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Abstract Littlewood polynomials are polynomials with each of their coefficients in
{−1, 1}. A sequence of Littlewood polynomials that satisfies a remarkable flatness
property on the unit circle of the complex plane is given by the Rudin–Shapiro poly-
nomials. It is shown in this paper that the Mahler measure and the maximum modulus
of the Rudin–Shapiro polynomials on the unit circle of the complex plane have the
same size. It is also shown that the Mahler measure and the maximum norm of the
Rudin–Shapiro polynomials have the same size even on not too small subarcs of the
unit circle of the complex plane. Not even nontrivial lower bounds for the Mahler
measure of the Rudin–Shapiro polynomials have been known before.
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1 Introduction

Letα < β be real numbers. TheMahlermeasure M0(Q, [α, β]) is defined for bounded
measurable functions Q defined on [α, β] as

M0(Q, [α, β]) := exp

(
1

β − α

∫ β

α

log
∣∣∣Q(ei t )

∣∣∣ dt

)
.
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It is well known, see [20], for instance, that

M0(Q, [α, β]) = lim
q→0+ Mq(Q, [α, β]),

where

Mq(Q, [α, β]) :=
(

1

β − α

∫ β

α

∣∣∣Q(ei t )

∣∣∣q dt

)1/q

, q > 0.

It is a simple consequence of the Jensen formula that

M0(Q) := M0(Q, [0, 2π ]) = |c|
n∏

k=1

max{1, |zk |}

for every polynomial of the form

Q(z) = c
n∏

k=1

(z − zk), c, zk ∈ C.

See [3, p. 271] or [2, p. 3], for instance. Let D := {z ∈ C : |z| < 1} denote the open
unit disk of the complex plane. Let ∂ D := {z ∈ C : |z| = 1} denote the unit circle of
the complex plane.

Finding polynomials with suitably restricted coefficients andmaximalMahler mea-
sure has interested many authors. The classes

Ln :=
{

p : p(z) =
n∑

k=0

ak zk, ak ∈ {−1, 1}
}

of Littlewood polynomials and the classes

Kn :=
{

p : p(z) =
n∑

k=0

ak zk, ak ∈ C, |ak | = 1

}

of unimodular polynomials are two of the most important classes considered. Observe
that Ln ⊂ Kn and

M0(Q) = M0(Q, [0, 2π ]) ≤ M2(Q, [0, 2π ]) = √
n + 1

for every Q ∈ Kn . Beller and Newman [1] constructed unimodular polynomials
Qn ∈ Kn whose Mahler measure M0(Q, [0, 2π ]) is at least √n − c/ log n.

Section 4 of [2] is devoted to the study of Rudin–Shapiro polynomials. Littlewood
asked if there were polynomials pnk ∈ Lnk satisfying

c1
√

nk + 1 ≤ |pnk (z)| ≤ c2
√

nk + 1, z ∈ ∂ D,
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with some absolute constants c1 > 0 and c2 > 0, see [2, p. 27] for a reference to
this problem of Littlewood. To satisfy just the lower bound, by itself, seems very
hard, and no such sequence (pnk ) of Littlewood polynomials pnk ∈ Lnk is known.
A sequence of Littlewood polynomials that satisfies just the upper bound is given by
the Rudin–Shapiro polynomials. The Rudin–Shapiro polynomials appear in Harold
Shapiro’s 1951 thesis [23] at MIT and are sometimes called just Shapiro polynomials.
They also arise independently in Golay’s paper [19]. They are remarkably simple to
construct and are a rich source of counterexamples to possible conjectures.

The Rudin–Shapiro polynomials are defined recursively as follows:

P0(z) := 1, Q0(z) := 1,

and

Pn+1(z) := Pn(z) + z2
n
Qn(z),

Qn+1(z) := Pn(z) − z2
n
Qn(z),

for n = 0, 1, 2, . . . . Note that both Pn and Qn are polynomials of degree N − 1 with
N := 2n having each of their coefficients in {−1, 1}. It is well known and easy to
check by using the parallelogram law that

|Pn+1(z)|2 + |Qn+1(z)|2 = 2(|Pn(z)|2 + |Qn(z)|2), z ∈ ∂ D.

Hence

|Pn(z)|2 + |Qn(z)|2 = 2n+1 = 2N , z ∈ ∂ D. (1.1)

It is also well known (see Section 4 of [2], for instance), that

|Qn(z)| = |Pn(−z)|, z ∈ ∂ D. (1.2)

Peter Borwein’s book [2] presents a few more basic results on the Rudin–Shapiro
polynomials. Cyclotomic properties of the Rudin–Shapiro polynomials are discussed
in [8]. Obviously M2(Pn, [0, 2π ]) = 2n/2 by the Parseval formula. In 1968 Little-
wood [21] evaluated M4(Pn, [0, 2π ]) and found that M4(Pn, [0, 2π ]) ∼ (4n+1/3)1/4.
Rudin–Shapiro-like polynomials in L4 on the unit circle of the complex plane are
studied in [6]. In 1980, Saffari conjectured that

Mq(Pn, [0, 2π ]) ∼ 2(n+1)/2

(q/2 + 1)1/q

for all even integers q > 0, perhaps for all real q > 0. This conjecture was proved for
all even values of q ≤ 52 by Doche [14] and Doche and Habsieger [15].

Despite the simplicity of their definition, not much is known about the Rudin–
Shapiro polynomials. It is shown in this paper that the Mahler measure and the
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maximum modulus of the Rudin–Shapiro polynomials on the unit circle of the com-
plex plane have the same size. A consequence of this result is also proved. It is also
shown in this paper that the Mahler measure and the maximum norm of the Rudin–
Shapiro polynomials have the same size even on not too small subarcs of the unit circle
of the complex plane. Not even nontrivial lower bounds for the Mahler measure of the
Rudin–Shapiro polynomials have been known before.

Borwein and Lockhart [7] investigated the asymptotic behavior of the mean value
of normalized L p norms of Littlewood polynomials for arbitrary p > 0. They proved
that

lim
n→∞

1

2n+1

∑
f ∈Ln

(Mq( f, [0, 2π ]))q

nq/2 = Γ
(
1 + q

2

)
.

An analogue of this result for q = 0 (the Mahler measure) has been proved recently in
[10]. Similar results on the averageMahler measure and Lq(∂ D) norms of unimodular
polynomials P ∈ Kn had been established earlier in [12].

For a prime number p, the p-th Fekete polynomial is defined as

f p(z) :=
p−1∑
k=1

(
k

p

)
zk,

where

(
k

p

)
=

⎧⎪⎨
⎪⎩
1 if x2 ≡ k(mod p) has a nonzero solution,

0 if p divides k,

−1 otherwise

is the usual Legendre symbol. Since f p has constant coefficient 0, it is not a Littlewood
polynomial, but gp defined by gp(z) := f p(z)/z is a Littlewood polynomial of degree
p − 2 and has the same Mahler measure as f p. Fekete polynomials are examined in
detail in [2,4,5,13,16–18,22]. In [9,11], the authors examined the maximal size of the
Mahler measure of sums on n monomials on the unit circle as well as on subarcs of the
unit circles. In the constructions appearing in [9], properties of the Fekete polynomials
f p turned out to be quite useful.

2 Main Theorems

Our first theorem states that theMahler measure and themaximum norm of the Rudin–
Shapiro polynomials on the unit circle of the complex plane have the same size.

Theorem 2.1 Let Pn and Qn be the n-th Rudin–Shapiro polynomials defined in Sect.1.
There is an absolute constant c1 > 0 such that

M0(Pn, [0, 2π ]) = M0(Qn, [0, 2π ]) ≥ c1
√

N ,
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where

N := 2n = deg(Pn) + 1 = deg(Qn) + 1.

By following the line of our proof, it is easy to verify that c1 = e−227 is an
appropriate choice in Theorem 2.1. To formulate our next theorem, we define

P̃n := 2−(n+1)/2Pn and Q̃n := 2−(n+1)/2Qn . (2.1)

By using the above normalization, (1.1) can be rewritten as

∣∣P̃n(z)
∣∣2 + ∣∣Q̃n(z)

∣∣2 = 1, z ∈ ∂ D. (2.2)

Let

Iq
(
P̃n

) := (
Mq

(
P̃n, [0, 2π ]))q := 1

2π

∫ 2π

0

∣∣∣P̃n(eiτ )

∣∣∣q
dτ , q > 0.

The following result on the moments of the Rudin–Shapiro polynomials is a simple
consequence of Theorem 2.1.

Theorem 2.2 There is a constant L < ∞ independent of n such that

∞∑
k=1

Ik
(
P̃n

)
k

< L , n = 0, 1, . . . .

Our final result states that the Mahler measure and the maximum norm of the
Rudin–Shapiro polynomials have the same size even on not too small subarcs of the
unit circle of the complex plane.

Theorem 2.3 There is an absolute constant c2 > 0 such that

M0(Pn, [α, β]) ≥ c2
√

N , N := 2n = deg(Pn) + 1,

for all n ∈ N and for all α, β ∈ R such that

32π

N
≤ (log N )3/2

N 1/2 ≤ β − α ≤ 2π.

The same lower bound holds for M0(Qn, [α, β]).
It looks plausible that Theorem 2.3 holds whenever 32π/N ≤ β −α ≤ 2π, but we

do not seem to be able to handle the case 32π/N ≤ β − α ≤ (log N )3/2N−1/2 in this
paper.
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3 Lemmas

A key to the Proof of Theorem 2.1 is the following observation which is a straight-
forward consequence of the definition of the Rudin–Shapiro polynomials Pn and Qn .

Lemma 3.1 Let n ≥ 2 be an integer, N := 2n, and let

z j := ei t j , t j := 2π j

N
, j ∈ Z.

We have

Pn(z j ) = 2Pn−2(z j ), j = 2u, u ∈ Z,

Pn(z j ) = (−1)( j−1)/22i Qn−2(z j ), j = 2u + 1, u ∈ Z,

where i is the imaginary unit.

Another key to the Proof of Theorem 2.1 is Theorem 1.3 from [16]. Let PN be the
set of all polynomials of degree at most N with real coefficients.

Lemma 3.2 Assume that n, m ≥ 1,

0 < τ1 ≤ τ2 ≤ · · · ≤ τm ≤ 2π, τ0 := τm − 2π, τm+1 := τ1 + 2π.

Let

δ := max{τ1 − τ0, τ2 − τ1, . . . , τm − τm−1}.

For every A > 0, there is a B > 0 depending only on A such that

m∑
j=1

τ j+1 − τ j−1

2
log |P(eiτ j )| ≤

∫ 2π

0
log |P(eiτ )|dτ + B

for all P ∈ PN and δ ≤ AN−1. Moreover, the choice B = 9A2 is appropriate.

Our next lemma can be proved by a routine zero counting argument. Let Tk be the
set of all real trigonometric polynomials of degree at most k.

Lemma 3.3 For k ∈ N, M > 0, and α ∈ R, let T ∈ Tk be defined by

T (t) = M

2
(1 − cos(k(t − t0))) = M sin2

(
k(t − t0)

2

)
. (3.1)

Let a ∈ R be fixed. Assume that S ∈ Tk satisfies S(a) = T (a) > 0 and 0 ≤ S(t) ≤ M
holds for all t ∈ R. Then:

(i) S(t) > T (t) holds for all t ∈ (y, a) if T is increasing on (y, a).
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(ii) S(t) > T (t) holds for all t ∈ (a, y) if T is decreasing on (a, y).

Proof of Lemma 3.3 If the lemma were false, then S − T ∈ Tk would have at least
2k + 1 zeros in a period, by counting multiplicities. ��

A straightforward consequence of Lemma 3.3 is the following. For the sake of
brevity, let

γ := sin2(π/8) = 1

2
(1 − cos(π/4)).

Lemma 3.4 Assume that S ∈ Tk satisfies 0 ≤ S(t) ≤ M for all t ∈ R. Let a ∈ R,
and assume that S(a) ≥ (1 − γ )M. Then

S(t) ≥ γ M, t ∈ [a − δ, a + δ] , δ := π

2k
.

Proof of Lemma 3.4 Let T ∈ Tk be defined by (3.1). Pick a t0 ∈ R such that S(a) =
T (a) and T ′(a) ≥ 0. Now observe that T is increasing on [a − δ, a] and T (a − δ) ≥
γ M , and Lemma 3.3 (i) gives the lower bound of the lemma for all t ∈ [a − δ, a].
Now pick a t0 ∈ R such that S(a) = T (a) and T ′(a) ≤ 0. Now observe that T is
decreasing on [a, a + δ] and T (a + δ) ≥ γ M , and hence Lemma 3.3 (ii) gives the
lower bound of the lemma for all t ∈ [a, a + δ]. ��

Combining Lemmas 3.1 and 3.4 we easily obtain the following.

Lemma 3.5 Let Pn and Qn be the n-th Rudin–Shapiro polynomials. Let N := 2n and
γ := sin2(π/8). Let

z j := ei t j , t j := 2π j

N
, j ∈ Z.

We have

max
{
|Pn(z j )|2, |Pn(z j+r )|2

}
≥ γ 2n+1 = 2γ N , r ∈ {−1, 1},

for every j = 2u, u ∈ Z.

Lemma 3.5 tells us that the modulus of the Rudin–Shapiro polynomials Pn is
certainly larger than

√
2γ N at least at one of any two consecutive N -th roots of unity,

where N := 2n . This is a crucial observation of this paper, and despite its simplicity it
does not seem to have been observed before in the literature or elsewhere. Moreover,
note that while our Theorems 2.1 and 2.3 are proved with rather small multiplicative
positive absolute constants, Lemma 3.5 is stated with a quite decent explicit constant.

Proof of Lemma 3.5 Let k := 2n−2, j = 2u, u ∈ Z. We introduce the trigonometric
polynomial S ∈ Tk by

S(t) := |Qn−2(e
i t )|2, t ∈ R. (3.2)
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Assume that

|Pn(z j )|2 < γ 2n+1.

Then (1.1) implies that

|Qn(z j )|2 > (1 − γ )2n+1. (3.3)

By Lemma 3.1, we have

|Pn−2(z j )|2 = 1

4
|Pn(z j )|2,

and hence (1.1) implies that

|Qn−2(z j )|2 = 1

4
|Qn(z j )|2.

Combining this with (3.3), we obtain

|Qn−2(z j )|2 = 1

4
|Qn(z j )|2 > (1 − γ )2n−1.

Hence, using Lemma 3.4 with S ∈ Tk and M := 2n−1 [recall that (3.2) and (1.1)
imply that 0 ≤ S(t) ≤ 2n−1 for all t ∈ R], we can deduce that

|Qn−2(z j+r )|2 ≥ γ 2n−1, r ∈ {−1, 1}.

Finally we use Lemma 3.1 again to conclude that

|Pn(z j+r )|2 = 4|Qn−2(z j+r )|2 ≥ γ 2n+1, r ∈ {−1, 1}.

��
To prove Theorem 2.3, we need Theorem 2.1 from [16]. We state it as our next

lemma by using a slightly modified notation.

Lemma 3.6 Let ω1 < ω2 ≤ ω1 + 2π,

ω1 ≤ θ1 < θ2 < · · · < θμ ≤ ω2,

θ0 := ω1 − (θ1 − ω1), θμ+1 := ω2 + (ω2 − θμ),

δ := max
{
θ1 − θ0, θ2 − θ1, . . . , θμ+1 − θμ

} ≤ 1

2
sin

ω2 − ω1

2
.

There is an absolute constant c3 > 0 such that

μ∑
j=1

θ j+1 − θ j−1

2
log |P(eiθ j )| ≤

∫ ω2

ω1

log |P(eiθ )|dθ + c3E(N , δ, ω1, ω2)
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for every polynomial P of the form

P(z) =
N∑

j=0

b j z
j , b j ∈ C, b0bN �= 0,

where

E(N , δ, ω1, ω2) := (ω2 − ω1)Nδ + Nδ2 log(1/δ)

+√
N log R

(
δ log(1/δ) + δ2

ω2 − ω1

)

and R := |b0bN |−1/2‖P‖∂ D .

Observe that R appearing in the above lemma can be easily estimated by

R ≤ |b0bN |−1/2(|b0| + |b1| + · · · + |bN |).

4 Proof of Theorems 2.1, 2.2, and 2.3

Proof of Theorem 2.1 Let, as before, γ = sin2(π/8), N := 2n , and

z j := ei t j , t j := 2π j

N
, j ∈ Z.

By Lemma 3.5, we can choose

0 < τ1 ≤ τ2 ≤ · · · ≤ τm ≤ 2π, τ0 := τm − 2π, τm+1 := τ1 + 2π,

so that

{τ1, τ2, . . . , τm} ⊂ {t1, t2, . . . , tN }, (4.1)

τ j+1 − τ j ≤ 4π

N
, j = 0, 1, . . . , m − 1, (4.2)

and

|Pn(eiτ j )|2 ≥ γ 2n+1, j = 1, 2, . . . , m. (4.3)

Then the value

δ := max{τ1 − τ0, τ2 − τ1, . . . , τm − τm−1}

appearing in Lemma 3.2 satisfies δ ≤ AN−1 with A = 4π . Let B > 0 be chosen for
A := 4π according to Lemma 3.2. Combining Pn ∈ PN , (4.1), and Lemma 3.2, we
conclude that
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2π

(
1

2
log 2n+1 + 1

2
log γ

)
≤

m∑
j=1

τ j+1 − τ j−1

2
log |Pn(eiτ j )|

≤
∫ 2π

0
log |Pn(eiτ )|dτ + B,

and hence

M0(Pn, [0, 2π ]) ≥ exp(−B/(2π))
√
2γ 2n/2 = c

√
N

follows with the absolute constant c := exp(−B/(2π))
√
2γ > 0. To complete the

proof, observe that

M0(Pn, [0, 2π ]) = M0(Qn, [0, 2π ])

is an immediate consequence of (1.2). ��

Proof of Theorem 2.2 Using (2.2), the power series expansion of the function f (z) :=
log(1− z) on (−1, 1), (1.2), and the monotone convergence theorem, we deduce that

∫ 2π

0
log

∣∣∣P̃n(eiτ )

∣∣∣2 dτ =
∫ 2π

0
log

(
1 −

∣∣∣Q̃n(e
iτ )

∣∣∣2
)
dτ

=
∫ 2π

0
−

∞∑
k=1

∣∣Q̃n(eiτ )
∣∣2k

k
dτ

=
∫ 2π

0
−

∞∑
k=1

∣∣P̃n(eiτ )
∣∣2k

k
dτ = −

∞∑
k=1

∫ 2π

0

∣∣P̃n(eiτ )
∣∣2k

k
dτ

= −2π
∞∑

k=1

I2k
(
P̃n

)
k

.

Combining this with Theorem 2.1 gives that there is an L < ∞ independent of n such
that

∞∑
k=1

I2k
(
P̃n

)
k

< L .

As Ik
(
P̃n

)
is a decreasing function of k ∈ N, the theorem follows. ��

Proof of Theorem 2.3 The theorem follows from Lemmas 3.5 and 3.6 in a straight-
forward fashion. Note that

(M0( f, [α, β]))β−α = (M0( f, [α, γ ]))γ−α(M0( f, [γ, β]))β−γ
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for all α < γ < β ≤ α + 2π and for all functions f continuous on [α, β]. Hence, to
prove the theorem, without loss of generality, we may assume that β − α ≤ π . Let,
as before, γ = sin2(π/8), N := 2n , and

z j := ei t j , t j := 2π j

N
, j ∈ Z.

By Lemma 3.5, we can choose

0 < τ1 ≤ τ2 ≤ · · · ≤ τm ≤ 2π, τ0 := τm − 2π, τm+1 := τ1 + 2π,

so that (4.1), (4.2), and (4.3) hold. Let

{θ1 < θ2 < · · · < θμ} := {τ j ∈ [α, β] : j = 1, 2, . . . , m}. (4.4)

The assumption on N guarantees that the value of δ defined in Lemma 3.6 is at most
4π/N and

4π

N
≤ β − α

8
≤ 1

2
sin

β − α

2
.

Observe also that Pn ∈ LN−1, and hence when we apply Lemma 3.6 to Pn we have
R ≤ N . By (4.3), we have

|Pn(eiθ j )|2 ≥ γ 2n+1, j = 1, 2, . . . , μ.

Applying Lemma 3.6 with P := Pn , N := 2n , and {θ1 < θ2 < · · · < θμ} defined by
(4.4), we obtain

(β − α)

(
1

2
log 2n+1 + 1

2
log γ

)
≤

μ∑
j=1

θ j+1 − θ j−1

2
log |Pn(eiθ j )|

≤
∫ β

α

log |Pn(e
iθ )|dθ + c3E(N , 4π/N , α, β),

where the assumption

(log N )3/2

N 1/2 ≤ β − α ≤ 2π

implies that

E(N , 4π/N , α, β) ≤ c4

(
(β − α)N

N
+ log N

N

+√
N log N

(
log N

N
+ 1

N 2(β − α)

))

≤ c5(β − α)
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with absolute constants c4 > 0 and c5 > 0. Hence

M0(Pn, [α, β]) ≥ exp(−c3c5)
√
2γ 2n/2 = c

√
N

with the absolute constant c := exp(−c3c5)
√
2γ > 0. Combining this with (1.2), we

obtain

M0(Qn, [α, β]) ≥ c
√

N

with the same absolute constant c > 0. ��
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