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Abstract We study sparse approximate solutions to convex optimization problems.
It is known that in many engineering applications researchers are interested in an
approximate solution of an optimization problem as a linear combination of a few
elements from a given system of elements. There is an increasing interest in building
such sparse approximate solutions using different greedy-type algorithms. The prob-
lem of approximation of a given element of a Banach space by linear combinations
of elements from a given system (dictionary) is well studied in nonlinear approxima-
tion theory. At first glance, the settings of approximation and optimization problems
are very different. In the approximation problem, an element is given and our task
is to find a sparse approximation of it. In optimization theory, an energy function is
given and we should find an approximate sparse solution to the minimization prob-
lem. It turns out that the same technique can be used for solving both problems. We
show how the technique developed in nonlinear approximation theory, in particular
the greedy approximation technique, can be adjusted for finding a sparse solution of
an optimization problem.

Keywords Sparse · Optimization · Greedy · Banach space · Convergence rate

Communicated by Joel A. Tropp.

Research was supported by NSF Grant DMS-1160841.

V. N. Temlyakov (B)
University of South Carolina, Columbia, SC, USA
e-mail: temlyakovv@gmail.com

V. N. Temlyakov
Steklov Institute of Mathematics, Moscow, Russia

123



270 Constr Approx (2015) 41:269–296

Mathematics Subject Classification Primary: 41A46 · Secondary: 65K05 ·
41A65 · 46B20

1 Introduction

To sparse approximate solutions to convex optimization problems, let us apply the tech-
nique known in nonlinear approximation as greedy approximation. Greedy approx-
imation has important applications in signal processing, optimization, statistics, and
stochastic PDEs. Greedy algorithms are thoroughly studied in approximation theory,
functional analysis, learning theory, signal processing, and optimization. Very often,
researchers working in one area are not aware of parallel techniques developed in other
areas of research. The main goal of this paper is to demonstrate how typical methods
developed in greedy approximation in Banach spaces can be used for studying convex
optimization problems.

A typical problem of sparse approximation is the following [15,40]. Let X be a
Banach space with norm ‖ · ‖ and D be a set of elements of X . For a given D, consider
the set of all m-term linear combinations with respect to D (m-sparse with respect to
D elements):

�m(D) :=
{

x ∈ X : x =
m∑

i=1

ci gi , gi ∈ D
}

.

We are interested in approximation of a given f ∈ X by elements of �m(D). The best
we can do is

σm( f,D) := inf
x∈�m (D)

‖ f − x‖. (1)

Greedy algorithms in approximation theory are designed to provide a simple way to
build good approximants of f from �m(D). Clearly, problem (1) is an optimization
problem of E f (x) := ‖ f − x‖ over the manifold �m(D).

A typical problem of convex optimization is to find an approximate solution to the
problem

inf
x

E(x) (2)

under the assumption that E is a convex function. In the case that we are optimizing
over the whole space X , it is called an unconstrained optimization problem. In many
cases, we are interested either in optimizing over x of special structure (for instance,
x ∈ �m(D), as above) or in optimizing over x from a given domain D (constrained
optimization problem). Greedy algorithms are used for finding an approximate solution
of special structure for problem (2).

Usually in convex optimization, the function E is defined on a finite dimensional
space R

n [9,31]. Recent needs of numerical analysis call for consideration of the above
optimization problem on an infinite dimensional space, for instance, a space of con-
tinuous functions. One more important motivating argument to study this problem in
the infinite dimensional setting is that in many contemporary numerical applications,
ambient space R

n involves a large dimension n and we would like to obtain bounds on
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the convergence rate independent of the dimension n. Our results for infinite dimen-
sional spaces provide such bounds on the convergence rate. Thus, we consider a convex
function E defined on a Banach space X . It is pointed out in [46] that in many engi-
neering applications, researchers are interested in an approximate solution of problem
(2) as a linear combination of a few elements from a given system D of elements. There
is an increasing interest in building such sparse approximate solutions using different
greedy-type algorithms (see, for instance, [1,3–5,11,12,17,19,22–24,34,45,46]). We
refer the reader to the papers [1] and [23] for concise surveys of recent results on greedy
algorithms from the point of view of convex optimization and signal processing.

The fundamental question is how to construct good methods (algorithms) of approx-
imation. Recent results have established that greedy-type algorithms are suitable meth-
ods of nonlinear approximation in sparse approximation both with regard to bases and
with regard to redundant systems. In fact one fundamental principle allows us to build
good algorithms both for arbitrary redundant systems and for very simple, well struc-
tured bases such as the Haar basis: the use of a greedy step in searching for a new
element to be added to a given sparse approximant. By a greedy step, we mean one
which maximizes a certain functional determined by information from the previous
steps of the algorithm. Varying that functional and the ways of constructing (choos-
ing coefficients of the linear combination) the m-term approximant from the already
found m elements of the dictionary yields different types of greedy algorithms. For
instance, if the corresponding linear combination is a convex combination, then it is
the Relaxed Greedy Algorithm (Frank-Wolfe-type algorithm) studied in Sect. 2. In
Sect. 3, we study the Chebyshev-type greedy algorithm, which is known in signal
processing under the name Fully Corrective Forward Greedy Selection. We use the
name Chebyshev in this algorithm because at the approximation step of the algorithm,
we use a best approximation operator which bears the name of the Chebyshev projec-
tion or the Chebyshev operator. In the case of Hilbert space, the Chebyshev projection
is the orthogonal projection, and it is reflected in the name of the algorithm. In this
paper, we discuss the weak version of the greedy algorithms. The term weak in the
definition of these algorithms means that at the greedy step of selection of a new ele-
ment of the dictionary, we do not shoot for the optimal element of the dictionary which
realizes the corresponding supremum, but are satisfied with a weaker property than
being optimal. The obvious reason for this is that we do not know in general that the
optimal element exists. Another, practical reason is that the weaker the assumption,
the easier it is to satisfy it and, therefore, the easier it is to realize in practice. We note
that results of this paper provide the same upper bounds for the rate of convergence
for the weak versions of the algorithms (in the case tk = t) as for the strong versions
(t = 1) of the algorithms.

At first glance, the settings of approximation and optimization problems are very
different. In the approximation problem, an element f ∈ X is given, and our task is
to find a sparse approximation of it. In optimization theory, an energy function (loss
function) E(x) is given, and we should find an approximate sparse solution to the
minimization problem. It turns out that the same technique can be used for solving
both problems.

We show how the technique developed in nonlinear approximation theory, in par-
ticular the greedy approximation technique, can be adjusted to find a sparse, with
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respect to D, solution of the problem (2). We consider three greedy algorithms here:
the Weak Chebyshev Greedy Algorithm (WCGA), the Weak Relaxed Greedy Algo-
rithm (WRGA), and the Weak Greedy Algorithm with Free Relaxation (WGAFR). The
names of these algorithms used above are from approximation theory. The WCGA is
a generalization to a Banach space setting [36] of the Weak Orthogonal Greedy Algo-
rithm (WOGA), which is very important in signal processing and compressed sensing.
The WOGA is known in signal processing under the name Weak Orthogonal Matching
Pursuit (WOMP). It is used for exact recovery of sparse signals and for approxima-
tion of signals by sparse ones. An analog of the WCGA in convex optimization was
introduced in [34] under the name Fully Corrective Forward Greedy Selection. The
WRGA is the approximation theory analog of the classical Frank-Wolfe algorithm,
introduced in [21] and studied in many papers (see, for instance, [12,14,17,18,22,23]).
This algorithm was rediscovered in statistics and approximation theory in [2] and [25]
(see [40] for further discussion).

Two different ideas have been used in the WRGA and WCGA. The first idea was that
of relaxation (we use here terminology from approximation theory). The correspond-
ing algorithms, (including WRGA) were designed for approximation of functions from
the convex hull conv(D) of the given system (dictionary) D. The second idea is used
in the WCGA to build the best approximant from the span(ϕ1, . . . , ϕm) of already
chosen elements ϕ j ∈ D, instead of the use of only one element ϕm for an update of
the approximant, as is done in WRGA.

The realization of both ideas resulted in the construction of algorithms (WRGA and
WCGA) that are good for approximation of functions from conv(D). The advantage
of WCGA over WRGA is that WCGA (under some assumptions on the weakness
sequence τ ) converges for each f ∈ X in any uniformly smooth Banach space. The
WRGA is simpler than the WCGA in the sense of computational complexity. However,
the WRGA has limited applicability. It converges only for elements of the closure of
the convex hull of a dictionary.

The WGAFR [38] combines good features of both the WRGA and the WCGA
algorithms. The WGAFR performs in the same way as the WCGA from the point of
view of convergence and rate of convergence, and outperforms the WCGA in terms of
computational complexity. In the WGAFR, we are optimizing over two parameters at
each step of the algorithm. In other words, we are looking for the best approximation
from a 2-dimensional linear subspace at each step. As far as we know, an analog of
the WGAFR has not been studied in optimization.

A number of greedy algorithms were successfully used in compressed sensing. The
early theoretical results [27] on the widths did not consider the question of practi-
cal recovery methods. The celebrated contribution of the work by Candes-Tao and
Donoho was to show that the recovery can be done by the �1 minimization. While
the �1 minimization technique plays an important role in designing computationally
tractable recovery methods, its complexity is still impractical for many applications.
An attractive alternative to the �1 minimization is a family of greedy algorithms. They
include the Orthogonal Greedy Algorithm [called the Orthogonal Matching Pursuit
(OMP) in signal processing], the Regularized Orthogonal Matching Pursuit [30], Com-
pressive Sampling Matching Pursuit (CoSaMP) [29], and the Subspace Pursuit (SP)
[13]. The OMP is simpler than CoSaMP and SP, however, at the time of invention of
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CoSaMP and SP these algorithms provided exact recovery of sparse signals and the
Lebesgue-type inequalities for dictionaries satisfying the Restricted Isometry Prop-
erty (RIP) [13,29]. The corresponding results for the OMP were not known at that
time. Later, Zhang [48] proved exact recovery of sparse signals and the Lebesgue-type
inequalities for the OMP under RIP condition on a dictionary. The reader can find an
extension of Zhang’s results for the Chebyshev Greedy Algorithm in [28] and [43].

The idea of extending greedy-type algorithms designed for approximation to solving
optimization problems with sparsity constraints was recently used in a number of
papers. Blumensath [4,5] extends the Iterative Hard Thresholding (IHT) algorithm [8]
to the optimization setting. Bahmani et al. [1] extend the CoSaMP to the optimization
setting. Variants of the coordinate descent algorithms were considered in [3] and [19].
This confirms that the step from greedy approximation to greedy optimization to which
this paper is devoted is a timely and important step. We only provide a theoretical
analysis of the algorithms here. The earlier version of this paper is published in [41].

Before we proceed to a detailed discussion, we formulate some novel contributions
of the paper.

Novelty We provide a unified program to study convergence and rate of convergence
of greedy algorithms. This way works in both the approximation theory setting and
in the convex optimization setting. It works for an arbitrary dictionary D. We show
that this technique works both for the classical Frank-Wolfe algorithm and for the new
algorithms in convex optimization (WCGA(co) and WGAFR(co)). We introduce and
study a new algorithm, the Weak Greedy Algorithm with Free Relaxation designed for
convex optimization. It combines good features of known algorithms—the simplicity
of the Frank-Wolfe-type algorithms and the power of fully corrective algorithms. All
the theorems in Sects. 2–4 are new results. In the setting with an arbitrary dictionary
D, these results are sharp. This follows from sharpness of the approximation theory
analogs of these results (see [40], Ch. 6). Better rate of convergence results can be
obtained under stronger assumptions on E for dictionaries satisfying certain conditions
[32,34,44].

We note that in the study of greedy-type algorithms in approximation theory [40],
emphasis is put on the theory of approximation with respect to an arbitrary dictionary
D. The reader can find a detailed discussion of applications of greedy-type algorithms
in approximation, classification, and boosting in [46]. The reader can find examples
of specific dictionaries of interest in [17,22,24,40,45], and [23]. We present some
results on sparse solutions for convex optimization problems in the setting with an
arbitrary dictionary D. In this paper, we analyze algorithms with exact evaluations.
There are known results on algorithms with approximate evaluation: for the Frank-
Wolfe algorithm, see [18]; for other convex optimization algorithms, see [16] and [46];
for approximation algorithms, see [37]. Clearly, the corresponding dictionary element
ϕm that we choose at the greedy step may not be unique. Our results apply for any
realization (any choice of ϕm) of the algorithms.

Greedy algorithms for convex optimization Let X be a Banach space with norm
‖ · ‖. We say that a set of elements (functions) D from X is a dictionary, respectively,
symmetric dictionary, if each g ∈ D has norm bounded by one (‖g‖ ≤ 1),

g ∈ D implies − g ∈ D,
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and the closure of span D is X . For notational convenience, in this paper symmetric
dictionaries are considered. Results of the paper also hold for non-symmetric dictio-
naries with straight forward modifications. For instance, no modifications are needed
in the case of WRGA(co); in the case of WCGA(co), we need to work at the greedy step
(C1) with absolute values of the quantities 〈−E ′(Gm−1), ϕm〉 and 〈−E ′(Gm−1), g〉.
We denote the closure (in X ) of the convex hull of D by A1(D). In other words A1(D)

is the closure of conv(D). We use this notation because it has become a standard
notation in relevant greedy approximation literature.

It is pointed out in [20] that there has been considerable interest in solving the
convex unconstrained optimization problem

min
x

1

2
‖y − �x‖2

2 + λ‖x‖1, (3)

where x ∈ R
n , y ∈ R

k , � is an k × n matrix, λ is a nonnegative parameter, ‖v‖2
denotes the Euclidian norm of v, and ‖v‖1 is the �1 norm of v. Problems of the form (3)
have become familiar over the past three decades, particularly in statistical and signal
processing contexts. Problem (3) is closely related to the following convex constrained
optimization problem:

min
x

1

2
‖y − �x‖2

2 subject to ‖x‖1 ≤ A. (4)

The above convex optimization problem can be recast as an approximation problem
of y with respect to a dictionary D := {±ϕi }n

i=1 which is associated with a k × n
matrix � = [ϕ1 . . . ϕn] with ϕ j ∈ R

k being the column vectors of �. The condition
y ∈ A1(D) is equivalent to the existence of x ∈ R

m such that y = �x and

‖x‖1 := |x1| + · · · + |xm | ≤ 1. (5)

As a direct corollary of Theorems 6.8 and 6.23 from [40], we get for any y ∈ A1(D)

that the WCGA and the WGAFR with τ = {t} guarantee the following upper bound
for the error:

‖yk‖2 ≤ Ck−1/2, (6)

where yk is the residual after k iterations. The bound (6) holds for any D (any �).
For further discussion of an optimization problem more general than (3) and its

application in machine learning, we refer the reader to [47].
We assume that the set

D := {x : E(x) ≤ E(0)}

is bounded. For a bounded set D, define the modulus of smoothness of E on D as
follows:

ρ(E, u) := 1

2
sup

x∈D,‖y‖=1
|E(x + uy) + E(x − uy) − 2E(x)|. (7)
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A typical assumption in convex optimization is of the form (‖y‖ = 1):

|E(x + uy) − E(x) − 〈E ′(x), uy〉| ≤ Cu2,

which corresponds to the case ρ(E, u) of order u2. We assume that E is Fréchet
differentiable. Then convexity of E implies that for any x, y,

E(y) ≥ E(x) + 〈E ′(x), y − x〉, (8)

or, in other words,

E(x) − E(y) ≤ 〈E ′(x), x − y〉 = 〈−E ′(x), y − x〉. (9)

The above assumptions that E is a Fréchet differentiable convex function and D is a
bounded domain guarantee that inf x E(x) > −∞.

We note that in all algorithms studied in this paper, the sequence {Gm}∞m=0 of
approximants satisfies the conditions

G0 = 0, E(G0) ≥ E(G1) ≥ E(G2) ≥ . . . .

This guarantees that Gm ∈ D for all m.
We prove convergence and rate of convergence results here. Our setting in an

infinite dimensional Banach space makes the convergence results nontrivial. The rate
of convergence results are of interest in both finite dimensional and infinite dimensional
settings. In these results, we make assumptions on the element minimizing E(x) (in
other words we look for inf x∈S E(x) for a special domain S). A typical assumption in
this regard is formulated in terms of the convex hull A1(D) of the dictionary D.

We have already mentioned above (see (4) and below) an example which is of
interest in applications in compressed sensing. We mention another example that
attracted a lot of attention in the recent literature (see, for instance, [17,23,24,45]). In
this example, X is a Hilbert space of all real matrices of size n × n equipped with the
Frobenius norm ‖ ·‖F . A dictionary D is the set of all matrices of rank one normalized
in the Frobenius norm. In this case, A1(D) is the set of matrices with nuclear norm not
exceeding 1. We are interested in sparse minimization of E(x) := ‖ f − x‖2

F (sparse
approximation of f ) with respect to D.

2 The Frank-Wolfe-Type Algorithm

In this section, we discuss an algorithm for finding a sparse approximate solution for
a constrained optimization problem

inf
x∈A1(D)

E(x).

The Frank-Wolfe algorithm was introduced in [21] for solving a constrained opti-
mization problem. Later similar algorithms were used in statistics and approximation
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theory. A characteristic feature of the Frank-Wolfe-type algorithm is that it is a greedy-
type algorithm that builds at each iteration a new approximant as a convex combination
of the previous approximant and a new element chosen from the dictionary. There are
several versions of this algorithm. The reader can find a corresponding discussion in
[23] and [40]. In this section, we study a generalization for optimization problems of
relaxed greedy algorithms in Banach spaces considered in [36].

Let τ := {tk}∞k=1 be a given weakness sequence of numbers tk ∈ [0, 1], k = 1, . . . .
Weak Relaxed Greedy Algorithm (WRGA(co)) We define G0 := Gr,τ

0 := 0. Then,
for each m ≥ 1, we have the following inductive definition:

(R1) ϕm := ϕ
r,τ
m ∈ D is any element satisfying

〈−E ′(Gm−1), ϕm − Gm−1〉 ≥ tm sup
g∈D

〈−E ′(Gm−1), g − Gm−1〉.

(R2) Find 0 ≤ λm ≤ 1 such that

E((1 − λm)Gm−1 + λmϕm) = inf
0≤λ≤1

E((1 − λ)Gm−1 + λϕm),

and define

Gm := Gr,τ
m := (1 − λm)Gm−1 + λmϕm .

Remark 2.1 It follows from the definition of the WRGA that the sequence {E(Gm)}
is a nonincreasing sequence.

We call the WRGA(co) relaxed because at the mth step of the algorithm we use a
linear combination (convex combination) of the previous approximant Gm−1 and a
new element ϕm . The relaxation parameter λm in the WRGA(co) is chosen at the mth
step depending on E . We use in algorithms for convex optimization the notation Gm

(G comes from Greedy) used in greedy approximation algorithms to stress that an
mth approximant Gm is obtained by a greedy algorithm. Standard optimization theory
notation for it is xm . In the case E(x) = E( f, x, q) := ‖ f − x‖q , f ∈ X , q ≥ 1, the
WRGA(co) coincides with the Weak Relaxed Greedy Algorithm from approximation
theory (see [40], S. 6.3).

We proceed to a theorem on convergence of the WRGA(co). In the formulation
of this theorem, we need a special sequence which is defined for a given modulus of
smoothness ρ(u) and a given τ = {tk}∞k=1.

Definition 2.2 Let ρ(E, u) be an even convex function on (−∞,∞) with the property

lim
u→0

ρ(E, u)/u = 0.

For any τ = {tk}∞k=1, 0 < tk ≤ 1, and θ > 0, we define ξm := ξm(ρ, τ, θ) as a number
u satisfying the equation

ρ(E, u) = θ tmu. (10)
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Remark 2.3 Assumptions on ρ(E, u) imply that the function

s(u) := ρ(E, u)/u, u �= 0, s(0) = 0,

is a continuous increasing function on [0,∞). Thus (10) has a unique solution ξm =
s−1(θ tm) such that ξm > 0 for θ ≤ θ0 := s(2). In this case, we have ξm(ρ, τ, θ) ≤ 2.

Theorem 2.4 Let E be a uniformly smooth convex function with modulus of smooth-
ness ρ(E, u). Assume that a sequence τ := {tk}∞k=1 satisfies the condition that for any
θ ∈ (0, θ0], we have

∞∑
m=1

tmξm(ρ, τ, θ) = ∞.

Then, for the WRGA(co), we have

lim
m→∞ E(Gm) = inf

x∈A1(D)
E(x).

The following theorem gives the upper bound on the rate of convergence. In the case
of the strong version of the algorithm (tk = 1), the corresponding rates of convergence
were obtained in [14].

Theorem 2.5 Let E be a uniformly smooth convex function with modulus of smooth-
ness ρ(E, u) ≤ γ uq , 1 < q ≤ 2. Then, for a sequence τ := {tk}∞k=1, tk ≤ 1,
k = 1, 2, . . . , we have for any f ∈ A1(D) that

E(Gm) − E( f ) ≤
(

C1(q, γ ) + C2(q, γ )

m∑
k=1

t p
k

)1−q

, p := q

q − 1
,

with positive constants C1(q, γ ), C2(q, γ ) which may depend only on q and γ .

3 The Weak Chebyshev Greedy Algorithm

In this section, we study the WCGA designed for convex optimization. Here we are
interested in finding a solution to the unconstrained convex optimization problem (2)
that is sparse with respect to a given dictionary D. This algorithm provides a sequence
{Gm} of sparse approximants such that under mild conditions on E , the sequence
{E(Gm)} converges to the minimal value of E . Moreover, if we know that the point of
minimum of E satisfies some conditions, then we guarantee the rate of convergence
of {E(Gm)}. We prove the results for general infinite dimensional Banach space X . In
case X is finite dimensional, say, of dimension N , the complexity of the mth iteration
will increase to the complexity of the original optimization problem when m = N .
This means that it makes sense to use the WCGA(co) with the number of iterations
much smaller than N .
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We define the following generalization of the WCGA for convex optimization.
Weak Chebyshev Greedy Algorithm (WCGA(co)) We define G0 := 0. Then for each

m ≥ 1, we have the following inductive definition:

(C1) ϕm := ϕ
c,τ
m ∈ D is any element satisfying

〈−E ′(Gm−1), ϕm〉 ≥ tm sup
g∈D

〈−E ′(Gm−1), g〉.

(C2) Define

�m := �τ
m := span{ϕ j }m

j=1,

and define Gm := Gc,τ
m to be the point from �m at which E attains the minimum:

E(Gm) = inf
x∈�m

E(x).

In the case E(x) = E( f, x, q) := ‖ f − x‖q , f ∈ X , q ≥ 1, the WCGA(co)
coincides with the Weak Chebyshev Greedy Algorithm from approximation theory
(see [40], S. 6.2).

Theorem 3.1 Let E be a uniformly smooth convex function with modulus of smooth-
ness ρ(E, u). Assume that a sequence τ := {tk}∞k=1 satisfies the condition that for any
θ ∈ (0, θ0], we have

∞∑
m=1

tmξm(ρ, τ, θ) = ∞.

Then

lim
m→∞ E(Gm) = inf

x∈D
E(x).

Here are two simple corollaries of Theorem 3.1.

Corollary 3.2 Let a convex function E have modulus of smoothness ρ(E, u) of power
type 1 < q ≤ 2, that is, ρ(E, u) ≤ γ uq . Assume that

∞∑
m=1

t p
m = ∞, p = q

q − 1
. (11)

Then

lim
m→∞ E(Gm) = inf

x∈D
E(x).
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Corollary 3.3 Let a convex function E be uniformly smooth. Assume that tk = t ,
k = 1, 2, . . . . Then

lim
m→∞ E(Gm) = inf

x∈D
E(x).

We now proceed to the rate of convergence results.

Theorem 3.4 Let E be a uniformly smooth convex function with modulus of smooth-
ness ρ(E, u) ≤ γ uq , 1 < q ≤ 2. Take a number ε ≥ 0 and an element f ε from D
such that

E( f ε) ≤ inf
x∈D

E(x) + ε, f ε/B ∈ A1(D),

with some number B ≥ 1. Then we have for the WCGA(co) (p := q/(q − 1)),

E(Gm) − inf
x∈D

E(x) ≤ max

⎛
⎝2ε, C(q, γ )Bq

(
C(E, q, γ ) +

m∑
k=1

t p
k

)1−q
⎞
⎠ . (12)

4 Free Relaxation

Both of the above algorithms, the WCGA(co) and the WRGA(co), use the functional
E ′(Gm−1) in a search for the mth element ϕm from the dictionary to be used in
optimization. The construction of the approximant in the WRGA(co) is different from
the construction in the WCGA(co). In the WCGA(co), we build the approximant
Gm so as to maximally use the minimization power of the elements ϕ1, . . . , ϕm . The
WRGA(co) by its definition is designed for working with functions from A1(D). In
building the approximant in the WRGA(co), we keep the property Gm ∈ A1(D). As
we mentioned in Sect. 2, the relaxation parameter λm in the WRGA(co) is chosen at the
mth step depending on E . The following modification of the above idea of relaxation
in greedy approximation will be studied in this section [38].

Weak Greedy Algorithm with Free Relaxation (WGAFR(co)) Let τ := {tm}∞m=1,
tm ∈ [0, 1], be a weakness sequence. We define G0 := 0. Then for each m ≥ 1, we
have the following inductive definition:

(F1) ϕm ∈ D is any element satisfying

〈−E ′(Gm−1), ϕm〉 ≥ tm sup
g∈D

〈−E ′(Gm−1), g〉.

(F2) Find wm and λm such that

E((1 − wm)Gm−1 + λmϕm) = inf
λ,w

E((1 − w)Gm−1 + λϕm),

and define

Gm := (1 − wm)Gm−1 + λmϕm .
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Remark 4.1 It follows from the definition of the WGAFR(co) that the sequence
{E(Gm)} is a nonincreasing sequence.

In the case E(x) = E( f, x, q) := ‖ f − x‖q , f ∈ X , q ≥ 1, the WGAFR(co)
coincides with the Weak Greedy Algorithm with Free Relaxation from approximation
theory (see [40], S. 6.4).

We now formulate a convergence theorem for an arbitrary uniformly smooth convex
function. Modulus of smoothness ρ(E, u) of a uniformly smooth convex function is
an even convex function such that ρ(E, 0) = 0 and

lim
u→0

ρ(E, u)/u = 0.

Theorem 4.2 Let E be a uniformly smooth convex function with modulus of smooth-
ness ρ(E, u). Assume that a sequence τ := {tk}∞k=1 satisfies the following condition.
For any θ ∈ (0, θ0], we have

∞∑
m=1

tmξm(ρ, τ, θ) = ∞. (13)

Then, for the WGAFR(co), we have

lim
m→∞ E(Gm) = inf

x∈D
E(x).

The following theorem gives the rate of convergence.

Theorem 4.3 Let E be a uniformly smooth convex function with modulus of smooth-
ness ρ(E, u) ≤ γ uq , 1 < q ≤ 2. Take a number ε ≥ 0 and an element f ε from D
such that

E( f ε) ≤ inf
x∈D

E(x) + ε, f ε/B ∈ A1(D),

with some number B ≥ 1. Then we have (p := q/(q − 1)) for the WGAFR(co)

E(Gm) − inf
x∈D

E(x) ≤ max

⎛
⎝2ε, C1(E, q, γ )Bq

(
C2(E, q, γ ) +

m∑
k=1

t p
k

)1−q
⎞
⎠ .

(14)

5 Discussion

The technique used in this paper is a modification of the corresponding technique
developed in approximation theory (see [36,39] and the book [40]). We now discuss
this in more detail. In nonlinear approximation, we use greedy algorithms, for instance
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WCGA and WGAFR, for solving a sparse approximation problem. The greedy step
is the one where we look for ϕm ∈ D satisfying

F fm−1(ϕm) ≥ tm sup
g∈D

F fm−1(g).

This step is based on the norming functional F fm−1 . For a nonzero element f ∈ X , we
let F f denote a norming (peak) functional for f that is a functional with the following
properties:

‖F f ‖ = 1, F f ( f ) = ‖ f ‖.

The existence of such a functional is guaranteed by the Hahn-Banach theorem. The
norming functional F f is a linear functional (in other words is an element of the dual
to X space X∗) which can be explicitly written in some cases. In a Hilbert space, F f

can be identified with f ‖ f ‖−1. In the real L p, 1 < p < ∞, it can be identified with

f | f |p−2‖ f ‖1−p
p . The following proposition is well known (see, [40], p. 336).

Proposition 5.1 Let X be a uniformly smooth Banach space. Then, for any x �= 0
and y, we have

Fx (y) =
(

d

du
‖x + uy‖

)
(0) = lim

u→0
(‖x + uy‖ − ‖x‖)/u. (15)

Proposition 5.1 says that the norming functional F fm−1 is the derivative of the norm
function E(x) := ‖x‖. Clearly, we can reformulate our problem of approximation of
f as an optimization problem with E(x) := ‖ f −x‖. It is a convex function; however,
it is not a uniformly smooth function in the sense of smoothness of convex functions.
A way out of this problem is to consider E( f, x, q) := ‖ f − x‖q with appropriate q.
For instance, it is known [10] that if ρ(u) ≤ γ uq , 1 < q ≤ 2, then E( f, x, q) is a
uniformly smooth convex function with modulus of smoothness of order uq . Next,

E ′( f, x, q) = −q‖ f − x‖q−1 F f −x .

Therefore, the algorithms WCGA(co), WRGA(co), and WGAFR(co) coincide in this
case with the corresponding algorithms WCGA, WRGA, and WGAFR from approxi-
mation theory. We note that from the definition of modulus of smoothness, we get the
following inequality:

0 ≤ ‖x + uy‖ − ‖x‖ − uFx (y) ≤ 2‖x‖ρ(u‖y‖/‖x‖). (16)

In the proofs of approximation theory results, we use inequality (16) and the trivial
inequality

‖x + uy‖ ≥ Fx (x + uy) = ‖x‖ + uFx (y). (17)

In the proofs of optimization theory results, we use Lemma 6.3 instead of inequality
(16) and the convexity inequality (8) instead of (17). The rest of the proofs use the
same technique of solving the corresponding recurrent inequalities.
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We stress that an important contribution of this paper is the fact that it provides
convergence and rate of convergence results for an arbitrary dictionary. The authors
of the paper [17] make the following comment on the importance of a step from the
standard coordinate system basis to a special redundant dictionary: “In this paper, we
overcome this conceptual obstacle by considering all possible (normalized) rank-one
matrices as coordinates. This set of matrices forms an overcomplete and uncountable
infinite basis of the space of matrices. We show that a simple strategy of performing
a coordinate descent on this lifted space actually converges to the right solution.”

Our smoothness assumption on E was used in the proofs of all theorems from Sects.
2–4 in the form of Lemma 6.3. This means that in all those theorems, the assumption
that E has modulus of smoothness ρ(E, u) can be replaced by the assumption that E
satisfies the inequality

E(x + uy) − E(x) − u〈E ′(x), y〉 ≤ 2ρ(E, u‖y‖), x ∈ D. (18)

Moreover, in Sect. 2, where we consider the WRGA(co), the approximants Gm are
forced to stay in the convex hull A1(D). Therefore, in Theorems 2.4 and 2.5, we can
use the following inequality instead of (18):

E(x + u(y − x)) − E(x) − u〈E ′(x), y − x〉 ≤ 2ρ(E, u‖y − x‖), (19)

for x, y ∈ A1(D) and u ∈ [0, 1].
We note that smoothness assumptions in the form of (19) with ρ(E, u‖y − x‖)

replaced by C‖y − x‖q were used in many papers [12,14,18,22,45]. For instance, the
authors of [45] studied the version of WRGA(co) with weakness sequence tk = 1,
k = 1, 2, . . .. They proved Theorem 2.5 in this case. Their proof, like our proof in Sect.
2, is very close to the corresponding proof from greedy approximation (see [36,39]
Sect. 3.3 or [40] Sect. 6.3).

We now make some general remarks on the results of this paper. A typical problem
of convex optimization is to find an approximate solution to the problem

w := inf
x

E(x). (20)

In this paper, we study sparse (with respect to a given dictionary D) solutions of (20).
This means that we are solving the following problem instead of (20). For a given
dictionary D, consider the set of all m-term linear combinations with respect to D:

�m(D) :=
{

x ∈ X : x =
m∑

i=1

ci gi , gi ∈ D
}

.

We solve the following sparse optimization problem:

wm := inf
x∈�m (D)

E(x). (21)
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In this paper, we have used greedy-type algorithms to approximately solve problem
(21). Results of the paper show that it turns out that greedy-type algorithms with
respect to D solve problem (20) too.

We are interested in a solution from �m(D). Clearly, when we optimize a linear
form 〈F, g〉 over the dictionary D, we obtain the same value as optimization over
the convex hull A1(D). We often use this property (see Lemma 6.2). However, at the
greedy step of our algorithms, we choose

(1) ϕm := ϕ
c,τ
m ∈ D is any element satisfying

〈−E ′(Gm−1), ϕm〉 ≥ tm sup
g∈D

〈−E ′(Gm−1), g〉.

Thus if we replace the dictionary D by its convex hull A1(D), we may take an element
satisfying the above greedy condition which is not from D and could even be an infinite
combination of the dictionary elements.

Next, we begin with a Banach space X and a convex function E(x) defined on this
space. Properties of this function E are formulated in terms of a Banach space X . If
instead of a Banach space X we consider another Banach space, for instance, the one
generated by A1(D) as a unit ball, then the properties of E will change. For instance,
a typical example of E could be E(x) := ‖ f − x‖q , with ‖ · ‖ being the norm of
the Banach space X . Then our assumption that the set D := {x : E(x) ≤ E(0)} is
bounded is satisfied. However, this set is not necessarily bounded in the norm generated
by A1(D).

All three greedy-type algorithms studied in this paper use the derivative E ′ of the
objective function E . The derivative E ′ is a linear functional on X , or, in other words,
is an element of the dual space X∗. By analogy with approximation theory, we call
these algorithms dual greedy algorithms. An important feature of the dual greedy
algorithms is that they can be modified into a weak form. We obtained our results for
any weakness sequence τ = {tk}∞k=1, tk ∈ [0, 1], k = 1, 2, . . . . In particular, some of
the tk could be equal to zero. In the case tk = 0, we can choose any element ϕk ∈ D at
the greedy step. This allows us to shape our approximant at the kth iteration by other
criteria than greedy selection. However, our results guarantee convergence and rate of
convergence for τ satisfying the corresponding conditions.

On the example of three greedy-type algorithms, we demonstrated how the tech-
nique developed in greedy approximation theory can be modified for finding sparse
solutions of convex optimization problems. We discussed in this paper only three
greedy-type algorithms. There are many other greedy-type algorithms studied in
approximation theory. Some of them—the ones providing expansions—are gener-
alized for the convex optimization problem in [42]. There is an important class of
greedy-type algorithms, namely the thresholding-type algorithms, that was not gener-
alized for the convex optimization problem.

For the reader’s convenience, we now give a brief general description and classifi-
cation of greedy-type algorithms for convex optimization.

The most difficult part of an algorithm is to find an element ϕm ∈ D to be used
in the approximation process. We consider greedy methods for finding ϕm ∈ D. We
have two types of greedy steps to find ϕm ∈ D.

123



284 Constr Approx (2015) 41:269–296

I. Gradient greedy step At this step, we look for an element ϕm ∈ D such that

〈−E ′(Gm−1), ϕm〉 ≥ tm sup
g∈D

〈−E ′(Gm−1), g〉.

Algorithms that use the first derivative of the objective function E are called first-order
optimization algorithms.

II. E-greedy step At this step, we look for an element ϕm ∈ D which satisfies (we
assume existence):

inf
c∈R

E(Gm−1 + cϕm) = inf
g∈D,c∈R

E(Gm−1 + cg).

Algorithms that only use the values of the objective function E are called zero-order
optimization algorithms.

The above WGAFR(co) uses the greedy step of type I. In this paper, we only discuss
algorithms based on the greedy step of type I. These algorithms fall into a category
of the first-order methods. The greedy step of type II uses only the function values
E(x). We discussed some of the algorithms of this type in [42] and plan to study them
in our future work.

After finding ϕm ∈ D, we can proceed in different ways. We now list some typical
steps that are motivated by the corresponding steps in greedy approximation theory
[40]. These steps or their variants are used in different optimization algorithms (see,
for instance, [6,7,21,26,31,33]).

(A) Best step in the direction ϕm ∈ D. We choose cm such that

E(Gm−1 + cmϕm) = inf
c∈R

E(Gm−1 + cϕm)

and define

Gm := Gm−1 + cmϕm .

(B) Shortened best step in the direction ϕm ∈ D. We choose cm as in (A) and for a
given parameter b > 0, define

Gb
m := Gb

m−1 + bcmϕm .

Usually, b ∈ (0, 1). This is why we call it shortened.
(C) Chebyshev-type (fully corrective) methods. We choose Gm ∈ span(ϕ1, . . . , ϕm)

which satisfies

E(Gm) = inf
c j , j=1,...,m

E(c1ϕ1 + · · · + cmϕm).
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(D) Fixed relaxation. For a given sequence {rk}∞k=1 of relaxation parameters rk ∈
[0, 1) we choose Gm := (1 − rm)Gm−1 + cmϕm , with cm from

E((1 − rm)Gm−1 + cmϕm) = inf
c∈R

E((1 − rm)Gm−1 + cϕm).

(F) Free relaxation. We choose Gm ∈ span(Gm−1, ϕm) which satisfies

E(Gm) = inf
c1,c2

E(c1Gm−1 + c2ϕm).

(G) Prescribed coefficients. For a given sequence {ck}∞k=1 of positive coefficients, in
the case of greedy step I, we define

Gm := Gm−1 + cmϕm . (22)

In the case of greedy step II, we define Gm by formula (22) with the greedy step
II modified as follows: ϕm ∈ D is an element satisfying

E(Gm−1 + cmϕm) = inf
g∈D

E(Gm−1 + cm g).

All algorithms studied in this paper fall into the category I of algorithms with the
gradient-type greedy step. The reader can find a study of algorithms with the E-greedy-
type step in [16] and [42]. The step (C) corresponds to the Weak Chebyshev Greedy
Algorithm from Sect. 3, and step (F) corresponds to the Weak Greedy Algorithm with
Free Relaxation from Sect. 4. The reader can find a detailed study of algorithms with
step (G) in [42].

6 Proofs

We begin with the following two simple and well-known lemmas.

Lemma 6.1 Let E be a uniformly smooth convex function on a Banach space X and
L be a finite-dimensional subspace of X. Let xL denote the point from L at which E
attains the minimum:

E(xL) = inf
x∈L

E(x).

Then we have

〈E ′(xL), φ〉 = 0

for any φ ∈ L.
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Lemma 6.2 For any bounded linear functional F and any dictionary D, we have

sup
g∈D

〈F, g〉 = sup
f ∈A1(D)

〈F, f 〉.

See [40], p. 343 for the proof.
We will often use the following simple lemma.

Lemma 6.3 Let E be Fréchet differentiable convex function. Then the following
inequality holds for x ∈ D:

0 ≤ E(x + uy) − E(x) − u〈E ′(x), y〉 ≤ 2ρ(E, u‖y‖). (23)

Proof The left inequality follows directly from (8). Next, from the definition of mod-
ulus of smoothness, it follows that

E(x + uy) + E(x − uy) ≤ 2(E(x) + ρ(E, u‖y‖)). (24)

Inequality (8) gives

E(x − uy) ≥ E(x) + 〈E ′(x),−uy〉 = E(x) − u〈E ′(x), y〉. (25)

Combining (24) and (25), we obtain

E(x + uy) ≤ E(x) + u〈E ′(x), y〉 + 2ρ(E, u‖y‖).

This proves the second inequality. 
�
We begin with the proofs of Theorems 3.1 and 3.4 for the WCGA(co) because these

proofs are the simplest ones. Then we present proofs for results on the WRGA(co) and
the WGAFR(co). Some parts of these proofs are similar to the corresponding parts of
proofs of Theorems 3.1 and 3.4. We will not duplicate these parts and refer the reader
to the proofs of Theorems 3.1 and 3.4.

The following lemma is a key lemma in studying convergence and rate of conver-
gence of WCGA(co).

Lemma 6.4 Let E be a uniformly smooth convex function with modulus of smoothness
ρ(E, u). Take a number ε ≥ 0 and an element f ε from D such that

E( f ε) ≤ inf
x∈X

E(x) + ε, f ε/B ∈ A1(D),

with some number B ≥ 1. Then we have for the WCGA(co),

E(Gm) − E( f ε) ≤ E(Gm−1) − E( f ε)

+ inf
λ≥0

(−λtm B−1(E(Gm−1) − E( f ε)) + 2ρ(E, λ))

for m = 1, 2, . . . .
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Proof The main idea of the proof is the same as in the proof of the corresponding
one-step improvement inequality for the WCGA (see, for instance, [40], p. 343–
344). It follows from the definition of WCGA(co) that E(0) ≥ E(G1) ≥ E(G2) . . ..
Therefore, if E(Gm−1) − E( f ε) ≤ 0, then the claim of Lemma 6.4 is trivial. Assume
E(Gm−1) − E( f ε) > 0. By Lemma 6.3, we have for any λ,

E(Gm−1 + λϕm) ≤ E(Gm−1) − λ〈−E ′(Gm−1), ϕm〉 + 2ρ(E, λ), (26)

and by (C1) from the definition of the WCGA(co) and Lemma 6.2, we get

〈−E ′(Gm−1), ϕm〉 ≥ tm sup
g∈D

〈−E ′(Gm−1), g〉

= tm sup
φ∈A1(D)

〈−E ′(Gm−1), φ〉 ≥ tm B−1〈−E ′(Gm−1), f ε〉.

By Lemma 6.1 with xL = Gm−1 and by convexity (9), we obtain

〈−E ′(Gm−1), f ε〉 = 〈−E ′(Gm−1), f ε − Gm−1〉 ≥ E(Gm−1) − E( f ε).

Thus,

E(Gm) ≤ inf
λ≥0

E(Gm−1 + λϕm)

≤ E(Gm−1) + inf
λ≥0

(−λtm B−1(E(Gm−1) − E( f ε)) + 2ρ(E, λ), (27)

which proves the lemma. 
�
Proof of Theorem 3.1 The definition of the WCGA(co) implies that {E(Gm)} is a
nonincreasing sequence. Therefore we have

lim
m→∞ E(Gm) = a.

Define

b := inf
x∈D

E(x), α := a − b.

We prove that α = 0 by contradiction. Assume to the contrary that α > 0. Then, for
any m, we have

E(Gm) − b ≥ α.

We set ε = α/2 and find f ε such that

E( f ε) ≤ b + ε and f ε/B ∈ A1(D),
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with some B ≥ 1. Then, by Lemma 6.4, we get

E(Gm) − E( f ε) ≤ E(Gm−1) − E( f ε) + inf
λ≥0

(−λtm B−1α/2 + 2ρ(E, λ)).

Let us specify θ := min
(
θ0,

α
8B

)
and take λ = ξm(ρ, τ, θ). Then we obtain

E(Gm) ≤ E(Gm−1) − 2θ tmξm .

The assumption

∞∑
m=1

tmξm = ∞

brings a contradiction, which proves the theorem. 
�
Proof of Theorem 3.4 Define

an := E(Gn) − E( f ε).

The sequence {an} is nonincreasing. If an ≤ 0 for some n ≤ m, then E(Gm)−E( f ε) ≤
0 and E(Gm) − infx∈D E(x) ≤ ε, which implies (12). Thus we assume that an > 0
for n ≤ m.

By Lemma 6.4, we have

am ≤ am−1 + inf
λ≥0

(
−λtmam−1

B
+ 2γ λq

)
. (28)

Choose λ from the equation

λtmam−1

B
= 4γ λq ,

which implies that

λ =
(

tmam−1

4γ B

) 1
q−1

.

Let

Aq := 2(4γ )
1

q−1 .

Using the notation p := q
q−1 , we get from (28),

am ≤ am−1

(
1 − λtm

2B

)
= am−1

(
1 − t p

ma
1

q−1
m−1/(Aq B p)

)
.

123



Constr Approx (2015) 41:269–296 289

Raising both sides of this inequality to the power 1
q−1 and taking into account the

inequality xr ≤ x for r ≥ 1, 0 ≤ x ≤ 1, we obtain

a
1

q−1
m ≤ a

1
q−1
m−1

(
1 − t p

ma
1

q−1
m−1/(Aq B p)

)
.


�
We now need a simple known lemma [35].

Lemma 6.5 Suppose that a sequence y1 ≥ y2 ≥ · · · ≥ 0 satisfies inequalities

yk ≤ yk−1(1 − wk yk−1), wk ≥ 0,

for k > n. Then for m > n, we have

1

ym
≥ 1

yn
+

m∑
k=n+1

wk .

Proof It follows from the chain of inequalities

1

yk
≥ 1

yk−1
(1 − wk yk−1)

−1 ≥ 1

yk−1
(1 + wk yk−1) = 1

yk−1
+ wk .


�
By Lemma 6.5 with yk := a

1
q−1
k , n = 0, wk = t p

m/(Aq B p), we get

a
1

q−1
m ≤ C1(q, γ )B p

(
C(E, q, γ ) +

m∑
n=1

t p
n

)−1

,

which implies

am ≤ C(q, γ )Bq

(
C(E, q, γ ) +

m∑
n=1

t p
n

)1−q

.

Theorem 3.4 is now proved.

Proof of Theorems 2.4 and 2.5 This proof is similar to the Proof of Theorems 3.1 and
3.4. Instead of Lemma 6.4, we use the following lemma. 
�
Lemma 6.6 Let E be a uniformly smooth convex function with modulus of smoothness
ρ(E, u). Then, for any f ∈ A1(D), we have for the WRGA(co),

E(Gm) ≤ E(Gm−1) + inf
0≤λ≤1

(−λtm(E(Gm−1)

−E( f )) + 2ρ(E, 2λ)), m = 1, 2, . . . .
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Proof We have

Gm := (1 − λm)Gm−1 + λmϕm = Gm−1 + λm(ϕm − Gm−1)

and

E(Gm) = inf
0≤λ≤1

E(Gm−1 + λ(ϕm − Gm−1)).

As for (26), we have for any λ,

E(Gm−1 + λ(ϕm − Gm−1))

≤ E(Gm−1) − λ〈−E ′(Gm−1), ϕm − Gm−1〉 + 2ρ(E, 2λ), (29)

and by (R1) from the definition of the WRGA(co) and Lemma 6.2, we get

〈−E ′(Gm−1), ϕm − Gm−1〉 ≥ tm sup
g∈D

〈−E ′(Gm−1), g − Gm−1〉

= tm sup
φ∈A1(D)

〈−E ′(Gm−1), φ − Gm−1〉 ≥ tm〈−E ′(Gm−1), f − Gm−1〉.

By (9), we obtain

〈−E ′(Gm−1), f − Gm−1〉 ≥ E(Gm−1) − E( f ).

Thus,

E(Gm) ≤ inf
0≤λ≤1

E(Gm−1 + λ(ϕm − Gm−1))

≤ E(Gm−1) + inf
0≤λ≤1

(−λtm(E(Gm−1) − E( f )) + 2ρ(E, 2λ), (30)

which proves the lemma. 
�
The remaining part of the proof uses the inequality (30) in the same way relation

(27) was used in the Proof of Theorems 3.1 and 3.4. The only additional difficulty
here is that we are optimizing over 0 ≤ λ ≤ 1. In the Proof of Theorem 2.4, we
choose θ = α/8, assuming that α is small enough to guarantee that θ ≤ θ0 and
λ = ξm(ρ, τ, θ)/2.

We proceed to the Proof of Theorem 2.5. Define

an := E(Gn) − E( f ).

The sequence {an} is nonincreasing. If an ≤ 0 for some n ≤ m, then E(Gm)−E( f ) ≤
0, which implies Theorem 2.5. Thus we assume that an > 0 for n ≤ m. We obtain
from Lemma 6.6,

am ≤ am−1 + inf
0≤λ≤1

(−λtmam−1 + 2γ (2λ)q).
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We choose λ from the equation

λtmam−1 = 4γ (2λ)q (31)

if it is not greater than 1 and choose λ = 1 otherwise. The sequence {ak} is monotone
decreasing, and therefore we may choose λ = 1 only at the first n steps and then
choose λ from (31). Then we get for k ≤ n,

ak ≤ ak−1(1 − tk/2)

and

an ≤ a0

n∏
k=1

(1 − tk/2). (32)

For k > n, we have

ak ≤ ak−1(1 − λtk/2), λ =
(

tmam−1

22+qγ

) 1
q−1

. (33)

As in the Proof of Theorem 3.4, we obtain, using Lemma 6.5,

1

ym
≥ 1

yn
+

m∑
k=n+1

wk, yk := a
1

q−1
k , wk := t p

k

2(22+qγ )
1

q−1

.

By (32), we get

1

yn
≥ 1

y0

n∏
k=1

(1 − tk/2)
1

1−q .

Next,

n∏
k=1

(1 − tk/2)
1

1−q ≥
n∏

k=1

(1 + tk/2)
1

q−1 ≥
n∏

k=1

(1 + tk/2)

≥ 1 + 1

2

n∑
k=1

tk ≥ 1 + 1

2

n∑
k=1

t p
k .

Combining the above inequalities, we complete the proof.

Proof of Theorems 4.2 and 4.3 We begin with an analog of Lemma 6.4. 
�
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Lemma 6.7 Let E be a uniformly smooth convex function with modulus of smoothness
ρ(E, u). Take a number ε ≥ 0 and an element f ε from D such that

E( f ε) ≤ inf
x∈D

E(x) + ε, f ε/B ∈ A1(D),

with some number B ≥ 1. Then we have for the WGAFR(co),

E(Gm) − E( f ε) ≤ E(Gm−1) − E( f ε)

+ inf
λ≥0

(−λtm B−1(E(Gm−1) − E( f ε)) + 2ρ(E, C0λ))

for m = 1, 2, . . . .

Proof By the definition of Gm ,

E(Gm) ≤ inf
λ≥0,w

E(Gm−1 − wGm−1 + λϕm).

As in the arguments in the Proof of Lemma 6.4, we use Lemma 6.3

E(Gm−1 + λϕm − wGm−1) ≤ E(Gm−1)

−λ〈−E ′(Gm−1), ϕm〉 − w〈E ′(Gm−1), Gm−1〉 + 2ρ(E, ‖λϕm − wGm−1‖)
(34)

and estimate

〈−E ′(Gm−1), ϕm〉 ≥ tm sup
g∈D

〈−E ′(Gm−1), g〉

= tm sup
φ∈A1(D)

〈−E ′(Gm−1), φ〉 ≥ tm B−1〈−E ′(Gm−1), f ε〉.

We set w∗ := λtm B−1 and obtain

E(Gm−1 − w∗Gm−1 + λϕm)

≤ E(Gm−1) − λtm B−1〈−E ′(Gm−1), f ε − Gm−1〉. (35)

By (9), we obtain

〈−E ′(Gm−1), f ε − Gm−1〉 ≥ E(Gm−1) − E( f ε).

Thus,

E(Gm) ≤ E(Gm−1) + inf
λ≥0

(−λtm B−1(E(Gm−1) − E( f ε))

+ 2ρ(E, ‖λϕm − w∗Gm−1‖). (36)
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We now estimate

‖w∗Gm−1 − λϕm‖ ≤ w∗‖Gm−1‖ + λ.

Next, E(Gm−1) ≤ E(0), and, therefore, Gm−1 ∈ D. Our assumption on boundedness
of D implies that ‖Gm−1‖ ≤ C1 := diam(D). Thus, under assumption B ≥ 1, we
get

w∗‖Gm−1‖ ≤ C1λtm ≤ C1λ.

Finally,

‖w∗Gm−1 − λϕm‖ ≤ C0λ.

This completes the Proof of Lemma 4.1. 
�

By Remark 4.1, {E(Gm)} is a nonincreasing sequence. Therefore we have

lim
m→∞ E(Gm) = a.

Define

b := inf
x∈D

E(x), α := a − b.

We prove that α = 0 by contradiction. Assume to the contrary that α > 0. Then, for
any m, we have

E(Gm) − b ≥ α.

We set ε = α/2 and find f ε such that

E( f ε) ≤ b + ε and f ε/B ∈ A1(D),

with some B ≥ 1. Then, by Lemma 6.7, we get

E(Gm) − E( f ε) ≤ E(Gm−1) − E( f ε) + inf
λ≥0

(−λtm B−1α/2 + 2ρ(E, C0λ)).

Let us specify θ := min
(
θ0,

α
8B

)
and take λ = C0ξm(ρ, τ, θ). Then we obtain

E(Gm) ≤ E(Gm−1) − 2θ tmξm .
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The assumption

∞∑
m=1

tmξm = ∞

brings a contradiction, which proves Theorem 4.2.
We proceed to the Proof of Theorem 4.3. Define

an := E(Gn) − E( f ε).

By Lemma 6.7, we have

am ≤ am−1 + inf
λ≥0

(
−λtmam−1

B
+ 2γ (C0λ)q

)
. (37)

Choose λ from the equation

λtmam−1

B
= 4γ (C0λ)q .

The rest of the proof repeats the argument from the Proof of Theorem 3.4.
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