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Abstract We construct 2 x 2-matrix linear problems with a spectral parameter for
the Painlevé equations I-V by means of the degeneration processes from the elliptic
linear problem for the Painlevé VI equation. These processes supplement the known
degeneration relations between the Painlevé equations with the degeneration scheme
for the associated linear problems. The degeneration relations constructed in this paper
are based on the trigonometric, rational, and Inozemtsev limits. The obtained 2 x 2-
matrix linear problems for the Painlevé equations III and V are new.
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1 Introduction

We study the Painlevé equations and the associated 2 x 2-matrix linear problems.
The Painlevé equations are six nonlinear ordinary second-order differential equations
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discovered by Fuchs [9], Gambier [10], and Painlevé [29,30], at the beginning of the
twentieth century. The approach to the Painlevé equations from the point of view of
the monodromy preserving deformations of linear ordinary differential equations was
established by Fuchs in the work [9] and generalized in the works by Schlesinger [33]
and Garnier [11,12]. After a long break, this approach was further developed in the
works [7,16-18,20], see also the books [8,14,32].

Another important approach to the Painlevé equations was established in the work
[23]—the Hamiltonian approach. It turns out that each Painlevé equation is equiva-
lent to the equations of motion of some nonautonomous Hamiltonian system. Such
Hamiltonian systems were first introduced by Okamoto in the works [26-28]. The next
step in the development of the Hamiltonian approach was the representation of the
Painlevé equations as nonautonomous Hamiltonian systems describing the motion of
aparticle in a nonstationary potential. The Hamiltonian of this type was constructed by
Manin [24]. Soon after, Levin and Olshanetsky discovered [21] that the Lax pair of the
elliptic Calogero system forms the linear problem for the equation of isomonodromic
deformations on a torus and, particularly, for the Painlevé VI equation with specific
choice of arbitrary constants. This connection between the Painlevé VI equation and
the integrable model of the Calogero type [6] was called the Painlevé—Calogero cor-
respondence. Later, Takasaki [34] derived Hamiltonians for the Painlevé equations
-V from the Manin’s Hamiltonian using degeneration relations (1.1) between the
Painlevé equations [28]. It is worth noting that the similar diagram of degeneration (1.1)
was known (without any connection to the Painlevé equations) for the autonomous

Inozemtsev systems [35].
/ - \

PIII

PVl ——— PV Pl — =PI

(1.1
Thus, Takasaki extended the Painlevé—Calogero correspondence to the whole set
of the Painlevé equations. Recently, this result was further developed in [37,38],
where a “quantized” version of the Painlevé—Calogero correspondence was sug-
gested.

The goal of this paper is to construct 2 x 2-matrix linear problems with a spec-
tral parameter for the Painlevé equations I-V by means of degeneration processes.
In papers [1,2,4], we proposed limit relations between the elliptic SL(&, C) top and
Toda systems in the autonomous case for N > 2 and in the nonautonomous case
for N = 2. These relations are based on the Inozemtsev limit [13] and allow one to
obtain the Lax pair of a Toda system from the Lax pair of the elliptic SL(N, C)
top. It is known that there is a connection between the systems discussed above
and the Painlevé equations. The equations of motion of a nonautonomous ellip-
tic SL(2, C) top are equivalent to a particular case of the Painlevé VI equation
[22], and the equations of motion of nonautonomous Toda systems are equivalent
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to the Painlevé III equation with a definite choice of arbitrary constants. Also, in
[1], it was shown that the linear problem for the particular case of the Painlevé
IIT equation can be obtained from the particular case of the Painlevé VI equation.
Thus, we can apply the procedure from [1] to the linear problem for the general
case of the Painlevé VI equation in the elliptic form [5,24,31]. Zotov constructed
the 2 x 2 Lax pair with spectral parameter z for the Calogero—Inozemtsev system
with one degree of freedom [39]. This Lax pair also provides the linear problem
for the Painlevé VI equation in the elliptic form. The Calogero—-Inozemtsev sys-
tem considered in [39] is described by the Hamiltonian on an elliptic curve (1, t),
where the parameter T stands for the time in the nonautonomous version of this
system. So, using the linear problem for the Painlevé VI equation from [39], we
obtain linear problems for other Painlevé equations by means of the degeneration
processes.

In Sects.2 and 4, new linear problems for the Painlevé equations V and III are
constructed. They are obtained as limits of the linear problem for the Painlevé VI
equation. The common component of these limits is the following decomposition of
the parameter t of an elliptic curve:

T=1 41,

where 71 stands for the time in the limiting system and 1 gives the trigonometric limit
Im t; — +o00. In other words, we introduce the infinite shift of the parameter of an
elliptic curve. Thus, we have the linear problems for the Painlevé equations V and
IIT defined on an infinite complex cylinder C/Z. The difference between the limits
from Sects.2 and 4 is due to the infinite shifts of the Calogero—Inozemtsev system
coordinate u and spectral parameter z. The limits also differ in the scalings of constants
of the linear problem for the Painlevé VI equation [39].

In Sect.3, we construct a linear problem for the Painlevé IV equation using the
result of Sect.2. In Sects.5 and 6, using the linear problem from Sect.4, we obtain
linear problems for the Painlevé equations II and I, respectively. The limiting pro-
cedures used in Sects.3, 5, and 6 are based on the transformation of an infinite
complex cylinder C/Z to a complex plane C. Thus, the degeneration relations between
the linear problems obtained in this paper can be described by the following dia-
gram:

PV(2.7,2.15) ——=PIV(3.3)

PVI — PII(4.9, 4.17) ——= PII(5.3) (1.2)

™~

P1(6.3)
The diagram (1.2) differs from (1.1) due to the fact that the known degeneration pro-

cedures [15] for the Painlevé equations themselves cannot be directly applied to the
corresponding linear problems.
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1.1 Painlevé Equations

We will now review general facts and notation about the equations under consideration.
The six Painlevé equations [9,10,29,30] in the rational form [15] are

pyp. A1 [ S dn? LR SIS B N7}

Coodrr o 2\0 0 a—1 a—t) \dr t t—1 a—t)]dt

AA=—D A —t t r—1 1 t(r—1
RGOyl il (1))

2(t— 1) A a-0% \2 (A—1)

. d2x L, dr\? 1dk+(k—1)2 AT
. —_— = —_— _— —_— _— - — — — —
dr? 22 A —1 dt ¢t dt 12 A -

(3]

A +1
+3—(;_1)),

PIV: dz—)":i(d—k)2+éx3+4m2+2(12_a))\+é

dr2 ~ 2x \dr 2 3
PIIT: dz_’\:l(d_)‘)z_ld_’\Jrl(a,\erﬂ)JrMeré

2 a \dr tdr ot P
PII: dz—)“=2/\3+m+a

dr? ’

2
PI: ((117;\:6)\24—1‘,

where «, B, y, 8 are arbitrary complex constants. The Painlevé equations I-V can be
derived from the Painlevé VI equation by means of the degeneration processes (1.1)
[28].

1.2 Elliptic Linear Problem for the Painlevé VI Equation

The sixth Painlevé equation in the elliptic form [5,24,31] is

d?u > 5
@ = —2ZUaEé(M + wqy, T),
a=0

where g = {0, 5, 5, 147} and the second Eisenstein function E>(z) (9.1) is defined

on a complex torus (1, t) (see “Appendix 2”). In this form, the Painlevé VI equation
is equivalent to the equation of motion of a nonautonomous Calogero—Inozemtsev
system with one degree of freedom, which is described by the Hamiltonian

3
BV = 2 —ngEz (U + wg). (1.3)

a=0
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We will also need the following equivalent form to calculate the limits in Sects. 3 and
S:

3
ﬁVI=v2—Zv§ (Ex (u+ wy) — Ex (7 + wy)) . (1.4)

a=0

The nonautonomous version of the Calogero—Inozemtsev system with one degree
of freedom has the following 2 x 2 Lax representation constructed in [39]:

1
0LV — — o.MV = [LVI, MVI] . (1.5)

The Lax pair LV!, MV is of the form

3
vi_f[v O VI VI _ 0 Vo P (U+wqy, 2)
L™= (O —v) +;L“ Lo = (vagoo, (—u+wq, 2) 0 ’

(1.6a)
3

0 Vo fo (U 4+ g, 2)

MVI — MVI MVI — aJo ]'

2 M M= f k) 0 o e
o=

where functions ¢, fy [19] are defined in the following way (see “Appendix 2”):

Oa (u + wg, z) = e (z0;wy) ¢ (u + wg, Z),

fu (u + wg, Z) = e (z0;wq) 0y (w, ) |UJ=M+(L)/—}7
. O11(u + 2)9{1(0)

P = @)

2 Linear Problem for the Painlevé V Equation

In order to obtain a relation between linear problems for the Painlevé equations VI and
V, we consider two different degeneration procedures. These procedures give linear
problems for the following ordinary differential equations:

d2u cos u sin u . .

G2 = GO + Ol o5 + 3 sinu) 4+ CoCse! sin@u). 2.1)
d?u , COSU o Sinu 21 .

7= C§ o +Cj e + Cye' sin(u), (2.2)

which are the particular cases of the Painlevé V equation (8.2). Equations (2.1) and
(2.2) describe the Painlevé V equation with any choice of arbitrary constants. Even
though these equations are connected by the following limit:

Cy—0, C3—o00, (CyC3— const=C3, (2.3)
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the Lax pair of the linear problem for Eq.(2.1) (obtained in Sect.2.1) diverges upon
taking (2.3). Thus, we construct linear problems for Eqgs. (2.1) and (2.2) separately.
In both degeneration procedures, we use the following decomposition of the para-
meter T of an elliptic curve:
T =71 + 12, 2.4)

where 71 stands for the time in the limiting system and > gives the trigonometric limit
Imt; — +o00. In other words, we introduce the infinite shift of the parameter of an
elliptic curve. Thus, we have the linear problem for the Painlevé V equation defined on
an infinite complex cylinder C/Z. The difference between the degeneration procedures
is due to the infinite shifts of coordinate # and spectral parameter z. The degeneration
procedures also differ in the scalings of constants of the linear problem for the Painlevé
VI equation.

We will start with the degeneration procedure giving the linear problem for Eq. (2.1).

2.1 Linear Problem for Equation (2.1)

We decompose the parameter t of an elliptic curve as it was described earlier, T =

71 + 12, which implies
du du

dr ~ dry
The scalings of coupling constants are defined by the limiting behavior of Lax matrices
(1.6a), (1.6b) as follows:

0 vy —2g, * +73 g, T+ M
wWw=—, V=— Im=—">" " py=-——="
T T 2 2

where g» = e (12) . Thus, we obtain the limiting Hamiltonian and the linear problem
of the following form:

~2 ~2 1

Y =2 _ 0 — V1 — 821,53 cos(2mu) + 81 V7 cos(4mu)
N sin?(ru)  cos*(mu) e e ’

2.5)
1
0, LY — — o.M = [LV, MV] - {HV, LV} , (2.6)
2mi
where
HY= lim HY, ¢ =e(m),
Im rp—+o00
0 3
LV = lim LV'= (v ) + D TLY,
Imo—+00 0—-v
a=0

LV _ 0 cot(mu) + cot(mwz)

0 7 \ —cot(ru) + cot(rz) 0 ’
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IV _ 0 cot(mz) — tan(mwu)
1 cot(rz) + tan(mwu) 0 ’
1 0 —sin (7 Qu + 7)) v 1 01
LY =447 ( . LYy = ——
7 (sm (7w Qu — 7)) 0 ’ 37 sin(rz) \10)
(2.72)
3
MV — 1 MVI — e MV,
Imr2121+oo 0;) Voo
4 0 1 b4 0 1
M) = ————— oMY = ,
0 sin? (u) ( 1 0) ! cos? (mu) ( 1 0)
1 0 cos (7 (2u + 7))
vV _ _ 2 vV _
M, = —8nq; (cos (T Qu — 2)) 0 , My =0. (2.7b)

We will also need an equivalent form of the Hamiltonian to calculate the limit in
Sect. 3. This form can be derived from expression (1.4):

HAY = lim ﬁVI:UZ—UZ( Lo ! )
Im 17— +00 0 sin?(ru)  sin?(7z)
1

1 1 1
~2 ~ o~
o (cos2(nu) B cosz(nz)) ~ 84 V2V (cos(@mu) = cos(am2))

+ 8q1§§ (cos(4mu) — cos(4mz)). (2.8)

Limiting Hamiltonian (2.5) coincides with the one known for the fifth Painlevé
equation [34]. It is useful to note that (2.6) is equivalent to (2.1), which is a particular
case of the Painlevé V equation. Indeed, we rewrite (2.6) as a system of two first-order
differential equations

du
— =20,
W () in(ru) '
v COoS(mTu s u =
o a2 L 0a 2 2 6mg 2T sin(Ru
d.L.l 0 Sin3(ﬂu) 1 0053(]7,'”) QI 2V3 ( )

+327q V3 sin(4mu),
which gives

d? _ _ si I
" 2 Cos(au) 2 i) 327 g V3 sin(2mu)

— b3 TV —————
de? O sin3(ru) ! cos3(ru)

+ 64775 sin(4u).

2.2 Linear Problem for Equation (2.2)

In this subsection, besides decomposition (2.4) of the parameter 7, the following shifts
are used:
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~ T - T
MZM—E, Z=2— =

. 29
> 2.9
The scalings of coupling constants are defined by the limiting behavior of Hamiltonian
(1.3) as follows:

/4

o~ -1 ~ —1/4 ~ ~

. w24, viq, . Vo v V1

0= "= > = > 2= ) 3= _-
\/571 «/En

T T

Since 71 stands for the time in the limiting system, the shifts (2.9) are time-
dependent, hence,
du du du 1
dt —dn  dn 2
and the Hamiltonian defining the equations of motion of the limiting system is given
by
HY =

lim HY'+ 1v + i
Im 15— +00 2 16°

Using the Hamiltonian (1.3) of the Painlevé VI equation, we get

2 ~2 ~2
HY = (v + 1) %0 "
4

- - _ _4(~2 ~2) 12 S
sin? (7i)  cos? (wi) vy + 3 ) q," cos (2miun)

(2.10)

In order to obtain convergent Lax matrices, it is necessary to perform the gauge
transformation of the form

LVI_)gLVIg—l’
(0 &)

8= —1/4 |-
0 g,

Since the shift of the spectral parameter in the degeneration procedure under consid-
eration is time-dependent, Eq. (1.5) turns into

MVI — gMVIg_l,

19— (e L) = 1],

2mi 2
where LV! = LYY — /2, 0,2 —1/2,7), MY = MYV (i — /2,7 —1/2,7).
Thus, the Lax pair of the linear problem for Eq. (2.2) is defined via

LV =27 lim gLVl !, MY = lim g (MVI _ mLVI) ¢ L.
Imty—+o00 Imty—+o0

Equation of zero curvature (1.5) takes the following form in the limit:
O LY — M"Y = [LV, MV] ,

(2.11)
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where
v O .
\% . ~ 5V
L =2n1(0 _v)—i-ZvaLa,
a=0
v 277 0 ein(ﬁ+f)ql—1/4
0 — sin (7.['1:[) _e—iﬂ(ﬁ+2)qll/4 0 s

LV 217 0 iein(ﬁ+§)ql_1/4
1 cos (i) \ ie i@y 1/4 0 ’

0 Q2miE+2) _ |
LY = 2/2xi o ~ ,
2 d (—2iem<u+z)q}/2 sin (77 (T — 7)) 0 )
0 eZni(ﬁ+Z) 41
LV = —2\/5 S (7. ~ ’ 2.12
3 i (2 i@+ g 12 cos (7 (i@ — 7)) 0 ) 212)
3
Mvzm( )+Za v,
MS’ _ COS (JTM) 1/4 —1/4 el (@+2)
sm () _”T(’”:)
MY =i s1n2(nu) 1/4 —1/4 el (142)
7 o (i) —1”(’”«7
v 217r(u+Z)
M, = V27i (‘111/2 (6721711 n 672inﬁ) )
v 0 217T(M+Z)
My = Von (q11/2 (e—zin‘z _ e—zinu) 0 ) . (2.13)

Lax pair (2.12), (2.13) can be simplified by means of the following gauge transfor-
mation:

V=3V "'"- @z, MY=zgM¥g'-(3,2)2 ",

1/8  —im (i+2)/2
~ [q,e 0
8= ( 0 ql—1/861n(ﬁ+2)/2 : (2.14)

After this transformation, the coordinate velocity v enters into the Lax matrix LV with
the same shift v + JT as in the Hamiltonian (2.10), i.e.,
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7V _ 2mi 0 1 vV _ 2 0 1
O " Sin(@a) \ -1 0)° ! cos(mu) \1 0}’

~v 1/4 0 —sin(n (ﬁ+2))

LY = 4v2mg (sin(n (it —72)) 0 )

>y 1/4 0 COS (7'[ (ﬁ + E))

Ly = _4\/577% (cos (r(u—72)) 0 ) ’ (2.152)

Using the Hamilton equation of motion for the coordinate
di [V} =20+ !
— = Jup=2v+ -,
drg 2

one can ensure that transformation (2.14) removes v from the second Lax matrix
(2.13), namely,

3
Y =3 50

a=0
Sy o _cos(mu) (0 1 ~y __._sin(ru) (0 1
My = T[sinz(nﬁ) (1 0)’ My _mcosz(ﬂﬁ) (_1 O)’
A . 1/4 0 COS (7'[ (ﬁ-}-a)
My = 22miq, (cos (r (& — 7)) 0 ) ’
~v . 1/4 0 —sin (7 (1 +2))
My = 2V2rig, (Sin o i —3) 0 ) (2.15b)

To show that Egs. (2.11) and (2.2) are equivalent, we rewrite (2.11) in the form of
a system of two first-order differential equations

du 1
— =2 -,
P a (@) in(i7) !
v _ ~ cos(Ttu ~ S u 3 (~2 ~2\ - _
Go = T G ey TP ot vt (2 + B3 sin@iD.

Eliminating v, we obtain

d2"’ » 7 ~ 1 mn L, ~ —_
i 5 cos(rrir) 77‘)12 sm3(nu3 — 16mq? (V% + v%) sin(27 ).
cos” (mu)

— = —4TV) 5 =
d‘L'12 Osin3(7ru)

3 Linear Problem for the Painlevé IV Equation

We construct a linear problem for the Painlevé IV equation as the limit of the linear
problem for the Painlevé V equation obtained in Sect.2.1. We make the substitutions

rw? _w v 3.1
Tl = AR u=1u AE) =12 AR V= —, .
2mi 2mi 2mi w
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the scalings of coupling constants and the limit w — 0. Note that the limit w — 0
describes the transformation of an infinite complex cylinder from Sect. 2 to a complex
plane. After applying (3.1), the canonical Poisson bracket acquires the following form:

(v, u} = 2mi.

We define scalings of coupling constants by the limiting behavior of equations of
motion (2.6) and the Lax matrices (2.7a), (2.7b) via

_ 8i+wia
T 4wt

~ - ~ i ~
V] = —2iw s V) =-—", V3

5= P
42’

To obtain the Hamiltonian of the limiting system, we use Hamiltonian (2.8) for the
Painlevé V equation, because the other Hamiltonian (2.5) diverges as w — 0. Thus,
the Hamiltonian and the Lax matrices of the limiting system are defined as

w? ~ w?
HY = lim —HY, L[V =limuwLlY, M"Y =lim —Mm".
w—0 271 w—0 w—0 2771
Finally, we get the following limiting Hamiltonian and the equation of zero curva-
ture:

Y = —— +
2 32 8 8
iz (1 1
l6r \u?2 7Z2)°
oL — M"Y = I:LIV7 MIV] _ {HIV’ LIV} ’ (3.2)
where
~ woowz T+4e D7
D T _s =
v _ 4 4 8 32
L BT P4 P _
— ——4u - == = — —v
4 4 8 32 4
a Qg (1 1
0 —= =+ =
27 22 (u z)
+ ( o 1/3 (1 1) 0 5 (333)
22 2J2\Z u
0 3> uz ot 7 i
MV — 4 22 8 2y2u?
3u? n uz ot 72 iB 0
4 T2 28 2o
(3.3b)
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The equivalence of Eq.(3.2) to the Painlevé IV equation in the form (8.4) can be
shown in two steps. First, we rewrite (3.2) as a system of two differential equations

dii

— =27,

((111 ;2 1 3w’
v 2 - -3 u
— =4+ (?- t —.
@ = ap Ty e)uh g

Second, after eliminating v from the system we get the following second-order differ-
ential equation:

d’u p? ) 5 3w

@Zﬁﬁ‘(i —oc)u+2tu +T.

4 Linear Problem for the Painlevé III Equation

As in Sect.2 we construct a limiting procedure which transforms the linear problem
(1.6) for the Painlevé VI equation into linear problems for the following two equations:

d2

d_tl; = CleX T2 4 03?2 4 CoCre' T + C2C3e ™, 4.1)
d?u 2 21— 2 itu —u

a2 - Cse + Cye' ™ + C2C3e . (4.2)

Equations (4.1) and (4.2) describe the Painlevé III equation (8.6) with any choice
of arbitrary constants. In Sects.4.1 and 4.2, we construct two distinct degeneration
procedures which give different linear problems for Eq. (4.1). A linear problem for
Eq.(4.2) is constructed in Sect.4.3.

Degeneration procedures under consideration are based on a generalization of the
Inozemtsev limit and differ in shifts of the spectral parameter and scalings of coupling
constants. The generalization of the Inozemtsev limit consists of the decomposition
of the parameter 7,

T =1+ 1, “4.3)

with 77 denoting the time of the system, the shift of the coordinate
4.4

and the trigonometric limit Im 7, — +00. In other words, we introduce the infinite
shift of the parameter of an elliptic curve. Thus, we have the linear problem for the
Painlevé III equation defined on an infinite complex cylinder C/Z.

4.1 First Linear Problem for Equation (4.1)

To construct a linear problem associated with Eq. (4.1), we use decomposition (4.3),
shift of the coordinate u (4.4), and the trigonometric limit Im 7, — 4-o00. From the
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decomposition of the Lax matrices (1.6a), (1.6b) as a series in ¢, one can determine
the scalings of coupling constants

1 1

Y0g, '+ —T0g, * + 7 g, * + V3
Y= 27 ’ V= 27 ’ V2= 27 ’
o~ 71 o~
—2g, * + 73
V3 = T

Since 77 is the time of the system, shift (4.4) of the coordinate u is time-dependent,
which implies

du_du_dﬁ+1 @.5)
dr ~ drf  dy 47 '

Thus, the Hamiltonian of the limiting system has the following form:

1 1
H"=  lim HY'— v+ —.
Im rp—>+00 4 64

Using the Hamiltonian for the Painlevé VI equation in the form (1.3), we get

2
1 1 I 1 1
"= (v— g ) *4aiToe T +aq i TRe T 4 dg T + 4g Bavse

(4.6)
Expression (1.4) gives an equivalent Hamiltonian
AN pm AV L, + I_(,-1 g +4q%32 (e4niﬁ _ e47riz)
Im p—+o00 4 64 8 Lo
n 4q1%'17§ (ef4niﬁ _ ef4niz) " 4%%»‘;0;1 (ezmﬁ _ eZniz)
1 . )
+4q, V213 (e_z’”” - e_zmz) , 4.7
which will be used to calculate a limit in Sect. 5.
The equation of zero curvature (1.5) preserves the form in the limit
1
g pI_ L g a0 [LIH’ MIH] ’ 4.8
T] an z ( )
where
v O .
Ly IV — 3, LI
Imrzlgl+oo 0 —v +Zova o
a=
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LI = 2ig 4 o2 (0 —1)’ L%IIZ(. 0 —i+C0t(7TZ))’

1 0 i+ cot(7z) 0
L Z o iq. (_6—179(25—2) eiﬂgu+Z))’ L= — (1nz) (? (1)) (4.92)
i N leiin+oo Z~ M,
HI—4nq4 2 ((1) (1)) M=o,
' =i (b <o) M=o @9b)

Equation (4.8) describes the Hamilton equations of motion of the limiting system

du ~ 1
_d“ = (B} =20 - .
71
d 1 I
d_v — {HIII’ U} — —16i7tq12 471114 4 1617‘[6]12 v26747r1u 817Tq14\)()V162mu
7]

+8img, 52;36_2”15,

and is equivalent to the following second-order differential equation:

d2

1 1 1 —

i 3217'[q1 2524 3217'rql 2524 _ 16ian§0§162”‘”
T
i

1 i~
+ 16inq; V) Dye 2T

which in turn coincides with (4.1) up to a change of arbitrary constants.

4.2 Second Linear Problem for Equation (4.1)

Adding to the degeneration procedure described in Sect.4.1 the shift of the spectral
parameter

z=7+ (4.10)

we get another linear problem associated with Eq. (4.1). The gauge equivalence of the
second linear problem to the first linear problem 4.9 has not been established.

Thus, we use decomposition (4.3) of the parameter 7, shifts of the coordinate (4.4)
and the spectral parameter (4.10), and the trigonometric limit /m tp — +00. Scalings
of coupling constants are determined from the decomposition of the Hamiltonian (1.3)
as a series in ¢,
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_1 1 1
TJIOQQ 41 —Vo4q, i + Vl V24, i + V3
= 2 CoME 2 2= 27
_1
V24, * - 1%}
BT T

Since substitution (4.4) is time-dependent, the time derivative of the coordinate u
of the Calogero-Inozemtsev system and the time derivative of the coordinate & of the
limiting system are connected via (4.5) as follows:

du du du 1

dt T dn dm &
Thus, the Hamiltonian of the limiting system is of the form

H" = dim o BV -l L
Im rp—+o00 4 64

Using the Hamiltonian (1.3) associated with the Painlevé VI equation, one can derive
the following explicit formula for A':

2
HI — (U . é) +4U§q1/2 drin +4V0V1q 1/4 il _|_4v2 1/2 —4min
+4Tyag, te 2T, 4.11)

After substitutions (4.3), (4.4), and (4.10), the equation of zero curvature (1.5)
transforms into

3, AL & 1 AL 1LVI _ LVI7MVI ’
! 2m 2

where LV = LYV (@ + 1/4,v,Z 4+ 1/2, 1) and MV = MV (i + 7 /4,Z + /2, 7).
This implies the following definitions of the Lax matrices:

t=27i fim Y, MW= lim (MV‘+niLV‘).

Imty—+o00 Imty—+o00

Finally, the equation of zero curvature acquires the form

8,1Lm 3~M“l [Lm M“l] (4.12)
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where
v O ’
I JALE - AL
Imrzlinﬂ)o & 0 —v +ZOV0( o
o=

2rin _ —2mi(u+z)
L 0 e e it 0 1
= 4x (_GZniﬁ 0 )’ Ly =dn (0 0)’

LH[ . ql% ( 0'~ eﬂif _ eni(4ﬁ+z)) LISH _ _47-[37”1(2%‘%2) (0 1)

e 0 0 0
(4.13)
L lim MY =ix v +Z~ MHI
Imp—+00
—2im (U+7) 217114
11 1/4 0 € + 3e 11 0 1
ut a0 3e MU 4 eit 1 —izi+n (01
My =2nq, (einz 0 , M = eIt (GitD) o ol
(4.14)

As in Sect.2.2, we can remove v from the second Lax matrix M (4.14) by means
of the gauge transformation

LU s el (o), MM S Mgl — (3, 8) g,
1
B qll/léelﬂ(2u+2)/4 0
§= 0 ql—1/16e—in(2ﬁ+2)/4 :

Applying the transformation, we get the first Lax matrix L' (4.13) with the same
shifted velocity v — % as in the Hamiltonian (4.11).
Equation (4.12) is equivalent to the Hamilton equations of motion

du

=2v— —,
%‘fl 4
v - . =
d —167Tiv§q11/2e4”1” 87T11)0U1q/ 2n1u+16nw2 1/2 —Arin
71

i~ 1/4 _
+8711V2V3q1/ g2l

These equations in turn are equivalent to the following second-order differential equa-
tion:

d’u ~
d u — 3T q1/2 4min 1671’11)()1)16] 1/4 2]1114 +327T1])2q1/2 _Aril
Tl

i~ ~  1/4 _2nia
+16mv2v3q1/ e 2miu

which coincides with (4.1) up to a change of arbitrary constants.
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4.3 Linear Problem for Equation (4.2)

In this subsection we use decomposition (4.3) of the parameter t of an elliptic curve,
the substitution of the coordinate (4.4), and the shift of the spectral parameter

z=7+

NV

The scalings of coupling constants are determined from the decomposition of the
Hamiltonian (1.3) as a series in g in the following way:

~ —1/8 ~ —1/8 ~ 14 ~ ~ —1/4  ~
V0q, / g, / V24, / +v3 —V24g, / +v3
=Ty o MTE Ty 0 2T 27 P BT 27 '

As was mentioned in Sect. 4.1, shift of the coordinate (4.4) is time-dependent. Thus,
the Hamiltonians of the limiting system have the following form:

1 1
H"=  lim HY'— v+ —.
Im p—>+00 4 64

Using the Hamiltonian (1.3) for the Painlevé VI equation, one can derive

N2 /., _ o o -
gl — (v _ §) + (vg + V12) q11/4e217ru +4v%q11/2e—417m +4V2v3q11/4e—2171u.

(4.15)

In this case, in order to get convergent Lax matrices it is necessary to make the
gauge transformation

LV s gL Vig™! MV S gmVigT!
(0 )
g = -1/8 ] -
0 g, /
After applying the shift of the spectral parameter, equation of zero curvature (1.5)
becomes

1 1
o, AL (ﬁMVI + ZLVI) _ IZLVI, MVI] ’

where LV = LYY @+ c/4,v,7+1/4, 1), MYV = MY +1/4,24+ /4, 7).
This implies the following definition of the Lax matrices:

i
LM=27i lim gLVl MW= lim g(MVI+—LVI)g—1.

Imty—+o00 Imty—>+o0 2
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Finally, the equation of zero curvature acquires the following form:

3, AL ) [LHI’ MIH] ’ (4.16)

where

3
it (v O ~ 1
L =2m(0 _v)+2vaLa,
a=0
0 1 0 1
LI 0 o o Mg 0 o ’
0 T (6111/4 (e2mz _ e2mu) 0) 7l q11/4 (e2mu + eZmz) 0

187 0 f:_inZ 18 iz {0 O
LIZII —4nq| /8 —2imi (—qll/4ei”f . ’ L13H :47”]1/ 2 L o)

(4.17a)

. 3
w fv O ~
i = (O —v) + z VoniH,
a=0

M= o 1 ym_=( 0 1
0 2 q11/4 (36217114 +e2mz) 0}/’ 1 ) e2inZ _ 3e2imi )

—im (2047)
11 1/8 0 3 m o 1/8 0 0
My =mq, (5q11/4e—in(2§—z) 0 . MY =g e 1 o)

(4.17b)

As in Sects. 2.2 and 4.2, we can remove v from the second Lax matrix M (4.17b)
by means of the gauge transformation

LIII — gLIH (8~g)g 1’ MIH — §MIII§—1 _ (8“?) g—l’

~ q11/326171(u+z)/4 0
§= 0 g7 PRemin@n/4 )

Applying this transformation, we obtain the first Lax matrix L' (4.17a) with the same

shifted velocity v — % as in the Hamiltonian (4.15).
Equation of zero curvature (4.16) is equivalent to the Hamilton equations of motion

du ~ 1

& {Hm, u} =2v——,

%‘L’l 4

d—v = —2171(]11/4 (?g + 77 ) A 1617Tq —4imi 817'rq vz§3e_2i”ﬁ.
71
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Eliminating v from this system we get the second-order differential equation

d%u | 2\ i . ) dinT . ~ ~ i@
= —4izrg,"* (vg + vlz) AT 4 32iw g, PR 4 16imq, Tavze A,
T
i

which coincides with (4.2) up to a change of arbitrary constants.

5 Linear Problem for the Painlevé II Equation

We construct a linear problem for the Painlevé II equation by means of the degener-
ation process from the linear problem constructed in Sect.4.1. This process involves
substitutions

tw? s U w 7 w \% G.1)
T =——, = —, = -, V= —, .
"7 i ! 2ri ¢ 2mi w
scalings of coupling constants, and the limit w — 0. Note that the limit w — 0
describes the transformation of an infinite complex cylinder from Sect. 4 to a complex
plane. After applying (5.1), the canonical Poisson bracket transforms into

{V.U} =2mi.

From the decomposition of Lax matrices (4.9a), (4.9b) as series in g, one can
determine the scalings of coupling constants

14w 2—w d1—w? _ i - 2
V=1——, V| =—1 , W=—1———, Nn=—-—|a— — .
0 4u3 ! 2wl 2 4u3 373 w3

Since Hamiltonian (4.6) for the Painlevé III equation diverges as w — 0, we use the
equivalent form (4.7) to obtain the Hamiltonian of the limiting system

The Lax matrices of the limiting system are defined as
w2
L" = lim we™,  M" = lim —m".
w—0 w—0 271

Thus, we get the limiting Hamiltonian and the equation of zero curvature in the fol-
lowing form:

il iV2+ia(U—Z)+it(U2—ZZ)+i(U4—Z4)
2w 47 87 87t
9L — 9, M = [L“, M“] _ {HH, L“} ’ (5.2)
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where
v t a+Zz+UZ+U2
AL 4 7 ' 16 4 2
r Z2+UZ U? v ’
4 7 16 4 2
(5.3a)
0 U+Z
M" = 7 4| (5.3b)
U-—-=
4

One can rewrite (5.2) as the following system of the first-order differential equa-
tions:

dU

— =2V,

dr
dV_U3+tU+a
dr 2 2

which coincides with the Hamilton equations of motion. Eliminating v from this
system, we get the Painlevé II equation

d2

U
— =2U°+1U +a.
t

6 Linear Problem for the Painlevé I Equation

In this section, we construct a linear problem for the Painlevé I equation via the
degeneration process from the linear problem constructed in Sect.4.1. This process
consists of the substitutions

wt - w \% 1 w

== u=U-—, v=—, 1=—=+7Z—, (6.1)
21 2mi w i

scalings of coupling constants, and the limit w — 0. After applying (6.1), the canonical
Poisson bracket transforms into

{(V,U} = 2mi.

The simplest way to determine scalings of coupling constants is to analyze the decom-
position of the Hamiltonian (4.6) as a series in g. This gives

i i 1 - 1

V= "= Vi = ——F—=F7>, 2= =0 V3 = .
23/2w/2 V2w3/2 23/2w/? V2w3/2
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To obtain the convergent Lax matrices, we have to make the following gauge trans-
formation:

JRLEEN gLIHg—17 JYLL N gMIIIg—l’
(1 0
g - 0 \/w ’
and consider the limit

w
L' = lim ngIHg_l, M' = lim —,ngg_l.
w—0 w—0 271

Using the Hamiltonian (4.6) for the Painlevé III equation, we derive the Hamiltonian
of the limiting system

o~ tm w? it iv2 v v’
= 11 _— = —— R— —_
w—0 271 2 4 2

After taking the limit, the equation of zero curvature becomes

oL — o M = [LI, MI] = {HI, LI} , (6.2)
where
oo 14 $(2t+22+2UZ+4U2) |
7 (Z —2U) -V
M' = 0 % “@U+2) ) (6.3)
V2 0

One can rewrite (6.2) as a system of the first-order differential equations, which is
equivalent to the Painlevé I equation

dU_2V

a7 d*U

ds < —2=6U2+t.
WV ! t

dr 2

7 Conclusion
We have constructed linear problems for the Painlevé equations I-V via the degen-

eration processes from the linear problem for the Painlevé VI equation. These
degeneration processes can be described by the following diagram:
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PV ——PIV (7.1)

/

PVI —— PIIl ——PII

AN

PI

Thus, we have supplemented the known relations (1.1) between the Painlevé equations
with the degeneration scheme (7.1) for the 2 x 2-matrix linear problems discussed in
this paper. Moreover, the derived linear problems for the Painlevé equations III and V
appear to be new.

Since one can obtain the Calogero—Inozemtsev system via the reduction from the
2 x 2 elliptic Schlesinger system with four marked points, it is possible to apply the
proposed degeneration process to the general case of the elliptic Schlesinger system.
This process can probably give new nonautonomous systems that describe the interac-
tion between the nonautonomous Toda and Calogero—Moser systems. We study such
a degeneration process in the subsequent work [3].
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8 Appendix 1: Painlevé Equations

In this section, we present a connection between the different forms of the Painlevé
equations V, IV, and III considered in this paper.

8.1 Painlevé V

The Painlevé V equation has the following rational form:

a2 L, 1 dr\? 1dx+(x—1)2 AT
dA_(L o y(y e = P A
dr? 24 A—1 dt t dt 12 A Y3

3/\(A+1)

T 8.1)

In order to obtain the equivalent form of (8.1) which we use in Sect. 2, one can perform
the following change of variables:

L) =A@ @) = —tan® (wu (1)).
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As aresult, (d\/ dr)? becomes zero. After the substitution ¢ (7) = e, the derivative
dA/dt becomes zero as well, which leads to

d%u o sin (wu) B cos (mru)

= — + 2ye” sin 2u) + 827 sin (dmu) .
dr2 27 cosd (wu) 27 sin’ (wu) Y (@) ()

8.2)
8.2 Painlevé IV
The Painlevé IV equation has the following rational form:
a2r 1 fdA\? 3 B
=5 ) +5R a2 (P —a) a2 8.3
dr? ZA(dt) Jr2 + + ¢ +A (8-3)

In order to obtain the equivalent form of (8.3) considered in Sect. 3, one can make the
change of variables

A(t) =u? (1),

which leads to

—=—+2tu3+(t2—a)u+—. (8.4)

8.3 Painlevé I11
The Painlevé III equation has the following rational form:

a2 1 (dr)? 1dA+1(A2+ﬁ)+ Byl 85)
—_— = — —_— _——— — |\ - . .
dr2 A\ dr tdr ot Y A

In order to obtain the equivalent form of (8.5) which we use in Sect. 4, one can make
the change of variables

A(r) =e"®.
Substituting t = e’ into (8.5), we get

d2u

@ — ae‘[-l—u + IBCT—M + y62(r+u) + 862(T_u). (86)

9 Appendix 2: Elliptic Functions

The definitions and properties of elliptic functions used in the paper can be found in
[25,36]. The main object is the theta function defined by
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’ m (@.7) =D g e + )z + b)),

JEL

where g = e (1) = exp (2rwir).
We also use the Eisenstein functions

M
— : —k
gr(z) = METngM(Z +n)7*,  keN,
M
Ei(@) = lim > ez +nr). ©.1)
n=—M

To determine limits of Lax matrices, we use the series expansions of the following

functions:
12 G+ (., ] 1
9() =0 HZ} (z.1) = Zqz(“z) e ((] + 5) (z + 5)) :
J€Z
9.2)
9+ 2)0'(0)
P = @

o (1t 5. 2) = € (Bewa) & (u + 0p.2)

Ja (M + wg, Z) = € (20rwy) dwd (W, 2) |w:u+wﬂa 9.3)
where w, = {0, %, % HTI} The functions satisfy the following well-known identi-
ties:

d(u, 2)p(—u, z) = E2(z) — Ex(u),
0up(u,z) = ¢(u, 2)(E1(u +2) — E1(u)), 9.4)
parity

Ex(—2) = (-D'Ex(2),
H(—z) = =9 (2),
o(u,z) =¢(z,u) = —¢p(—u, —z2),

and quasi-periodicity

Ei(z+1) = Ei(z), Ei(z+71)=E(z)—2mi,
Ex(z+1) = Ex(z), Ex(z+71)=E2),
e+ =—0@), 0E+1)=—q le(-2)0 (),
pu+1,2) =¢W,2), ¢u+rt,2) =e(-2)¢u, ). 9.5)
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Using definition (9.3), we reduce the expansion of ¢, (u + wg, z) to the expansion
of theta functions:

b or e py 2 D= @+ DO)
TS T i —e)0 (i — 1)

and for the expansion of theta functions we have:

9 tor) =]l _I_0(1)]q(—L0J2/2+§—L0J{o}—{o}/2) . (_ o]z ﬂ)

2
—2sin (rz), {o} =0,
—ie (—%) , {0} >0,

where |o | is the integer part of o and {0} is the fractional part of o. This gives the
following answer:

¢ +o,t,z+0:7) = +0(1))

[ —2rig ooz tloiode (— o, Ju — |ow] 2) . {ou} > 0, {02} > 0, {0} + {02} < L,

dgr g oo HoHod sin (7 (u + z))

xe (= (3 + locl)u— (5 + loul) 2)’
2migouoeHouHo)—lou+oc)

xe (—=(1+ oz Du — (1 + Loy )2)’

x e (-4)

g~ %e (= Lozl u —oyz)

{ou} >0, {0;} >0, {04} + {0} =1,
{ou} >0, {0;} > 0, {04} + {0} > 1,

{ou} =0, {0z} > 0,

sin (wu)’
o e(y) _
nq e(—ozu — oyl 2) sin (7TZ), {ou} >0, {0;} =0,
—ouo, sin (77 (u + 2))

k?Tq ‘e (—ozu —oyz) m, {ou} =0, {o;} =0.

To evaluate the limits of f;, (1« + wg, z), we use the identity (9.4) and the expansion
of E1(u — ot) from [2]:

mcot(ru) +o0(1), {oe} =0,
1
mi+ 2migtle(—u) + 0 (¢'), 0<{o}< X
E\(u—oT) = 27i 1
W =2l i omigh e —ew) 4o (41, (o) = 3,
1
mi—2mig! Ve (u) + 0 (¢'719Y), 7 <lo) <l
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