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Abstract In light of the quantum Painlevé–Calogero correspondence, we investigate
the inverse problem.We imply that this type of the correspondence (classical-quantum
correspondence) holds true, andwe find outwhat kind of potentials arise from the com-
patibility conditions of the related linear problems. The latter conditions are written
as functional equations for the potentials depending on a choice of a single function—
the left-upper element of the Lax connection. The conditions of the correspondence
impose restrictions on this function. In particular, it satisfies the heat equation. It
is shown that all natural choices of this function (rational, hyperbolic, and elliptic)
reproduce exactly the Painlevé list of equations. In this sense, the classical-quantum
correspondence can be regarded as an alternative definition of the Painlevé equations.
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1 Introduction

The Painlevé equations (PI–PVI) discovered by P. Painlevé, R. Fuchs and B. Gam-
bier [13,15,43] have been studied extensively during the last century [7,20]. Their
applications include self-similar reductions of nonlinear integrable partial differential
equations [11], correlation functions of integrable models [3,23], quantum gravity and
string theory [5], topological field theories [8], 2D polymers [59], random matrices
[12,51] and stochastic growth processes [30], conformal field theories and KZ equa-
tions [14,24], the AGT conjecture [10,37] and spectral duality [38–40], to mention
only a few applications and references.

As is known from classical works [13,16,44], the Painlevé equations describe the
monodromy preserving deformations of a system of linear differential equations with
rational coefficients. The monodromy approach was developed by H. Flaschka and A.
Newell and by M. Jimbo, T. Miwa, K. Ueno [11,21,22,25], see also [19]. At present,
different types of linear problems are known (scalar [13,16], 2×2-matrix [21] (see
also [32,60]), 3×3-matrix [9,26], 8×8-matrix [41], and higher-dimensional Lax pairs
[35]).

We deal with the linear problems depending on a spectral parameter [7–43]:

{
∂x� = U(x, t)�,

∂ t� = V(x, t)�,
� =

(
ψ1
ψ2

)
, (1.1)

whereU,V ∈ sl2 explicitly depend on the spectral parameter x and on the deformation
parameter t (time variable) and contain an unknown function u(t) to be constrained
by the condition that the two equations have a family of common solutions.1 In fact,
the latter is equivalent to the compatibility of the linear problems expressed as the zero
curvature equation (integrability condition):

∂xV − ∂tU + [V,U] = 0. (1.2)

Set

U =
(

a b
c d

)
, V =

(
A B
C D

)
.

The matrices U,V are traceless, i.e., a + d = 0, A + D = 0. Then the zero curvature
equation gives: ⎧⎨

⎩
at − Ax + bC − cB = 0,
bt − Bx + 2aB − 2bA = 0,
ct − Cx + 2cA − 2aC = 0.

(1.3)

In [57,58], by applying the diagonal gauge transformation � = diag(ω, ω−1), we
chose the matrices U, V such that

bx = 2B. (1.4)

1 This function is going to satisfy one of the six Painlevé equations (in the Calogero form).

123



Constr Approx (2015) 41:385–423 387

Then the linear system (1.1) for the vector function � = (ψ1, ψ2)
t can be reduced to

two scalar equations for ψ := ψ1:

⎧⎪⎪⎨
⎪⎪⎩

(
1

2
∂2x − 1

2
(∂x log b) ∂x + W (x, t)

)
ψ = 0,

∂tψ =
(
1

2
∂2x + U (x, t)

)
ψ,

(1.5)

where

W = U (x, t) − 1

2
∂t log b + 1

4
∂2x log b + 1

4
(∂x log b)2

and

U (x, t) = 1

2
(ad − bc − ax ) + A = 1

2
detU − ax

2
+ A. (1.6)

The second equation in (1.5) has the form of a nonstationary Schrödinger equation
in imaginary time with the potential U (x, t). It describes the isomonodromic defor-
mations of the first one, and their compatibility implies the Painlevé equation (in the
Calogero form) for the function u = u(t):

ü = −∂u Ṽ (u, t), (1.7)

generated by the Hamiltonian H(u̇, u, t) = 1
2 u̇2 + Ṽ (u, t). The function u = u(t) is

defined as a (simple) zero of the function b(x):

b(u) = 0.

The second important condition we are going to use together with (1.4) is

U (x, t) = U (x, u̇(t), u(t), t) = V (x, t) − H(u̇, u, t), (1.8)

where H(u̇, u, t) is the classical Hamiltonian. The x-dependent part of the potential
V (x, t) does not contain the dependent variable u. Therefore, the second equation in
(1.5) acquires the form

∂t�(x, t) =
(
1

2
∂2x + V (x, t)

)
�(x, t), (1.9)

with
�(x, t) = e

∫ t H(u̇,u,t ′)dt ′ψ(x, t). (1.10)

Notice that condition (1.4) can be easily satisfied by choosing a suitable gauge. How-
ever, together with (1.8), it becomes a nontrivial condition and leads to the quantum
Painlevé–Calogero correspondence (see below), which relates the potentials of the
classical problem Ṽ with V in the quantum one. It appears that the potentials dif-
fer only by “quantum corrections” of the coupling constants. Therefore, (1.9) is the
quantization of (1.7) with the unit Planck constant.
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In [57,58], it was shown that there exists a choice of gauge and variables (x, t) such
that the nonstationary Schrödinger equation becomes a quantized Painlevé equation.
Thus, the linear problem (1.1) leads to both classical and quantum Painlevé equations.
The classical one is written in the variable u(t) and follows from the zero-curvature
equation (1.1) valid for all x . The quantum one is written in terms of the spectral
parameter x for a component of the common solution ψ1 of the linear problems. We
have called this construction the quantum Painlevé–Calogero correspondence. It is
a quantum version of the classical correspondence introduced by A. Levin and M.
Olshanetsky [31] and developed by K. Takasaki [49]. It should be mentioned that
a phenomenon similar to the quantum Painlevé–Calogero correspondence was first
observed by B. Suleimanov [46,47] in terms of rational linear problems. See also S.
Slavyanov’s papers [45].

Let us note that the phenomenon of the classical-quantum correspondence is also
known in the theory of integrable systems in some other contexts. There are interrela-
tions between classical and quantum problems of a simingly different type [1,54,55],
where Bethe vectors of integrable quantum spin chains are related to some data of clas-
sical integrable many-body systems. A similarity between quantum transfer matrices
and classical τ -functions was pointed out in [27,29,56].

The aim of this paper is to address the inverse problem. We start with the system
of scalar equations (1.5) and assume that the quantum Painlevé–Calogero correspon-
dence takes place, i.e., equations (1.7)–(1.8) hold true. (In this paper, we refer to it as
classical-quantum correspondence, since it is not clear initially which equations sat-
isfy the conditions). Then we derive and solve functional equations2 for the potential
V searching through possible choices of the function b. In other words, we assume that
the classical-quantum correspondence holds true and find out what kind of potentials
arise from the compatibility conditions.

We prove the following:

Theorem 1.1 Let the compatibility condition for the system (1.5) with

U (x, u̇(t), u(t), t) = V (x, t) − H(u̇, u, t)

and

H(u̇, u, t) = 1

2
u̇2 + Ṽ (u, t)

be equivalent to

ü = −∂u Ṽ (u, t),

where u is defined as a simple zero of the function b(x, t): b(x, t) |x=u = 0. Then
there are two possibilities:

2 It should be mentioned that functional equations play a very important role in the theory of integrable
systems; they underlie the Lax equations, the r -matrix, and other structures [6,28].
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1.
b(x, u, t) = b(x − u, t). (1.11)

The function b(z, t) satisfies the heat equation

2∂t b(z, t) = ∂2z b(z, t);

the quantum potential coincides with the classical one,

Ṽ (u, t) = V (u, t),

and satisfies the functional equation

Vt (x) − Vt (u) − 1
2 f (x−u, t)

(
V ′(x) + V ′(u)

) − fx (x−u, t) (V (x) − V (u)) = 0,

(1.12)

where f (x, t) = bx (x, t)/b(x, t).
2.

b(x, u, t) = b(x − u, t)b(x + u, t). (1.13)

The function b(z, t) satisfies the heat equation

2∂t b(z, t) = ∂2z b(z, t);

the classical and quantum potentials are related by

Ṽ (u, t) = V (u, t) + 1

2
∂2x log b(x, t)

∣∣∣∣
x=2u

,

and V (x, t) satisfies the functional equation

Vt (x) − Vt (u) − 1
2 f (x−u, t)

(
V ′(x) + V ′(u)

) − 1
2 f (x+u, t)

(
V ′(x) − V ′(u)

)

+ ( fx (x−u, t) + fx (x+u, t)) (V (u) − V (x)) = 0,

(1.14)

where f (x, t) = bx (x, t)/b(x, t).

The proof of the theorem is based on Propositions 3.1, 3.2, and 3.3. For possibilities
different from (1.11) and (1.13), see the remark after (3.33) and Appendix A.

Solving equations (1.12) and (1.14), we get the following results: for the rational (in
x) function b, we obtain PI and PII from (1.12) and PIV from (1.14); for the hyperbolic,
we obtain PIII from (1.12) and PV from (1.14). The most general equation PVI arises
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for the θ -functional ansatz for b from (1.14), while the equation from (1.12) is shown
to have only trivial solutions in this case.

Finally, it is shown that all natural choices of the function b (rational, hyperbolic,
and elliptic) reproduce exactly the Painlevé list of equations. In this sense, the classical-
quantum correspondence can be viewed as an alternative definition for the Painlevé
equations.

The paper is organized as follows. In the next section, we recall the quantum
Painlevé–Calogero correspondence. In Section 3, we derive the functional equations
from (1.12) and (1.14) and then solve these equations in Sections 4-6. In the appen-
dices, we give the definitions and identities for necessary elliptic functions, discuss
some special cases of the b-function, and list the U−V pairs for PI–PV which are
acceptable for the quantum Painlevé–Calogero correspondence.

2 Quantum Painlevé–Calogero Correspondence

The quantum Painlevé–Calogero correspondence states that for Painlevé equations,
the nonstationary Baxter equation at h̄ = 1 represents a classical linear problem. Let
us start from example.

2.1 Example of Painlevé V

The PV equation is conventionally written as:

∂2T y =
(

1

2y
+ 1

y−1

)
(∂T y)2− ∂T y

T
+ y(y−1)2

T 2

(
α+ β

y2
+ γ T

(y−1)2
+ δT 2(y + 1)

(y−1)3

)
,

where α, β, γ, δ are parameters.3 Making change of variable

y = coth2 u (2.1)

together with
T = e2t , (2.2)

PV acquires the form

ü = −2α cosh u

sinh3 u
− 2β sinh u

cosh3 u
− γ e2t sinh(2u) − 1

2
δe4t sinh(4u). (2.3)

The later equation is Hamiltonian with HV(p, x) = p2

2 + VV(u, t), where

VV(u, t) = − α

sinh2 u
− β

cosh2 u
+ γ e2t

2
cosh(2u) + δe4t

8
cosh(4u). (2.4)

3 There are in fact three essentially independent parameters.
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The zero curvature representation is known from [21]. It is rational in spectral
parameter X . As was shown in [57], the change

X = cosh2 x

with (2.1) and (2.2) and some special gauge transformation brings the Jimbo–Miwa
U−V pair to the one given in (C.1)–(C.4). Then the first component of the linear
problem (1.1) ψ satisfies the nonstationary Schrödinger equation

∂tψ =
(

H
(α− 1

8 , β+ 1
8 , γ, 1

2 )

V (∂x , x) − H
(α,β,γ, 12 )

V (u̇, u)

)
ψ,

and, therefore,

∂t� = H
(α− 1

8 , β+ 1
8 , γ, 1

2 )

V (∂x , x)� =
(
1

2
∂2x + V

(α− 1
8 , β+ 1

8 , γ, 1
2 )

V (x, t)

)
�

for �(x, t) = e
∫ t H

(α, β, γ, 12 )

V (u̇,u)dt ′ψ(x, t); i.e., the linear problem admits the form of
the quantized equation (in spectral parameter). Notice that the parameters α, β are
shifted by ± 1

8 in the quantum Hamiltonian.

2.2 Summary

The following theorem summarizes the results of [57,58] for all Painlevé equations,
see also the table of changes of variables below.

Theorem [57,58] For any of the six equations from the Painlevé list written in the
Calogero form as classical nonautonomous Hamiltonian systems with time-dependent
Hamiltonians H(p, u, t), there exists a pair of compatible linear problems

{
∂x� = U(x, t, u, u̇, {ck})�,

∂t� = V(x, t, u, u̇, {ck})�,
� =

(
ψ1
ψ2

)
,

whereU andV are sl2-valued functions, x is a spectral parameter, t is the time variable
and {ck} = {α, β, γ, δ} is the set of parameters involved in the Painlevé equation, such
that:

1) The zero curvature condition

∂tU − ∂xV + [U,V] = 0

is equivalent to the Painlevé equation for the variable u defined as any (simple)
zero of the right-upper element of the matrix U(x, t) in the spectral parameter:
U12(u, t) = 0;
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2) The function � = e
∫ t H(u̇,u,t ′)dt ′ψ1, where ψ1 is the first component of �, satisfies

the nonstationary Schrödinger equation in imaginary time

∂t� =
(
1

2
∂2x + Ṽ (x, t)

)
�

with the potential

Ṽ (x, t) = V (x, t, {c̃k}),
V (x, t, {c̃k}) −

(
1

2
u̇2 + V (u, t, {ck})

)
= 1

2

[
det(U) − ∂xU11 + 2V11

]
,

which coincides with the classical potential V (u, t) = V (u, t, {ck}) up to possible
shifts of the parameters {ck}:

(α̃, β̃) = (α, β + 1
2 ) for PIV,

(α̃, β̃, γ̃ , δ̃) = (
α − 1

8 , β + 1
8 , γ, δ

)
for PV,

(α̃, β̃, γ̃ , δ̃) = (
α − 1

8 , β + 1
8 , γ − 1

8 , δ + 1
8

)
for PVI.

The list of changes of variables is summarized in the following table:

Equation y(u, t) T (t) X (x, t) U12(x, t)

PI u t x x − u
PII u t x x − u
PIV u2 t x2 x2 − u2

PIII e2u et e2x 2et/2 sinh(x − u)

PV coth2 u e2t cosh2 x 2et sinh(x−u) sinh(x+u)

PVI ℘(u)−℘(ω1)
℘ (ω2)−℘(ω1)

℘ (ω3)−℘(ω1)
℘ (ω2)−℘(ω1)

℘ (x)−℘(ω1)
℘ (ω2)−℘(ω1)

ϑ1(x − u)ϑ1(x + u)h(u, t)

Function h(u, t) for the PVI case can be found in [58]. Notice that the changes of
variables given above can be derived in a general form from (1.4) and the requirement
that the potential (1.6) could be presented as a sum of two parts depending on x, t and
u, t separately. This calculation was made in [58] for the most general Painlevé VI
equation. The appropriate U−V pairs for PI–PV are given in Appendix C.

3 The Scalar Linear Problems and Functional Equations

It was shown in [57,58] that each of the six equations from the Painlevé list, hereinafter
referred to as PI–PVI, written in the so-called Calogero form, can be obtained as
integrability conditions for two Schrödinger-like equations
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⎧⎪⎪⎨
⎪⎪⎩

(
1

2
∂2x − bx

2b
∂x + W (x, t)

)
� = 0,

∂t� =
(
1

2
∂2x + V (x, t)

)
�,

(3.1)

stationary and nonstationary. The time-dependent potentials W and V are related by

W (x, t) = U − 2ḃ − bxx

4b
= V (x, t) − H − 2ḃ − bxx

4b
, (3.2)

where H does not depend on x and b is some function of the spectral parameter x
and time t to be chosen in such a way that the two linear problems are compatible for
some V (x, t). Suppose it has a (simple) zero at the point x = u = u(t): b(u, t) = 0,
and let V (x, t) be a function that depends on x, t in an explicit way only (i.e., V (x, t)
does not contain u). Also let H be a function of u and u̇.

Remark Note that function b may depend on t in two ways — explicit and implicit.
The latter means the time dependence through the unknown functions of t (dependent
variables). Writing ∂t b, we mean the derivative with respect to the explicit dependence
only. For example, ∂t (z −u) = 0. The lower index t means the same (∂t b(z, u(t), t) =
bt ), while the dot is the full time derivative: ḃ(z, u(t), t) = u̇∂ub + bt . The same
notation is used for other functions depending on t and u(t) apart from � in the linear
problem (where the partial derivative symbols ∂x , ∂t are traditionally used, but, in fact,
the operator ∂t acts as the full time derivative).

Combining equations (3.1), one can write another pair of linear problems whose
compatibility implies the Painlevé equations:

⎧⎪⎪⎨
⎪⎪⎩

(
1

2
∂2x − bx

2b
∂x + W (x, t)

)
� = 0,

∂t� =
(

bx

2b
∂x + 2ḃ − bxx

4b
+ H

)
�,

(3.3)

(The first equation is the same, while the other one is a first-order equation.) Passing
to the function �̃ = �/

√
b, we can write these linear problems in the Fuchs–Garnier

form: ⎧⎪⎪⎨
⎪⎪⎩

(
1

2
∂2x + S(x, t)

)
�̃ = 0,

∂t �̃ =
(
1

2
f ∂x − 1

4
fx

)
�̃,

f = ∂x log b, fx ≡ ∂x f, (3.4)

where we have introduced the function S = S(x, t) by the formula

S = U − ḃ

2b
+ bxx

2b
− 3

8

(
bx

b

)2

= V − H − ḃ

2b
+ bxx

2b
− 3

8

(
bx

b

)2

. (3.5)
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Their integrability is equivalent to the condition

[1
2

∂2x + S, ∂t − 1

2
f ∂x + 1

4
fx

]
�̃ = 0,

which implies

Ṡ = S fx + 1

2
f Sx + 1

8
fxxx (3.6)

or

bbxUx + 2bbxxU − 2b2xU − 2U̇b2

− 1
2bx bxxx + bx ḃx − ḃ2 − bḃxx + bb̈ + 1

4bbxxxx + 1
4b2xx = 0.

(3.7)

This equation is our main interest in this paper. In the next sections, we determine the
potential V making one or another ansatz for b.

Notice that the equation (3.7) can be obtained from the compatibility of initial
matrix linear problem (1.3) with U defined by (1.6). One can express all elements of
U and V in terms of three functions a = U11, b = U12, and U :

U :
U11 = a, U12 = b,

U21 = − 1
2b2

(
2a2b + 2ax b − 2abx + 4Ub − 2ḃ + bxx

)
,

V :
V11 = 1

4b

(
2abx + 2ḃ − bxx

)
, V12 = 1

2bx ,

V21 = − 1
4b2

(
4ȧb − 2ḃx + bxxx − 2abxx + 2a2bx + 4bxU

)
.

The function a cancels out from compatibility condition (1.3).
Recall that the dynamical variable u is defined as a zero of the function b(x, t) =

b(x, u(t), t): b(u, u, t) = 0. Suppose b is an analytical function near x = u; then in
the vicinity of x = u,

b = b1(u, t)(x − u) + b2(u, t)(x − u)2 + b3(u, t)(x − u)3 + · · · . (3.8)

Consider equation (3.7) at x = u:

(
−2b2xU − 1

2
bx bxxx + bx ḃx − ḃ2 + 1

4
b2xx

)
|x=u = 0, (3.9)

where we used that U =V (x, t)−H(u̇, u, t), and, therefore, it is a regular function at
x = u and [bU ] (x = u) = 0. From the expansion (3.8), we get

bx |x=u = b1, bxxx |x=u = 6b3, ḃ |x=u = −u̇b1, ḃx |x=u = u̇(b′
1 − 2b2) + ∂t b1.
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Plugging this into (3.9), we obtain:

U |x=u = −1

2
v2 + 1

2b21

[(
b2 − 1

2
b′
1

)2

− 3b1b3 + b1∂t b1 + 1

4
b22

]
,

where

v = u̇ + b2
b1

− b′
1

2b1
. (3.10)

The latter expression is the “momentum.” Notice that this local evaluation at x = u
fixes the dependence H(u̇), since V (x, t) is independent of u̇. We consider some
nontrivial cases (v �= u̇) in Appendix A.

Let us find out what kind of restriction on the behavior of b = b(x, u(t), t) arises
from the classical-quantum correspondence. First, recall that the quantumHamiltonian
which we use in (1.5), (3.1) has the form Ĥ = 1

2∂
2
x + V (x, t). Therefore, the classical

one is H(px , x, t) = 1
2 p2x + V (x, t). The classical-quantum correspondence implies

that the classical equations for u(t) arising from the compatibility condition (1.2)
(or (3.6) or (3.7)) are generated by H(u̇, u, t), which differs from H(px , x, t) by
only possible “quantum corrections” of the potential. Thus, the classical Hamiltonian
should have the “Calogero form,” i.e., H(u̇, u, t) = 1

2 u̇2 + Ṽ (u, t). At the moment,
we do not assume any relations between V (x, t) and Ṽ (u, t). However, the Calogero
form of the Hamiltonian provides some special properties of b(x, u(t), t).

Proposition 3.1 Let the compatibility condition (3.7) describe nonautonomous
dynamics

u̇ = v,

v̇ = ü = −∂u Ṽ (u, t) (3.11)

generated by the Hamiltonian

H(u̇, u, t) = 1

2
v2 + Ṽ (u, t). (3.12)

Then b(x, u(t), t) factorizes into the product

b(x, u(t), t) = b1(x − u(t), t) b2(x + u(t), t), (3.13)

and each of the factors satisfies the heat equation:

2∂t b1,2(z, t) = ∂2z b1,2(z, t).

Proof Substituting (3.11) and (3.12) into (3.7), we get an equation where the left-hand
side. is quadratic in v = u̇ . Since v is an independent variable, all the coefficients in
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front of vk (k = 2, 1, 0) vanish. The coefficient in front of v2 gives (it comes from
terms 2bbxxU , −2b2xU , −ḃ2 and bb̈ in (3.7))

b2x − b2u + bbuu − bbxx = 0

or
(
∂2x − ∂2u

)
log b = (∂x − ∂u) (∂x + ∂u) log b = 0,

which is equivalent to (3.13). The coefficient in front of v gives

bx bxu − bbxxu + 2bbtu − 2bubt = 0

or (
bxu

b

)
x

= 2

(
bt

b

)
u
. (3.14)

Plugging (3.13) into (3.14), we obtain:

2

(
b2t

b2

)′
− 2

(
b1t

b1

)′
=

(
b′′
2

b2

)′
−

(
b′′
1

b1

)′
.

The variables x − u and x + u are independent. Therefore,

2

(
bk t

bk

)′
=

(
b′′

k

bk

)′
, k = 1, 2.

Then

2bk t = b′′
k + c(t)bk, k = 1, 2,

where c(t) is the integration constant. The term with c(t) can be removed by the
substitution b → be

∫
t c(t). �	

The coefficient in front of v0 gives rise to equations for V (x, t) and Ṽ (u(t), t). We
study these equations in the next sections.

3.1 One Simple Zero

Let us first consider the case when b has only a simple zero at u(t). The reason for
this behavior of b(z, t) is partly explained in Section 6.2.

Proposition 3.2 Let b(z, t) satisfy the heat equation

2∂t b(z, t) = ∂2z b(z, t), (3.15)
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and let u be a simple zero of the function b: b(x − u, t) |x=u = 0. Then integrability
condition (3.7) implies that

H = 1

2
u̇2 + V (u), (3.16)

ü = −V ′(u), (3.17)

and

Vt (x) − Vt (u) − 1
2 f (x−u)

(
V ′(x) + V ′(u)

) − fx (x−u) (V (x) − V (u)) = 0,

(3.18)

where f (x) = f (x, t) = bx (x, t)/b(x, t) (for brevity we do not indicate the t-
dependence of f explicitly). In particular, if f (x) = 1

x + c1x + c3x3 + · · · , then

V ′
t = 1

12
V ′′′ + 2c1V ′, (3.19)

1

120
V (5) = 1

2
c1V ′′′ + 24c3V ′, (3.20)

where Vt (u) = ∂t V (u, t).

Proof Direct substitution of b = b(x − u(t), t) into (3.6) together with (3.15) yields

Vt (x) − Ḣ − 1

2
f
(
V ′(x) − ü

) − fx

(
V (x) + 1

2
u̇2 − H

)
= 0.

Locally, f = bx
b ∼ 1

z−u . Therefore, the cancellation of the second-order pole leads to
(3.16). At this stage, we have

Vt (x) − Vt (u) − u̇(ü + V ′(u)) − 1

2
f
(
V ′(x) − ü

) − fx (V (x) − V (u)) = 0.

From the last two terms, it is easy to see that the cancellation of the first-order term
gives (3.17). Substituting (3.17) into the above equation, we get (3.18). The differential
equations (3.19), (3.20) follow from the local expansion of (3.18) near x = u. To be
exact, (3.20) follows from (3.19) and V ′′′

t = 3
40V (5) + 5

2c1V ′′′ + 24c3V ′. �	
In this proof, only the heat equation was used. In what follows, we need some more

properties that follow from the heat equation.

Lemma 3.1 Let b satisfy the heat equation (3.15) and f = ∂x log b. Then

∂t f = 1

2
∂x

(
f 2 + fx

)
= fx f + 1

2
fxx , (3.21)
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∂t fx = fxx f + f 2 + 1

2
fxxx . (3.22)

Suppose also that b is an odd function of x and has a simple zero at x = 0. Then

1

2
fx (x − w) fx (x + w) = ( fx (x − w) + fx (x + w)) fxx (2w)

+ ( f (x + w) − f (x − w)) fxx (2w) − ∂t fx (2w).

(3.23)

Proof The proof of (3.21) and (3.22) is direct. Identity (3.23) is proved via consid-
eration of the local expansion and comparing of the poles taking into account (3.22).

�	

3.2 Two Simple Zeros

Suppose b has two simple poles. Let us derive an analogue of (3.16)–(3.18) for this
case.

Proposition 3.3 Let b = b1(z, t)b2(z, t), and let each factor satisfy the heat equation

2∂t b1,2(z, t) = ∂2z b1,2(z, t). (3.24)

Suppose that b1,2 has a simple zero u1,2: b1,2(x − u1,2, t) |x=u1,2 = 0. Then equation
(3.6) has the following solution:

u1 = −u2, V (u) = V (−u), b1 = b(x − u(t), t), b2 = b(x + u(t), t), (3.25)

H = 1

2
u̇2 + V (u) + 1

2
fx (2u), (3.26)

ü = −V ′(u) − fxx (2u), (3.27)

where b(x, t) is an odd function of x, f = ∂x log b, and the potential satisfies

Vt (x) − Vt (u) − 1
2 f (x−u)

(
V ′(x) + V ′(u)

) − 1
2 f (x+u)

(
V ′(x) − V ′(u)

)

+ ( fx (x−u) + fx (x+u)) (V (u) − V (x)) = 0.

(3.28)

In particular, if f = 1
x + c1x + c3x3 + · · · , then

V ′
t = 1

12
V ′′′ + 1

2
f (2x)V ′′ + (2c1 + fx (2x)) V ′, (3.29)
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V ′′′
t = 3

40
V (5) + 1

2
f (2x)V (4) + 5

2
(c1 + fx (2x)) V ′′′

+9

2
fxx (2x)V ′′ + (24c3 + 3 fxxx (2x)) V ′. (3.30)

Proof The direct substitution leads to

Vt (x) − Ḣ − 1

2

b1,x
b1

(
V ′(x) − ü1

) − 1

2

b2,x
b2

(
V ′(x) − ü2

)

−
(

b1,x
b1

)
x

(
V (x) + 1

2
u̇2
1 − H + 1

2
(u̇1 + u̇2)

b2,x
b2

)

−
(

b2,x
b2

)
x

(
V (x) + 1

2
u̇2
2 − H + 1

2
(u̇1 + u̇2)

b1,x
b1

)

−1

2

(
b1,x
b1

)
x

(
b2,x
b2

)
x

= 0. (3.31)

From cancellation of the second-order poles, we get

H = 1

2
u̇2
1 + V (u1) + 1

2
(u̇1 + u̇2)

b2,x
b2

(u1) + 1

2

(
b2,x
b2

)
x
(u1),

H = 1

2
u̇2
2 + V (u2) + 1

2
(u̇1 + u̇2)

b1,x
b1

(u2) + 1

2

(
b1,x
b1

)
x
(u2). (3.32)

Comparing these two expressions, one can see that (3.25) and (3.26) indeed satisfy
(3.6). Then vanishing of the first-order poles at ±u gives (3.27). Substituting (3.27)
into (3.31), we get

Vt (x) − ∂t

(
V (z) + 1

2
f (2z)

)∣∣∣∣
z=u(t)

−1

2

b1,x
b1

(
V ′(x) + V ′(u) + fxx (2u)

) − 1

2

b2,x
b2

(
V ′(x) − V ′(u) − fxx (2u)

)

+
((

b1,x
b1

)
x
+

(
b2,x
b2

)
x

) (
V (u)−V (x)+ 1

2
fxx (2u)

)

−1

2

(
b1,x
b1

)
x

(
b2,x
b2

)
x

= 0. (3.33)

All terms that do not contain V cancel because of (3.23), andwe get (3.28). Differential
equations (3.29), (3.30) follow from the local expansion of (3.28) near x = u. �	
Remark To investigate the casemore general than (3.25), one should solve the equation
emerging from equality of right-hand sides of (3.32) (see Appendix A).

Notice also that the right-hand side of (3.29) and (3.30) are full derivatives:

V ′
t = ∂x

(
1

12
V ′′ + 2c1V + 1

2
f (2x)V ′

)
,
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V ′′′
t = ∂x

(
3

40
V (4)+ 5

2
c1V ′′+24c3V + 3

2
fxx (2x)V ′+ 3

2
fx (2x)V ′′+ 1

2
f (2x)V ′′′

)
.

In particular, this leads to the following equation:

V (4) − 60c1V ′′ + 60 fxx (2x)V ′ + 60 fx (2x)V ′′ + 24c3V = const(t).

4 Rational Solutions

4.1 The Simplest Case: b = x − u(t)

The simplest possibility is to set

b = x − u(t). (4.1)

We will see that already this case is meaningful and leads to PI and PII equations.
In this case, integrability condition (3.18) turns into

(
Vt (x)−Vt (u)

)
− 1

2(x − u)

(
V ′(x)+V ′(u)

)
+ 1

(x − u)2

(
V (x)−V (u)

)
= 0 (4.2)

or

2(x −u)2
(

Vt (x)−Vt (u)
)
−(x −u)

(
V ′(x)+V ′(u)

)
+2

(
V (x)−V (u)

)
= 0. (4.3)

It should be an identity for all x, u which enter here as independent variables on equal
footing. The way to proceed is to take the third derivative of (4.3) with respect to x .
The result is

2u2V ′′′
t (x) + u

(
V IV(x) − 4xV ′′′

t (x) − 12V ′′
t (x)

)

+ 12V ′
t (x) + 12xV ′′

t (x) + 2x2V ′′′
t (x) − V ′′′(x) − xV IV(x) = 0.

The equality holds identically if the coefficients in front of u2, u, and the free term in
u vanish. This implies the conditions

⎧⎨
⎩

V ′′′
t (x) = 0,

12V ′
t (x) = V ′′′(x).

From the first equation, it follows that Vt (x) is a polynomial in x of second degree
at most, while from the second one, it then follows that V (x) is a polynomial in x of
fourth degree at most. There are three possibilities:

1) V ′
t (x) ≡ 0; then V (x) is a quadratic polynomial V (x) = a2x2+a1x+a0 with ȧ2 =

ȧ1 = 0. Plugging it into equation (4.3), we see that the equation holds identically
for any constants a2, a1, with the irrelevant free term a0 being an arbitrary function
of t . This is the potential for the harmonic oscillator.
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2) V ′′
t (x) ≡ 0; then V (x) is a 3-d degree polynomial V (x) = a3x3+a2x2+a1x +a0

with ȧ3 = ȧ2 = 0. By rescaling and shift of the variable x , we can set a3 =
1, a2 = 0. The free term, a0, is irrelevant since it cancels in equation (4.3).
Plugging the potential in the form V (x) = x3 + a1x into equation (4.3), we get
(x − u)2(2ȧ1 − 1) = 0. Therefore, a1 = t/2, and

V (x) = x3 + t x

2
.

This is, up to a common factor, the potential for the PI equation.
3) V ′′

t (x) �= 0; then V (x) is a 4-th degree polynomial V (x) = a4x4 +a3x3 +a2x2 +
a1x + a0 with ȧ4 = ȧ3 = 0. Again, we can set a4 = 1, a3 = 0, and a0 = 0.
Plugging the potential in the form V (x) = x4 + a2x2 + a1x into equation (4.3),
we get (x2 − u2)(ȧ2 − 1) + ȧ1 = 0. Therefore, a2 = t , a1 = −2α, where α is an
arbitrary constant. Up to a common factor, we obtain the potential

V (x) = x4 + t x2 − 2αx

for the PII equation with the parameter α.

4.2 The Case b = (x − u1(t))(x − u2(t))

Let us make the similar calculations for b = (x − u1(t))(x − u2(t)). Instead of

Vt (x) − Ht − V ′(x) − ü

2(x − u)
+ V (x) − H + u̇2/2

(x − u)2
= 0,

we get, after cancellation of third- and fourth-order poles:

Vt (x) − Ht − 1

2(x − u1)

(
V ′(x) − ü1 − 2

(u1 − u2)3

)

− 1

2(x − u2)

(
V ′(x) − ü2 − 2

(u2 − u1)3

)

+ 1

(x − u1)2

(
V (x) − H + 1

2

u̇1 + u̇2

u1 − u2
+ 1

2
u̇2
1 − 1

2(u1 − u2)2

)

+ 1

(x − u2)2

(
V (x) − H + 1

2

u̇1 + u̇2

u2 − u1
+ 1

2
u̇2
2 − 1

2(u1 − u2)2

)
= 0. (4.4)

Cancellation of the second-order poles at x = u1,2 yields

H = 1

2
u̇2
1 + 1

2

u̇1 + u̇2

u1 − u2
+ V (u1) − 1

2(u1 − u2)2

and

H = 1

2
u̇2
2 + 1

2

u̇1 + u̇2

u2 − u1
+ V (u2) − 1

2(u1 − u2)2
.
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By equating the two “kinetic” terms, we get the following two possibilities:

1) u̇1 + u̇2 = 0, 2) ∂t (u1 − u2)
2 = −4.

In the first case, u1 + u2 = const, and one can shift x in the initial problem to set
u1 = −u2 ≡ u. Therefore, the two possibilities are rewritten as

1)

⎧⎨
⎩

u1 = −u2 ≡ u,

V (u) = V (−u),

2)

⎧⎨
⎩

u1 = u2 + √
c − 4t,

V (u) = V (u − √
c − 4t),

(4.5)

where c is some constant. The second case is given in Appendix A. Here we consider
the first one. In this case, (4.4) leads to integrability condition (3.28):

Vt (x) − Vt (u) − 1

2(x − u)

(
V ′(x) + V ′(u) − 2

V (x) − V (u)

x − u

)

− 1

2(x + u)

(
V ′(x) − V ′(u) − 2

V (x) − V (u)

x + u

)
= 0,

or, equivalently,

2(x2 − u2)2(Vt (x) − Vt (u)) − (x + u)(x2 − u2)
(
V ′(x) + V ′(u)

)
− (x − u)(x2 − u2)

(
V ′(x) − V ′(u)

) + 4(x2 + u2)(V (x) − V (u)) = 0. (4.6)

Since the maximal degree of x in (4.6) is 4, the differential operator ∂5X applied to
this equation kills all terms containing V (u), and we are left with

∂5X

[
(x2 − u2)2Vt (x) − x(x2 − u2)V ′(x) + 2(x2 + u2)V (x)

]
= 0.

Equating the coefficients in front of u4, u2, and u0 to zero, we get the following
conditions:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂5x Vt (x) = 0,

∂5x

[
−2x2Vt (x) + xV ′(x) + 2V (x)

]
= 0,

∂5x

[
x4Vt (x) − x3V ′(x) + 2x2V (x)

]
= 0.

They mean that the expressions in the square brackets are polynomials in x of at most
fourth degree:

Vt (x) = P4(x),

−2x2Vt (x) + xV ′(x) + 2V (x) = Q4(x),

x4Vt (x) − x3V ′(x) + 2x2V (x) = R4(x).
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Combining these conditions, we find that x2V (x) must be a polynomial of at most
8-th degree such that its highest and lowest coefficients do not depend on t . We also
recall that it must contain only even powers of x . So we can write

V (x) = μx6 + a4x4 + a2x2 + a0 + ν

x2
, μ̇ = ν̇ = 0.

Plugging this potential back into equation (4.6), we obtain

(x4 − u4)(x2 − u2)(ȧ4 − 4μ) + (x2 − u2)2(ȧ2 − 2a4) = 0.

The solution is a4 = 4μt + α4, a2 = 4μt2 + 2α4t + α2, with integration constants
α4, α2, and a0 is arbitrary. There are three cases:
1) μ �= 0 (the case of general position); then one can set it equal to 1 by rescaling

and set α4 = 0 by a shift of the t-variable. Then the potential acquires the form

V (x, t) = x6 + 4t x4 + (4t2 + α2)x2 + a0(t) + ν

x2
. (4.7)

This is the potential for the PIV equation.
2) μ = 0 but α4 �= 0; then one can set α4 equal to 1 by rescaling and set α2 = 0 by

a shift of the t-variable. The potential is

V (x, t) = x4 + 2t x2 + a0(t) + ν

x2
.

It generates the equation

ü = −4u3 − 4tu + 2ν

u3 .

The change of the dependent variable u → y such that u2 + y2 + 1
2 ẏ + t = 0 (a

version of a similar change in [17, section14.331]) brings the equation to the form
ÿ = 8y3 + 8t y + √−32ν − 2, which is equivalent to the PII equation.

3) μ = α4 = 0; then

V (x, t) = α2x2 + ν

x2
+ a0(t).

This gives the exactly solvable rational 2-particle Calogero model in the harmonic
potential. The x-independent term a0(t) is irrelevant.

5 Hyperbolic Solutions

5.1 The Case b = et/2 sinh(x − u(t))

Let us consider the case when b is a trigonometric (hyperbolic, to be exact) function
with one simple zero in the strip of periodicity:

b = et/2 sinh(x − u(t)).
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We will see that it leads to the PIII equation. Since b satisfies the heat equation (3.15),
Proposition 3.2 can be applied. The integrability condition (3.18) with bx

b = coth(x)

becomes

2 sinh2(x − u)
(

Vt (x) − Vt (u)
)

− sinh(x − u) cosh(x − u)
(

V ′(x) + V ′(u)
)

+2
(

V (x) − V (u)
)

= 0.

(5.1)

Let us make the change of variables V → V , x → X , u → U such that

V (x) ≡ e−4xV(e2x ), X = e2x , U = e2u;

then equation (5.1) is rewritten as

(X − U )2
(

U 2Vt (X) − X2Vt (U )
)

− U X (X2 − U 2)
(
UV ′(X) + XV ′(U )

)

+ 2(X2 − U 2)
(

U 2V(X) + X2V(U )
)

+ 4U X
(

U 2V(X) − X2V(U )
)

= 0. (5.2)

Since the maximal degree of X here equals 4, the differential operator ∂5X applied to
this equation kills all terms containing V(U ), and we are left with

∂5X

[
(X − U )2Vt (X) − X (X2 − U 2)V ′(X) + 2(X2 − U 2 + 2U X)V(X)

]
= 0.

Equating the coefficients in front of U 2, U 1, and U 0 to zero, we get the following
conditions:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂5X

[
Vt (X) + XV ′(X) − 2V(X)

]
= 0,

∂5X

[
−XVt (X) + 2XV(X)

]
= 0,

∂5X

[
X2Vt (X) − X3V ′(X) + 2X2V(X)

]
= 0.

They mean that the expressions in the square brackets are polynomials in X of at most
fourth degree:

Vt (X) + XV ′(X) − 2V(X) = P4(X),

−XVt (X) + 2XV(X) = Q4(X),

X2Vt (X) − X3V ′(X) + 2X2V(X) = R4(X). (5.3)

Combining these conditions, we obtain that X2V ′(X) and X2Vt (X) are polynomials of
at most 5-th and 6-th degrees, respectively. It is easy to see that the former polynomial
must be divisible by X2. Indeed, let it be X2V ′(X) = X2P3(X) + p1X + p0 with
some nonzero p0,1. Then the first equation in (5.3) implies p0 = 0 (otherwise the left-
hand side contains a nonpolynomial term ∝ X−1) and the second equation multiplied
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by X implies p1 = 0 (otherwise the left-hand side contains a nonpolynomial term
∝ X2 log X ). Therefore, we conclude that V ′(X) is a polynomial of at most third
degree, and, thus, V(X) itself is a polynomial of at most fourth degree:

V(X) = a4X4 + a3X3 + a2X2 + a1X + a0.

Let us plug it in equation (5.2). After simple transformations, we obtain the relation

(X − U )(X2 − U 2)(ȧ4 − 2a4) + (X − U )2(ȧ3 − a3)

− (X − U )2

U X
(ȧ1 − a1) − (X − U )(X2 − U 2)

U 2X2 (ȧ0 − 2a0) = 0.

It must be satisfied identically for all X, U . This implies ȧ4 = 2a4, ȧ3 = a3, ȧ1 = a1,
ȧ0 = 2a0, and no condition for a2. Therefore, the potential V (x, t) is fixed to be

V (x, t) = α1e2t+4x + α2e2t−4x + α3et+2x + α4et−2x + a(t),

where αi are arbitrary constants. This is precisely the potential for the PIII equation.

5.2 The Case b = et sinh(x − u(t)) sinh(x + u(t))

In this case, b = (
et/2 sinh(x − u)

) (
et/2 sinh(x + u)

)
. Each of the multiples satisfies

the heat equation (3.24). Therefore, Proposition 3.3 can be applied. Then equation
(3.28) assumes the form

Vt (x)−Vt (u)− 1

2
coth(x − u)

(
V ′(x) + V ′(u)

)
− 1

2
coth(x + u)

(
V ′(x)−V ′(u)

)

+
(

V (x) − V (u)
)( 1

sinh2(x − u)
+ 1

sinh2(x + u)

)
= 0.

Multiplying by 32 sinh2(x − u) sinh2(x + u) and making change of variables X =
cosh2(x), y = coth2(u), we get

(X y − X − y)2(Vt (X) − Vt (y)) − 2X (X − 1)(y − 1)(X y − X − y)V ′(X)

+2y(y − 1)(X y − X − y)V ′(y) + 2(y − 1)(X y + X − y)(V (X) − V (y)) = 0.

Now one can apply the calculation method similar to the previous cases. That is to
take the third derivative with respect to X and analyze the differential equations (the
later equations appear as the coefficients behind different powers of y). This analysis
gives the potential of the Painlevé V equation after some tedious evaluations. Instead
of proceeding in this manner, let us simplify the problem by assuming that the solution
is a sum of terms of the form V (x) = ektv(X). Making this substitution, one gets:

k(X y − X − y)2(v(X) − v(y)) − 2X (X − 1)(y − 1)(X y − X − y)v′(X)

+2y(y − 1)(X y − X − y)v′(y) + 2(y − 1)(X y + X − y)(v(X) − v(y)) = 0.
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Wewill see that nontrivial solutions exist for k = 0, 2, 4. The way to proceed is to take
the third derivative of the expression with respect to X . The equality holds identically
if the coefficients in front of y2, y and the free term in y vanish. This implies the
following conditions:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X (X − 1)v′′′(X) + 3(2X − 1)v′′(X) + 3(2 − k)v′(X) = 0,

X (X − 1)v(4)(X) + 4(2X − 1)v′′′(X) + 3(4 − k)v′′(X) = 0,

kv′′′(X) = 0.

(5.4)

Consider the last equation. If k = 0, one gets

v(X) = c1
X

+ c2
X − 1

+ c3 = c̃1
sinh2 x

+ c̃2
cosh2 x

+ c̃3,

else v′′′(X) = 0. The later case leads to (k − 4)v′′(X) = 0 (from the second equation
in (5.4)). Then, k = 4 or v′′(X) = 0. In the latter case, one gets (k − 2)v′(X) = 0
(from the first equation in (2.4)). In this way, one can easily recover the potential of
the Painlevé V equation (2.4):

V (x, t) = −2(ξ + σ)2

sinh2 x
+ 2ζ 2

cosh2 x
+ e2t

2
(2σ − 1) cosh(2x) − e4t

16
cosh(4x).

6 Elliptic Solutions

6.1 The Case b = ϑ1(x − u(t), 2π i t)

Consider an elliptic curve with moduli τ = 2π i t ,

�τ : C/Z + Zτ,

and let b = ϑ1(x − u(t), 2π i t). Definitions and properties of elliptic functions are
given in Appendix B. Then from (3.18), we have

Vt (x) − Vt (u) − 1

2
E1(x − u)(V ′(u) + V ′(x)) + E2(x − u) (V (x) − V (u)) = 0.

We will show that this equation has only trivial solutions V (x, t) = f (t). For this
purpose, consider the same equation at x +τ and subtract it from the initial one. Then,
using the behavior of E1(z) (B.1) and E2(z) (B.2) on the torus lattice, we get

Vt (x + τ) − Vt (x) − 1

2
E1(x − u)(V ′(x + τ) − V ′(x))

+E2(x − u)(V (x + τ) − V (x)) + π i(V ′(u) + V ′(x + τ)) = 0. (6.1)
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Let us now differentiate the obtained equality with respect to x :

V ′
t (x + τ) − V ′

t (x) − 1

2
E1(x − u)(V ′′(x + τ) − V ′′(x)) + π iV ′′(x + τ)

+3

2
E2(x − u)(V ′(x + τ) − V ′(x)) + E ′

2(x − u)(V (x + τ) − V (x)) = 0. (6.2)

Similarly, let us shift the argument u → u + τ in the equation (6.2) and subtract it
from (6.2) itself (keeping in mind that E ′

2 is the double-periodic function). This gives

V ′′(x + τ) − V ′′(x) = 0

or

V (x + τ) − V (x) = a(τ )x + b(τ ).

Plugging this back into (6.1), one can easily get that a(τ ) = b(τ ) = 0 by analyzing
coefficients behind the poles at x − u of the second and the first orders. Therefore, the
potential should be a double-periodic function. If it is, then (6.1) reduces to

∂t (V (x + τ) − V (x)) + π i(V ′(u) − V ′(x)) = 0,

since ∂t (V (x + τ)− V (x)) = Vt (x + τ)− Vt (x)+ 2π iV ′(x + τ). The latter equation
should hold for all x and u. Then the only solution is

V (x, t) = f (t).

6.2 The Case b = ϑ1(x − u(t), 2π i t)ϑ1(x + u(t), 2π i t)

Equation (3.28) in this case has the form

Vt (x) − Vt (u) − 1

2
E1(x−u)(V ′(u) + V ′(x)) − 1

2
E1(x+u)(−V ′(u) + V ′(x))

+(E2(x−u) + E2(x+u))(V (x) − V (u)) = 0. (6.3)

Let us make a change of variables:

X (x, t) = ℘(x) − e1
e2 − e1

, Q(u, t) = ℘(u) − e1
e2 − e1

, T (t) = e3 − e1
e2 − e1

.

Then

E1(x + u) + E1(x − u) = 2E1(x) + ℘′(x)

℘ (x) − ℘(u)
= 2E1(x) + Xx

X − Q
,

E1(x + u) − E1(x − u) = 2E1(u) + ℘′(u)

℘ (u) − ℘(x)
= 2E1(x) − Qu

X − Q
,
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E2(x + u) + E2(x − u) = 2E2(u) + Quu

X − Q
+ Q2

u

(X − Q)2
.

Therefore, equation (6.3) is written as

(VT (X) − VT (Q))Tt + VX (X)Xt − VQ(Q)Qt

−1

2
VX (X)Xx

(
2E1(x) + Xx

X − Q

)
+ 1

2
VQ(Q)Qu

(
2E1(u) − Qu

X − Q

)

+
(
2 [2η1 + e1 + (e2 − e1)Q] + Quu

X − Q
+ Q2

u

(X − Q)2

)
(V (x) − V (u)) = 0.

It follows from (B.8) that

Xt − Xx E1(x) = Xx (E1(x + ω3)−E1(x)−E1(ω3)) = 1

2
Xx

℘′(x)

℘ (x) − ℘(ω3)

= 1

2

X2
x

X − T
.

Therefore,

(VT (X) − VT (Q))Tt + VX (X)
1

2

X2
x

X − T
− VQ(Q)

1

2

Q2
u

Q − T

−1

2
VX (X)

X2
x

X − Q
− 1

2
VQ(Q)

Q2
u

X − Q

+
(
2 [2η1 + e1 + (e2 − e1)Q] + Quu

X − Q
+ Q2

u

(X − Q)2

)
(V (x) − V (u)) = 0.

(6.4)

Now let us proceed as in the previous examples. First, multiply (6.4) by (X − Q)2.
Secondly, take the third derivative with respect to X . This excludes V (Q). Thirdly,
substitute Q2

u = 4(e2 − e1)Q(Q −1)(Q − T ) and Quu = 2(e2 − e1)(3Q2 −2Q(T +
1)+T ). Then, the coefficients in front of Q2, Q1, and Q0 should vanish independently:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

F + 2V (X)(2η1 + e1 + X (e2 − e1)) = P2(X),

−2X F + 1
2VX (X)X2

x

+2V (X)(X2(e2 − e1) + 4X (e1 − η1) + T (e2 − e1)) = Q2(X),

X2F − 1
2VX (X)X2

x X + 2V (X)((2η1 + e1)X2 + (e2 − e1)XT ) = R2(X),

(6.5)
where P2(X), Q2(X), R2(X) are the second-order polynomials in X with time-

dependent coefficients and F = VT (X)Tt + VX (X) 12
X2

x
X−T .

Excluding F from the twoupper equations in (6.5),weobtain the following equality:
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VX (X)X (X −1)(X −T ) + V (X)
(

X (X −1) + X (X −T ) + (X −1)(X −T )
)

= 1

e2 − e1

(1
2

Q2(X) + X P2(X)
)
.

General solution of the latter equation has a form:

V (X)= 1

X (X −1)(X −T )

∫ X

d Z
1

e2−e1

(1
2

Q2(Z)+Z P2(Z)
)
= H4(X)

X (X −1)(X −T )
,

where H4(X) are the forth-order polynomials in X with time-dependent coefficients.
Therefore, V (X) can be presented as

V (X) = a(T )X + b(T )

X
+ c(T )

X − 1
+ d(T )

X − T
+ h(T ). (6.6)

The last term h(T ) is not fixed by (6.3); i.e., h(T ) is arbitrary.
Plugging (6.6) into (6.4) and multiplying the result by (X − Q)X (X − 1)(X −

T )Q(Q − 1)(Q − T ), we get a polynomial function in X and Q. The coefficients in
front of Qk X j provides differential equations. It can be verified that all of them are
equivalent to the following system:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

aT (T )T (T − 1)(e2 − e1) + a(T )(e3 + 2η1) = 0,

bT (T )T (T − 1)(e2 − e1) + b(T )(e2 + 2η1) = 0,

cT (T )T (T − 1)(e2 − e1) + c(T )(e1 + 2η1) = 0,

dT (T )T (T − 1)(e2 − e1) + d(T )(−2e3 + 2η1) = 0.

Its solutions (see (B.6)–(B.7)) are

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a(T ) = α(e2 − e1), α = const,

b(T ) = β(e2 − e1)T, β = const,

c(T ) = γ (e2 − e1)(T − 1), γ = const,

d(T ) = δ(e2 − e1)T (T − 1), δ = const.

(6.7)

Then, in view of (B.5), we have

V (x) = α℘(x) + β℘(x + ω1) + γ℘(x + ω2) + δ℘ (x + ω3) + h(t). (6.8)

This is the potential of the Painlevé VI equation in the elliptic form [18,36,53,
60] (see also [32,50] and [9]). We remark that the nonstationary Lamé equation in
connection with the PVI equation (and with the 8-vertex model) was discussed in [4].
Recently, the nonstationary Lamé equation has appeared [10,37–40] in the context
of the AGT conjecture. The results of [38–40] allow one in principle to construct
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higher Painlevé equations4 in terms of 2x2 linear problems related to spin chains via
spectral duality transformation. We are going to study this possibility in our future
publications.

Acknowledgments We are grateful to A. Morozov for discussions. The work was supported in part by
Ministry of Science and Education of Russian Federation under contract 8207. The work of A. Zabrodin
was also supported in part by RFBRGrant 11-02-01220, by joint RFBRGrants 12-02-91052-CNRS, 12-02-
92108-JSPS, byGrant NSh-3349.2012.2 for support of leading scientific schools. Thework of A. Zotovwas
also supported in part by RFBR-12-01-00482, RFBR-12-01-33071 mol_a_ved, by the Russian President
fund MK-1646.2011.1 and by the “Dynasty” fund.

Appendix A: Special Cases

b = (x − u(t))eg(t)x and b = (x − u(t))eg(t)x2

Let b = (x − u(t))eg(t)x . The calculation similar to the one leading to (4.2) gives in
this case

Vt (x)−Vt (u)− V ′(x) + V ′(u)

2(x − u)
+ V (x)−V (u)

(x − u)2
− g̈

2
(x −u)− g

2

(
V ′(x)−V ′(u)

) = 0

(A.1)
and

H = 1

2

(
u̇ + g

2

)2 + V (u, t) − 1

2
uġ + 1

8
g2, (A.2)

with equation of motion

ü = −V ′(u).

It is easy to see that equation (A.1) becomes equivalent to (4.2) for the potential
Ṽ (x̃) after the change of variables

x → x̃ = x − 1

2
G(t), V (x) → Ṽ (x) = V

(
x − 1

2
G(t)

)
− ġ

2
x,

where Ġ = g. Notice also that the dependence H(u̇) in (A.2) can be obtained from
(3.10) via the local expansion (3.8). The later gives b1 = eug and b2 = g eug . Then
v = u̇ + g

2 .

Consider now the case b = (x −u(t))eg(t)x2 . Let us perform the calculation similar
to the one leading to (4.2) again. In this case, we have:

Vt (x) − Vt (u) − V ′(x) + V ′(u)

2(x − u)
+ V (x)−V (u)

(x − u)2
− 2g (V (x)−V (u))

−g
(

xV ′(x) + uV ′(u)
)

+ (x2 − u2)

[
3gġ − 1

2
g̈ − 2g3

]
= 0 (A.3)

4 See also [42,48] and [52].
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and

H = 1

2
(u̇ + gu)2 + V (u, t) + 1

2
(g2 − ġ)u2 + 3

2
g, (A.4)

with equation of motion

ü = −V ′(u).

As in the previous example, it can be shown that equation (A.3) becomes equivalent
to (4.2) for the potential Ṽ (x̃) after the following change of variables:

x → x̃ = αx = x e
∫

t g(t), α = e
∫

t g(t),

V (x) → Ṽ (x) = α2
(

V (αx) − x2
(

g2 −
∫

t

g̈ − 2gġ

2α2

))

= e2
∫

t g(t)
(

V (x e
∫

t g(t)) − x2
(

g2 −
∫

t

[
e−2

∫
t g(t)

(
1

2
g̈ − gġ

)]))
.

Notice also that the dependence H(u̇) in (A.4) can be obtained from (3.10) via the
local expansion (3.8). The latter gives b1 = egu2 and b2 = 2gu egu2 . Then v = u̇+gu.

b = (x − u1(t))(x − u2(t))(x − u3(t))

When b = (x − u1)(x − u2)(x − u3), the coefficients behind the second-order pole
1

(x−u1)2
in (3.6) have the following form:

V (x, t) − H + 1

2
u̇2
1 + 1

2

u̇1 + u̇2

u1 − u2
+ 1

2

u̇1 + u̇3

u1 − u3
− 1

2

1

(u1 − u2)2
− 1

2

1

(u1 − u3)2

+1

2

1

(u1 − u2)(u1 − u3)
,

and two other coefficients can be obtained by the cyclic permutations. All three coeffi-
cients cannot vanish simultaneously. Therefore, some other anzats for W (3.2) should
be used in this case. This reflects the fact that (3.1)–(3.2) imply the one degree of
freedom case.

b = (x − u1(t))γ and b = (x − u1(t))γ1(x − u2(t))γ2

Let us study the case b = (x − u1(t))γ , where γ ∈ C
∗ (the case γ = 0 is trivial).

Notice that under change b → bγ the functions f (3.4) and S (3.5) transform as
follows:

f = bx

b
−→ γ

bx

b
,

S −→ V − H − 1

2
γ

bt

b
+ 1

2
γ

bxx

b
+ 1

2

(
1

4
γ 2 − γ

) (
bx

b

)2

.
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For the case under consideration, we have f = γ 1
x−u and

S = V − H + γ

2
u̇

1

x − u
+ 1

2

(
1

4
γ 2 − γ

)
1

(x − u)2
.

Substituting it into (3.6), we obtain the following condition for cancellation of the
fourth- and the third-order poles:

(x − u)−4 : 0 = 1

4
γ (γ 2 − 4γ + 3),

(x − u)−3 : u̇

(
1

4
γ 2 − γ

)
= −3

4
γ 2u̇.

The first equation gives γ = {0, 1, 3}, while the second one γ = {0, 1}. Therefore,
the nontrivial solution is

γ = 1.

Similarly, the case b = (x − u1(t))γ1(x − u2(t))γ2 leads to the following conditions:

(x − u1)
−4 : 1

4γ1(γ
2
1 − 4γ1 + 3) = 0,

(x − u1)
−3 : 1

2
γ1(γ1−1)

u1−u2
(2u̇1(u1 − u2) + γ2) ,

(x − u2)
−4 : 1

4γ2(γ
2
2 − 4γ2 + 3) = 0,

(x − u2)
−3 : 1

2
γ2(γ2−1)

u2−u1
(2u̇2(u2 − u1) + γ1) ,

which give

γ1 = γ2 = 1.

b = exp
(

(z/u(t))γ
)

First, it can be shown that γ = 0, 1, 2, 3...
Consider γ = 1. Substituting b(z, u(t), t) = exp(z/u(t)) into (3.6), we get

(
− u̇2

u3 + 1

2

ü

u2

)
x + Vt − Ht − 1

2

u̇

u3 − 1

2u
V ′

x = 0. (A.5)

Applying ∂2x gives

V ′′
t − 1

2u
V ′′′ = 0.

Notice that the function U (z, u̇, u, t) satisfies the same equation even if we do not
impose the condition U = V (x, t) − H(u̇, u, t). Under assumption U = V (x, t) −
H(u̇, u, t), we have
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V ′′′ = V ′′
t = 0.

This leads to

V (x, t) = α

2
x2 + b(t)x + c(t), α = const.

Plugging it back into (A.5), we obtain the following two equations (as coefficients
behind x1 and x0):

⎧⎨
⎩

ü = 2 u̇2
u − 2ḃu2 + αu,

Ht = 1
2

u̇2

u3
+ ċ − 1

2u b.

Case 2 in (4.5)

Here it may be useful to use variable u = u1 − 1
2

√
c − 4t (then u̇ = u̇1 + 1√

c−4t
).

Then

H = 1

2

(
u̇1 + 1√

c − 4t

)2

+ V (u1) = 1

2
u̇2 + V

(
u + 1

2

√
c − 4t

)
, (A.6)

and, therefore,

Vt (x) − Ht − 1

2(x − u1)

(
V ′(x) − ü1 − 2(c − 4t)−

3
2 − 2

V (x) − V (u1)

x − u1

)

− 1

2(x − u2)

(
V ′(x) − ü2 + 2(c − 4t)−

3
2 − 2

V (x) − V (u2)

x − u2

)
= 0

Cancellation of the first-order poles at x = u1,2 yields ü1 = −V ′(u1) − 2(c − 4t)− 3
2 .

On this equation, Ht = Vt (u1) − V ′(u1)
1√

c−4t
. Thus we arrive at

Vt (x)−Vt (u1)+V ′(u1)
1√

c − 4t
− 1

2(x − u1)

(
V ′(x)+V ′(u1) − 2

V (x)−V (u1)

x − u1

)

− 1

2(x − u2)

(
V ′(x) + V ′(u1) − 2

V (x) − V (u2)

x − u2

)
= 0. (A.7)

By analogy with (4.7), we get

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

VV
t (x) = 0,

−20V IV
t (x) + VVI(x) = 0,

−13VV(x) + 120V III
t (x) = 0,

V IV(x) − 6V II
t (x) = 0,

6∂z Vt (x) − V III(x) +
(

− 16
13 t + 4

13

)
V III

t (x) = 0.

(A.8)
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From the two upper equations, it follows that V (x) is the 6-th degree polynomial.
Plugging it into (A.8) drops the degree to 4 (similar to thePainlevé I, II cases).However,
after substituting it back into (A.7), we get only the trivial solution

V (x, t) = f (t).

Appendix B: Elliptic Functions

Here we give a short version of the Appendix in [58].

Theta-functions

The Jacobi’s theta-functions ϑa(z) = ϑa(z|τ), a = 0, 1, 2, 3, are defined by the
formulas

ϑ1(z) = −
∑
k∈Z

exp

(
π iτ

(
k + 1

2

)2

+ 2π i

(
z + 1

2

) (
k + 1

2

))
,

ϑ2(z) =
∑
k∈Z

exp

(
π iτ

(
k + 1

2

)2

+ 2π i z

(
k + 1

2

))
,

ϑ3(z) =
∑
k∈Z

exp
(
π iτk2 + 2π i zk

)
,

ϑ0(z) =
∑
k∈Z

exp

(
π iτk2 + 2π i

(
z + 1

2

)
k

)
,

where τ is a complex parameter (the modular parameter) such that Im τ > 0. Set

ω0 = 0, ω1 = 1

2
, ω2 = 1 + τ

2
, ω3 = τ

2
;

then the function ϑa(z) has simple zeros at the points of the lattice ωa−1 + Z + Zτ

(here ωa ≡ ωa+4).

Weierstrass ℘-function

The Weierstrass ℘-function is defined as

℘(z) = −∂2z logϑ1(z) − 2η,

where

η = − 1

6

ϑ
′′′
1 (0)

ϑ ′
1(0)

= − 2π i

3
∂τ log θ ′

1(0|τ).
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Its derivative is given by

℘′(z) = − 2 (ϑ ′
1(0))

3

ϑ2(0)ϑ3(0)ϑ0(0)

ϑ2(z)ϑ3(z)ϑ0(z)

ϑ3
1 (z)

.

The values at the half-periods

e1 = ℘(ω1), e2 = ℘(ω2), e3 = ℘(ω3)

have special properties. For example, e1 + e2 + e3 = 0. The differences e j − ek can
be represented in two different ways:

e1 − e2 = π2ϑ4
0 (0) = 4π i ∂τ log

ϑ3(0)

ϑ2(0)
,

e1 − e3 = π2ϑ4
3 (0) = 4π i ∂τ log

ϑ0(0)

ϑ2(0)
,

e2 − e3 = π2ϑ4
2 (0) = 4π i ∂τ log

ϑ0(0)

ϑ3(0)
.

The second representation is a consequence of the heat equation (B.3) (see below):

ek = 4π i ∂τ

(1
3
logϑ ′

1(0) − logϑk+1(0)
)

or
π i ∂τ log(e j − ek) = −el − 2η,

where { jkl}—any cyclic permutation of {123}. The℘-function satisfies the differential
equation

(℘′(z))2 = 4(℘ (z) − e1)(℘ (z) − e2)(℘ (z) − e3).

We also mention the formulae

℘(z) − ek = (ϑ ′
1(0))

2

ϑ2
k+1(0)

ϑ2
k+1(z)

ϑ2
1 (z)

.

Eisenstein functions and �-function

By definition,

E1(z) = ∂z logϑ1(z), E2(z) = −∂z E1(z) = −∂2z logϑ1(z) = ℘(z) + 2η.

Behavior on the lattice:

E1(z + 1) = E1(z), E1(z + τ) = E1(z) − 2π i, (B.1)

E2(z + 1) = E2(z), E2(z + τ) = E2(z). (B.2)
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The local expansion near z = 0:

E1(z) = 1

z
− 2ηz + · · · , E2(z) = 1

z2
+ 2η + · · ·

Values at half-periods:

E1(ω j ) = −2π i∂τω j ,

and, therefore,

E1(ω j ) + E1(ωk) = E1(ω j + ωk)

holds true for any different j, k = 1, 2, 3.
Another useful function is

�(u, z) = ϑ1(u + z)ϑ ′
1(0)

ϑ1(u)ϑ1(z)
.

It has the following properties:

�(u, z) = �(z, u),

�(−u,−z) = −�(u, z),

�(u, z)�(−u, z) = ℘(z) − ℘(u),

�(u, z)�(w, z) = �(u + w, z)(E1(z) + E1(u) + E1(w) − E1(z + u + w)),

�(u, z) = 1

z
+ E1(u) + z

2
(E2

1(u) − ℘(u)) + O(z2),

∂z�(u, z) = �(u, z)(E1(u + z) − E1(z)).

Behavior on the lattice:

�(u, z + 1) = �(u, z), �(u, z + τ) = e−2π iu�(u, z).

Is is also convenient to introduce

ϕ j (z) = e2π i z∂τ ω j �(z, ω j ), j = 1, 2, 3,

with properties:

ϕ2
j (z) = ℘(z) − e j , ϕ2

j (z) − ϕ2
k (z) = ek − e j ,

ϕ j (z)ϕk(z) = ϕl(z)(E1(z) + E1(ωl) − E1(z + ωl)),

∂zϕ j (z) = ϕ j (z)
[

E1(z + ω j ) − E1(ω j ) − E1(z)
]

= −ϕk(z)ϕl(z),

where j, k, l is any cyclic permutation of 1, 2, 3.
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Heat equation and related formulae

All the theta-functions satisfy the “heat equation”

4π i∂τϑa(z|τ) = ∂2z ϑa(z|τ) (B.3)

or

2∂tϑa(z) = ∂2z ϑa(z) t = τ

2π i
.

One can also introduce the “heat coefficient” κ = 1

2π i
and rewrite the heat equation

in the form ∂τϑa(z|τ) = κ

2
∂2z ϑa(z|τ). All formulas for derivatives of elliptic functions

with respect to the modular parameter are based on the heat equation.
The τ -derivatives are given by the following:

Proposition B.1 The identities

∂τ�(z, u) = κ∂z∂u�(z, u), (B.4)

∂τ E1(z) = κ

2
∂z(E2

1(z) − ℘(z)),

∂τ E2(z) = κ E1(z)E ′
2(z) − κ E2

2(z) + κ

2
℘′′(z),

with the “heat coefficient” κ = 1

2π i
, hold true.5

The proof can be found in [58].
Introduce now

X (x, t) = ℘(x) − e1
e2 − e1

, T (t) = e3 − e1
e2 − e1

=
(

ϑ3(0|τ)

ϑ0(0|τ)

)4

.

Then we have

X = ℘(x) − e1
e2 − e1

, X −1 = ℘(x) − e2
e2 − e1

, X −T = ℘(x) − e3
e2 − e1

,

and, therefore,

(
∂ X

∂x

)2

= 4(e2 − e1) X (X − 1)(X − T ),

∂2X

∂x2
= 2(e2 − e1) X (X − 1)(X − T )

(
1

X
+ 1

X − 1
+ 1

X − T

)
.

5 (B.4) was obtained in [31,50].
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Let us give some more relations:

(e2 − e1)T

X
= ℘(x + ω1) − e1,

− (e2 − e1)(T − 1)

X − 1
= ℘(x + ω2) − e2,

(e2 − e1)T (T − 1)

X − T
= ℘(x + ω3) − e3, (B.5)

∂T

∂t
= 2(e2 − e1)T (T − 1), (B.6)

∂T (e2 − e1) = ∂t (e2 − e1)
1

Tt
= − e3 + 2η1

T (T − 1)
. (B.7)

The following identity holds true6:

∂ X

∂t
= ∂ X

∂x

ϑ ′
0(x)

ϑ0(x)

or
∂τ X = κ∂z X (E1(z + ω3) − E1(ω3)) = κ ∂z X ∂z log θ0(z). (B.8)

Appendix C: U−V pairs for PI–PV

Here we list the U−V pairs for PI–PV satisfying zero curvature equation (1.2) and
admitting the quantum Painlevé–Calogero correspondence. The PVI case is too com-
plicated. In principle, it is gauge equivalent to different types of known elliptic 2 × 2
U−V pairs (see [32,60]) which are in their turn related by Hecke transformations
[33,34].
Painlevé I

4ü = 6u2 + t,

HI(p, u) = p2

2
− u3

2
− tu

4
,

U(x, t) =
⎛
⎝ u̇ x − u

x2+xu+u2+ 1
2 t −u̇

⎞
⎠ , V(x, t) =

⎛
⎝ 0 1

2

1
2 x + u 0

⎞
⎠ .

Painlevé II

ü = 2u3 + tu − α,

HII(p, u) = p2

2
− 1

2

(
u2 + t

2

)2

+ αu,

6 This formula was proved by K.Takasaki in [49] by comparison of analytic properties of both sides. In
[58], the proof was given by a direct computation.
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U =
(

x2 + u̇ − u2 x − u
(x + u)(2u2−2u̇+t)−2α−1 −x2−u̇+u2

)
,

V =
( x+u

2
1
2

u2−u̇+ t
2 − x+u

2

)
.

Painlevé III

2ü = et (αe2u + βe−2u) + e2t (γ e4u + δe−4u),

HIII(p, u) = p2

2
− ν2et cosh(2u − 2�) − μ2e2t cosh(4u),

U11 = u̇e2u−2x + θ
(
1 − e2u−2x

)
+ 1

2

(
e2x+t − e2u−2x − e4u+t−2x + 1

)
,

U12 = e
t
2

(
e−u+x − eu−x

)
,

U21 = u̇2eu− t
2−3x

(
e2x +e2u

)
−u̇eu− t

2−3x
(

e2x +e2u+t+2x +(1+2θ)e2u + e4u+t
)

+θ2
(
−eu− t

2−x + e3u− t
2−3x

)
+ θ

(
e3u− t

2−3x + e5u+ t
2−3x

)
+ 4λe−u+ t

2−x

−4χ
(

e−3u+ 3t
2 −x + e−u+ 3t

2 −3x
)

+1

4

(
eu− t

2−x + 2e3u+ t
2−x + e5u+ 3t

2 −x + e3u− t
2−3x + 2e5u+ t

2−3x + e7u+ 3t
2 −3x

)
.

V11 = −1

2
u̇
(

e2u−2x +1
)
+ θ

2

(
1+e2u−2x

)
+ 1

4

(
e2x+t +e2u−2x +e4u+t−2x +1+2e2u+t

)
,

V12 = 1

2
e

t
2

(
e−u+x + eu−x

)
,

V21= 1

2
u̇2eu− t

2−3x
(

e2x −e2u
)
− 1

2
u̇eu− t

2−3x
(

e2x +e2u+t+2x −(1 + 2θ)e2u −e4u+t
)

−θ2

2

(
eu− t

2−x + e3u− t
2−3x

)
− θ

2

(
e3u− t

2−3x + e5u+ t
2−3x

)
+ 2λe−u+ t

2−x

−2χ
(

e−3u+ 3t
2 −x − e−u+ 3t

2 −3x
)

+1

8

(
eu− t

2−x + 2e3u+ t
2−x + e5u+ 3t

2 −x − e3u− t
2−3x − 2e5u+ t

2−3x − e7u+ 3t
2 −3x

)
.

Notice that an interesting equation holds:

∂x

(
U21e2x

)
= 2

(
V21e2x

)

(in this case X = e2x ). Therefore, some relation exists betweenU21 andV21 elements
just as for (12)-elements. For example, for PII we have ∂xU21 = 2V21.

Truncated Painlevé III [2]: ü = 2ν2et sinh(2u)

U(x, t) =
(

u̇ 2νet/2 sinh(x − u)

2νet/2 sinh(x + u) −u̇

)
,

V(x, t) =
(

0 νet/2 cosh(x − u)

νet/2 cosh(x + u) 0

)
.
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Painlevé IV

ü = 3

4
u5 + 2tu3 + (t2 − α)u + β

2u3 ,

H (α,β)
IV (p, u) = p2

2
− u6

8
− tu4

2
− 1

2

(
t2 − α

)
u2 + β

4u2 .

U =

⎛
⎜⎜⎝

x3

2
+t x+ Q + 1

2

x
x2 − u2

Q2 + β
2

u2x2
−Q−α−1 − x3

2
−t x− Q + 1

2

x

⎞
⎟⎟⎠ ,

V =
⎛
⎜⎝

x2 + u2

2
+ t x

− Q + α + 1

x
− x2 + u2

2
− t

⎞
⎟⎠ ,

where

Q = uu̇ − u4

2
− tu2.

Painlevé V

ü = −2α cosh u

sinh3 u
− 2β sinh u

cosh3 u
− γ e2t sinh(2u) − 1

2
δe4t sinh(4u),

HV(p, u) = p2

2
− α

sinh2 x
− β

cosh2 x
+ γ e2t

2
cosh(2x) + δe4t

8
cosh(4x),

U11 = u̇
sinh(2u)

sinh(2x)
− 2σ

sinh(2x)

(
cosh(2x) − cosh(2u)

)

+ e2t

4 sinh(2x)

(
cosh(4x) − cosh(4u)

)
+ coth(2x). (C.1)

U12 = et
(
cosh(2x) − cosh(2u)

)
. (C.2)

U21 = u̇2 e−t

sinh2(2x)

(
cosh(2u) + cosh(2x)

)

+ u̇
sinh(2u)

sinh2(2x)

(
4σe−t − et

[
cosh(2u) + cosh(2x)

])

+ 8σ 2e−t coth2(u)

sinh2(2x)

(
sinh2(u) − cosh2(x)

)
− 2σet sinh

2(2u)

sinh2(2x)

−2e−t ξ2 + 2ξσ

sinh2(u) sinh2(x)
+ 2e−t ζ 2

cosh2(u) cosh2(x)

+ e3t sinh2(2u)

4 sinh2(2x)

(
cosh(2u) + cosh(2x)

)
. (C.3)
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V11 = 1

2
e2t

(
cosh(2x) + cosh(2u)

)
− 2σ + 1

2
,

V12 = et sinh(2x),

V21 = e−t

sinh(2x)

((
u̇2− 1

2
u̇e2t sinh(2u)

)2+ 4ζ 2

cosh2(u)

− 4
ξ2+2ξσ

sinh2(u)
−4σ 2 coth2(u)

)
. (C.4)
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