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Abstract In this article, we present two new greedy algorithms for the computation
of the lowest eigenvalue (and an associated eigenvector) of a high-dimensional eigen-
value problem and prove some convergence results for these algorithms and their
orthogonalized versions. The performance of our algorithms is illustrated on numeri-
cal test cases (including the computation of the buckling modes of a microstructured
plate) and compared with that of another greedy algorithm for eigenvalue problems
introduced by Ammar and Chinesta.
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1 Introduction

High-dimensional problems are encountered in many application fields, including
electronic structure calculation, molecular dynamics, uncertainty quantification, mul-
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tiscale homogenization, and mathematical finance. The numerical simulation of these
problems, which requires specific approaches due to the so-called curse of dimension-
ality [5], has fostered the development of a wide variety of new numerical methods and
algorithms, such as sparse grids [10,34,37], reduced bases [9], sparse tensor products
[20], and adaptive polynomial approximations [15,16].

In this article, we focus on an approach introduced by Ladevèze [24], Chinesta [2],
Nouy [29], and coauthors in different contexts, relying on the use of greedy algorithms
[35,36]. This class of methods is also called progressive generalized decomposition
[14] in the literature.

Let V be a Hilbert space of functions depending on d variables x1 ∈ X1, . . . , xd ∈
Xd , where, typically, X j ⊂ R

m j . For all 1 ≤ j ≤ d, let Vj be a Hilbert space of
functions depending only on the variable x j such that for all d-tuple

(
φ(1), . . . , φ(d)

) ∈
V1 × · · · × Vd , the tensor-product function φ(1) ⊗ · · · ⊗ φ(d) defined by

φ(1) ⊗ · · · ⊗ φ(d):
{ X1 × · · · × Xd → R,

(x1, . . . , xd) �→ φ(1)(x1) · · ·φ(d)(xd),

belongs to V . Let u be a specific function of V , for instance the solution of a par-
tial differential equation (PDE). Standard linear approximation approaches such as
Galerkin methods consist in approximating the function u(x1, . . . , xd) as

u(x1, . . . , xd) ≈
∑

1≤i1,...,id≤N

λi1,...,idφ
(1)
i1

⊗ · · · ⊗ φ
(d)
id
(x1, . . . , xd), (1)

where N is the number of degrees of freedom per variate (chosen to be the same for

each variate to simplify the notation), and where for all 1 ≤ j ≤ d,
(
φ
( j)
i

)

1≤i≤N
is an

a priori chosen discretization basis of functions belonging to Vj . To approximate the
function u, the set of N d real numbers

(
λi1,...,id

)
1≤i1,...,id≤N must be computed. Thus,

the size of the discretized problem to solve scales exponentially with d, the number
of variables. Because of this difficulty, classical methods cannot be used in practice to
solve high-dimensional PDEs. Greedy algorithms also consist in approximating the
function u(x1, . . . , xd) as a sum of tensor-product functions

u(x1, . . . , xd) ≈ un(x1, . . . , xd) =
n∑

k=1

r (1)k ⊗ · · · ⊗ r (d)k (x1, . . . , xd),

where for all 1 ≤ k ≤ n and all 1 ≤ j ≤ d, r ( j)
k ∈ Vj . But in contrast with

standard linear approximation methods, the sequence of tensor-product functions(
r (1)k ⊗ · · · ⊗ r (d)k

)

1≤k≤n
is not chosen a priori; it is constructed iteratively using

a greedy procedure. Let us illustrate this on the simple case when the function u to be
computed is the unique solution of a minimization problem of the form

u = argmin
v∈V

E(v), (2)
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where E : V → R is a strongly convex functional. Denoting by

Σ⊗ :=
{

r (1) ⊗ · · · ⊗ r (d) | r (1) ∈ V1, . . . , r (d) ∈ Vd

}

the set of rank-1 tensor-product functions, the pure greedy algorithm (PGA) [35,36]
for solving (2) reads

Pure Greedy Algorithm (PGA):

• Initialization: set u0 := 0;
• Iterate on n ≥ 1: find zn := r (1)n ⊗ · · · ⊗ r (d)n ∈ Σ⊗ such that

zn ∈ argmin
z∈Σ⊗

E (un−1 + z) ,

and set un := un−1 + zn .

The advantage of such an approach is that if, as above, a discretization basis(
φ
( j)
i

)

1≤i≤N
is used for the approximation of the function r ( j)

n , each iteration of the

algorithm requires the resolution of a discretized problem of size d N . The size of the
problem to solve at iteration n therefore scales linearly with the number of variables.
Thus, using the above PGA enables one to approximate the function u(x1, . . . , xd)

through the resolution of a sequence of low-dimensional problems instead of one
high-dimensional problem.

Greedy algorithms have been extensively studied in the framework of problem (2).
The PGA has been analyzed from a mathematical point of view, first in [26] in the
case when E(v) := ‖v− u‖2

V , then in [11] in the case of a more general nonquadratic
strongly convex energy functional E . In the latter article, it is proved that the sequence
(un)n∈N∗ strongly converges in V to u and provided that: (i)Σ⊗ is weakly closed in V
and Span

(
Σ⊗)

is dense in V ; (ii) the functional E is strongly convex, differentiable on
V , and its derivative is Lipschitz on bounded domains. An exponential convergence
rate is also proved in the case when V is finite dimensional. In [30], these results have
been extended to the case when general tensor subsetsΣ are considered instead of the
set of rank-1 tensor products Σ⊗, and under weaker assumptions on the functional
E . The authors also generalized the convergence results to other variants of greedy
algorithms, such as the Orthogonal Greedy Algorithm (OGA), and to the case when
the space V is a Banach space.

The analysis of greedy algorithms for other kinds of problems is less advanced
[14]. We refer to Cancès et al. [12] for a review of the mathematical issues arising in
the application of greedy algorithms to nonsymmetric linear problems for example.
To our knowledge, the literature on greedy algorithms for eigenvalue problems is very
limited. Penalized formulations of constrained minimization problems enable one to
recover the structure of unconstrained minimization problems and to use the existing
theoretical framework for the PGA and the OGA [11,17]. The only reference we
are aware of about greedy algorithms for eigenvalue problems without the use of a
penalized formulation is an article by Ammar and Chinesta [1], in which the authors
propose a greedy algorithm to compute the lowest eigenstate of a bounded from below
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self-adjoint operator and apply it to electronic structure calculation. No analysis of
this algorithm is given though. Let us also mention that the use of tensor formats for
eigenvalue problems has been recently investigated [6,7,20,23,33], still in the context
of electronic structure calculation.

In this article, we propose two new greedy algorithms for the computation of the
lowest eigenstate of high-dimensional eigenvalue problems and prove some conver-
gence results for these algorithms and their orthogonalized versions. We would like
to point out that these algorithms are not based on a penalized formulation of the
eigenvalue problem.

The outline of the article is as follows. In Sect. 2, we introduce some notation
and give some prototypical examples of problems and tensor subsets for which our
analysis is valid. In Sect. 3, the two new approaches are presented along with our main
convergence results. The first algorithm is based on the minimization of the Rayleigh
quotient associated with the problem under consideration. The second algorithm is
inspired from the well-known inverse power method and relies on the minimization
of a residual associated with the eigenvalue problem. Orthogonal and weak versions
of these algorithms are also introduced. In Sect. 4, we detail how these algorithms
can be implemented in practice in the case of rank-1 tensor-product functions. The
numerical behaviors of our algorithms and of the one proposed in [1] are illustrated
in Sect. 5, first on a toy example, then on the computation of the buckling modes of
a microstructured plate. For the sake of brevity, we only give here the proof of the
results related to our first greedy strategy (see Sect. 7). We refer the reader to Section
6.5 of [13] for a detailed analysis of our second strategy and for further implementation
details. Let us mention that we do not cover here the case of parametric eigenvalue
problems, which will make the subject of a forthcoming article.

2 Preliminaries

2.1 Notation and Main Assumptions

Let us consider two Hilbert spaces V and H , endowed, respectively, with the scalar
products 〈·, ·〉V and 〈·, ·〉, such that, unless otherwise stated,

(HV) the embedding V ↪→ H is dense and compact.

The norms of V and H are denoted, respectively, by ‖ · ‖V and ‖ · ‖. Let us recall that
it follows from (HV) that weak convergence in V implies strong convergence in H .

Let a : V × V → R be a symmetric continuous bilinear form on V × V such that

(HA) ∃γ, ν > 0, such that ∀v ∈ V, a(v, v) ≥ γ ‖v‖2
V − ν‖v‖2.

The bilinear form 〈·, ·〉a , defined by

∀v,w ∈ V, 〈v,w〉a := a(v,w)+ ν〈v,w〉, (3)

is a scalar product on V , whose associated norm, denoted by ‖ · ‖a , is equivalent to
the norm ‖ · ‖V . In addition, we can also assume without loss of generality that the
constant ν is chosen so that for all v ∈ V , ‖v‖a ≥ ‖v‖.
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It is well known (see, e.g., [31]) that, under the above assumptions (namely (HA)
and (HV)), there exists a sequence (ψp, μp)p∈N∗ of solutions to the elliptic eigenvalue
problem {

find (ψ,μ) ∈ V × R such that ‖ψ‖ = 1 and
∀v ∈ V, a(ψ, v) = μ〈ψ, v〉 (4)

such that (μp)p∈N∗ forms a nondecreasing sequence of real numbers going to infinity
and (ψp)p∈N∗ is an orthonormal basis of H . We focus here on the computation of μ1,
the lowest eigenvalue of a(·, ·), and of an associated H -normalized eigenvector. Let
us note that, from (HA), for all p ∈ N

∗, μp + ν > 0.

Definition 2.1 A set Σ ⊂ V is called a dictionary of V if Σ satisfies the following
three conditions:

(HΣ1) Σ is a nonempty cone, i.e., 0 ∈ Σ and for all (z, t) ∈ Σ × R, t z ∈ Σ ;
(HΣ2) Σ is weakly closed in V ;
(HΣ3) Span(Σ) is dense in V .

In practical applications for high-dimensional eigenvalue problems, the set Σ is
typically an appropriate set of tensor formats used to perform the greedy algorithms
presented in Sect. 3.2. We also define

Σ∗ := Σ \ {0}. (5)

2.2 Prototypical Example

Let us present a prototypical example of the high-dimensional eigenvalue problems
we have in mind, along with possible dictionaries.

Let X1, . . . , Xd be bounded regular domains of R
m1 , . . . , R

md , respectively.
Let V = H1

0 (X1 × · · · × Xd) and H = L2(X1 × · · · × Xd). It follows from the
Rellich–Kondrachov theorem that these spaces satisfy assumption (HV). Let b : X1 ×
· · · × Xd → R be a measurable real-valued function such that

∃β, B > 0, such that β≤b(x1, . . . , xd)≤ B, for a.a. (x1, . . . , xd)∈X1 × · · · × Xd .

In addition, let W ∈ Lq(X1 × · · · × Xd) with q = 2 if m ≤ 3, and q > m/2 for
m ≥ 4, where m := m1+· · ·+md . A prototypical example of a continuous symmetric
bilinear form a : V × V → R satisfying (HA) is

∀v,w ∈ V, a(v,w) :=
∫

X1×···×Xd

(b∇v · ∇w + Wvw) . (6)

In this particular case, the eigenvalue problem (4) also reads

{
find (ψ,μ) ∈ H1

0 (X1 × · · · × Xd)× R such that ‖ψ‖L2(X1×···×Xd )
= 1 and

−div (b∇ψ)+ Wψ = μψ in D′(X1 × · · · × Xd).
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For all 1 ≤ j ≤ d, we define Vj := H1
0 (X j ). Some examples of dictionaries Σ

based on tensor formats satisfying (HΣ1), (HΣ2), and (HΣ3) are the set of rank-1
tensor-product functions

Σ⊗ :=
{

r (1) ⊗ · · · ⊗ r (d) | ∀1 ≤ j ≤ d, r ( j) ∈ Vj

}
, (7)

as well as other tensor formats [20,23], for instance the sets of rank-R Tucker or
rank-R tensor train functions, with R ∈ N

∗.

3 Greedy Algorithms for Eigenvalue Problems

In the rest of the article, we define and study two different greedy algorithms to compute
an eigenpair associated with the lowest eigenvalue of the elliptic eigenvalue problem
(4).

The first one relies on the minimization of the Rayleigh quotient of a(·, ·) and is
introduced in Sect. 3.2.1. The second one, presented in Sect. 3.2.2, shares common
features with the inverse power method and is based on the use of a residual for
problem (4). We recall the algorithm introduced in [1] in Sect. 3.2.3. Orthogonal and
weak versions of these algorithms are defined, respectively, in Sects. 3.2.4 and 3.2.5.
Section 3.3 contains our main convergence results. The choice of a good initial guess
for all these algorithms is discussed in Sect. 3.4.

Let us first start with a few preliminary results.

3.1 Two Useful Lemmas

For all v ∈ V , we denote by

J (v) :=
{

a(v,v)
‖v‖2 if v �= 0,

+∞ if v = 0,

the Rayleigh quotient associated with (4), and define

λΣ := inf
z∈Σ J (z) = inf

z∈Σ∗
a(z, z)

‖z‖2 .

Note that, since Σ ⊂ V , λΣ ≥ μ1 = infv∈V J (v).
Lemma 3.1 Let w ∈ V such that ‖w‖ = 1. The following two assertions are equiv-
alent:

(i) ∀z ∈ Σ, J (w + z) ≥ J (w);
(ii) w is an eigenvector of the bilinear form a(·, ·) associated with an eigenvalue less

than or equal to λΣ ; i.e., there exists λw ∈ R such that λw ≤ λΣ and

∀v ∈ V, a(w, v) = λw〈w, v〉.
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Proof of Lemma 3.1 Proof that (i) ⇒ (i i)
Let z ∈ Σ . For all ε ∈ R such that |ε|‖z‖ < ‖w‖, w + εz �= 0. Then, since

‖w‖ = 1, (i) implies that

J (w + εz)− J (w) =
(
2εa(w, z)+ ε2a(z, z)

) − (
2ε〈w, z〉 + ε2‖z‖2

)
a(w,w)

‖w + εz‖2

= 2ε (a(w, z)− a(w,w)〈w, z〉)+ ε2
(
a(z, z)− a(w,w)‖z‖2

)

‖w + εz‖2

≥ 0.

Considering ε ∈ R with |ε| arbitrarily small, the above inequality yields

a(w, z)− a(w,w)〈w, z〉 = 0 and a(z, z)− ‖z‖2a(w,w) ≥ 0.

These relationships are valid for any vector z ∈ Σ . Together with assumption (HΣ3),
and denoting by λw := a(w,w), the first equality implies that

∀v ∈ V, a(w, v) = λw〈w, v〉,

and the second inequality yields

λw ≤ inf
z∈Σ∗

a(z, z)

‖z‖2 = λΣ,

where Σ∗ is defined by (5). Hence (ii).
Proof that (ii) ⇒ (i)
Using (ii), similar calculations yield that for all z ∈ Σ such that w + z �= 0,

J (w + z)− J (w) = a(w + z, w + z)

‖w + z‖2 − a(w,w)

= 2a(w, z)+ a(z, z)− (
2〈w, z〉 + ‖z‖2

)
a(w,w)

‖w + z‖2

= a(z, z)− λw‖z‖2

‖w + z‖2 .

This implies that J (w + z) − J (w) ≥ 0. Hence (i), since the inequality is trivial in
the case when w + z = 0. ��
Lemma 3.2 Let w ∈ V \Σ∗. Then, the minimization problem

find z0 ∈ Σ such that z0 ∈ argmin
z∈Σ

J (w + z) (8)

has at least one solution.

When w ∈ Σ∗, problem (8) may have no solution (see Example 7.1 of [13] for an
example).
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Proof of Lemma 3.2 Let us first prove that (8) has at least one solution in the case when
w = 0. Let (zm)m∈N∗ be a minimizing sequence: ∀m ∈ N

∗, zm ∈ Σ , ‖zm‖ = 1, and
a(zm, zm) −→

m→∞ λΣ . The sequence (‖zm‖a)m∈N∗ being bounded, there exists z∗ ∈ V

such that (zm)m∈N∗ weakly converges, up to extraction, to some z∗ in V . By (HΣ2),
z∗ belongs to Σ . In addition, using (HV), the sequence (zm)m∈N∗ strongly converges
to z∗ in H , so that ‖z∗‖ = 1. Lastly,

‖z∗‖a ≤ lim
m→∞ ‖zm‖a,

which implies that a(z∗, z∗) = J (z∗) ≤ λΣ = lim
m→∞ a(zm, zm). Hence, z∗ is a

minimizer of problem (8) when w = 0.
Let us now consider w ∈ V \Σ and (zm)m∈N∗ a minimizing sequence for problem

(8). There exists m0 ∈ N
∗ large enough such that for all m ≥ m0, w + zm �= 0.

Let us define αm := 1
‖w+zm‖ and z̃m := αm zm . It holds that ‖αmw + z̃m‖ = 1 and

a(αmw + z̃m, αmw + z̃m) −→
m→∞ inf z∈Σ J (w + z).

If the sequence (αm)m∈N∗ is bounded, then so is the sequence (‖̃zm‖a)m∈N∗ , and
reasoning as above, we can prove that there exists a minimizer to problem (8).

To complete the proof, let us now argue by contradiction and assume that, up to the
extraction of a subsequence, αm −→

m→∞ +∞. Since the sequence (‖αmw + z̃m‖a)m∈N∗

is bounded and for all m ∈ N
∗,

‖αmw + z̃m‖a = αm‖w + zm‖a,

the sequence (zm)m∈N∗ strongly converges to −w in V . Using assumption (HΣ2),
this implies that w ∈ Σ , which leads to a contradiction. ��

3.2 Description of the Algorithms

3.2.1 Pure Rayleigh Greedy Algorithm

The following algorithm, called hereafter the pure Rayleigh greedy algorithm
(PRaGA), is inspired by the PGA for convex minimization problems (see [11,13,30]
for further details).

Pure Rayleigh Greedy Algorithm (PRaGA):

• Initialization: choose an initial guess u0 ∈ V such that ‖u0‖ = 1 and

λ0 := a(u0, u0) < λΣ ;

• Iterate on n ≥ 1: find zn ∈ Σ such that

zn ∈ argmin
z∈Σ

J (un−1 + z), (9)

and set un := un−1+zn
‖un−1+zn‖ and λn := a(un, un).
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Let us point out that in our context, the functional J is not convex, so that the
analysis existing in the literature for the PGA in the context of minimization of convex
functionals does not apply to the PRaGA.

The choice of an initial guess u0 ∈ V satisfying ‖u0‖ = 1 and a(u0, u0) < λΣ
is discussed in Sect. 3.4.2. Let us mention that the two other algorithms (PReGA and
PEGA, presented in the following sections) only require a(u0, u0) ≤ λΣ . This is
discussed in Sect. 3.4.1.

Lemma 3.3 Let V and H be separable Hilbert spaces satisfying (HV),Σ a dictionary
of V , and a : V × V → R a symmetric continuous bilinear form satisfying (HA).
Then, all the iterations of the PRaGA are well defined in the sense that for all n ∈ N

∗,
and there exists at least one solution to the minimization problem (9). In addition, the
sequence (λn)n∈N∗ is nonincreasing.

Proof Lemma 3.3 can be easily proved by induction using Lemma 3.2, the fact that
the initial guess u0 is chosen such that λ0 = J (u0) < λΣ , and the fact that a vector
w ∈ V which satisfies J (w) < λΣ is necessarily such that w /∈ Σ∗. ��

3.2.2 Pure Residual Greedy Algorithm

The pure residual greedy algorithm (PReGA) we propose is based on the use of a
residual for problem (4).

Pure Residual Greedy Algorithm (PReGA):

• Initialization: choose an initial guess u0 ∈ V such that ‖u0‖ = 1 and

λ0 := a(u0, u0) ≤ λΣ ;

• Iterate on n ≥ 1: find zn ∈ Σ such that

zn ∈ argmin
z∈Σ

1

2
‖un−1 + z‖2

a − (λn−1 + ν)〈un−1, z〉, (10)

and set un := un−1+zn
‖un−1+zn‖ and λn := a(un, un).

The term residual can be justified as follows: It is easy to check that for all n ∈ N
∗,

problem (10) is equivalent to the minimization problem

find zn ∈ Σ such that zn ∈ argmin
z∈Σ

1

2
‖Rn−1 − z‖2

a, (11)

where Rn−1 ∈ V is the Riesz representative in V for the scalar product 〈·, ·〉a of the
linear form ln−1 : v ∈ V �→ λn−1〈un−1, v〉 − a(un−1, v). In other words, Rn−1 is the
unique element of V such that

∀v ∈ V, 〈Rn−1, v〉a = λn−1〈un−1, v〉 − a(un−1, v).
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The linear form ln−1 can indeed be seen as a residual for (4) since ln−1 = 0 if and only
if λn−1 is an eigenvalue of a(·, ·) and un−1 an associated H -normalized eigenvector.

Let us point out that in order to carry out the PReGA in practice, one needs to know
the value of a constant ν ensuring (HA), whereas this is not needed for the PRaGA or
for the algorithm PEGA introduced in [1] and considered in the next section.

Lemma 3.4 Let V and H be separable Hilbert spaces such that the embedding V ↪→
H is dense, Σ a dictionary of V , and a : V × V → R a symmetric continuous
bilinear form satisfying (HA). Then, all the iterations of the PReGA are well defined
in the sense that for all n ∈ N

∗, there exists at least one solution to the minimization
problem (10).

Proof The existence of a solution to (10) for all n ∈ N
∗ follows from standard results

on the PGA for the minimization of quadratic functionals. We refer the reader to
Section 2.3 and Lemma 3.4 of [13], for instance, for more details. ��
Remark 3.1 Actually, the PReGA can be seen as a greedy version of the inverse power
method, defined as follows:

Inverse Power Method:

• Initialization: let ũ0 ∈ V such that ‖ũ0‖ = 1 and let λ̃0 := a (̃u0, ũ0);
• Iterate on n ≥ 1: find z̃n ∈ V such that

z̃n ∈ argmin
z̃∈V

1

2
‖ũn−1 + z̃‖2

a − (λn−1 + ν)〈̃un−1, z̃〉, (12)

and set ũn := ũn−1+w̃n
‖ũn−1+w̃n‖ .

Let us point out that for all n ∈ N
∗, there exists a unique solution z̃n ∈ V to (12)

which is equivalently the unique solution of the following problem: find ζ̃n ∈ V such
that

∀v ∈ V, 〈̃un−1 + z̃n, v〉a = (̃λn−1 + ν)〈̃un−1, v〉.

The inverse power method is a classical approach for computing the smallest eigen-
value and an associated eigenvector of the bilinear form a(·, ·). In particular, if the
smallest eigenvalueμ1 of the bilinear form a(·, ·) is simple, the sequence (̃un)n∈N con-
verges exponentially fast to an H -normalized eigenvector of a(·, ·) associated with
μ1. In the PReGA, for all n ∈ N

∗, a vector zn ∈ Σ solution of (10) can be seen as
the vector given by the first iteration of a standard PGA for the resolution of (12) with
ũn−1 = un−1 and λ̃n−1 = λn−1, and using the energy functional En−1 : V → R such
that for all v ∈ V , En−1(v) := 1

2‖v‖2
a + 〈un−1, v〉a − (λn−1 + ν)〈un−1, v〉.

3.2.3 Pure Explicit Greedy Algorithm

The above two algorithms are new, at least to our knowledge. In this section, we
describe an algorithm very closely related to the one which has already been proposed
in [1], which we call in the rest of the article the pure explicit greedy algorithm (PEGA).
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Unlike the above two algorithms, the PEGA is not defined for general dictionaries
Σ satisfying (HΣ1), (HΣ2), and (HΣ3). We need to assume in addition that Σ is a
differentiable manifold [25] in V . In this case, for all z ∈ Σ , we denote by TΣ(z) the
tangent subspace to Σ at point z in V .

Let us point out that ifΣ is a differentiable manifold in V , for all n ∈ N
∗, the Euler

equations associated with the minimization problems (9) and (10), respectively, read:

∀δz ∈ TΣ(zn), a (un−1 + zn, δz) = λn〈un−1 + zn, δz〉, (13)

and
∀δz ∈ TΣ(zn), a (un−1 + zn, δz)+ ν〈zn, δz〉 = λn−1〈un−1, δz〉. (14)

The PEGA consists in solving at each iteration n ∈ N
∗ of the greedy algorithm the

following equation, which is of a similar form as the Euler equations (13) and (14)
above:

∀δz ∈ TΣ(zn), a (un−1 + zn, δz) = λn−1〈un−1 + zn, δz〉. (15)

More precisely, the PEGA algorithm reads:

Pure Explicit Greedy Algorithm (PEGA):

• Initialization: choose an initial guess u0 ∈ V such that ‖u0‖ = 1 and

λ0 := a(u0, u0) ≤ λΣ ;

• Iterate for n ≥ 1: find zn ∈ Σ such that

∀δz ∈ TΣ(zn), a (un−1 + zn, δz)− λn−1〈un−1 + zn, δz〉 = 0, (16)

and set un := un−1+zn
‖un−1+zn‖ and λn := a(un, un).

Notice that (16) is very similar to (13) except that λn−1 is used instead of λn . The
PEGA can be seen as an explicit version of the PRaGA, hence the name pure explicit
greedy algorithm.

It is not clear whether there always exists a solution zn to (16), since (16) does not
derive from a minimization problem, unlike the other two algorithms. We have not
been able so far to prove convergence results for the PEGA.

In Sect. 4, we will discuss in more detail how these three algorithms (PRaGA,
PReGA, and PEGA) are implemented in practice in the case when Σ is the set of
rank-1 tensor-product functions.

3.2.4 Orthogonal Algorithms

We introduce here slightly modified versions of the PRaGA, PReGA, and PEGA,
inspired from the OGA for convex minimization problems (see [13,30]).

Orthogonal (Rayleigh, Residual, or Explicit) Greedy Algorithm (ORaGA, OReGA,
and OEGA):
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• Initialization: choose an initial guess u0 ∈ V such that ‖u0‖ = 1 and λ0 :=
a(u0, u0) ≤ λΣ . For the ORaGA, we assume in addition that λ0 := a(u0, u0) <

λΣ .
• Iterate on n ≥ 1:

– for the ORaGA: find zn ∈ Σ satisfying (9);
– for the OReGA: find zn ∈ Σ satisfying (10);
– for the OEGA: find zn ∈ Σ satisfying (16);

find
(

c(n)0 , . . . , c(n)n

)
∈ R

n+1 such that

(
c(n)0 , . . . , c(n)n

)
∈ argmin
(c0,...,cn)∈Rn+1

J (c0u0 + c1z1 + · · · + cnzn) , (17)

and set un := c(n)0 u0+c(n)1 z1+···+c(n)n zn

‖c(n)0 u0+c(n)1 z1+···+c(n)n zn‖ ; if 〈un−1, un〉 ≤ 0, set un := −un ; set

λn := a(un, un).

Let us point out that the original algorithm proposed in [1] is the OEGA. In addition,
for the three algorithms and all n ∈ N

∗, there always exists at least one solution to the
minimization problem (17).

The orthogonal versions of the greedy algorithms can be easily implemented from
the pure versions: At any iteration n ∈ N

∗, only one additional step is performed,
which consists in choosing an approximate eigenvector un as a linear combination
of the elements u0, z1, . . . , zn minimizing the Rayleigh quotient associated with the
bilinear form a(·, ·). Since un is meant to be an approximation of an eigenvector
associated with the lowest eigenvalue of a(·, ·), which is a minimizer of the Rayleigh
quotient on the Hilbert space V , this additional step is very natural.

3.2.5 Weak Versions of the Algorithms

Several weak versions of the greedy algorithms have been proposed (see [35] for a
review) and analyzed for quadratic minimization problems, to take into account the
fact that the minimization problems defining the iterations of a greedy algorithm are
rarely solved exactly. Similarly, weak versions of the PRaGA and the PRega could
read as follows:

Weak (Rayleigh or Residual) Greedy Algorithm (WRaGA and WReGA): let (tn)n∈N∗
be a sequence of positive real numbers.

• Initialization: choose an initial guess u0 ∈ V such that ‖u0‖ = 1 and

λ0 := a(u0, u0) ≤ λΣ.

For the WRaGA, we assume in addition that λ0 := a(u0, u0) < λΣ .
• Iterate on n ≥ 1:

– for the WRaGA: find zn ∈ Σ satisfying

J (un−1 + zn) ≤ (1 + tn) inf
z∈Σ J (un−1 + z); (18)
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– for the WReGA: find zn ∈ Σ satisfying

1

2
‖un−1 + zn‖2

a − (λn−1 + ν)〈un−1, zn〉 ≤ (1 + tn) inf
z∈Σ

1

2
‖un−1 + z‖2

a

−(λn−1 + ν)〈un−1, z〉, (19)

and set un := un−1+zn
‖un−1+zn‖ and λn := a(un, un).

Since the sequence of vectors (zn)n∈N∗ produced by the PEGA cannot be defined
as solutions of minimization problems, it is not clear what a weak version of the PEGA
could be. In this article, we do not analyze the convergence properties of such relaxed
versions of the greedy strategies we propose, but mention their existence for the sake
of completeness.

3.3 Convergence Results

3.3.1 The Infinite-Dimensional Case

Theorem 3.1 Let V and H be separable Hilbert spaces satisfying (HV), Σ a dictio-
nary of V and a : V × V → R a symmetric continuous bilinear form satisfying (HA).
The following properties hold for the PRaGA, ORaGA, PReGA, and OReGA:

1. All the iterations of the algorithms are well defined.
2. The sequence (λn)n∈N is nonincreasing and converges to a limit λ which is an

eigenvalue of a(·, ·) for the scalar product 〈·, ·〉.
3. The sequence (un)n∈N is bounded in V and any subsequence of (un)n∈N which

weakly converges in V also strongly converges in V toward an H-normalized
eigenvector associated with λ. This implies in particular that

da(un, Fλ) := inf
w∈Fλ

‖w − un‖a −→
n→∞ 0,

where Fλ denotes the set of the H-normalized eigenvectors of a(·, ·) associated
with λ.

4. If λ is a simple eigenvalue, and if wλ is an H-normalized eigenvector associated
with λ, then the whole sequence (un)n∈N converges either towλ or to −wλ strongly
in V .

It may happen thatλ > μ1, if the initial guess u0 is not properly chosen. An example
where such a situation occurs is given in Example 7.2 of [13]. If λ is degenerate, it
is not clear whether the whole sequence (un)n∈N converges. We will see, however, in
Sect. 3.3.2 that it is always the case in finite dimension, at least for the pure versions
of these algorithms.

The proof of Theorem 3.1 is given in Sect. 7.1 for the PRaGA and in Sect. 7.2 for its
orthogonal version ORaGA. We refer the reader to Section 6.4 of [13] for the detailed
proof of this result for the PReGA and OReGA (which follows the same lines as for
the PRaGA and ORaGA).
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Remark 3.2 For the PReGA and the OReGA, we can prove similar convergence results
without assuming that the Hilbert space V is compactly embedded in H , provided that
the self-adjoint operator A defined as the Friedrichs extension associated with the
quadratic form a(·, ·) has at least one eigenvalue below the minimum of its essential
spectrum σess(A), and that the initial guess u0 satisfies min σ(A) ≤ λ0 := a(u0, u0) <

min σess(A). This extension shows that the PReGA or OReGA can be used to solve
electronic structure calculation problems (at least in principle) for molecular systems,
which are eigenvalue problems associated with Schrödinger operators defined over
functions of the whole space R

3N , where N is the number of electrons in the molecule
under consideration. How to implement efficiently such an algorithm in practice will
be the object of a forthcoming article. The exact statement of this result and its proof
are also given in Proposition 3.1 of [13].

3.3.2 The Finite-Dimensional Case

From now on, for any differentiable function f : V → R, and all v0 ∈ V , we denote
by f ′(v0) the derivative of f at v0, that is f ′(v0) ∈ V ′ is the unique continuous linear
form on V such that for all v ∈ V ,

f (v) = f (v0)+ 〈 f ′(v0), v〉V ′,V + r(v), with lim‖v‖a→0

r(v)

‖v‖a
= 0.

In addition, we define the injective norm on V ′ associated with Σ as follows:

∀l ∈ V ′, ‖l‖∗ = sup
z∈Σ∗

〈l, z〉V ′,V
‖z‖a

. (20)

In the rest of this section, we assume that V , hence H (since the embedding V ↪→ H
is dense), are finite-dimensional vector spaces. The convergence results below rely
heavily on the Łojasiewicz inequality [28] and the ideas presented in [3,8,27].

The Łojasiewicz inequality [28] reads as follows:

Lemma 3.5 Let Ω be an open subset of the finite-dimensional Euclidean space V
and f a real-analytic function defined on Ω . Then, for each v0 ∈ Ω , there is a
neighborhood U ⊂ Ω of v0 and two constants K ∈ R+ and θ ∈ (0, 1/2] such that
for all v ∈ U, it holds that:

| f (v)− f (v0)|1−θ ≤ K‖ f ′(v)‖∗. (21)

Before stating our main result in finite dimension, we prove a useful lemma.

Lemma 3.6 Let V and H be finite-dimensional Euclidean spaces, Ω := {v ∈
V, 1/2 < ‖v‖ < 3/2}, λ be an eigenvalue of the bilinear form a(·, ·), and Fλ the set
of the H-normalized eigenvectors of a(·, ·) associated with λ. Then, J : Ω → R is
real-analytic, and there exists K ∈ R+, θ ∈ (0, 1/2] and ε > 0 such that
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for all v ∈ Ω such that d(v, Fλ) := inf
w∈Fλ

‖v − w‖ ≤ ε, it holds that |J (v)− λ|1−θ

≤ K‖J ′(v)‖∗. (22)

Proof The functional J : Ω → R is real-analytic as a composition of real-analytic
functions. Thus, from (21), for all w ∈ Fλ, there exists εw > 0, Kw ∈ R+, and
θw ∈ (0, 1/2] such that

∀v ∈ B(w, εw), |J (v)− λ|1−θw ≤ Kw‖J ′(v)‖∗, (23)

where B(w, εw) := {v ∈ V, ‖v − w‖ ≤ εw}. In addition, for all w ∈ Fλ, we can
choose εw small enough so that B(w, εw) ⊂ Ω . The family (B(w, εw))w∈Fλ forms a
cover of open sets of Fλ. Since Fλ is a compact subset of V (it is a closed bounded
subset of a finite-dimensional space), we can extract a finite subcover from the family
(B(w, εw))w∈Fλ , from which we deduce the existence of constants ε > 0, K > 0, and
θ ∈ (0, 1/2] such that

for all v ∈ Ω such that d(v, Fλ) ≤ ε, it holds that |J (v)− λ|1−θ ≤ K‖J ′(v)‖∗,

hence the result. ��
The proof of the following theorem is given in Sect. 7.3 for the PRaGA and in

Section 6.4 of [13] for the PReGA.

Theorem 3.2 Let V and H be finite-dimensional Euclidian spaces and a : V × V →
R be a symmetric bilinear form. The following properties hold for both PRaGA and
PReGA:

1. the whole sequence (un)n∈N strongly converges in V to some wλ ∈ Fλ;
2. the convergence rates are as follows, depending on the value of the parameter θ

in (22):
• if θ = 1/2, there exists C ∈ R+ and 0 < σ < 1 such that for all n ∈ N,

‖un − wλ‖a ≤ Cσ n; (24)

• if θ ∈ (0, 1/2), there exists C ∈ R+ such that for all n ∈ N
∗,

‖un − wλ‖a ≤ Cn− θ
1−2θ . (25)

3.4 Discussion About the Initial Guess

3.4.1 Possible Choice of Initial Guess

We present here a generic procedure to choose an initial guess u0 ∈ V satisfying
‖u0‖ = 1 and a(u0, u0) ≤ λΣ (actually such that a(u0, u0) = λΣ ), which is required
by the two algorithms PReGA and PEGA:
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Choice of an initial guess:

• Initialization: find z0 ∈ Σ such that

z0 ∈ argmin
z∈Σ

J (z), (26)

and set u0 := z0‖z0‖ .

From Lemma 3.2, (26) always has at least one solution, and it is straightforward to
see that ‖u0‖ = 1 and a(u0, u0) = λΣ .

3.4.2 Special Case of the PRaGA

Let us recall that in the case of the PRaGA, we required that the initial guess u0 of the
algorithm satisfies a(u0, u0) < λΣ , whereas the above procedure generates an initial
guess u0 with a(u0, u0) = λΣ . Let us comment on this condition. We distinguish here
two different cases:

• If the element u0 computed with the procedure presented in Sect. 3.4.1 is an
eigenvector of a(·, ·) associated with the eigenvalue λ0, then from Lemma 3.1,
J (u0 + z) ≥ J (u0) for all z ∈ Σ . We exclude this case from now on in all the rest
of the article. Let us point out though that this case happens only in very particular
situations. Indeed, it can be proved that if we consider the prototypical example
presented in Sect. 2.2 with b = 1, W a Hölder-continuous function (this assump-
tion can be weakened) and Σ = Σ⊗ defined by (7), then a vector z ∈ Σ is an
eigenvector associated with the bilinear form a(·, ·) defined by (6) if and only if the
potential W can be written as a sum of one-body potentials, that is, if

W (x1, . . . , xd) = W1(x1)+ · · · + Wd(xd).

A proof of this result is given in Lemma 7.1 of [13].
• If u0 is not an eigenvector of a(·, ·) associated with the eigenvalue λ0, since u0 ∈ Σ ,

it may happen that the minimization problem: find z1 ∈ Σ such that

z1 ∈ argmin
z∈Σ

J (u0 + z),

does not have a solution (see Example 7.1 for an example where such a situation
occurs). However, from Lemma 3.1, there exists some z̃0 ∈ Σ such that J (u0 +
z̃0) < J (u0). Thus, up to taking ũ0 := u0 + z̃0 as the new initial guess, we have that
λ̃0 := a(̃u0, ũ0) < λΣ . In practice, we compute a vector z̃0 satisfying this property
by running the alternating direction method procedure described in Sect. 4.2 for
a fixed number of iterations from the initial guess u0 computed with the strategy
described in Sect. 3.4.1. In all the numerical cases we tested, this was enough to
ensure that J (u0 + z̃0) < J (u0).
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3.4.3 Convergence Toward the Lowest Eigenstate

As mentioned above, the greedy algorithms may not converge toward the lowest eigen-
value of the bilinear form a(·, ·). Of course, if u0 is chosen so that λ0 = a(u0, u0) <

μ∗
2 := inf j∈N∗

{
μ j | μ j > μ1

}
, then the sequences (λn)n∈N generated by the greedy

algorithms automatically converge to μ1. However, the construction of such an initial
guess u0 in the general case is not obvious.

One might hope that using the procedure to choose the initial guess u0 presented
in Sect. 3.4.1 would be sufficient to ensure that the greedy algorithms converge to μ1.
Unfortunately, this is not the case, as shown in Example 7.2 of [13]. However, we
believe that this only happens in pathological situations, and that, in most practical
cases, the eigenvalue approximated by a greedy algorithm choosing the initial guess
as in Sect. 3.4.1 is indeed μ1.

4 Numerical Implementation

In this section, we present how the above algorithms, and the one proposed in [1] can
be implemented in practice in the case when Σ is the set of rank-1 tensor-product
functions of the form (7): Σ := Σ⊗.

Let us note that the numerical methods which are used in practice for the implemen-
tation of the greedy algorithms do not guarantee that the elements zn ∈ Σ computed at
each iteration of the iterative procedure are indeed solutions of the optimization prob-
lems (9) and (10). Usually, in the case when the setΣ is a differentiable manifold, the
obtained functions are solutions of the associated Euler equations, but it is not even
clear in general if the obtained functions are local minima of the optimization problems
used to define the iterations of the PRaGA or PReGA. From this point of view, there
is a gap between the theoretical results we presented above and the way these greedy
algorithms are implemented in practice, even if the way these numerical methods are
implemented in practice seem sufficient for the whole procedure to converge toward
the desired solution in general.

We consider here the case when V and H are Hilbert spaces of functions depending
on d variables x1, . . . , xd , for some d ∈ N

∗, such that (HV) is satisfied. For all
1 ≤ j ≤ d, let Vj be a Hilbert space of functions depending only on the variable x j

such that the subset

Σ :=
{

r (1) ⊗ · · · ⊗ r (d) | r (1) ∈ V1, . . . , r
(d) ∈ Vd

}
(27)

is a dictionary of V , according to Definition 2.1. For all zn ∈ Σ such that zn =
r (1)n ⊗ · · · ⊗ r (d)n with

(
r (1)n , . . . , r (d)n

)
∈ V1 × · · · × Vd , the tangent space to Σ at zn

is denoted by

TΣ(zn) :=
{
δr (1) ⊗ r (2)n ⊗ · · · ⊗ r (d)n + r (1)n ⊗ δr (2) ⊗ · · · ⊗ r (d)n + · · ·

+ r (1)n ⊗ r (2)n ⊗ · · · ⊗ δr (d), δr (1) ∈ V1, . . . , δr
(d) ∈ Vd

}
.

123



404 Constr Approx (2014) 40:387–423

4.1 Computation of the Initial Guess

Using the method described in Sect. 3.4.1, the initial guess u0 ∈ V of all the greedy
algorithms mentioned in this article is computed as follows: choose

u0 := z0 = r (1)0 ⊗ · · · ⊗ r (d)0 ∈ argmin(r (1),...,r (d))∈V1×···×Vd
J

(
r (1) ⊗ · · · ⊗ r (d)

)

such that ‖u0‖ = ‖z0‖ = 1. To compute this initial guess in practice, we use the
well-known alternating direction method (ADM) (also called alternating least square
method in [20,22,33], or fixed-point procedure in [1,26]):

ADM for the computation of the initial guess

• Initialization: choose
(

s(1)0 , . . . , s(d)0

)
∈ V1×· · ·×Vd such that

∥∥∥s(1)0 ⊗ · · · ⊗ s(d)0

∥∥∥
= 1;

• Iterate on m = 1, . . . ,mmax :
– Iterate on j = 1, . . . , d: find s( j)

m ∈ Vj such that

s( j)
m ∈ argmin

s( j)∈Vj

J
(

s(1)m ⊗ · · · ⊗ s( j−1)
m ⊗ s( j) ⊗ s( j+1)

m−1 ⊗ · · · ⊗ s(d)m−1

)
; (28)

• set r (1)0 ⊗ · · · ⊗ r (d)0 = s(1)m ⊗ · · · ⊗ s(d)m .

It is observed that the ADM converges quite fast in practice. Actually, solving
(28) amounts to computing the smallest eigenvalue and an associated eigenvector of
a low-dimensional eigenvalue problem, since s( j)

m is an eigenvector associated with
the smallest eigenvalue of the bilinear form am, j : Vj × Vj → R with respect to the

scalar product 〈·, ·〉m, j : Vj × Vj → R, such that for all v( j)
1 , v

( j)
2 ∈ Vj ,

am, j

(
v
( j)
1 , v

( j)
2

)
= a

(
s(1)m ⊗ · · · ⊗ s( j−1)

m ⊗ v
( j)
1 ⊗ s( j+1)

m−1

⊗ · · · ⊗ s(d)m−1, s(1)m ⊗ · · · ⊗ s( j−1)
m ⊗ v

( j)
2 ⊗ s( j+1)

m−1 ⊗ · · · ⊗ s(d)m−1

)

and

〈
v
( j)
1 , v

( j)
2

〉

m, j
=

〈
s(1)m ⊗ · · · ⊗ s( j−1)

m ⊗ v
( j)
1 ⊗ s( j+1)

m−1

⊗ · · · ⊗ s(d)m−1, s(1)m ⊗ · · · ⊗ s( j−1)
m ⊗ v

( j)
2 ⊗ s( j+1)

m−1 ⊗ · · · ⊗ s(d)m−1

〉
.

4.2 Implementation of the Pure Rayleigh Greedy Algorithm

We also use an ADM to compute the tensor product zn = r (1)n ⊗ · · · ⊗ r (d)n , which
reads as follows:

123



Constr Approx (2014) 40:387–423 405

ADM for the PRaGA:

• Initialization: choose
(

s(1)0 , . . . , s(d)0

)
∈ V1 × · · · × Vd ;

• Iterate on m = 1, . . . ,mmax :
– Iterate on j = 1, . . . , d: find s( j)

m ∈ Vj such that

s( j)
m ∈ argmin

s( j)∈Vj

J
(

un−1+s(1)m ⊗ · · · ⊗ s( j−1)
m ⊗ s( j) ⊗ s( j+1)

m−1 ⊗ · · · ⊗ s(d)m−1

)
;

(29)

• set
(

r (1)n , . . . , r (d)n

)
=

(
s(1)m , . . . , s(d)m

)
.

For n ≥ 1, the minimization problems (29) are well defined. Let us now detail an
efficient method for solving (29) in the discrete case. For all 1 ≤ j ≤ d, let N j ∈ N

∗

and let
(
φ
( j)
i

)

1≤i≤N j
be a Galerkin basis of some finite-dimensional subspace Vj,N j

of Vj .

In the discretized setting, problem (29) reads: find s( j)
m ∈ Vj,N j such that

s( j)
m ∈ argmin

s( j)∈Vj,N j

J
(

un−1 + s(1)m ⊗ · · · ⊗ s( j−1)
m ⊗ s( j) ⊗ s( j+1)

m−1 ⊗ · · · ⊗ s(d)m−1

)
.

(30)
We present below how (30) is solved for a fixed value of j ∈ {1, · · · , d}. To simplify
the notation and without loss of generality, we assume that all the N j ’s are equal and
are denoted by N their common value. Denoting by S = (Si )1≤i≤N ∈ R

N the vector

of the coordinates of the function s( j) in the basis
(
φ
( j)
i

)

1≤i≤N
, so that

s( j) =
N∑

i=1

Siφ
( j)
i ,

it holds that

J
(

un−1 + s(1)m ⊗ · · · ⊗ s( j−1)
m ⊗ s( j) ⊗ s( j+1)

m−1 ⊗ · · · ⊗ s(d)m−1

)
= ST AS + 2AT S + α

ST BS + 2BT S + 1
,

where the symmetric matrix A ∈ R
N×N , the positive definite symmetric matrix

B ∈ R
N×N , the vectors A, B ∈ R

N and the real number α := a(un−1, un−1) are
independent of S. Making the change of variable T = B1/2S + B−1/2 B, we obtain

J
(

un−1 + s(1)m ⊗ · · · ⊗ s( j−1)
m ⊗ s( j) ⊗ s( j+1)

m−1 ⊗ · · · ⊗ s(d)m−1

)

= L(T ) := T T CT + 2CT T + γ

T T T + δ
,

where the symmetric matrix C ∈R
N×N , the vector C ∈R

N , and the real numbers γ ∈R

and δ > 0 are independent of T . Solving problem (30) is therefore equivalent to solving
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find Tm ∈ R
N such that Tm ∈ argmin

T ∈RN
L(T ). (31)

An efficient method to solve (31) is the following. Let us denote by (κi )1≤i≤N the
eigenvalues of the matrix C (counted with multiplicity), and let (Ki )1≤i≤N be an
orthonormal family (for the Euclidean scalar product of R

N ) of associated eigenvec-
tors. Let (ci )1≤i≤N (resp. (ti )1≤i≤N ) be the coordinates of the vector C (resp. of the
trial vector T ) in the basis (Ki )1≤i≤N :

C =
N∑

i=1

ci Ki , T =
N∑

i=1

ti Ki .

We aim at finding (ti,m)1≤i≤N the coordinates of a vector Tm solution of (31) in the
basis (Ki )1≤i≤N . For any T ∈ R

N , we have

L(T ) =
∑N

i=1 κi t2
i + 2

∑N
i=1 ci ti + γ

∑N
i=1 t2

i + δ
.

Setting ρm := L(Tm) ≥ μ1, the Euler equation associated with (31) reads:

∀1 ≤ i ≤ N , κi ti,m + ci = ρmti,m,

so that
∀1 ≤ i ≤ N , ti,m = ci

ρm − κi
. (32)

This implies that

L(Tm) =
∑N

i=1 κi
c2

i
(ρm−κi )

2 + 2
∑N

i=1
c2

i
ρm−κi

+ γ

∑N
i=1

c2
i

(ρm−κi )
2 + δ

.

Setting for all ρ ∈ R \ {κi }1≤i≤N ,

M(ρ) =
∑N

i=1 κi
c2

i
(ρ−κi )

2 + 2
∑N

i=1
c2

i
ρ−κi

+ γ

∑N
i=1

c2
i

(ρ−κi )
2 + δ

, (33)

it holds that

ρm = L(Tm) = M(ρm) ≤ inf
ρ∈R\{κi }1≤i≤N

M(ρ) = inf
ρ∈R\{κi }1≤i≤N

L(T (ρ)),

where T (ρ) = ∑N
i=1 ti (ρ)Ki with ti (ρ) = ci

ρ−κi
for all 1 ≤ i ≤ N . Thus,

ρm = argmin
ρ∈R\{κi }1≤i≤N

M(ρ). (34)
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The Euler equation associated with the one-dimensional minimization problem (34)
reads, after some algebraic manipulations,

ρmδ =
N∑

i=1

c2
i

ρm − κi
+ γ.

Setting f : ρ ∈ R \ {κi }1≤i≤N �→ ∑N
i=1

c2
i

ρ−κi
+ γ , we have the following lemma:

Lemma 4.1 Let Tm be a solution to (31). The real numberρm := L(Tm) is the smallest
solution to the equation

find ρ ∈ R \ {κi }1≤i≤N such that ρδ = f (ρ). (35)

Proof The calculations detailed above show that ρm is a solution of (35). On the
other hand, for all ρ ∈ R satisfying (35), it can be easily seen after some algebraic
manipulations that ρ = M(ρ) = L(T (ρ)). Hence, since ρm is a solution to (34), in
particular, for all ρ ∈ R solutions of (35), we have

ρm = L(T (ρm)) = M(ρm) ≤ M(ρ) = ρ = L(T (ρ)).

��
For all 1 ≤ i ≤ N , f (κ−

i ) = −∞, f (κ+
i ) = +∞, f (−∞) = f (+∞) = γ , and

the function f is decreasing on each interval (κi , κi+1) (with the convention κ0 = −∞
and κN+1 = +∞). Thus, Eq. (35) has exactly one solution in each interval (κi , κi+1).
Thus, ρm is the unique solution of (35) lying in the interval (−∞, κ1) (see Figure 1).

To compute ρm numerically, we first find a real κnum
0 < κ1 such that f (κnum

0 ) −
δκnum

0 < 0. We then know that ρm ∈ (κnum
0 , κ1). We first perform a few (typically two

or three) iterations of a dichotomy method to solve equation (35) and use the obtained
approximation as a starting guess to run a standard Newton algorithm to compute ρm .
We observe numerically that this procedure converges very quickly toward the desired
solution. The coordinates of a vector Tm solution of (31) are then determined using (32).
Thus, solving (30) amounts to fully diagonalizing the low-dimensional N×N matrix C.

Let us point out that problems (28) and (29) are different in nature: in particular, (28)
is an eigenvalue problem whereas (29) is not. In the discrete setting, the strategy pre-
sented in this section for solving (29) could also be applied to solve (28); however, since
it requires the full diagonalization of matrices of sizes N ×N , it is more expensive from
a computational point of view than standard algorithms dedicated to the computation
of the smallest eigenvalue of a matrix, which can be used for the resolution of (28).

4.3 Implementation of the Pure Residual Greedy Algorithm

The Euler equation associated with the minimization problem (10) reads:

∀δz ∈ TΣ(zn), 〈un−1 + zn, δz〉a − (λn−1 + ν)〈un−1, δz〉 = 0.
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y = f(x) y = δx

0 κ2 κ3 κ4ρm κ1

Fig. 1 Solutions of equation (35)

This equation is solved using again an ADM, which reads as follows:

ADM for the PReGA:

• Initialization: choose
(

s(1)0 , . . . , s(d)0

)
∈ V1 × · · · × Vd ;

• Iterate on m = 1, . . . ,mmax :
– Iterate on j = 1, . . . , d: find s( j)

m ∈ Vj such that for all δs( j) ∈ Vj ,

〈
un−1 + z( j)

m , δz( j)
m

〉

a
− (λn−1 + ν)

〈
un−1, δz

( j)
m

〉
= 0, (36)

where

z( j)
m = s(1)m ⊗ · · · ⊗ s( j−1)

m ⊗ s( j)
m ⊗ s( j+1)

m−1 ⊗ · · · ⊗ s(d)m−1

and

δz( j)
m = s(1)m ⊗ · · · ⊗ s( j−1)

m ⊗ δs( j) ⊗ s( j+1)
m−1 ⊗ · · · ⊗ s(d)m−1;

• set
(

r (1)n , . . . , r (d)n

)
=

(
s(1)m , . . . , s(d)m

)
.

In our numerical experiments, we observed that this algorithm rapidly converges to
a fixed point. Let us point out that using the same discretization space as in Sect. 4.2,
namely a Galerkin basis of N functions for all 1 ≤ j ≤ d, solving (36) only requires
the inversion (and not the diagonalization) of low-dimensional N × N matrices.
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4.4 Implementation of the Pure Explicit Greedy Algorithm

At each iteration of this algorithm, Eq. (16) is also solved using a very similar ADM
as the one detailed in the previous section. The only difference is that (36) is replaced
with

a
(

un−1 + z( j)
m , δz( j)

m

)
− λn−1〈un−1 + z( j)

m , δz( j)
m 〉 = 0.

We observe numerically that this algorithm usually converges quite fast. However,
we have noticed cases when this ADM does not converge, which leads us to think
that there may not always exist solutions zn �= 0 to (16), even when un−1 is not an
eigenvector associated with a(·, ·).

4.5 Implementation of the Orthogonal Versions of the Greedy Algorithms

An equivalent formulation of (17) is the following: find
(

c(n)0 , . . . , c(n)n

)
∈ R

n+1 such

that
(

c(n)0 , . . . , c(n)n

)
∈ argmin
(c0,...,cn)∈Rn+1, ‖c0u0+c1z1+···+cn zn‖2=1

a (c0u0 + c1z1 + · · ·

+cnzn, c0u0 + c1z1 + · · · + cnzn) . (37)

Actually, for all 0 ≤ k, l ≤ n + 1, defining (using the abuse of notation z0 = u0):

Bkl := 〈zk, zl〉,
Akl := a(zk, zl),

and A := (Akl) ∈ R
(n+1)×(n+1) and B := (Bkl) ∈ R

(n+1)×(n+1), the vector C (n) =
(c(n)0 , . . . , c(n)n ) ∈ R

n+1 is a solution of (37) if and only if C is an eigenvector associated
with the smallest eigenvalue of the following generalized eigenvalue problem:

{
find (τ,C) ∈ R × R

n+1 such that CT BC = 1 and
AC = τBC,

which is easy to solve in practice provided that n remains small enough.

4.6 About the Convergence of the ADM

Let us comment about the convergence properties of the different ADMs presented
in the preceding sections. A priori, it is not obvious that such algorithms, in which
the functions composing the pure tensor product zn := r1

n ⊗ · · · ⊗ rd
n are opti-

mized dimension-by-dimension, converge toward solutions of (26), (9), (10), and (16),
respectively, or even only to local minima of these minimization problems.
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In the literature, the analysis of ADM is well documented for the resolution of
minimization problems such as those arising for the minimization of the Rayleigh
quotient associated with a symmetric bilinear form (arising in the computation of
the initial guess) and for the minimization of a convex energy functional (arising
in the PReGA) [21,32]) for advanced tensor formats such as tensor train functions
for instance. It can be proved that these methods converge toward a local (but not
necessarily global) minimizer of the minimization problems (26) and (10).

However, there is no analysis of the ADM applied to the minimization problems
defining the PRaGA. We observe numerically that the algorithm is very good in prac-
tice, in the sense that it seems to quickly converge toward a local minimizer of the
minimization problem (9) which ensures the decrease of the sequence (J (un))n∈N.
In addition, in Sect. 4.2, we provide a way to efficiently solve in practice the problems
that arise at each iteration of the ADM in the case when we use a dictionary composed
of pure tensor-product functions. However, it is not clear to us yet how we could gen-
eralize such a numerical strategy to deal with dictionaries using different formats such
as Tucker or tensor train functions. Both the theoretical analyses of the convergence
properties of this ADM and its practical implementation in the case of more advanced
tensor formats are interesting questions, but we will not address them in this paper.

In the case of the PEGA, it is not clear whether there exists in general a solution
to (16) such that zn �= 0 if un−1 is not an eigenvector of a(·, ·) associated with λn−1.
It is therefore difficult to analyze the ADM in this framework, even if it seems to be
quite efficient in practice.

It is to be noted though that even in the case of the PReGA, the convergence results
we prove rely heavily on the fact that the sequences of vectors (zn)n∈N produced by
the greedy algorithms are global minimizers of problems (9) and (10), as is usually
the case in the analysis of such greedy methods. There is indeed a gap between the
theoretical analysis of these algorithms and the way they are implemented in practice,
since the ADM procedures described in this section cannot guarantee in general that
the sequence of tensor products obtained are indeed global minimizers of the opti-
mization problems defining each version of the greedy algorithms presented above.
However, from our numerical observations, it seems that these procedures are suffi-
ciently efficient to ensure the convergence of the global procedures, and we refer the
reader to the numerical tests we performed in Sect. 5.

5 Numerical Results

We present here some numerical results obtained with the greedy algorithms studied in
this article (PRaGA, PReGA, PEGA, and their orthogonal versions) on toy examples
involving only two Hilbert spaces (d = 2). We refer the reader to [1] for numerical
examples involving a larger number of variables. Section 5.1 presents basic numerical
tests performed with small-dimensional matrices, which lead us to think that the greedy
algorithms presented above converge in general toward the lowest eigenvalue of the
bilinear form under consideration, except in pathological situations which are not likely
to be encountered in practice. In Sect. 5.2, we consider the problem of computing the
first buckling mode of a microstructured plate with defects.
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Fig. 2 Decay of the error of the three algorithms and their orthogonal versions: eigenvalues (left) and
eigenvectors (right)

5.1 A Toy Problem with Matrices

In this simple example, we take V = H = R
Nx ×Ny , Vx = R

Nx , and Vy = R
Ny for

some Nx , Ny ∈ N
∗ (here typically Nx = Ny = 51). Let D1x , D2x ∈ R

Nx ×Nx and
D1y, D2y ∈ R

Ny×Ny be (randomly chosen) symmetric definite positive matrices. We
aim at computing the lowest eigenstate of the symmetric bilinear form

a(U, V ) = Tr
(

U T
(

D1x V D1y + D2x V D2y
))
,

or, in other words, of the symmetric fourth-order tensor A defined by

∀1 ≤ i, k ≤ Nx , 1 ≤ j, l ≤ Ny, Ai j,kl = D1x
ik D1y

jl + D2x
ik D2y

jl .

Let us denote byμ1 the lowest eigenvalue of the tensor A, by I the identity operator,
and by Pμ1 ∈ L(RNx ×Ny ) the orthogonal projector onto the eigenspace of A associated
with μ1. Figure 2 shows the decay of the error on the eigenvalues log10(|μ1 − λn|)
and of the error on the eigenvectors log10(‖(I − Pμ1)Un‖F ), where ‖ · ‖F denotes
the Frobenius norm of R

Nx ×Ny , as a function of n for the three algorithms and their
orthogonal versions.

These tests were performed with several matrices D1x , D1y, D2x , D2y , either
drawn randomly or chosen such that the eigenspace associated with the lowest eigen-
value is of dimension greater than 1. In any case, the three greedy algorithms converge
toward a particular eigenstate associated with the lowest eigenvalue of the tensor A.
In addition, the rate of convergence always seems to be exponential with respect to n.
The error on the eigenvalues decays twice as fast as the error on the eigenvectors, as
usual when dealing with variational approximations of linear eigenvalue problems.

We observe that the PRaGA and PEGA have similar convergence properties with
respect to the number of iterations n. The behavior of the PReGA strongly depends
on the value ν chosen in (HA): The larger the ν, the slower the convergence of the
PReGA. To ensure the efficiency of this method, it is important to choose the numerical
parameter ν ∈ R appearing in (3) as small as possible so that (HA) remains true. If
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Fig. 3 Composition of the plate

the value of ν is well chosen, the PReGA may converge as fast as the PRaGA or the
PEGA, as illustrated in Sect. 5.2. In the example presented in Fig. 2 where ν is chosen
to be 0 and μ1 ≈ 116, we can clearly see that the rate of convergence of the PReGA
is lower than those of the PRaGA and PEGA.

We also observe that the use of the ORaGA, OReGA, and OEGA, instead of the
pure versions of the algorithms, improves the convergence rate with respect to the
number of iterations n ∈ N

∗. However, as n increases, the cost of the n-dimensional
optimization problems (17) becomes more and more significant.

5.2 First Buckling Mode of a Microstructured Plate with Defects

We now consider the more difficult example of the computation of the first buckling
mode of a plate [4].

The plate is composed of two linear elastic materials, with different Young’s moduli
E1 = 1 and E2 = 20, respectively, and the same Poisson’s ratio νP = 0.3. The
rectangular reference configuration of the thin plate isΩ = Ωx ×Ωy withΩx = (0, 1)
and Ωy = (0, 2). The composition of the plate in the (x, y) plane is displayed in
Figure 3: The white parts represent regions occupied by the first material and the
black parts indicate the location of the second material. The measurable function
E : (x, y) ∈ Ωx ×Ωy �→ E(x, y) is defined such that E(x, y) = E1 if (x, y) belongs
to the subset ofΩx ×Ωy occupied by the first material, and E(x, y) = E2 otherwise.
The thickness of the plate is denoted by h.

The bottom part Γb := [0, 1] × {0} of the plate is fixed, and a constant force F =
−0.05 is applied in the y direction on its top part Γt := [0, 1] × {2}. The sides of the
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plate Γs := ({0} ×Ωy
)∪ ({1} ×Ωy

)
are free, and the outerplane displacement fields

of the plate (and their derivatives) are imposed to be zero on the boundaries Γb ∪ Γt .
The precise model (von Karman model) and discretization we consider are detailed

in Section 5.2 of [13]. For the sake of brevity, we do not give the details here, but
determining if the plate buckles or not amounts to determining the sign of the smallest
eigenvalue of a symmetric continuous bilinear form a(·, ·) on V × V where

V :=
{
v ∈ H2(Ωx ×Ωy), v(x, 0) = v(x, 2) = ∂v

∂y
(x, 0) = ∂v

∂y
(x, 2)

= 0 for almost all x ∈ Ωx

}
,

and for all v,w ∈ V ,

a(v,w) := 2
∫

Ωx ×Ωy

E(x, y)h3

12(1 − ν2
P)

[νPTrχ(v)Trχ(w)+ (1 − νP)χ(v) : χ(w)] dx dy

+ 2
∫

Ωx ×Ωy

E(x, y)h

(1−ν2
P)

[νPφ0(x, y)Tre(v,w)+(1−νP)Φ0(x, y) : e(v,w)] dx dy

for some φ0 ∈ L2(Ωx ×Ωy) and Φ0 ∈ (
L2(Ωx ×Ωy)

)4
whose expressions we do

not detail here, and where for all v,w ∈ V ,

e(v,w) :=
⎡

⎣
∂v
∂x

∂w
∂x

1
2

(
∂v
∂x

∂w
∂y + ∂v

∂y
∂w
∂x

)

1
2

(
∂v
∂x

∂w
∂y + ∂v

∂y
∂w
∂x

)
∂v
∂y
∂w
∂y

⎤

⎦

and

χ(v) :=
⎡

⎣
∂2v
∂x2

∂2v
∂x∂y

∂2v
∂x∂y

∂2v
∂y2

⎤

⎦.

To compute this eigenvalue, the following particular dictionary is used:

Σ := {
r ⊗ s, r ∈ Vx , s ∈ Vy

}
,

where

Vx := H2(Ωx ) and Vy :=
{

s ∈ H2(Ωy), s(0) = s′(0) = s(2) = s′(2) = 0
}
.

It can be easily checked that assumptions (HV), (HA), (HΣ1), (HΣ2), and (HΣ3)
are satisfied in the continuous and discretized setting we consider so that the above
greedy algorithms can be carried out. We have performed the PRaGA, PReGA, and
PEGA on this problem. The approximate eigenvalue is found to be λ ≈ 1.53. At each
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iteration n ∈ N
∗, each algorithm produces an approximation λn of the eigenvalue and

an approximation un ∈ Ṽ v of the associated eigenvector.
The smallest eigenvalue μ1 of a(·, ·), and an associated eigenvector ψ1, are com-

puted using an inverse power method and used as reference solutions in the error plots
shown below. Figure 4 shows the decay of the error on the eigenvalue, and on the eigen-
vector in the H2(Ωx ×Ωy) norm as functions of n ∈ N

∗, for the PRaGA, PReGA, and

PEGA. More precisely, the quantities log10

( |λn−μ1||μ1|
)

and log10

( ‖un−ψ1‖H2(Ωx ×Ωy )

‖ψ1‖H2(Ωx ×Ωy )

)

are plotted as a function of n ∈ N
∗. As for the toy problem dealt with in the previous

section, the numerical behaviors of the PEGA and PRaGA are similar. In addition, we
observe that the rate of convergence of the PReGA is comparable with those of the
other two algorithms. Let us note that we have chosen here ν = 0.

The level sets of the approximation un given by the PRaGA are drawn in Fig. 5
for different values of n (the approximations given by the other two algorithms are
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similar). We can observe that the influence of the different defects of the plate appears
gradually when n grows.

Let us mention that in this article, for the sake of simplicity, we restricted ourselves
to toy numerical tests where the number of Hilbert spaces d introduced to decompose
the solution using rank-1 tensors as described in Sect. 4 was equal to 2. One could ask
if the ADM procedures presented in this section are robust as the number of Hilbert
spaces d arising in the decomposition of the solution becomes large. Actually, these
numerical strategies seem to work fine also in cases of rank-1 tensors where d is larger
than 2. We refer the reader to a forthcoming work of the second author and L. Giraldi
where these strategies were tested in combination with the use of hierarchical tensor
formats in numerical tests with d = 20.

6 Conclusion

In this paper, we have proposed two new greedy algorithms for the computation of
the smallest eigenvalue of a symmetric continuous bilinear form, proved some conver-
gence results along with convergence rates in finite dimensions for them, and compared
their numerical behavior with the strategy proposed in [1].

A lot of theoretical and numerical questions remain open though. A first theoretical
question concerns the state which is attained in the limit by these greedy strategies.
Indeed, as it is usually the case for iterative algorithms for eigenvalue problems, the
sequence (λn)n∈N of approximate eigenvalues produced by these methods converges
toward a limit λwhich is an eigenvalue of the bilinear form a(·, ·) under consideration,
but this limit may not be the smallest eigenvalue of a(·, ·).

Another theoretical issue is the convergence of the ADM for the PRaGA, which
seems to be very efficient on the numerical tests we have performed, but for which
we have no theoretical proof of convergence. In addition, it would be interesting to
generalize our numerical procedure to implement the iterations of this ADM for pure
tensor-product functions to the case of more advanced tensor formats.

Lastly, it would be interesting to compare these greedy approaches with other
numerical methods using more advanced tensor formats than pure tensor-product func-
tions as dictionaries. Our guess is that the most efficient methods would combine both
mathematical tools, in a spirit similar to the one proposed in [18,19], where the greedy
strategy was used in combination to hierarchical tensor formats in order to enrich the
discretization subspaces. Some numerical tests using these combined approaches will
be the object of a forthcoming article of the second author and L. Giraldi.

We will address the case of electronic structure calculations (and in particular the
numerical issues arising from the antisymmetry of the wavefunctions) and parametric
eigenvalue problems in forthcoming works.

7 Proofs

7.1 Proof of Theorem 3.1 for the PRaGA

Throughout this section, we use the notation of Sect. 3.2.1.
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Lemma 7.1 For all n ≥ 1, it holds that

a(un, zn)− λn〈un, zn〉 = 0. (38)

Proof Let us define S : R � t �→ J (un−1+t zn). From Lemma 3.3, sinceλ0 < λΣ , all
the iterations of the PRaGA are well defined, the sequence (λn)n∈N is nonincreasing,
and for all n ∈ N

∗, we have un−1 /∈ Σ . Hence, un−1 + zn �= 0, and since Σ satisfies
(HΣ1), the function S is differentiable in the neighborhood of t = 1 and admits a
minimum at this point. The first-order Euler equation at t = 1 reads

1

‖un−1 + zn‖2 (a(un−1 + zn, zn)− λn〈un−1 + zn, zn〉) = 0,

which immediately leads to (38). ��

In the rest of this section, we will define αn = 1
‖un−1+zn‖ and z̃n = zn‖un−1+zn‖ , so

that for all n ∈ N
∗, un = αnun−1 + z̃n . We first prove the following intermediate

lemma.

Lemma 7.2 The series
∑+∞

n=1 ‖̃zn‖2 and
∑+∞

n=1 ‖̃zn‖2
a are convergent, and there exists

τ > 0 such that for all n ≥ 1,

λn−1 − λn ≥ τ ‖̃zn‖2
a . (39)

Proof Let us first prove that the series
∑+∞

n=1 ‖̃zn‖2 is convergent. For all n ∈ N
∗, we

have

a(un, un) = a(un−1 + zn, un−1 + zn)

‖un−1 + zn‖2 .

Thus, using (38) at the fifth equality,

λn−1 − λn = a(un−1, un−1)− a(un, un)

= a(un−1, un−1)
(
2〈un−1, zn〉 + ‖zn‖2

) − 2a(un−1, zn)− a(zn, zn)

‖un−1 + zn‖2

= 2 (λn−1〈un−1 + zn, zn〉 − a(un−1 + zn, zn))− λn−1‖zn‖2 + a(zn, zn)

‖un−1 + zn‖2

= 2 (λn−1〈un, z̃n〉 − a(un, z̃n))+ a(̃zn, z̃n)− λn−1‖̃zn‖2

= 2(λn−1 − λn)〈un, z̃n〉 + a(̃zn, z̃n)− λn−1‖̃zn‖2

≥ (λΣ − λn−1)‖̃zn‖2 − 2(λn−1 − λn)|〈un, z̃n〉|
≥ (λΣ − λn−1)‖̃zn‖2 − 2(λn−1 − λn)‖un‖‖̃zn‖
≥ (λΣ − λn−1)‖̃zn‖2 − (λn−1 − λn)‖̃zn‖2 − (λn−1 − λn). (40)

123



Constr Approx (2014) 40:387–423 417

This implies that

2(λn−1 − λn) ≥ [
(λΣ − λn−1)− (λn−1 − λn)

] ‖̃zn‖2. (41)

From Lemma 3.3, (λn)n∈N is a nonincreasing sequence. In addition, since it is bounded
from below by μ1 = minv∈V J (v), it converges toward a real number λ = lim

n→+∞ λn

which satisfies λ ≤ λ0 < λΣ . Estimate (41) implies that there exists δ > 0 and
n0 ∈ N

∗ such that for all n ≥ n0,

λn−1 − λn ≥ δ‖̃zn‖2. (42)

Hence, the series
∑+∞

n=1 ‖̃zn‖2 is convergent, since the series
∑+∞

n=1(λn−1 − λn) is
obviously convergent.

Let us now prove that the series
∑+∞

n=1 ‖̃zn‖2
a is convergent. Using (40), it holds

that

λn−1 − λn = 2(λn−1 − λn)〈un, z̃n〉 + a(̃zn, z̃n)− λn−1‖̃zn‖2

≥ −2(λn−1 − λn)‖un‖‖̃zn‖ + a(̃zn, z̃n)− λn−1‖̃zn‖2

≥ −(λn−1 − λn)‖̃zn‖2 − (λn−1 − λn)+ a(̃zn, z̃n)− λn−1‖̃zn‖2.

Thus,
2(λn−1 − λn)+ (ν + λn−1 + (λn−1 − λn))‖̃zn‖2 ≥ ‖̃zn‖2

a . (43)

This last inequality implies that the series
∑+∞

n=1 ‖̃zn‖2
a is convergent since ν + λ ≥

ν+μ1 > 0, and that there exists τ > 0 such that for all n ∈ N
∗, λn−1 −λn ≥ τ ‖̃zn‖2

a .
��

Proof of Theorem 3.1 We know that (λn)n∈N converges to λ, which implies that
(‖un‖a)n∈N is bounded. Thus, (un)n∈N converges, up to the extraction of a subse-
quence, to some w ∈ V , weakly in V , and strongly in H from (HV). Let us denote by
(unk )k∈N such a subsequence. In particular, ‖w‖ = lim

k→+∞ ‖unk ‖ = 1. Let us prove

thatw is an eigenvector of the bilinear form a(·, ·) associated with λ and that (unk )k∈N

strongly converges in V to w.
Lemma 7.2 implies that z̃n −→

n→∞ 0 strongly in V , and since‖un‖ = ‖αnun−1+̃zn‖ =
‖un−1‖ = 1 for all n ∈ N

∗, necessarily αn −→
n→∞ 1. Thus, zn = 1

αn
z̃n also converges to

0 strongly in V .
In addition, for all n ≥ 1 and all z ∈ Σ , it holds that

J (un−1 + z) ≥ J (un−1 + zn).
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Using the fact that ‖un−1‖ = 1 and a(un−1, un−1) = λn−1, this inequality also reads

λn−1

[
2〈un−1, zn〉 + ‖zn‖2 − 2〈un−1, z〉 − ‖z‖2

]

+ [
2a(z, un−1)+ a(z, z)

] [
1 + 2〈un−1, zn〉 + ‖zn‖2

]

− [
2a(un−1, zn)+ a(zn, zn)

] [
1 + 2〈un−1, z〉 + ‖z‖2

]
≥ 0. (44)

In addition, (zn)n∈N∗ strongly converges to 0 in V and (λn)n∈N converges toward λ.
As a consequence, taking n = nk + 1 in (44) and letting k go to infinity, it holds that
for all z ∈ Σ ,

−2λ〈w, z〉 − λ‖z‖2 + 2a(w, z)+ a(z, z) ≥ 0.

From (HΣ1), for all ε > 0 and z ∈ Σ , εz ∈ Σ . Thus, taking εz instead of z in the
above inequality yields

− 2λε〈w, z〉 − λε2‖z‖2 + 2εa(w, z)+ ε2a(z, z) ≥ 0. (45)

Letting ε go to 0 in (45), we obtain that for all z ∈ Σ ,

a(w, z) = λ〈w, z〉 and a(z, z) ≥ λ‖z‖2.

Thus, using (HΣ3), this implies that for all v ∈ V , a(w, v) = λ〈w, v〉 andw is an H -
normalized eigenvector of a(·, ·) associated with the eigenvalue λ. Since a(w,w) =
lim

k→∞ a(unk , unk ) and ‖w‖ = lim
k→∞ ‖unk ‖, it holds that ‖w‖a = lim

k→∞ ‖unk ‖a , and the

convergence of the subsequence (unk )k∈N toward w also holds strongly in V .
Let us prove now that da(un, Fλ) −→

n→∞ 0. Let us argue by contradiction and assume

that there exists ε > 0 and a subsequence (unk )k∈N such that da(unk , Fλ) ≥ ε. Up
to the extraction of another subsequence, from the results proved above, there exists
w ∈ Fλ such that unk → w strongly in V . Thus, along this subsequence,

da(unk , Fλ) ≤ ‖unk − w‖a −→
n→∞ 0,

yielding a contradiction.
Lastly, if λ is a simple eigenvalue, the only possible limits of subsequences of

(un)n∈N are wλ and −wλ where wλ is an H -normalized eigenvector associated with
λ. As (zn)n∈N∗ strongly converges to 0 in V , the whole sequence (un)n∈N converges,
either to wλ or to −wλ, and the convergence holds strongly in V . ��

7.2 Proof of Theorem 3.1 for the ORaGA

It is clear that there always exists at least one solution to the minimization problems
(17).
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For all n ∈ N
∗, let us define αn := 1

‖un−1+zn‖ , z̃n = αnzn , ũn := αnun−1 + z̃n , and

λ̃n = a(̃un, ũn).
For all n ∈ N

∗, λn = a(un, un) ≤ λ̃n = a(̃un, ũn). In addition, the same calcula-
tions as the ones presented in Sect. 7.1 can be carried out, replacing un by ũn . This
implies that for all n ∈ N

∗, λ̃n ≤ λn−1 (and thus the sequence (λn)n∈N is nonincreas-
ing). In addition, the series of general term

(‖̃zn‖2
a

)
n∈N

is convergent.
Thus, Eq. (44) is still valid for the orthogonalized version of the algorithm. Follow-

ing exactly the same lines as in Sect. 7.1, we obtain the desired results. The fact that
for all n ∈ N

∗, 〈un, un−1〉 ≥ 0 ensures the uniqueness of the limit of the sequence in
the case when the eigenvalue λ is simple.

7.3 Proof of Theorem 3.2 for the PRaGA

Lemma 7.3 Consider the PRaGA in finite dimension. Then, there exists C ∈ R+ such
that for all n ∈ N,

‖J ′(un)‖∗ ≤ C‖zn+1‖a . (46)

Let us recall that the norm ‖ · ‖∗ is the injective norm on V ′ defined by (20) and
that for all v ∈ Ω = {u ∈ V, 1/2 < ‖u‖ < 3/2}, the derivative of J at v is given by

∀w ∈ V, 〈J ′(v), w〉V ′,V = 1

‖v‖2 (a(v,w)− a(v, v)〈v,w〉) .

Proof Since J is analytic on the compact set Ω , the Hessian of J at any v ∈ Ω is
uniformly bounded in the sense of the continuous bilinear forms on V × V ; i.e., there
exists C > 0 such that

∀v ∈ Ω, ∀w,w′ ∈ V, |J ′′(v)(w,w′)| ≤ C

2
‖w‖V ‖w′‖V .

Thus, since ‖un‖ = 1 for all n ∈ N and zn −→
n→+∞ 0 strongly in H , there exists n0 ∈ N

and ε0 > 0 such that for all n ≥ n0, all ε ≤ ε0, and all z ∈ Σ such that ‖z‖a ≤ 1,

J (un + zn+1) ≤ J (un + εz) ≤ J (un + zn+1)+ 〈J ′(un + zn+1), εz − zn+1〉V ′,V
+ C‖εz − zn+1‖2

a .

Since 〈J ′(un + zn+1), zn+1〉V ′,V = 0 from Lemma 7.1, the above inequality implies
that

ε
∣∣〈J ′(un + zn+1), z〉V ′,V

∣∣ ≤ C‖εz − zn+1‖2
a ≤ 2C

(
ε2‖z‖2

a + ‖zn+1‖2
a

)
.

Taking ε = ‖zn+1‖a
‖z‖a

in the above expression yields

∀z ∈ Σ, ∣∣〈J ′(un + zn+1), z〉V ′,V
∣∣ ≤ 4C‖z‖a‖zn+1‖a .
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Using again the fact that the Hessian of J is uniformly bounded in Ω , and that
lim

n→∞ ‖zn+1‖a = 0, there exists n0 ∈ N such that for all n ≥ n0,

∀z ∈ Σ, ∣
∣〈J ′(un + zn+1), z〉V ′,V − 〈J ′(un), z〉V ′,V

∣
∣ ≤ C‖z‖a‖zn+1‖a,

and finally

∀z ∈ Σ, ∣∣〈J ′(un), z〉V ′,V
∣∣ ≤ 5C‖z‖a‖zn+1‖a,

which yields the desired result. ��
Proof of Theorem 3.2 Since da(un, Fλ) −→

n→∞ 0, using (22), there exists n0 ∈ N such

that for n ≥ n0,

|J (un)− λ|1−θ = (λn − λ)1−θ ≤ K‖J ′(un)‖∗.

Thus, using the concavity of the function R+ � t �→ tθ , we have

(λn − λ)θ − (λn+1−λ)θ ≥ θ

(λn − λ)1−θ (λn − λn+1) ≥ θ

K‖J ′(un)‖∗
(λn − λn+1).

Equations (42) and (43) imply that there exists a constant τ > 0 such that for all n ∈ N,
λn − λn+1 ≥ τ ‖̃zn+1‖2

a . In addition, since ‖un‖2 = 1, it holds that for all v ∈ V ,

〈J ′(un), v〉V ′,V = a(un, v)− λn〈un, v〉.

Consequently, for n large enough, using (39), (46), and the fact that αn −→
n→∞ 1, we

obtain

(λn − λ)θ − (λn+1 − λ)θ ≥ θ

K‖J ′(un)‖∗
(λn − λn+1) ≥ θτ

K C‖zn+1‖a
‖̃zn+1‖2

a

≥ θταn+1

K C
‖̃zn+1‖a ≥ θτ

2K C
‖̃zn+1‖a .

Since lim
n→∞αn = 1 and the series of general term

(
(λn − λ)θ − (λn+1 − λ)θ

)
n∈N

is

convergent, the series of general terms (‖̃zn‖a)n∈N∗ and (‖zn‖a)n∈N∗ are convergent as
well. In addition, since αn = 1

‖un−1+zn‖ , it can be easily seen that |1 −αn| = O(‖zn‖)
is also the general term of a convergent series. Thus, since ‖un − un−1‖a ≤ |1 −
αn|(λΣ +ν)+‖̃zn‖a , the sequence (un)n∈N strongly converges in V to somew ∈ Fλ.
This also implies that there exists c > 0 and n0 ∈ N

∗ such that for all n ≥ n0,
‖un − un−1‖a ≤ c‖̃zn‖a . Defining en := ∑+∞

k=n ‖̃zk‖a , we therefore have

‖un − w‖a ≤
+∞∑

k=n

‖uk+1 − uk‖a ≤ cen . (47)
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Let us now prove the rates (24) and (25). The strategy of proof is identical to the
one used in [3,8,27].

The above calculations imply that for k large enough,

|λk − λ|θ − |λk+1 − λ|θ ≥ τθ

AC K
‖̃zk+1‖a (48)

for any constant A > 2. We choose A large enough to ensure that M =
1

C K

(
τθ

AC K

) 1−θ
θ < 1. Let us first prove that for all n ∈ N

∗,

en+1 ≤ en − Me
1−θ
θ

n . (49)

By summing inequalities (48) for k ranging from n − 1 to infinity, we obtain

τθ

AC K
en ≤ |λn−1 − λ|θ ,

which yields

(
τθ

AC K
en

) 1−θ
θ ≤ |λn−1−λ|1−θ ≤ K‖J ′(un−1)‖∗ ≤ C K ‖̃zn‖a = C K (en − en+1).

Hence, (49). If θ = 1
2 , (49) reduces to en+1 ≤ (1 − M)en . Thus, there exists c0 > 0

such that for all n ∈ N
∗, en ≤ c0(1 − M)n . Since we have chosen A large enough so

that 0 < 1 − M < 1, (47) immediately yields (24).
If θ ∈ (0, 1/2), we set t := θ

1−2θ and, for n large enough, yn = Bn−t for some
constant B > 0 which will be chosen later. Then,

yn+1 = B(n + 1)−t = Bn−t
(

1 + 1

n

)−t

≥ Bn−t
(

1− t

n

)
= yn

(
1 − t B−1/t y1/t

n

)
.

Choosing B large enough so that B >
( M

t

)−t
with M = 1

C K

(
τθ

2C K

) 1−θ
θ , and using

(49), we finally prove by induction that en ≤ yn , which yields (25). ��
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