the theory of Toeplitz determinants. There is much recent progress in
the understanding of Toeplitz andHankel determinantswith such singularities [7]. This
is also related to the asymptotics of the corresponding orthogonal polynomials, whose
local behavior near a Fisher–Hartwig singularity is described with the aid of confluent
hypergeometric functions, see the works of Deift et al. [6,12] and also Foulquié et
al. [10,11].

Weare facing the complication that theFisher–Hartwig singularity is combinedwith
a logarithmic divergence of the density ψ at the origin, see (2.1). In our Riemann–
Hilbert analysiswewere not able to construct a local parametrixwith special functions,
and we had to resort to an existence proof, where we used ideas from Kriecherbauer
andMcLaughlin [13] andBleher andBothner [3], although our proof is at the technical
level different from either of these papers.

2.3 Asymptotic Behavior

Away from the region where the zeros of Pn lie, the asymptotic behavior is governed
by the g function associated with the limiting density ψ given by (2.1):

g(z) =
∫ 1

−1
log(z − x)ψ(x)dx . (2.8)

The function g is defined and analytic for z ∈ C \ (−∞, 1].
We prove the following asymptotic behavior of Pn in the region away from the

zeros. We continue to use εn as defined in (2.3).

Theorem 2.6 Let 0 < ν ≤ 1/2. Then the polynomial Pn exists and is unique for
sufficiently large n. Moreover, the polynomial P̃n given by (2.4) has the following
behavior as n → ∞:

P̃n(z) = eng(z)
(
z(z + (z2 − 1)1/2)

2(z2 − 1)

)1/4 (
(z2 − 1)1/2 − i

(z2 − 1)1/2 + i

)−ν/4

(1 + O(εn)) ,

(2.9)
uniformly for z in compact subsets of C \ [−1, 1]. Here the branch of the function
(z2 − 1)1/2 is taken which is analytic in C \ [−1, 1] and positive for real z > 1.

In a neighborhood of (−1, 1), we find oscillatory behavior of the polynomials P̃n
as n → ∞. We state the asymptotic formula (2.12) for Re z ≥ 0 only. There is an
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analogous formula for Re z < 0. This follows from the fact that the polynomial Pn
has real coefficients, as all the moments in the determinantal formula (1.3) are real.
Thus Pn(z) = Pn(z), and so

P̃n(−z) = P̃n(z), z ∈ C.

To describe the behavior near the interval, we need the analytic continuation of the
density (2.1), which we also denote by ψ ,

ψ(z) = 1

π
log

1 + (1 − z2)1/2

z
, Re z > 0, (2.10)

which is defined and analytic in {z | Re z > 0}\[1,∞). ForRe z > 0with z /∈ [1,∞),
we also define

θn(z) = nπ

∫ 1

z
ψ(s)ds + 1

4
arccos z − π

4
. (2.11)

Theorem 2.7 Let 0 < ν ≤ 1/2. There is an open neighborhood E of (−1, 1) such
that for z ∈ E \ {0} with Re z ≥ 0, we have

P̃n(z) = z1/4e
νπ i
4 enπ z/2

21/4(2e)n(1 − z2)1/4

[
exp

(νπ

2
ψ(z) + iθn(z)

)(
1 + O

(
log n

n

))

+ exp
(
−νπ

2
ψ(z) − iθn(z)

)(
1 + O

(
log n

n

))
+ O(εn)

]
(2.12)

as n → ∞, withψ and θn given by (2.10) and (2.11). The asymptotic expansion (2.12)
is uniform for z ∈ E with Re z ≥ 0 and |z − 1| > δ, |z| > δ, for every δ > 0.

The two terms exp
(

νπ
2 ψ(z) + iθn(z)

)
and exp

(− νπ
2 ψ(z) − iθn(z)

)
in (2.12)

describe the oscillatory behavior near the interval as well as the leading order behavior
of the zeros. Zeros can only happen when these two terms are of comparable absolute
value so that cancellations can take place. When ν = 0, this happens for real z ∈ E .
However, for ν > 0, this does not happen for real z, but near the line Im z = − ν

2n , as
we will show in Sect. 4.4. This leads to Theorem 2.2.

2.4 Outline of the Paper

The structure of the rest of the paper is as follows. In Sect. 3, we state the Riemann–
Hilbert (RH) problem Y (s) for Pn(x; s) with s > 0, and we make an initial
transformation

Y (s) 
→ X (s).

In the RH problem for X (s), we can take the limit s → 0+ which leads to a RH
problem for X , that characterizes the polynomial Pn(x). Then we carry out the further
transformations
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X 
→ U 
→ T 
→ S 
→ Q 
→ R

of the Deift–Zhou nonlinear steepest descent method [5,8]. The step X 
→ U is
rotation and scaling, to translate the problem to the interval [−1, 1]. This leads to
the polynomials P̃n and the proof of Proposition 2.5. The normalization at ∞ in
the U 
→ T step is carried out using an equilibrium problem with a Freud weight
w(x) = e−nV (x), where V (x) = π |x | is the pointwise limit as n → ∞ of the varying
weight

Vn(x) = −1

n
log Kν(nπ |x |).

The construction of the global parametrix N on the interval [−1, 1] involves two
Szegő functions D1(z) and D2(z) that correspond respectively to an algebraic singu-
larity of the weight function at the origin and to a complex phase factor. The local
parametrices near the endpoints ±1 involve Airy functions, since the density ψ(x)
in (2.1) behaves like a square root in a neighborhood of these endpoints. The main
difficulty of the analysis is the construction of a local parametrix in a neighborhood
of the origin, and the reason is the lack of analyticity of the weight function Vn(x) in
that neighborhood. In this paper, we reduce the jump matrices in that local analysis to
almost constant in a disk around 0 and then use a small norm argument in L2 ∩ L∞ to
prove existence of a solution to this local RH problem. In this respect, the analysis is
similar to the one presented by Kriecherbauer and McLaughlin [13]. We also observe
that the same limiting potential V (x) appears in the work of Bleher and Bothner in
[3]. Another example of nonanalytic weight function was considered in the work of
Foulquié Moreno et al., see [10,11], although in this case the local parametrix at the
origin is explicitly given in terms of confluent hypergeometric functions.

Finally, in Sect. 4 we follow the transformations both outside and inside the lens,
but away from the origin, to get the asymptotic information about Pn(z) and its zeros.
This proves Theorem 2.6 and 2.7. Theorem 2.1 follows from Theorems 2.6 and 2.7 is
a consequence of Proposition 2.2.

3 Riemann–Hilbert Problem

3.1 RH Problem for Polynomials Pn(x; s)

We let ν > 0 and s > 0. Orthogonal polynomials are characterized by a matrix valued
Riemann–Hilbert problem as was first shown by Fokas et al. [9], see also [5]. This
characterization does not use the fact that the orthogonality weight is nonnegative, and
it therefore also applies to oscillatoryweights. Thus the polynomial Pn(x; s) satisfying
(1.1) is characterized by the following Riemann–Hilbert problem:

RH problem 3.1 Y (s) : C \ [0,∞) → C
2×2 is a 2 × 2 matrix valued function that

satisfies:

1. Y (s) is analytic in C \ [0,∞).
2. Y (s) satisfies the jump condition
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Y (s)
+ (x) = Y (s)

− (x)

(
1 Jν(x)e−sx

0 1

)
on (0,∞).

3. As z → ∞,

Y (s)(z) = (I + O(1/z))

(
zn 0
0 z−n

)
, (3.1)

where I denotes the 2 × 2 identity matrix.
4. Y (s)(z) remains bounded as z → 0.

The polynomial Pn(x; s) exists and is unique if and only if the RH problem has a
unique solution. In that case, we have

Pn(x; s) = Y (s)
11 (x). (3.2)

3.2 First Transformation

In the first transformation, we use the following connection formula between Jν and
the modified Bessel function Kν of the second kind:

Jν(z) = 1

π i

(
e− νπ i

2 Kν(−i z) − e
νπ i
2 Kν(i z)

)
, | arg z| ≤ π

2
, (3.3)

see for instance [17,18, formula 10.27.9], Alternatively, the Bessel function can be
written in terms of Hankel functions as in [17,18, formula 10.4.4].

The formula (3.3) leads to the following factorization of the jump matrix:

(
1 Jν(x)e−sx

0 1

)
=

(
1 − e

νπ i
2

π i Kν(i x)e−sx

0 1

) (
1 e−

νπ i
2

π i Kν(−i x)e−sx

0 1

)
. (3.4)

We define the new matrix valued function X (s) by

X (s)(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 0

0 (π i)−1

)
Y (s)(z)

(
1 −e− νπ i

2 Kν(−i z)e−sz

0 π i

)
, 0 < arg z < π

2 ,

(
1 0

0 (π i)−1

)
Y (s)(z)

(
1 −e

νπ i
2 Kν(i z)e−sz

0 π i

)
, −π

2 < arg z < 0,

(
1 0

0 (π i)−1

)
Y (s)(z)

(
1 0

0 π i

)
, elsewhere.

(3.5)
Then X (s) has an analytic continuation across the positive real axis, due to the factor-
ization (3.4). Thus X (s) is defined and analytic in the complex plane except for the
imaginary axis, and it satisfies the following RH problem:

RH problem 3.2 1. X (s) is analytic in C \ iR.
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2. X (s) satisfies the jump condition (the imaginary axis is oriented from bottom to
top)

X (s)
+ (x) = X (s)

− (x)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
1 e− νπ i

2 Kν(−i x)e−sx

0 1

)
for x ∈ (0,+i∞),

(
1 e

νπ i
2 Kν(i x)e−sx

0 1

)
for x ∈ (−i∞, 0).

(3.6)

3. As z → ∞,

X (s)(z) = (I + O(1/z))

(
zn 0
0 z−n

)
. (3.7)

4. X (s)(z) remains bounded as z → 0 with Re z < 0, and

X (s)(z) =
(O(1) O(z−ν)

O(1) O(z−ν)

)
as z → 0 with Re z > 0. (3.8)

The asymptotic condition (3.7) follows from (3.1), the definition (3.5), and the fact
that

Kν(z) =
(

π

2z

)1/2

e−z (1 + O(1/z)) as z → ∞, | arg z| <
3π

2
, (3.9)

see [17,18, formula 10.40.2]. TheO(z−ν) terms in (3.8) appear because of the behavior

Kν(z) ∼ Γ (ν)

21−ν
z−ν (3.10)

as z → 0 for ν > 0, see for instance [17,18, formula 10.30.2]. Note that by (3.2) and
(3.5),

Pn(x; s) = X (s)
11 (x). (3.11)

In the RH problem for X (s), we can take s → 0+. Indeed, after setting s = 0 in
(3.6), the off-diagonal entries in the jump matrices still tend to 0 as |x | → ∞ because
of (3.9). We set s = 0, and we consider the following RH problem:

RH problem 3.3 We seek a function X : C \ iR → C
2×2 satisfying:

1. X is analytic in C \ iR.
2. X satisfies the jump condition (the imaginary axis is oriented from bottom to top)

X+(x) = X−(x)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
1 e− νπ i

2 Kν(−i x)

0 1

)
for x ∈ (0,+i∞),

(
1 e

νπ i
2 Kν(i x)

0 1

)
for x ∈ (−i∞, 0).
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3. As z → ∞,

X (z) = (I + O(1/z))

(
zn 0
0 z−n

)
.

4. X (z) remains bounded as z → 0 with Re z < 0, and

X (z) =
(O(1) O(z−ν)

O(1) O(z−ν)

)
as z → 0 with Re z > 0.

If there is a unique solution, then the 11-entry is a monic polynomial of degree n,
say Pn , and

Pn(x) = X11(x) = lim
s→0+ X (s)

11 (x) = lim
s→0+ Pn(x; s), (3.12)

see (3.11). Thus Pn is the polynomial that we are interested in.

Remark 3.4 Observe that the jump matrices in (3.6) tend to the jump matrices in the
RH problem for X as s → 0+, but not in a uniform way, due to the fact that the
jump matrices are unbounded near x = 0. Therefore we cannot claim that X (s) → X
uniformly as s → 0+.

To overcome this problem, we modify X (s) as follows. Define, for a given δ > 0,

X (s,δ)(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

X (s)(z)

(
1 e− νπ i

2 Kν(−i z)e−sz

0 1

)
for 0 < Re z < δ, Im z > 0,

X (s)(z)

(
1 e

νπ i
2 Kν(i z)e−sz

0 1

)
for 0 < Re z < δ, Im z < 0,

X (s)(z) elsewhere.

Then X (s,δ) has jumps on Re z = δ with jump matrices as given in (3.6), but moved
from the imaginary axis to Re z = δ. In addition, there is a jump on the interval (0, δ),

X (s,δ)
+ (x) = X (s,δ)

− (x)

(
1 π i Jν(x)e−sx

0 1

)
, 0 < x < δ.

The jump matrices for X (s,δ) have a limit in L2 ∩ L∞ as s → 0+ . By standard
arguments [5], we have the convergence of the solutions of the corresponding RH
problems. The limit lim

s→0+ X (s,δ) is then a modification of X in the same way that

X (s,δ) is a modification of X (s). The modifications do not affect the 11-entry, and
(3.12) follows.

3.3 Second Transformation

We introduce a scaling and rotation z 
→ iπnz, and our main interest is in the rescaled
polynomials Pn(inπ z)whose zeroswill accumulate on the interval [−1, 1] as n → ∞.
More precisely, we define U as
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U (z) =
(

(inπ)−n 0
0 (inπ)n

)
X (inπ z). (3.13)

From (3.13) and the RH problem 3.3, we immediately obtain the following RH
problem for U (z):

RH problem 3.5 1. U is analytic in C \ R.
2. U satisfies the jump condition

U+(x) = U−(x)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
1 eνπ i/2Kν(nπ |x |)
0 1

)
, x ∈ (−∞, 0),

(
1 e−νπ i/2Kν(nπ |x |)
0 1

)
, x ∈ (0,∞).

3. As z → ∞,

U (z) = (I + O(1/z))

(
zn 0
0 z−n

)
.

4. U (z) remains bounded as z → 0 with Im z > 0, and

U (z) =
(O(1) O(z−ν)

O(1) O(z−ν)

)
as z → 0 with Im z < 0.

Note that by (3.12), (3.13), and (2.4),

U11(z) = (inπ)−n X11(inπ z) = (inπ)−n Pn(inπ z) = P̃n(z), (3.14)

which is a monic polynomial of degree n. The zeros of U11(z) are obtained from the
zeros of Pn by rotation over 90 degrees in the clockwise direction and by dividing by
a factor πn.

We can now prove Proposition 2.5.

Proof (Proof of Proposition 2.5) The RH problem forU is the RH problem for orthog-
onal polynomials on the real line for the varying weight function e∓νπ i/2Kν(nπ |x |)
for x ∈ R

±, see [5,8,9]. Because of the e∓νπ i/2 factor, the weight function is not real
on the real line, and it has a singularity at the origin because of the behavior (3.10) of
the Kν function near 0. The singularity is integrable since ν < 1, and so U11 = P̃n is
the monic polynomial of degree n satisfying (2.6). 
�

3.4 Equilibrium Problem and Third Transformation

In order to normalize the RH problem at infinity, we make use of an equilibrium
problem with external field V (x) = π |x |. The equilibrium measure μ minimizes the
energy functional

I (μ) =
∫∫

log
1

|x − y|dμ(x)dμ(y) +
∫

π |x |dμ(x)
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among all probability measures on R. The minimizer is supported on [−1, 1]. It is
absolutely continuous with respect to the Lebesgue measure, dμ(x) = ψ(x)dx , and
has density

ψ(x) = 1

π

∫ 1

|x |
1√

s2 − x2
ds,

which corresponds to the case β = 1 in [13]. The integral can be evaluated explicitly,
and it gives the formula (2.1). Note that ψ(x) grows like a logarithm at x = 0.

The g function is defined in (2.8). The boundary values g+(x) and g−(x) on the
real axis (oriented from left to right) satisfy

g+(x) − g−(x) =

⎧⎪⎨
⎪⎩
2π i, x ≤ −1,

2π i
∫ 1
x ψ(s)ds, −1 < x < 1,

0, x ≥ 1.

(3.15)

The Euler–Lagrange equations for the equilibrium problem imply that we have
(see, e.g., [5] or [19])

g+(x) + g−(x) − π |x |
{

= �, x ∈ [−1, 1],
< �, x ∈ (−∞,−1) ∪ (1,∞),

(3.16)

with the constant � (see Theorem IV.5.1 in [19] or formula (3.5) in [13]):

� = −2 − 2 log 2. (3.17)

A related function is

ϕ(z) = g(z) − V (z)

2
− �

2
, (3.18)

where

V (z) =
{

π z, Re z > 0,

−π z, Re z < 0.
(3.19)

The ϕ-function is analytic in C \ ((−∞, 1] ∪ iR). For x ∈ [−1, 1], we have from
the variational equation (3.16):

ϕ+(x) = g+(x) − V (x)

2
− �

2
= 1

2
(g+(x) − g−(x)),

ϕ−(x) = −ϕ+(x).
(3.20)

Thus 2ϕ gives an analytic extension of g+(x) − g−(x) from [−1, 1] into the upper
half-plane minus the imaginary axis, and of g−(x) − g+(x) into the lower half-plane
minus the imaginary axis. Note that ϕ±(x) is purely imaginary on [−1, 1] because of
(3.15).
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On the imaginary axis, the function ϕ(z) is not analytic because of the discontinuity
in V (z). The boundary values of this weight function satisfy

V−(z) = V+(z) + 2π z,

and as a consequence,
ϕ−(z) = ϕ+(z) − π z, z ∈ iR.

Here we take the orientation of the imaginary axis from bottom to top.
Now we are ready for the third transformation of the RH problem, and we define

the matrix valued function

T (z) = e−n�σ3/2(2n)σ3/4U (z)e−n(g(z)−�/2)σ3(2n)−σ3/4, (3.21)

where σ3 =
(
1 0
0 −1

)
is the third Pauli matrix. We also write

Wn(x) = √
2nKν(nπ |x |)enπ |x |, x ∈ R. (3.22)

Then from the above definitions and properties and from the RH problem 3.5 for U ,
we find that T satisfies the following Riemann–Hilbert problem.

RH problem 3.6 1. T is analytic in C \ R.
2. T satisfies the jump conditions

T+(x) = T−(x)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 eνπ i/2Wn(x)e2nϕ+(x)

0 1

)
, x ∈ (−∞,−1),

(
e−2nϕ+(x) eνπ i/2Wn(x)

0 e−2nϕ−(x)

)
, x ∈ (−1, 0),

(
e−2nϕ+(x) e−νπ i/2Wn(x)

0 e−2nϕ−(x)

)
, x ∈ (0, 1),

(
1 e−νπ i/2Wn(x)e2nϕ+(x)

0 1

)
, x ∈ (1,∞),

where Wn is given in (3.22) and the real axis is again oriented from left to right.
3. As z → ∞,

T (z) = I + O(1/z).

4. T (z) remains bounded as z → 0 with Im z > 0, and

T (z) =
(O(1) O(z−ν)

O(1) O(z−ν)

)
as z → 0 with Im z < 0. (3.23)

The off-diagonal elements in the jump matrices on (−∞,−1) and (1,∞) tend to
0 at an exponential rate because of the Euler–Lagrange condition (3.16).
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3.5 Fourth Transformation

The jump matrix on the interval (−1, 0) has a factorization

(
e−2nϕ+(x) eνπ i/2Wn(x)

0 e−2nϕ−(x)

)

=
(

1 0
e−νπ i/2

Wn(x)
e−2nϕ−(x) 1

) (
0 eνπ i/2Wn(x)

− e−νπ i/2

Wn(x)
0

) (
1 0

e−νπ i/2

Wn(x)
e−2nϕ+(x) 1

)
,

while the jump matrix on (0, 1) factorizes as

(
e−2nϕ+(x) e−νπ i/2Wn(x)

0 e−2nϕ−(x)

)

=
(

1 0
eνπ i/2

Wn(x)
e−2nϕ−(x) 1

)(
0 e−νπ i/2Wn(x)

− eνπ i/2

Wn(x)
0

)(
1 0

eνπ i/2

Wn(x)
e−2nϕ+(x) 1

)
.

In order to open the lens around (−1, 1), we need the analytic extension of the
function Wn from (3.22) to C \ iR, which we also denote by Wn ,

Wn(z) =
{√

2nKν(nπ z)enπ z, Re z > 0,√
2nKν(−nπ z)e−nπ z, Re z < 0.

(3.24)

Note that as n → ∞, see (3.9) and (3.24),

Wn(z) =
{
z−1/2(1 + O(1/(nz)), Re z > 0,

(−z)−1/2(1 + O(1/(nz))), Re z < 0,
(3.25)

which explains the factor
√
2n that we introduced in (3.22) and (3.24).

Next, we fix a number ρ > 0, and we open a lens around [−1, 1], which defines
contours Σ j , j = 1, . . . , 4, and domains Ω j , j = 1, . . . , 4, as indicated in Fig. 3.

In the fourth transformation, we define the matrix valued function S(z):

S(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T (z)

(
1 0

− eνπ i/2

Wn(z)
e−2nϕ(z) 1

)
for z ∈ Ω1,

T (z)

(
1 0

− e−νπ i/2

Wn(z)
e−2nϕ(z) 1

)
for z ∈ Ω2,

T (z)

(
1 0

e−νπ i/2

Wn(z)
e−2nϕ(z) 1

)
for z ∈ Ω3,

T (z)

(
1 0

eνπ i/2

Wn(z)
e−2nϕ(z) 1

)
for z ∈ Ω4,

T (z) elsewhere,

(3.26)
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− 11
Ω1Ω2

Ω3 Ω4

Σ1Σ2

Σ3 Σ4

iρ

−iρ

Fig. 3 Opening of a lens around [−1, 1]; and contourΣS consisting ofΣ1, . . . , Σ4, the segment (−iρ, iρ),
and the real line

using the analytic extension (3.24) for the function Wn(z) in each region and ϕ(z)
defined in (3.18).

Remark 3.7 In order to divide by Wn(z), we need to be careful with possible zeros
of this function in the complex plane. Following the general theory in [20, §15.7],
the Bessel function Kν(nπ z) is free from zeros in the half-plane | arg z| ≤ π

2 . Using
(3.24), we can conclude that Wn(z) �= 0.

From the RH problem 3.6 and (3.26), we find that S(z) is the solution of the
following RH problem:

RH problem 3.8 1 S is analytic in C \ ΣS , where ΣS is depicted in Fig. 3.
2. S satisfies the jump conditions S+ = S− JS where

JS(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 0

eνπ i/2

Wn(z)
e−2nϕ(z) 1

)
, z ∈ Σ1 ∪ Σ4,

(
1 0

e−νπ i/2

Wn(z)
e−2nϕ(z) 1

)
, z ∈ Σ2 ∪ Σ3,

(
0 eνπ i/2Wn(x)

− e−νπ i/2

Wn(x)
0

)
, z ∈ (−1, 0),

(
0 e−νπ i/2Wn(x)

− eνπ i/2

Wn(x)
0

)
, z ∈ (0, 1),

(
1 eνπ i/2e2nϕ(z)Wn(z)

0 1

)
, z ∈ (−∞, −1),

(
1 e−νπ i/2e2nϕ(z)Wn(z)

0 1

)
, z ∈ (1,∞),

(
1 0

j1(z) 1

)
, z ∈ (0, iρ),

(
1 0

j2(z) 1

)
, z ∈ (−iρ, 0).

(3.27)
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Here

j1(z) = eνπ i/2e−2nϕ−(z)

Wn,−(z)
− e−νπ i/2e−2nϕ+(z)

Wn,+(z)
, z ∈ (0, iρ), (3.28)

and

j2(z) = −eνπ i/2e−2nϕ−(z)

Wn,−(z)
+ e−νπ i/2e−2nϕ+(z)

Wn,+(z)
, z ∈ (−iρ, 0), (3.29)

using the appropriate values of ϕ±(z) and Wn,±(z) in each case. The imaginary
axis is oriented upwards, and so for z ∈ iR, we have that ϕ+(z) and Wn,+(z)
(ϕ−(z) and Wn,−(z)) denote the limiting value from the left (right) half-plane.

3. As z → ∞,
S(z) = I + O(1/z).

4. S(z) remains bounded as z → 0 with Im z > 0, and

S(z) =
(O(zν) O(z−ν)

O(zν) O(z−ν)

)
, as z → 0 with Im z < 0. (3.30)

Note that as a consequence of the definition of ϕ(z) in (3.18) and formula
(3.20), �ϕ(x) is decreasing on [−1, 1]. Because of the Cauchy–Riemann equations,
Re ϕ(z) > 0 as we move away from the interval.

We may and do assume that the lens is small enough such that Re ϕ(z) > 0 on the
lips of the lens. Then it follows from (3.25) and (3.27) that the jump matrix JS on the
lips of the lens tends to I at an exponential rate as n → ∞, if we stay away from the
endpoints ±1. Also the jump matrix on (−∞,−1) and (1,∞) tends to the identity
matrix. Thus for any δ > 0, there is a constant c > 0 such that

JS(z) = I + O(e−cn), z ∈ ΣS \ ([−1, 1] ∪ [−iρ, iρ] ∪ D(±1, δ)). (3.31)

The condition (3.30) needs some explanation, since (3.23) and (3.26) at first sight

lead to the behavior S(z) =
(O(1) O(z−ν)

O(1) O(z−ν)

)
as z → 0 with Im z < 0. However, a

cancellation takes place for the entries in the first column, as can be checked from the
jump conditions for S, see (3.27) on the intervals (−1, 0) and (0, 1). Since S remains
bounded as z → 0 with Im z > 0, and

S−(z) = S+(z)

(
0 O(z−ν)

O(zν) 0

)
, as z → 0,

one finds (3.30).
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3.6 Global Parametrix

If we ignore the jump matrices in the RH problem for S except for the one on the
interval [−1, 1], we arrive at the following RH problem for a 2 × 2 matrix valued
function N :

RH problem 3.9 1. N is analytic in C \ [−1, 1].
2. N satisfies the jump conditions

N+(x) = N−(x)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
0 eνπ i/2Wn(x)

− e−νπ i/2

Wn(x)
0

)
, x ∈ (−1, 0),

(
0 e−νπ i/2Wn(x)

− eνπ i/2

Wn(x)
0

)
, x ∈ (0, 1).

3. As z → ∞,
N (z) = I + O(1/z).

We solve the RH problem for N by means of two Szegő functions D1,n and D2,
see also [15], that are associated with Wn and e− sgn(x)νπ i/2, respectively.

The first Szegő function D1 = D1,n is defined by

D1,n(z) = exp

(
(z2 − 1)1/2

2π

∫ 1

−1

logWn(x)√
1 − x2

dx

z − x

)
, (3.32)

which is defined and analytic for z ∈ C \ [−1, 1]. It satisfies

D1,n+(x)D1,n−(x) = Wn(x), x ∈ (−1, 1).

It follows from (3.32) that D1,n has no zeros in C \ [−1, 1] and

D∞,n := lim
z→∞ D1,n(z) = exp

(
1

2π

∫ 1

−1

logWn(x)√
1 − x2

dx

)
∈ (0,∞).

In what follows, we are not going to indicate the n-dependence in the notation for
D1,n and D∞,n , since the dependence on n is only mild. Indeed, because of (3.25),
we have that D1,n tends to the Szegő function for the weight |x |−1/2 with a rate given
in the following lemma:

Lemma 3.10 We have

D1,n(z) =
(
z + (z2 − 1)1/2

z

)1/4 (
1 + O

(
log n

n

))
, (3.33)

D∞,n = 21/4 + O
(
log n

n

)
, (3.34)
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as n → ∞, with aO term that is uniform for z ∈ C \ ([−1, 1] ∪ D(0, δ) ∪ D(±1, δ))
for any δ > 0.

Proof The Szegő function for |x |−1/2 is

D(z; |x |−1/2) = exp

(
(z2 − 1)1/2

2π

∫ 1

−1

log |x |−1/2

√
1 − x2

dx

z − x

)

=
(
z + (z2 − 1)1/2

z

)1/4

,

and so

D1,n(z) = D(z; |x |−1/2) exp

(
(z2 − 1)1/2

2π

∫ 1

−1

log(|x |1/2Wn(x))√
1 − x2

dx

z − x

)
. (3.35)

Because of (3.25), there exist c0, c1 > 0,

∣∣∣|x |1/2Wn(x) − 1
∣∣∣ ≤ c1

n|x | <
1

2
, |x | ≥ c0

n
.

Then also for some c2 > 0,
∣∣∣log(|x |1/2Wn(x))

∣∣∣ ≤ c2
n|x | , |x | ≥ c0

n
.

It follows that
∣∣∣∣
∫ 1

c0/n

log(|x |1/2Wn(x))√
1 − x2

dx

z − x

∣∣∣∣ ≤ c2
dist(z, [−1, 1])n

∫ 1

c0/n

1

x
√
1 − x2

dx

≤ c3
dist(z, [−1, 1])

log n

n
,

with a constant c3 that is independent of n and z. By deforming the integration path
into the complex plane in such a way that it stays at a certain distance from z, and
applying similar estimates, we find

∣∣∣∣
∫ 1

c0/n

log(|x |1/2Wn(x))√
1 − x2

dx

z − x

∣∣∣∣ ≤ c4
|z|

log n

n
, (3.36)

with a constant that is independent of z ∈ C\([−1, 1]∪D(0, δ)∪D(±1, δ)). Similarly,

∣∣∣∣
∫ −c0/n

−1

log(|x |1/2Wn(x))√
1 − x2

dx

z − x

∣∣∣∣ ≤ c5
|z|

log n

n
. (3.37)

Near x = 0 we use (3.10) and (3.22) to find a c6 > 0 such that

c6|nx |1/2−ν ≤ |x |1/2Wn(x) ≤ 1, |x | ≤ c0
n

.
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The upper bound follows from the fact that 0 < Kν(s) ≤ K1/2(s) if 0 ≤ ν < 1/2 and
s > 0 and the explicit formula for K1/2(s), see [17,18, 10.37.1,10.39.2]. Then

∣∣∣log(|x |1/2Wn(x))
∣∣∣ ≤ ∣∣log c6 + ( 1

2 − ν
)
log |nx |∣∣ , |x | ≤ c0

n
,

and

∣∣∣∣
∫ c0/n

−c0/n

log |x |1/2Wn(x)√
1 − x2

dx

z − x

∣∣∣∣ ≤ 2

|z|
∫ c0/n

−c0/n

∣∣log c6 + ( 1
2 − ν

)
log |nx |∣∣ dx

≤ c7
|z|

1

n

(3.38)

for some new constant c7 > 0.
Combining the estimates (3.36), (3.37), and (3.38), we get

∣∣∣∣ (z
2 − 1)1/2

2π

∫ 1

−1

log(|x |1/2Wn(x))√
1 − x2

dx

z − x

∣∣∣∣ = O
(
log n

n

)
,

with a O term that is uniform for |z| > δ |z ± 1| > δ, and so by (3.35)

(
z + (z2 − 1)1/2

z

)−1/4

D1,n(z) = exp

(
O

(
log n

n

))
= 1 + O

(
log n

n

)
,

as claimed in (3.33).
Since (3.33) is uniform for |z| > δ, |z ± 1| > δ, we can let z → ∞, and obtain

(3.34). 
�
The second Szegő function D2 corresponds to the weight e±νπ i/2 and is defined as

D2(z) =
(√

z2 − 1 − i√
z2 − 1 + i

)ν/4

, z ∈ C \ [−1, 1], (3.39)

with the branch of the square root that is positive for real z > 1. It is not difficult to
check that z 
→ w = D2(z) is the conformal mapping fromC\[−1, 1] onto the sector
− νπ

4 < argw < νπ
4 that maps z = 0+ to w = 0, z = 0− to w = ∞, z = ±1 to e∓ νπ

4

and z = ∞ to w = 1.
The Szegő function D2 is related to the function ψ from (2.10).

Lemma 3.11 We have

log D2(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− νπ
2 ψ(z) − νπ i

4 , Re z > 0, Im z > 0,
νπ
2 ψ(z) − νπ i

4 , Re z > 0, Im z < 0,

− νπ
2 ψ(z) + νπ i

4 , Re z < 0, Im z > 0,
νπ
2 ψ(z) + νπ i

4 , Re z < 0, Im z < 0.

(3.40)
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Proof This follows from (2.10) and (3.39) by straightforward calculation. 
�

It follows from (3.40) that D2 satisfies

D2+(x)D2−(x) =
{
eνπ i/2, x ∈ (−1, 0),

e−νπ i/2, x ∈ (0, 1),

and, since ψ(z) ∼ 1
π
log(1/z) as z → 0,

D2(z) =
{
O(zν/2) as z → 0 with Im z > 0,

O(z−ν/2) as z → 0 with Im z < 0.
(3.41)

Having D1 and D2, we seek N in the form

N (z) = Dσ3∞N0(z) (D1(z)D2(z))
−σ3 . (3.42)

Then N satisfies the RH problem 3.9 if and only if N0 satisfies the following standard
RH problem:

RH problem 3.12 1. N0 is analytic in C \ [−1, 1].
2. N0 satisfies the jump conditions

N0+(x) = N0−(x)

(
0 1

−1 0

)
, x ∈ (−1, 1).

3. N0(z) = I + O(1/z) as z → ∞.

The RH problem for N0 has the explicit solution (see for instance [5, Section7.3]):

N0(z) =
(

β(z)+β(z)−1

2
β(z)−β(z)−1

2i

−β(z)−β(z)−1

2i
β(z)+β(z)−1

2

)
, with β(z) =

(
z − 1

z + 1

)1/4

,

for z ∈ C \ [−1, 1], and we take the branch of the fourth root that is analytic in
C \ [−1, 1] and that is real and positive for z > 1. Note that we can also write

N0(z) = 1√
2(z2 − 1)1/4

(
f (z)1/2 i f (z)−1/2

−i f (z)−1/2 f (z)1/2

)
, (3.43)

where
f (z) = z + (z2 − 1)1/2 (3.44)

is the conformal map from C \ [−1, 1] to the exterior of the unit disk.
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−1 1
0

iρ

−iρ

Fig. 4 Oriented contour ΣQ consisting of two circles around ±1, the parts of (−∞, −1) and (1, ∞)

outside of these circles, the lips of the lens around [−1, 1], and the segment (−iρ, iρ) on the imaginary
axis

3.7 Fifth Transformation

Around the endpoints z = ±1 we build Airy parametrices PAi in the usual way. We
take δ > 0 sufficiently small, and PAi is defined and analytic in D(±1, δ) \ ΣS such
that it has the same jumps as S on ΣS ∩ D(±1, δ), and such that

PAi(z) = N (z)(1 + O(n−1)), uniformly for |z ± 1| = δ, (3.45)

as n → ∞. We refer the reader for instance to the monograph by Deift [5, §7.6]
for details. Observe that the matching is not essentially affected by the extra factor
e−νπ i/2Wn(z) in this construction, since this function has a limit as n → ∞ and is
very well-behaved near z = 1.

In the fifth transformation, we put

Q =
{
SN−1 outside the disks D(±1, δ),

SP−1
Ai inside the disks.

(3.46)

Then Q is defined and analytic outside of a contour consisting of ΣS and two circles
around ±1. The construction of the Airy parametrix is such that it has the same jump
as S inside the circles. As a result, Q is analytic inside the two disks. Also S and
N have the same jump on (−1, 1), and it follows that Q is analytic across (−1, 1).
Therefore Q is analytic in C \ ΣQ , where ΣQ consists of two circles around ±1, the
parts of (−∞,−1), Σ j , j = 1, . . . , 4, and (1,∞) outside of these circles, and the
segment (−iρ, iρ) on the imaginary axis. See Fig. 4.

From theRHproblem3.8 for S and (3.46), it then follows thatQ solves the following
RH problem:

RH problem 3.13 1. Q : C \ ΣQ → C
2×2 is analytic.

2. Q satisfies the jump condition Q+ = Q− JQ on ΣQ , where
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JQ(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N (z)P−1
Ai (z) for z on the circles,

N (z)

(
1 0

j1(z) 1

)
N−1(z) for z ∈ (0, iρ),

N (z)

(
1 0

j2(z) 1

)
N−1(z) for z ∈ (−iρ, 0),

N (z)JS(z)N (z)−1 elsewhere onΣQ .

Here j1 and j2 are given by (3.28) and (3.29).
3. As z → ∞,

Q(z) = I + O(1/z).

4. Q(z) = O(1) as z → 0.

In the behavior around 0, there is no longer a distinction between the upper and lower
half-planes, and Q remains bounded in all directions.

We note that
JQ(z) = I + O(n−1) for z on the circles (3.47)

because of the matching property (3.45). We also note that

JQ(z) = I + O(e−cn) on ΣQ \ (∂D(±1, δ) ∪ [−iρ, iρ]) (3.48)

because of (3.31), (3.42), and Lemma 3.10.
The jump matrix JQ on the imaginary axis can be rewritten as (we use (3.42)):

JQ(z) = Dσ3∞N0(z)

(
1 0

j1,2(z)(D1(z)D2(z))2 1

)
N−1
0 (z)D−σ3∞ , z ∈ (−iρ, iρ),

(3.49)

with j1 on (0, iρ), and j2 on (−iρ, 0).

Remark 3.14 The entry j1,2(z)(D1(z)D2(z))2 in (3.49) depends on n and tends to 0
as n → ∞ for every z ∈ (−iρ, 0) ∪ (0, iρ), but not in a uniform way. Hence, further
analysis is needed in the next section. A similar situation is studied in [3, Section
5], where the jump on the imaginary axis has the same structure and approaches the
identity matrix at a rate 1/ log(n) as n → ∞. In that case, no local parametrix near
the origin is needed.

3.8 Local Parametrix Near z = 0

The construction of a local parametrix in a neighborhood of the origin follows the idea
exposed in [13]. We take ε > 0, with

ε < min
( 1
2e ,

ρ
3

)
,
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and we build a local parametrix P defined in a neighborhood |z| < 3ε of 0. We use a
cut-off function χ(z) on iR such that

(a) χ : iR → R is a C∞ function,
(b) 0 ≤ χ(z) ≤ 1 for all z ∈ iR,
(c) χ(z) ≡ 1 for z ∈ (−iε, iε),
(d) χ(z) ≡ 0 for z ∈ (−i∞,−2iε) ∪ (2iε, i∞).

Then we modify JQ by multiplying the off-diagonal entry in the middle factor of
(3.49) by χ(z), and in addition we use this as a jump matrix in the full imaginary axis.
Thus

JP (z) = Dσ3∞N0(z)

(
1 0

j1,2(z)(D1(z)D2(z))2χ(z) 1

)
N−1
0 (z)D−σ3∞ , z ∈ iR,

(3.50)
with j1 on iR+ and j1 on iR−.

Then the RH problem for the local parametrix P at the origin is:

RH problem 3.15 1) P : {z ∈ C | −1 < Re z < 1} \ iR → C
2×2 is analytic.

2) P satisfies the jump condition

P+(z) = P−(z)JP (z), z ∈ iR, (3.51)

where JP (z) is given by (3.50).
3) P(z) = I + O (εn) as n → ∞ uniformly for |z| = 3ε with εn given by (2.3).

Proposition 3.16 The RH problem 3.15 has a solution for n large enough.

The rest of this subsection is devoted to the proof of Proposition 3.16. It takes a number
of steps, and it is the most technical part of the paper.

3.8.1 RH Problem for P̂

We introduce a matrix P̂(z) in the following way:

P(z) =

⎧⎪⎨
⎪⎩
Dσ3∞N0(z)P̂(z)N0(z)−1D−σ3∞ for Im z < 0,

Dσ3∞N0(z)

(
0 −1

1 0

)
P̂(z)

(
0 1

−1 0

)
N0(z)−1D−σ3∞ for Im z > 0.

(3.52)
The extra factors in (3.52) for Im z > 0 are introduced in order to compensate the

jumps of N0 on [−1, 1]. Then P satisfies the jump condition (3.51) in the RH problem
3.15 if and only if P̂+ = P̂− JP̂ , where the jump is

JP̂ (z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1 − j1(z)(D1(z)D2(z))2χ(z)

0 1

)
for z ∈ iR+,

(
1 0

j2(z)(D1(z)D2(z))2χ(z) 1

)
for z ∈ iR−.

(3.53)
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Note the difference in the triangularity structure. So, we look for P̂ that solves the
following RH problem:

RH problem 3.17 1. P̂ : C \ iR → C
2×2 is analytic.

2. P̂ satisfies the jump conditions

P̂+(z) = P̂−(z)JP̂ (z), z ∈ iR, (3.54)

where JP̂ (z) is given by (3.53).
3. P̂(z) = I + O(1/z) as z → ∞.

Our aim is to show that the RH problem for P̂ has a solution for n sufficiently large
and that this solution satisfies, in addition:

4. P̂(z) = I + O (εn) as n → ∞, uniformly for |z| = 3ε.

Having P̂ , we define P by (3.52) in terms of P̂ , and it will satisfy the requirements of
the RH problem 3.15.

We prove the following result:

Lemma 3.18 If 0 < ν ≤ 1/2, then for n large enough there exists P̂(z) that solves
the RH problem 3.17, and as n → ∞,

|P̂11(z) − 1| = O
(
n−1/2(log n)−2ν−1/2

)
,

|P̂21(z)| = O
(
nν−1/2(log n)−ν−1/2

)
,

for z ∈ C \ V , where V is any neighborhood of [−2iε, 0], and

|P̂12(z)| = O
(
n−ν−1/2(log n)−ν−1/2

)
,

|P̂22(z) − 1| = O
(
n−1/2(log n)−2ν−1/2

)
,

for z ∈ C\V , where V is any neighborhood of [0, 2iε]. Here P̂i j (z) denotes the (i, j)
component of the matrix P̂(z).

Remark 3.19 It follows from Lemma 3.18 that P̂(z) = I + O (εn) as n → ∞,
uniformly for |z| = 3ε, and because of (3.52), the same holds for P(z).

In the proof of this lemma, we will need the following steps:

1. Wewrite the jump conditions for P̂(z) componentwise, and in terms of two integral
operators K1 and K2.

2. Weestimate the operator norms‖K1‖ and‖K2‖ asn → ∞. This requires estimates
for the functions j1(z), j2(z), D1(z), and D2(z), which are uniform as n → ∞
for y in a fixed interval around the origin on the imaginary axis.

3. We show that the operators I − K2K1 and I − K1K2 are invertible for n large
enough, and this gives the existence and asymptotics of P̂ .

Finally, the estimates for P̂(z) are used to prove that the matrix R(z), which will
be defined in Sect. 3.9 and which solves the Riemann–Hilbert problem 3.26, is close
to the identity matrix as n → ∞.
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3.8.2 Integral Operators

Let us write
η1(z) = − j1(z)(D1(z)D2(z))

2χ(z), z ∈ iR+,

η2(z) = j2(z)(D1(z)D2(z))
2χ(z), z ∈ iR−.

(3.55)

These functions depend on n, since j1, j2, and D1 depend on n. Note, however, that
D2 and χ do not depend on n.

The jump condition (3.53)–(3.54) yields that for j = 1, 2,

P̂j1+(z) =
{
P̂j1−(z) for z ∈ iR+,

P̂j1−(z) + η2(z)P̂j2−(z) for z ∈ iR−,

P̂j2+(z) =
{
P̂j2−(z) + η1(z)P̂j1−(z) for z ∈ iR+,

P̂j2−(z) for z ∈ iR−.

Since χ(z) = 0 for |z| ≥ 2ε, we find that P̂j1 is analytic in C \ [−2iε, 0], and P̂j2
is analytic in C \ [0, 2iε]. Then by the Sokhotski–Plemelj formula and the asymptotic
condition P̂(z) → I as z → ∞, we get

P̂11(z) = 1 + 1

2π i

∫ 0

−2iε

η2(s)P̂12(s)

s − z
ds, P̂12(z) = 1

2π i

∫ 2iε

0

η1(s)P̂11(s)

s − z
ds.

P̂21(z) = 1

2π i

∫ 0

−2iε

η2(s)P̂22(s)

s − z
ds, P̂22(z) = 1 + 1

2π i

∫ 2iε

0

η1(s)P̂21(s)

s − z
ds.

(3.56)
We can write the equations in operator form if we introduce two operators

K1 : L2([0, 2iε]) → L2([−2iε, 0]) and K2 : L2([−2iε, 0]) → L2([0, 2iε])

by

(K1 f )(z) = 1

2π i

∫ 2iε

0

η1(s) f (s)

s − z
ds, f ∈ L2([0, 2iε]),

(K2g)(z) = 1

2π i

∫ 0

−2iε

η2(s)g(s)

s − z
ds, g ∈ L2([−2iε, 0]).

Then f1 = P̂11, g1 = P̂12 should solve

f1 = 1 + K2g1, g1 = K1 f1, (3.57)

and f2 = P̂21, g2 = P̂22 should solve

f2 = K2g2, g2 = 1 + K1 f2. (3.58)
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Both K1 and K2 are integral operators between Hilbert spaces with operator norms

‖K1‖2 =
∫ 0

−2iε

∫ 2iε

0

|η1(s)|2
|s − t |2 |ds||dt |,

‖K2‖2 =
∫ 2iε

0

∫ 0

−2iε

|η2(s)|2
|s − t |2 |ds||dt |.

The t-integrals can be done explicitly. This leads to the estimates (we also change to
a real integration variable by putting s = ±iy)

‖K1‖ ≤
(∫ 2ε

0

|η1(iy)|2
y

dy

)1/2

, ‖K2‖ ≤
(∫ 2ε

0

|η2(−iy)|2
y

dy

)1/2

. (3.59)

The next step is to show that both integrals are finite (so that K1 and K2 are well-
defined bounded operators) and that ‖K1K2‖ and ‖K2K1‖ tend to 0 as n → ∞. To
this end, we need to control the functions η1 and η2, defined in (3.55).

3.8.3 The Functions η1(z) and η2(z)

The functions η1 and η2 are defined in terms of j1, j2, D1, and D2, see (3.55). In this
section, we obtain estimates for all these functions for large n.

First we write the functions j1(z) and j2(z) in terms of Bessel functions. Because
of the property Kν(z) = Kν(z) for real ν, see [17,18, §10.34.7], if we consider the
positive imaginary axis and we write z = iy, with y > 0, then the functionWn [recall
(3.24)] can be written as

Wn,±(iy) = √
2nKν(∓nπ iy)e∓nπ iy, (3.60)

so Wn,+(iy) = Wn,−(iy). Similarly, on the negative imaginary axis,

Wn,±(−iy) = √
2nKν(±nπ iy)e∓nπ iy, (3.61)

so again Wn,+(−iy) = Wn,−(−iy). Additionally, we have

|Wn,−(iy)|2 = 2n|Kν(nπ iy)|2 = nπ2

2
|H (2)

ν (nπy)|2

= nπ2

2

[
Jν(nπy)2 + Yν(nπy)2

]
,

|Wn,−(−iy)|2 = 2n|Kν(−nπ iy)|2 = nπ2

2
|H (1)

ν (nπy)|2

= nπ2

2

[
Jν(nπy)2 + Yν(nπy)2

]
,

(3.62)

in terms of Hankel functions, see [17,18, §10.27.8]. We have the following auxiliary
result:

123



Constr Approx (2016) 43:153–196 181

Lemma 3.20 For y > 0, the functions j1(iy) and j2(−iy) can be written as follows:

| j1(iy)| = 2e−2n Re ϕ−(iy)

√
2nπ

|Jν(nπy) cos νπ − Yν(nπy) sin νπ |
J 2ν (nπy) + Y 2

ν (nπy)
,

| j2(−iy)| = 2e−2n Re ϕ−(−iy)

√
2nπ

|Jν(nπy)|
J 2ν (nπy) + Y 2

ν (nπy)
.

Proof It follows from (3.28) that j1 can be written as

j1(iy) = e−2nϕ−(iy)−nπ iy

Wn,−(iy)Wn,+(iy)

[
e

νπ i
2 +nπ iyWn,+(iy) − e− νπ i

2 −nπ iyWn,−(iy)
]
,

andbecauseofϕ−(z) = ϕ+(z)−π z on the imaginary axis, and the fact thatWn,+(iy) =
Wn,−(iy), the two terms on the right-hand side are complex conjugates, so

j1(iy) = −2ie−2nϕ−(iy)−nπ iy

|Wn,−(iy)|2 Im
[
e− νπ i

2 −nπ iyWn,−(iy)
]
. (3.63)

Using the formula

Kν(z) = −π i

2
e− νπ i

2 H (2)
ν (ze− π i

2 ), −π

2
< arg z ≤ π,

in terms of Hankel functions, see [17,18, §10.27.8], and (3.60), we observe that

e− νπ i
2 −nπ iyWn,−(iy) = e− νπ i

2
√
2nKν(nπ iy)

= −
√
2nπ i e−νπ i

2
(Jν(nπy) − iYν(nπy)) .

Hence, on the positive imaginary axis,

Im
[
e− νπ i

2 −nπ iyWn,−(iy)
]

= −
√
2nπ

2
(Jν(nπy) cos νπ − Yν(nπy) sin νπ).

Using (3.63) and (3.62), this proves the first formula. Similarly, for y > 0,

j2(−iy) = 2ie−2nϕ−(−iy)−nπ iy

|Wn,−(−iy)|2 Im
[
e− νπ i

2 −nπ iyWn,−(−iy)
]
. (3.64)

In this case, we use

Kν(z) = π i

2
e

νπ i
2 H (1)

ν

(
ze

π i
2

)
, −π < arg z ≤ π

2
,
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see [17,18, 10.27.8], and (3.61) to obtain

e− νπ i
2 −nπ iyWn,−(−iy) = e−νπ i/2

√
2nKν(−nπ iy)

=
√
2nπ i

2
(Jν(nπy) + iYν(nπy)) ,

so

Im
[
e

−νπ i
2 −nπ iyWn,−(−iy)

]
=

√
2nπ

2
Jν(nπy).

We use (3.64) and (3.62), and this completes the proof. 
�
Next, we will obtain estimates of the previous functions j1 and j2 for large n.

Lemma 3.21 For 0 < ν ≤ 1/2, there exist constants Cν,C ′
ν > 0 such that for all

s > 0, we have

|Jν(s) cos νπ − Yν(s) sin νπ |
Jν(s)2 + Yν(s)2

≤ Cν

sν(1 + s1−2ν)

1 + s1/2−ν
,

|Jν(s)|
Jν(s)2 + Yν(s)2

≤ C ′
ν

s3ν(1 + s1−2ν)

1 + s1/2+ν
.

Proof For the proof, we consider the following expansions: as s → 0+,

Jν(s) = sν

2νΓ (ν + 1)

(
1 + O

(
s−1

))
, ν �= −1,−2, . . . , (3.65)

and for ν < 1, we have

Yν(s) = −Γ (ν)

π

( s
2

)−ν + O(sν). (3.66)

As s → ∞, we have

Jν(s) =
(

2

πs

)1/2

cosω
(
1 + O

(
s−1

))
,

Yν(s) =
(

2

πs

)1/2

sinω
(
1 + O

(
s−1

))
,

(3.67)

where ω = s − νπ
2 − π

4 . See, for instance, [17,18, formulas 10.7.3–4,10.17.3–4].
From this, it follows that

Jν(s)
2 + Yν(s)

2 = Γ (ν)2

π2

( s
2

)−2ν + O(1), s → 0,

Jν(s)
2 + Yν(s)

2 = 2

πs
+ O

(
s−2

)
, s → ∞.

(3.68)
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From (3.68), we claim that there exist two constants C1,ν,C2,ν > 0 such that

C1,ν
s−2ν

1 + s1−2ν ≤ Jν(s)
2 + Yν(s)

2 ≤ C2,ν
s−2ν

1 + s1−2ν , s > 0.

Using a similar argument, we have

|Jν(s)| ≤ C3,ν
sν

1 + s1/2+ν
,

and also

|Jν(s) cos νπ − Yν(s) sin νπ | ≤ C4,ν
s−ν

1 + s1/2−ν
,

and putting all the estimates together, we get the bounds in the lemma. 
�
As a consequence of Lemmas 3.20 and 3.21, we obtain the following bounds for

j1 and j2 for y > 0:

| j1(iy)| ≤ Cν

2e−2n Re ϕ−(iy)

√
2nπ

(nπy)ν(1 + (nπy)1−2ν)

1 + (nπy)1/2−ν
,

| j2(−iy)| ≤ C ′
ν

2e−2n Re ϕ−(−iy)

√
2nπ

(nπy)3ν(1 + (nπy)1−2ν)

1 + (nπy)1/2+ν
.

(3.69)

Next, we need an estimate for D1(z) (see formula (3.32)), with z = iy, y ∈ [−ρ, ρ],
where we recall that ±iρ is the intersection of the lens with the imaginary axis.

Lemma 3.22 For 0 < ν ≤ 1/2, there exists a constant Cν such that for all sufficiently
large n,

|D1(iy)|2 ≤ Cν

n1/2−ν |y|−ν

1 + (n|y|)1/2−ν
, y ∈ [−ρ, ρ]. (3.70)

Proof We write first z = iy with y > 0 in (3.32) and use the parity of the function
Wn to get the following expression:

D1(iy) = exp

(
y(y2 + 1)1/2

2π

∫ 1

0

logWn(x)√
1 − x2

dx

x2 + y2

)
. (3.71)

Using the asymptotic expansions (3.65), (3.66), and (3.67), we claim that there exist
two constants C1 and C2, depending on ν, such that Wn(x) satisfies

Wn(x) ≤ C1|x |−1/2, |nπx | ≥ 1,

and
Wn(x) ≤ C2n

1/2−ν |x |−ν, |nπx | ≤ 1.
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Since ν ≤ 1/2, both bounds hold uniformly for nπx > 0. Since the integrand in
(3.71) is a real function, we can bound D1(iy) from above by another Szegő function:

D1(iy)
2 ≤ D

(
iy;C1|πx |−1/2

)2 = C1π
−1/2D

(
iy; |x |−1/2

)2
.

This last Szegő function is explicit, since for a general exponent α > −1, we have

D(z; |x |α) =
(

z

z + √
z2 − 1

)α/2

.

As a consequence, substituting z = iy with y ∈ [−ρ, ρ], and α = −1/2,

D1(iy)
2 ≤ C1(ny)

−1/2(y +
√
y2 + 1)1/2 ≤ C1

(
ρ +

√
ρ2 + 1

)1/2
(ny)−1/2,

and by the same argument with α = −ν,

D1(iy)
2 ≤ C2n

1/2−ν y−ν(y +
√
y2 + 1)ν ≤ C2

(
ρ +

√
ρ2 + 1

)ν

n1/2−ν y−ν .

The bound in the lemma follows for y > 0 from these two estimates, for some
constant Cν . Finally, from the definition of D1, see (3.32), we have that if y < 0, then
D1(iy) = D1(−iy), so the modulus is equal and the bound holds also in this case. 
�

Now we write together all the estimates computed before to obtain bounds for the
functions η1 and η2 defined in (3.55).

Lemma 3.23 For 0 < ν ≤ 1/2, there exist constants Cν,C ′
ν > 0 such that for n large

enough and y ∈ [0, ρ], we have the bounds

|η1(iy)| ≤
∣∣∣ j1(iy)(D1(iy)D2(iy))

2
∣∣∣ ≤ Cν y

ν e−2n Re ϕ−(iy), (3.72)

|η2(−iy)| ≤
∣∣∣ j2(−iy)(D1(−iy)D2(−iy))2

∣∣∣ ≤ C ′
ν (n2ν yν + ny1−ν) e−2n Re ϕ−(−iy).

(3.73)

Proof We collect the results on D1 [see formula (3.70)], D2 [we use the fact that this
function does not depend on n and formula (3.41)], j1 and j2 [formula (3.69)]. Then
for some constant C1,ν , we simplify the bound to

|η1(iy)| ≤ C1,ν y
ν 1 + (ny)1−2ν

(1 + (ny)1/2−ν)2
e−2n Re ϕ−(iy) ≤ Cν y

νe−2n Re ϕ−(iy).

Also,

|η2(−iy)| ≤ C2,νn
2ν yν 1 + (ny)1−2ν(

1 + (ny)1/2+ν
) (
1 + (ny)1/2−ν

)e−2n Re ϕ−(−iy)

≤ C ′
νn

2ν yν
(
1 + (ny)1−2ν

)
e−2n Re ϕ−(−iy),
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and the result follows. 
�

3.8.4 Estimates for ‖K1‖ and ‖K2‖ as n → ∞

In order to estimate the norms of K1 and K2, we need the ‖ · ‖2 norm of η1 and η2, see
formula (3.59). For this we use the estimate in Lemma 3.23 and the following bound
on ϕ(z):

Lemma 3.24 For every s ∈ iR, we have

Re ϕ+(s) = Re ϕ−(s) = −|s| log |s| + |s| log(1 +
√
1 + s2) + log(|s| +

√
1 + s2)

≥ |s| log 1

|s| .
(3.74)

Proof We consider Re ϕ−(s) with s ∈ iR+. The other cases follow by symmetry. Let
x ∈ (0, 1). Then by (3.15) and (3.20),

ϕ±(x) = ±π i
∫ 1

x
ψ(t)dt,

and so ϕ′+(x) = −π iψ(x). By analytic continuation, we find

ϕ′(z) = −π iψ(z), Re z > 0, Im z > 0.

Then

ϕ−(s) = ϕ+(x) +
∫ s

x
ϕ′(z)dz = ϕ+(x) − π i

∫ s

x
ψ(z)dz.

Since ϕ+(x) is purely imaginary, we obtain by taking the real part and letting x → 0+,

Re ϕ−(s) = Im π

∫ s

0
ψ(z)dz = Im

∫ s

0
log

(
1 + (1 − z2)1/2

z

)
dz,

where we used (2.10) for ψ . The integral can be evaluated explicitly, and it gives
(3.74). 
�

Without loss of generality, we assume in what follows that ρ is small enough so
that |s| log 1

|s| > 0 for s ∈ (−iρ, iρ).
In order to estimate integrals involving the functions ϕ±(z), we use (3.74), together

with the following technical lemma.

Lemma 3.25 For any α > −1, there exists a constant C = Cα such that for n large
enough, ∫ 1/e

0
yαe−4ny log 1

y dy ≤ C(n log n)−α−1. (3.75)
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Proof We split the integral into two parts, and we estimate

∫ 1/e

0
yαe−4ny log 1

y dy =
∫ 1/

√
n

0
yαe−4ny log 1

y dy +
∫ 1/e

1/
√
n
yαe−4ny log 1

y dy

≤
∫ 1/

√
n

0
yαe−4yn log n dy +

∫ 1/e

1/
√
n
yαe−2

√
n log n dy, (3.76)

where for the second integral we used that −y log 1
y is decreasing on [0, 1

e ] and so

−y log 1
y ≤ 1√

n
log

√
n for y ∈ [ 1√

n
, 1
e ]. The first integral of (3.76) is estimated by

extending the integral to +∞, and the result is that it isO((n log n)−α−1) as n → ∞.
The second integral in (3.76) is O(e−c

√
n) as n → ∞. This gives the result. 
�

Combining the estimates in (3.72), (3.73), (3.74), and (3.75), we obtain, whenever
2ε < 1

e , ∫ 2ε

0
|η1(iy)|2dy = O

(
n−2ν−1(log n)−2ν−1

)
,

∫ 2ε

0

|η1(iy)|2
y

dy = O
(
n−2ν(log n)−2ν

)
,

(3.77)

and ∫ 2ε

0
|η2(−iy)|2dy = O

(
n2ν−1(log n)−2ν−1

)
,

∫ 2ε

0

|η2(−iy)|2
y

dy = O
(
n2ν(log n)−2ν

)
,

(3.78)

as n → ∞. To obtain (3.78), one has to consider the three different integrals coming
from the square of the factor n2ν yν + ny1−ν in (3.72)–(3.73), and retain the largest
one.

Hence, using (3.59) and (3.77)–(3.78), we have the bounds

‖K1‖ ≤
(∫ 2ε

0

|η1(iy)|2
y

dy

)1/2

= O (
n−ν(log n)−ν

)
,

‖K2‖ ≤
(∫ 2ε

0

|η2(−iy)|2
y

dy

)1/2

= O (
nν(log n)−ν

)
.

(3.79)

Thus K1 and K2 are bounded operators between the Hilbert spaces L2([0, 2iε]) and
L2([−2iε, 0]). In addition, from (3.79), we get

‖K1K2‖ ≤ ‖K1‖ ‖K2‖ = O
(
(log n)−2ν

)
, n → ∞, (3.80)

and similarly,
‖K2K1‖ = O((log n)−2ν), n → ∞. (3.81)
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3.8.5 Proof of Lemma 3.18

Proof It follows from (3.80) and (3.81) that the operators I − K2K1 and I − K1K2
are invertible for n large enough, and then we can solve the Eqs. (3.57) and (3.58).
Thus we define the entries of the matrix P̂ as follows:

P̂11 = (I − K2K1)
−11, P̂12 = K1 P̂11, (3.82)

P̂21 = K2 P̂22, P̂22 = (I − K1K2)
−1 1. (3.83)

In (3.82) and (3.83), we use 1 to denote the identically-one function in L2([0, 2iε])
and L2([−2iε, 0]), respectively. Then (3.57) and (3.58) hold true, which means that
the equations in (3.56) hold. This then also means that the jump condition (3.54) in
the RH problem 3.17 is satisfied.

The Eq. (3.56) allow us to give estimates on P̂(z). First of all, we obtain from
(3.80)–(3.81), (3.82), and (3.83) that

‖P̂11‖L2([0,2iε]) = O(1), ‖P̂22‖L2([−2iε,0]) = O(1),

and then by (3.79)

‖P̂12‖L2([−2iε,0]) ≤ ‖K1‖ ‖P̂11‖L2([0,2iε]) = O (
n−ν(log n)−ν

)
, (3.84)

‖P̂21‖L2([0,2iε]) ≤ ‖K2‖ ‖P̂22‖L2([−2iε,0]) = O (
nν(log n)−ν

)
.

For pointwise estimates, we use the distances

d+(z) = dist(z, [0, 2iε]), d−(z) = dist(z, [−2iε, 0]).

Then by the first equation in (3.56), we get for z ∈ C \ [−2iε, 0],

|P̂11(z) − 1| ≤ 1

2πd−(z)

∣∣∣∣
∫ 2iε

0
η2(s)P̂12(s)ds

∣∣∣∣ ≤ 1

2πd−(z)
‖η2‖2 ‖P̂12‖2,

where we used the Cauchy–Schwarz inequality, and ‖·‖2 is the L2 norm on [−2iε, 0].
Thus by (3.78) and (3.84),

|P̂11(z) − 1| = 1

d−(z)
O

(
n−1/2(log n)−2ν−1/2

)
, (3.85)
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−1 1
0

iρ

−iρ

3iε

−3iε

iε

−iε

Fig. 5 Oriented contourΣR , consisting ofΣQ minus the interval (−iε, iε) on the imaginary axis, together
with the circle of radius 3ε around 0

as n → ∞, uniformly for z ∈ C \ [−2iε, 0]. Using similar arguments, we obtain

|P̂12(z)| = 1

d+(z)
O

(
n−ν−1/2(log n)−ν−1/2

)
, (3.86)

|P̂21(z)| = 1

d−(z)
O

(
nν−1/2(log n)−ν−1/2

)
, (3.87)

|P̂22(z) − 1| = 1

d+(z)
O

(
n−1/2(log n)−2ν−1/2

)
, (3.88)

as n → ∞, and the O terms are uniform in z. Observe that all O terms tend to 0 as
n → ∞, since ν ≤ 1/2.

It follows from (3.85)–(3.88) that P̂(z) = I +O(z−1) as z → ∞, and therefore P̂
satisfies the RH problem 3.17. For |z| = 3ε, we have d±(z) ≥ ε. From (3.85)–(3.88),
we then immediately find that the estimates in Lemma 3.18 hold, and the lemma is
proved. 
�

This also completes the proof of Proposition 3.16.

3.9 Final Transformation

Having P as in Proposition 3.16, we define the final transformation Q 
→ R as

R(z) =
{
Q(z) for |z| > 3ε,

Q(z)P(z)−1 for |z| < 3ε.
(3.89)

Recall that Q is the solution of the RH problem 3.13.
Then R has jumps on a contour ΣR that consists of ΣQ \ (−iε, iε) together with

the circle of radius 3ε around 0, see Fig. 5. Note that the jumps of P and Q coincide
on (−iε, iε), so that R has an analytic continuation across that interval.

From RH problem 3.13 and the definition (3.89), it follows that R satisfies the
following RH problem.

RH problem 3.26 1. R : C \ ΣR → C
2×2 is analytic.
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2. R satisfies the jump condition R+ = R− JR on ΣR , where

JR(z) =

⎧⎪⎨
⎪⎩
JQ(z) for z ∈ ΣR with |z| > 3ε,

P(z)−1 for |z| = 3ε,

P−(z)JQ(z)P−1+ (z) for z ∈ (−3iε,−iε) ∪ (iε, 3iε).

(3.90)

3. As z → ∞,
R(z) = I + O(1/z).

In order to solve this RH problem asymptotically for large n, we need to show that
the jump matrices for R(z) are close to the identity matrix uniformly for z ∈ ΣR , see
Fig. 5.

Lemma 3.27 The jump matrix JR in the RH problem for R satisfies for some constant
c > 0,

JR(z) =

⎧⎪⎨
⎪⎩
I + O(εn) for |z| = 3ε,

I + O(1/n) for |z ± 1| = δ,

I + O(e−cn) elsewhere onΣR,

(3.91)

as n → ∞, where the O terms are uniform.

Proof For z ∈ ΣR with |z| > 3ε, we have JR(z) = JQ(z). On the boundary of the
disks around the endpoints, we have JQ(z) = I +O(n−1), see (3.47), and on the rest
of ΣR except (−iρ, iρ), we have JQ(z) = I + O(e−cn) for some c > 0, see (3.48).

On the circle |z| = 3ε, the jump is JR(z) = P(z)−1. We use (3.52) and the fact
that P̂(z) = I + O(εn), uniformly for |z| = 3ε, to find that

JR(z) = P(z)−1 = I + O(εn),

as given in (3.91).
For z ∈ (3iε, iρ), we get from (3.90) and (3.49),

JR(z) = JQ(z) = Dσ3∞N0(z)

(
1 0

j1(z)(D1(z)D2(z))2 1

)
N−1
0 (z)D−σ3∞ .

From (3.72) and (3.74), we obtain for y ∈ [0, ρ],
| j1(iy)(D1(iy)D2(iy))

2| ≤ Cν y
νe−2ny, Cν > 0,

We also use (3.34) and then (3.91) for z ∈ (3iε, iρ) follows. The case z ∈ (−iρ,−3iε)
can be handled in a similar way.

What is left are the intervals (iε, 3iε) and (−3iε,−iε). For z ∈ (iε, 3iε), we find
from (3.90) and (3.52) that

JR(z) = Dσ3∞N0(z)

(
0 −1
1 0

)
P̂−(z)

(
1 − j1(z)(D1(z)D2(z))2

0 1

)

×P̂−1+ (z)

(
0 1

−1 0

)
N0(z)

−1D−σ3∞ .
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Using (3.53)–(3.54), we rewrite this as

JR(z) = I − j1(z)(D1(z)D2(z))
2(1 − χ(z))Dσ3∞N0(z)

(
0 −1
1 0

)
P̂+(z)

(
0 1
0 0

)

×P̂−1+ (z)

(
0 1

−1 0

)
N0(z)

−1D−σ3∞ . (3.92)

Here we note that det P̂(z) = 1, which follows by standard arguments from the RH

problem3.17, and therefore P̂−1+ =
(

P̂22 −P̂12
−P̂21 P̂11

)
+
. Then a little calculation shows

that (3.92) reduces to

JR(z) = I + j1(z)(D1(z)D2(z))
2(1 − χ(z))Λ(z), z ∈ (iε, 3iε), (3.93)

where

Λ(z) = Dσ3∞N0(z)

(−P̂11(z)P̂21(z) −P̂21(z)2

P̂11(z)2 P̂11(z)P̂21(z)

)
N−1
0 (z)D−σ3∞ .

The functions P̂11 and P̂21 are analytic on (iε, 3iε) and so we do not have to take the
+-boundary value.

Then it follows from (3.34) and the estimates in (3.85) and (3.87) that all entries
in Λ are uniformly bounded as n → ∞. Then by (3.72) and (3.93), we find (3.91)
for z ∈ (iε, 3iε). A similar argument shows that JR(z) is exponentially close to the
identity matrix for z ∈ (−3iε,−iε) as well, and the lemma follows. 
�

As a consequence of (3.91), the biggest estimates for JR − I are on the circle
|z| = 3ε. For 0 < ν ≤ 1/2, the jump matrix satisfies [recall εn is given by (2.3)]

JR(z) = I + O(εn), n → ∞,

uniformly for z ∈ ΣR , where ΣR is the union of contours depicted in Fig. 5. Note that
JR(z) → I as n → ∞, but the rate of convergence is remarkably slow.

Following standard arguments, we now find that for n sufficiently large, the RH
problem 3.26 for R is solvable, and

R(z) = I + O(εn), n → ∞, (3.94)

uniformly for z ∈ C \ ΣR . The convergence rate in (3.94) may not be optimal, since
some of the bounds in the analysis may not be as sharp as possible. Note that for
ν = 1/2, we only have R(z) = I + O( 1

log n ), which is a very slow convergence.
Since all of the transformations X 
→ U 
→ T 
→ S 
→ Q 
→ R are invertible, we

then also find that the RH problem for X is solvable for n large enough. In particular,
we find that the polynomial Pn = X11 exists for n large enough.
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4 Proofs of the Theorems

4.1 Proof of Theorem 2.6

Proof Following the transformations of the Deift–Zhou steepest descent analysis and
using formula (3.94), we obtain asymptotic information about P̃n(z) = U11(z) in the
complex plane, see (3.14) and (2.4). Consider the region in Fig. 5 which is outside the
lens and outside of the disks around z = ±1. In this case, U11(z) = T11(z)eng(z), and
by (3.21), (3.26), (3.46), (3.89),

T (z) = S(z) = Q(z)N (z) = R(z)N (z),

which means that

P̃n(z)e
−ng(z) = T11(z) = R11(z)N11(z) + R12(z)N21(z)

= N11(z)(1 + O(εn)) + N21(z)O(εn),
(4.1)

using (3.94). Here εn is given again by (2.3). We observe from (3.42) that N11 =
D∞N0,11(D1D2)

−1, and using (3.33), (3.34), (3.39), and (3.43), we get

N11(z) =
(
z(z + (z2 − 1)1/2)

2(z2 − 1)

)1/4 (
(z2 − 1)1/2 − i

(z2 − 1)1/2 + i

)−ν/4 (
1 + O

(
log n

n

))
,

(4.2)
as n → ∞. Similarly, we also see that N21(z) = O(1) as n → ∞, and (2.9) follows.

Since the lens can be taken arbitrarily close to the interval [−1, 1] and the disks
can be taken arbitrarily small, the asymptotics (2.9) is valid uniformly on any compact
subset of C \ [−1, 1]. This proves Theorem 2.6. 
�

4.2 Proof of Theorem 2.7

Proof Inside the lens, but away from the endpoints and the origin, we use the relation
(3.26) between the functions T (z) and S(z). Let z be in the lens with Re z > 0. Then
we have

T11(z) = S11(z) ± S12(z)
e

νπ i
2 −2nϕ(z)

Wn(z)

for ± Im z > 0, and therefore

P̃n(z) = eng(z)T11(z) = eng(z)
[
S11(z) ± S12(z)

e
νπ i
2 −2nϕ(z)

Wn(z)

]
.

Since S(z) = Q(z)N (z) away from the endpoints, and Q(z) = R(z) away from the
origin (if |z| > 3ε), see (3.46) and (3.89), we obtain
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P̃n(z) = eng(z)
[
N11(z) ± N12(z)

e
νπ i
2 −2nϕ(z)

Wn(z)
+ O(εn)

]
(4.3)

for Re z ≥ 0, and ± Im z > 0.
We are going to simplify the expression (4.3), and we do it for Re z > 0, Im z > 0.

First we use (3.18), (3.19), and (3.17) in (4.3) to get

P̃n(z) = e
nπ z
2

(2e)nWn(z)1/2

×
[
N11(z)Wn(z)

1/2enϕ(z) + N12(z)

Wn(z)1/2
e

νπ i
2 −nϕ(z) + O(εn)

]
.

From (3.42) we have N11 = D∞N0,11(D1D2)
−1, N12 = D∞N0,12D1D2 and so

P̃n(z) = D∞e
nπ z
2 + νπ i

4

(2e)nWn(z)1/2

×
[
N0,11(z)Wn(z)1/2

D1(z)D2(z)
e− νπ i

4 +nϕ(z) + N0,12(z)D1(z)D2(z)

Wn(z)1/2
e

νπ i
4 −nϕ(z) + O(εn)

]
.

Next we use (3.43) to write

N0,11(z) = e− π i
4

f (z)1/2√
2(1 − z2)1/4

, N0,12(z) = e
π i
4

f (z)−1/2

√
2(1 − z2)1/4

,

where (1 − z2)1/4 denotes the branch that is real and positive for −1 < z < 1 and
f (z) is given by (3.44). Thus

P̃n(z) = D∞e
nπ z
2 + νπ i

4√
2(2e)n(1 − z2)1/4Wn(z)1/2

×
[

( f (z)Wn(z))1/2

D1(z)D2(z)
enϕ(z)− (ν+1)π i

4 + D1(z)D2(z)

( f (z)Wn(z))1/2
e−nϕ(z)+ (ν+1)π i

4 + O (εn)

]
.

(4.4)

The first two terms inside the brackets are inverses of each other. We write all
contributing factors in exponential form. We have by (3.20), (3.15), and (3.40),

enϕ(z) = exp

(
π in

∫ 1

z
ψ(s)ds

)
, (4.5)

D2(z)e
νπ i
4 = exp

(
−νπ

2
ψ(z)

)
(4.6)
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for Re z > 0, Im z > 0, and we note that by (3.25) and (3.33),

Wn(z)1/2

D1(z)
= f (z)−1/4

(
1 + O

(
log n

n

))
(4.7)

as n → ∞. Finally, we write

f (z)1/2 = e
i
2 arccos z, Im z > 0, (4.8)

and inserting (4.5)–(4.8) into (4.4), we find (2.12), where we also use (3.25) and (3.34)
to simplify the first factor.

A similar calculation leads to the same formula (2.12) for z ∈ E with Re z > 0
and Im z < 0. 
�

4.3 Proof of Theorem 2.1

Proof It follows from (4.1) and (4.2) that the leading factor in the outer asymptotics
of Pn(inπ z) does not vanish for z ∈ C \ [−1, 1].

Let P̃n(z) = (inπ)−n Pn(inπ z) be the monic polynomial. Then we find from (2.8)
that

lim
n→∞

1

n
log |P̃n(z)| = Re g(z) =

∫ 1

−1
log |z − x |ψ(x)dx, (4.9)

uniformly for z in compact subsets of C \ [−1, 1]. This implies that for any given
compact subset K ⊂ C \ [−1, 1], the polynomial P̃n does not have any zeros in K for
n large enough. In other words, all zeros of P̃n tend to the interval [−1, 1] as n → ∞.

In addition, we find from (4.9) that the zeros of P̃n have ψ(x) as limiting density.
This follows from standard arguments in potential theory, see, e.g., [19]. This proves
Theorem 2.1. 
�

4.4 Proof of Theorem 2.2

Let E be the neighborhood of (−1, 1) as in Theorem 2.7. Theorem 2.2 will follow
from the asymptotic approximation (4.3) that is valid uniformly for z in

Eδ = E \ (D(−1, δ) ∪ D(0, δ) ∪ D(1, δ)),

with Re z ≥ 0.

Lemma 4.1 There is a constant C > 0 such that for large n, all zeros in Eδ satisfy

∣∣∣Re νπ

2
ψ(z) − Im θn(z)

∣∣∣ < Cεn . (4.10)

Proof It is enough to consider Re z ≥ 0.
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Let

Fn(z) = exp
(νπ

2
ψ(z) + iθn(z)

)
.

Then by (2.12), we have that zeros of P̃n in Eδ with Re z > 0 are in the region where

Fn(z)

(
1 + O

(
log n

n

))
+ Fn(z)

−1
(
1 + O

(
log n

n

))
= O(εn).

This leads to

Fn(z) + Fn(z)
−1 = O(εn),

and so there is a constant C > 0 such that all zeros in Eδ satisfy

|Fn(z) + Fn(z)
−1| ≤ Cεn (4.11)

if n is large enough.
Note that

|Fn(z)| = exp
(
Re

νπ

2
ψ(z) − Im θn(z)

)
.

Thus if (4.10) is not satisfied, then either |Fn(z)| ≥ exp(Cεn)or |Fn(z)| ≤ exp(−Cεn).
In both cases, it follows that

|Fn(z) + Fn(z)
−1| ≥ eCεn − e−Cεn ≥ 2Cεn .

Because of (4.11), this cannot happen for zeros of P̃n in Eδ if n is large enough, and
the lemma follows. 
�

The lemma is the main ingredient to prove Theorem 2.2.

Proof (Proof of Theorem 2.2) In the proof, we use c1, c2, . . ., to denote positive con-
stants that do not depend on n or z. The constants will depend on δ > 0.

It is easy to see from the definition (2.11) that θ ′
n(x) ≤ c1n < 0 for x ∈ (0, 1− δ).

This implies that for some constant c2 > 0,

Im θn(z)

{
≤ −c2n Im z for z ∈ Eδ,Re z > 0, Im z ≥ 0,

≥ c2n| Im z| for z ∈ Eδ,Re z > 0, Im z < 0.
(4.12)

There are also constants c3, c4 > 0 such that

c3 < Re
νπ

2
ψ(z) < c4, z ∈ Eδ,Re z > 0, (4.13)
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see (2.10). Thus if Im z ≥ 0, then by (4.12) and (4.13),

∣∣∣Re νπ

2
ψ(z) − Im θn(z)

∣∣∣ ≥ c2n Im z + c3 ≥ c3 > 0,

and thus there are no zeros in Eδ with Im z ≥ 0 by Lemma 4.1 if n is large enough.
For Im z ≤ 0, we have by (4.12) and (4.13),

∣∣∣Re νπ

2
ψ(z) − Im θn(z)

∣∣∣ ≥ c2n| Im z| − c4.

It follows from this and Lemma 4.1 that for large n, there are no zeroswith Im z ≤ − c5
n

if c5 > c4/c2.
Now assume z ∈ Eδ with − c5

n < Im z < 0 and Re z > 0. Write z = x + iy. Then
by Taylor expansion,

νπ

2
ψ(z) = νπ

2
ψ(x) + O(1/n),

and, see also (2.11),

θn(z) = θn(x) + iyθ ′
n(x) + O(1/n)

= θn(x) − iynπψ(x) + O(1/n),

and O terms are uniform for z in the considered region.
Then since ψ(x) and θn(x) are real, we have

Re
νπ

2
ψ(z) − Im θn(z) = νπ

2
ψ(x) + ynπψ(x) + O(1/n)

=
(ν

2
+ ny

)
πψ(x) + O(1/n).

Thus if | ν
2 + ny| ≥ c6εn , then by the above and (4.13),

∣∣∣Re νπ

2
ψ(z) − Im θn(z)

∣∣∣ ≥ 2c6c3
ν

εn + O(1/n),

and from Lemma 4.1, it follows that z = x + iy is not a zero if c6 is large enough.
Thus for large n, all zeros z = x + iy of P̃n in Eδ satisfy

∣∣∣ν
2

+ ny
∣∣∣ ≤ c6εn .

Then inπ z is a zero of Pn , see (2.4), and the real part of this zero is −nπy, which
differs from νπ

2 by an amount less than πc6εn . This proves Theorem 2.2. 
�
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