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Abstract The spectral decomposition for an explicit second-order differential oper-
ator T is determined. The spectrum consists of a continuous part with multiplicity
two, a continuous part with multiplicity one, and a finite discrete part with multiplic-
ity one. The spectral analysis gives rise to a generalized Fourier transform with an
explicit hypergeometric function as a kernel. Using Jacobi polynomials, the operator
T can also be realized as a five-diagonal operator, leading to orthogonality relations
for 2 × 2-matrix-valued polynomials. These matrix-valued polynomials can be con-
sidered as matrix-valued generalizations of Wilson polynomials.

Keywords Hypergeometric function transform · Matrix-valued orthogonal
polynomials · Second-order differential operator · Five-term operator · Spectral
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1 Introduction

It is well known that a three-term recurrence relation

λpn(λ) = anpn+1(λ) + bnpn(λ) + an−1pn−1(λ), n = 0,1,2, . . . ,
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with a−1 = 0, can be solved using orthogonal polynomials. A generalization of this is
obtained by Durán and Van Assche [5], who show that a 2N + 1-term recurrence re-
lation can be solved using N × N -matrix-valued orthogonal polynomials. Motivated
by this result and previous work by Ismail and the second author [12, 13], a method
is presented by Ismail and the authors [8] to obtain orthogonality relations for 2 × 2-
matrix-valued orthogonal polynomials from an operator T on a Hilbert space H of
functions. The operator T must satisfy the following conditions:

(i) T is self-adjoint;
(ii) there exists a weighted Hilbert space L2(V) and a unitary operator U : H →

L2(V) so that UT = MU , where M is the multiplication operator on L2(V);
(iii) there exists an orthonormal basis {fn}∞n=0 of H, and there exist sequences

(an)
∞
n=0, (bn)

∞
n=0, (cn)

∞
n=0 of numbers with an > 0 and cn ∈ R for all n ∈ N,

such that

Tfn = anfn+2 + bnfn+1 + cnfn + bn−1fn−1 + an−2fn−2,

where we assume a−1 = a−2 = b−1 = 0.
In [8], two explicit examples are worked out, where the operator T is, besides a five-
term operator, also realized as the second-order q-difference operator corresponding
to well-known q-hypergeometric orthogonal polynomials. Thus, the unitary opera-
tor U is the integral transform with the corresponding orthogonal polynomials as
a kernel. This leads to complicated, but explicit, orthogonality relations for certain
matrix-valued polynomials defined by an explicit matrix three-term recurrence rela-
tion. We note that the explicit weight function differs structurally from the usually
considered weight functions for matrix-valued orthogonal polynomials consisting of
a matrix-deformation of a classical weight.

In this paper, we apply the method from [8] with the second-order differential
operator T = T (α,β;κ) defined by

T = (
1 − x2)2 d2

dx2
+ (

1 − x2)[β − α − (α + β + 4)x
] d

dx

+ 1

4

[
κ2 − (α + β + 3)2](1 − x2). (1.1)

Here x ∈ (−1,1), α,β > −1, and κ ∈ R≥0 ∪ iR>0. The differential operator T is
closely related to the second-order differential operator to which the Jacobi polyno-
mials are eigenfunctions. It should be noted that T raises the degree of a polynomial
by 2, so there are no polynomial eigenfunctions. We will show that the differential
operator T , considered as an unbounded operator on a weighted L2-space, satisfies
conditions (i)–(iii) given above. An interesting problem here is that T does not cor-
respond to orthogonal polynomials or to a known unitary integral transform such as
the Jacobi function transform [15].

The unitary operator U needed in condition (ii) is given by an explicit integral
transform F which is obtained from spectral analysis of T . The spectrum of T con-
sists of a continuous part with multiplicity two, a continuous part with multiplic-
ity one, and a (possibly empty) finite discrete part of multiplicity one. As a result,
the integral transform F has a hypergeometric kernel which is partly C

2-valued and
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partly C-valued. There are several (but not very many) hypergeometric integral trans-
forms with C

2-valued kernels available in the literature, see, e.g., [9, 17], [14, Exer-
cise (4.4.11)], see also [7] for an example with basic hypergeometric functions. To
the best of our knowledge, all known examples can be considered as nonpolynomial
extensions of hypergeometric orthogonal polynomials, in the sense that the corre-
sponding kernels are eigenfunctions of a differential/difference operator that also has
orthogonal polynomials as eigenfunctions. For example, Neretin’s C

2-valued 2F1-
integral transform [17] generalizes the Jacobi polynomials. The integral transform F
we consider in this paper, however, does not seem to generalize a family of orthogonal
polynomials, although in a special case it can be considered as a nonpolynomial ex-
tension of two different one-parameter families of Jacobi polynomials. Furthermore,
other hypergeometric integral transforms and hypergeometric orthogonal polynomi-
als correspond to a bispectral problem, see, e.g., [10], which can always be related
directly to contiguous relations for hypergeometric functions. From the explicit ex-
pressions as hypergeometric functions for the kernel of F , it is unclear whether F is
also related to a bispectral problem.

In a special case, the 2 × 2-matrix-valued orthogonal polynomials we obtain can
be diagonalized. In this case, the orthogonality relations correspond to orthogonality
relations for two subfamilies of Wilson polynomials [19], and the matrix-three-term
recurrence relation corresponds to the three-term recurrence relations for the two sub-
families. Moreover, the differential operator arises as an extension of [12, §3] from
a three-term to five-term recurrence operator for such a differential operator as de-
scribed in [8]. In [12, §3], a subfamily of the Wilson polynomials play the role of the
matrix-valued polynomials of this paper. This is why we consider our matrix-valued
polynomials as generalizations of (subfamilies of) Wilson polynomials. It should be
stressed that it is completely unclear at this point whether the matrix-valued poly-
nomials have other properties that are fundamental for the Wilson polynomials. For
example, the Wilson polynomials are eigenfunctions of a second-order difference op-
erator, but a similar result for the matrix-valued polynomials in this paper is not (yet)
known.

The organization of this paper is as follows. In Sect. 2, we introduce the integral
transform F and show that the differential operator T (1.1) satisfies conditions (i)
and (ii). The proofs for this section are given separately in Sect. 4, where the spectral
analysis of T is carried out, which can be quite technical at certain points. In Sect. 3,
we realize T as a five-diagonal operator on a basis consisting of Jacobi polynomi-
als, so that condition (iii) is also satisfied. The corresponding five-term recurrence
relation is equivalent to a matrix three-term recurrence relation that defines 2 × 2-
matrix-valued orthogonal polynomials Pn for which the orthogonality relations are
determined. We also consider briefly the special case α = β , in which case the in-
tegral transform F reduces to two Jacobi function transforms and the orthogonality
relations for Pn correspond to the orthogonality relations for certain Wilson polyno-
mials. Finally, in Sect. 4, eigenfunctions of T are given, which are needed for the
spectral decomposition of T . The spectral decomposition leads to a proof of the uni-
tarity of the integral transform F , and to an explicit formula for its inverse.

Notation We write N for the set of nonnegative integers. We use standard notation
for hypergeometric functions, as in, e.g., [2, 11]. For products of Γ -functions and of
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shifted factorials, we use the shorthand notation

Γ (a1, a2, . . . , an) = Γ (a1)Γ (a2) · · ·Γ (an),

(a1, a2, . . . , an)k = (a1)k(a2)k · · · (an)k.

2 Spectral Analysis and a Hypergeometric Function Transform

In this section, we describe the spectral analysis of the operator T defined by (1.1).
The spectral decomposition is given by an integral transform with certain hypergeo-
metric 2F1-functions as a kernel which is interesting in its own right. The proofs for
this section are postponed until Sect. 4.

Let α,β > −1 be fixed, and let w(α,β) be the Jacobi weight function on [−1,1]
given by

w(α,β)(x) = 2−α−β−1 Γ (α + β + 2)

Γ (α + 1, β + 1)
(1 − x)α(1 + x)β. (2.1)

The corresponding inner product is denoted by 〈·, ·〉,

〈f,g〉 =
∫ 1

−1
f (x)g(x)w(α,β)(x) dx.

The weight is normalized such that 〈1,1〉 = 1. We denote by H = H(α,β) the corre-
sponding weighted L2-space; H = L2((−1,1),w(α,β)(x) dx). To stress the depen-
dence on the parameters α and β , we will sometimes denote the inner product in
H(α,β) by 〈·, ·〉α,β . Let us remark that the substitution x 	→ −x sends T (α,β;κ) to
T (β,α;κ), and H(α,β) to H(β,α). So without loss of generality we may assume β ≥ α,
which we do from here on.

We consider T as an unbounded operator on H. The domain D0 for T is described
in Sect. 4.2, where the following result is proved.

Proposition 2.1 The operator (T ,D0) has a unique self-adjoint extension.

We denote the extension of T again by T . The spectral analysis of T will be
described by the integral transform F mapping functions in H (under suitable condi-
tions) to functions in the Hilbert space L2(V). We first introduce the latter space.

Let Ω1,Ω2 ⊂ R be given by

Ω1 = (−(β + 1)2,−(α + 1)2) and Ω2 = (−∞,−(β + 1)2). (2.2)

We set

δλ = i
√−λ − (α + 1)2, λ ∈ Ω1 ∪ Ω2,

ηλ = i
√−λ − (β + 1)2, λ ∈ Ω2,

δ(λ) = √
λ + (α + 1)2, λ ∈ C \ (Ω1 ∪ Ω2),

η(λ) = √
λ + (β + 1)2, λ ∈ C \ Ω2.

(2.3)
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Here
√· denotes the principal branch of the square root. For n ∈ N, we define λn ∈C

as the solution of

δ(λ) + η(λ) =
√

λ + (α + 1)2 +
√

λ + (β + 1)2 = −2n − 1 + κ. (2.4)

We define the finite set Ωd by

Ωd =
{
λn

∣∣n ∈ N and n ≤ 1

2
(κ − 1)

}
, (2.5)

i.e., Ωd consists of the real solutions of (2.4). Note that Ωd = ∅ if κ < 1 or κ ∈ iR>0.
The number λn ∈ Ωd has the explicit expression

λn =
(

−n + 1

2
(κ − 1) + (α − β)(α + β + 2)

−4n − 2 + 2κ

)2

− (α + 1)2

=
(

−n + 1

2
(κ − 1) − (α − β)(α + β + 2)

−4n − 2 + 2κ

)2

− (β + 1)2.

We will denote by σ the set Ω2 ∪ Ω1 ∪ Ωd . Theorem 2.2 will show that σ is the
spectrum of T .

Next we introduce the weight functions that we need to define L2(V). First we
define

c(x;y) = Γ (1 + y,−x)

Γ ( 1
2 (1 + y − x + κ), 1

2 (1 + y − x − κ))
. (2.6)

With this function, we define for λ ∈ Ω1,

v(λ) = 1

c(δλ;η(λ))c(−δλ;η(λ))
. (2.7)

For λ ∈ Ω2, we define the matrix-valued weight function V (λ) by

V (λ) =
(

1 v12(λ)

v21(λ) 1

)
, (2.8)

with

v21(λ) = c(ηλ; δλ)

c(−ηλ; δλ)
= Γ (−ηλ,

1
2 (1 + δλ + ηλ + κ), 1

2 (1 + δλ + ηλ − κ))

Γ (ηλ,
1
2 (1 + δλ − ηλ + κ), 1

2 (1 + δλ − ηλ − κ))
, (2.9)

and v12(λ) = v21(λ). Finally, for λn ∈ Ωd , we set
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Nλn = Res
λ=λn

(
c(η(λ); δ(λ))

η(λ)c(−η(λ); δ(λ))

)

= 4δ(λn)

−2n − 1 + κ

× (−1)nΓ (−η(λn), κ − n)

n!Γ (η(λn),
1
2 (1 + δ(λn) − η(λn) + κ), 1

2 (1 + δ(λn) − η(λn) − κ))
.

(2.10)

Note here that δ(λn) − η(λn) = (α−β)(α+β+2)
−2n−1+κ

.

Now we are ready to define the Hilbert space L2(V). It consists of functions that
are C2-valued on Ω2 and C-valued on Ω1 ∪Ωd . The inner product on L2(V) is given
by

〈f,g〉V = 1

2πD

∫

Ω2

g(λ)∗V (λ)f (λ)
dλ

−iηλ

+ 1

2πD

∫

Ω1

f (λ)g(λ)v(λ)
dλ

−iδλ

+ 1

D

∑

λ∈Ωd

f (λ)g(λ)Nλ,

where

D = 4Γ (α + β + 2)

Γ (α + 1, β + 1)
. (2.11)

Next we introduce the integral transform F . For λ ∈ Ω1 and x ∈ (−1,1), we define

ϕλ(x) =
(

1 − x

2

)− 1
2 (α−δλ+1)(1 + x

2

)− 1
2 (β−η(λ)+1)

× 2F1

(
1
2

(
1 + δλ + η(λ) − κ

)
, 1

2

(
1 + δλ + η(λ) + κ

)

1 + η(λ)
; 1 + x

2

)

. (2.12)

By Euler’s transformation, see, e.g., [2, (2.2.7)], we can replace δλ by −δλ in (2.12).
Furthermore, we define for λ ∈ Ω2 and x ∈ (−1,1),

ϕ±
λ (x) =

(
1 − x

2

)− 1
2 (α−δλ+1)(1 + x

2

)− 1
2 (β∓ηλ+1)

× 2F1

(
1
2 (1 + δλ ± ηλ − κ), 1

2 (1 + δλ ± ηλ + κ)

1 ± ηλ

; 1 + x

2

)

. (2.13)

Observe that ϕ+
λ (x) = ϕ−

λ (x), again by Euler’s transformation. Finally, for λn ∈ Ωd ,
we define
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ϕλn(x) =
(

1 − x

2

)− 1
2 (α−δ(λn)+1)(1 + x

2

)− 1
2 (β−η(λn)+1)

× 2F1

(−n,κ − n

1 + η(λn)
; 1 + x

2

)
. (2.14)

Now, let F be the integral transform defined by

(Ff )(λ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∫ 1

−1
f (x)

(
ϕ+

λ (x)

ϕ−
λ (x)

)

w(α,β)(x) dx, λ ∈ Ω2,

∫ 1

−1
f (x)ϕλ(x)w(α,β)(x) dx, λ ∈ Ω1,

∫ 1

−1
f (x)ϕλn(x)w(α,β)(x) dx, λ = λn ∈ Ωd,

(2.15)

for all f ∈H such that the integrals converge. The following result says that F is the
required unitary operator U from the introduction.

Theorem 2.2 The integral transform F extends uniquely to a unitary operator
F :H → L2(V) such that FT = MF , where M : L2(V) → L2(V) is the unbounded
multiplication operator given by (Mg)(λ) = λg(λ) for almost all λ ∈ σ .

Remark 2.3 In case α = β , the spectral decomposition of T can be described using
the Jacobi function transform [15]. To see this, we apply the change of variable x =
tanh(t). Then the second-order differential operator T defined by (1.1) turns into

T̂ = d2

dt2
+ [

β − α − (α + β + 2) tanh(t)
] d

dt
+ κ2 − (α + β + 3)2

4 cosh2(t)
.

For α = β , let fλ be a solution of the eigenvalue equation T̂ fλ = λfλ. Now define

F±
λ (t) = cosh

1
2 (2α+3±κ)(t)fλ(t). Then Fλ satisfies

d2F±
λ

dt2
+ (1 ± κ) tanh(t)

dF±
λ

dt
=

(
λ + (α − 1)2 − 1

4
(1 ± κ)2

)
F±

λ .

Using the differential equation for Jacobi functions, see [15, (1.1)], we now see that
the spectral decomposition of T can be given using the Jacobi function transforms

corresponding to the Jacobi functions φ
(− 1

2 , 1
2 κ)

δλ
and φ

(− 1
2 ,− 1

2 κ)

δλ
.

We have an explicit inverse of the integral transform F . Define for x ∈ (−1,1) the
integral transform G by

(Gf )(x) = 1

2πD

∫

Ω2

(
ϕ+

λ (x) ϕ−
λ (x)

)
V (λ)f (λ)

dλ

−iηλ

+ 1

2πD

∫

Ω1

f (λ)ϕλ(x)v(λ)
dλ

−iδλ

+ 1

D

∑

λ∈Ωd

f (λ)ϕλ(x)Nλ

for all functions f ∈ L2(V) for which the above integrals converge.
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Theorem 2.4 The integral transform G extends uniquely to an operator G :
L2(V) →H such that G = F−1.

Theorem 2.2 and 2.4 are proved in Sect. 4. The following orthogonality relations
are a result of Theorem 2.2 by considering the discrete spectrum of T , see Corol-
lary 4.17 for the proof.

Corollary 2.5 Let κ ≥ 1. Then the following orthogonality relations hold:

∫ 1

−1
2F1

(−m,κ − m

1 + η(λm)
; 1 + x

2

)

2F1

(−n,κ − n

1 + η(λn)
; 1 + x

2

)

× (1 − x)
1
2 (δ(λm)+δ(λn)−2)(1 + x)

1
2 (η(λm)+η(λn)−2) dx

= δmn

2κ−n−m

Nλn

for all n,m ∈N such that n,m ≤ 1
2 (κ − 1).

3 Matrix-Valued Orthogonal Polynomials

In this section, we show that the differential operator T can be realized as a five-
diagonal operator with respect to an orthonormal basis for H. Using the spectral
decomposition for T , this leads to orthogonality relations for 2 × 2-matrix-valued
orthogonal polynomials.

3.1 The Five-Diagonal Operator

The Jacobi polynomials are defined by

P (α,β)
n (x) = (α + 1)n

n! 2F1

(−n,n + α + β + 1

α + 1
; 1 − x

2

)
.

For α,β > −1, they form an orthogonal basis for H;

〈
P (α,β)

m ,P (α,β)
n

〉 = δmnh
(α,β)
n , h(α,β)

n = α + β + 1

2n + α + β + 1

(α + 1, β + 1)n

(α + β + 1)nn! .

The Jacobi polynomials are eigenfunctions of the Jacobi differential operator

L(α,β) = (
1 − x2) d2

dx2
+ [

β − α − (α + β + 2)x
] d

dx
,

L(α,β)P (α,β)
n = −n(n + α + β + 1)P (α,β)

n .

We define r(x) = 1 − x2. Then for x ∈ (−1,1), the polynomial r can be written as

r(x) = K
w(α+1,β+1)(x)

w(α,β)(x)
, K = 4(α + 1)(β + 1)

(α + β + 2)(α + β + 3)
. (3.1)
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The differential operator T = T (α,β;κ) defined by (1.1) is related to L(α,β) by

T (α,β;κ) = M(r)
(
L(α+1,β+1) + ρ

)
, ρ = 1

4

(
κ2 − (α + β + 3)2), (3.2)

where M(r) denotes multiplication by r .
In [8, Sect. 3.1], it is shown that an operator of the form (3.2) acts as a five-term op-

erator on a suitable basis of H. In this case, the basis consists of Jacobi polynomials.
We define φn = P

(α,β)
n /(h

(α,β)
n )1/2, n ∈ N. Then {φn}n∈N is an orthonormal basis for

H(α,β). We also define Φn = P
(α+1,β+1)
n /(h

(α+1,β+1)
n )1/2, n ∈ N. Then {Φn}n∈N is

an orthonormal basis for H(α+1,β+1). In order to write T explicitly as a five-diagonal
operator on the basis {φn}n∈N, we need a connection formula between {φn}n∈N and
{Φn}n∈N.

Lemma 3.1 The following connection formula holds:

φn = αnΦn + βnΦn−1 + γnΦn−2,

where

αn = 2√
K

1

2n + α + β + 2

×
√

(α + n + 1)(β + n + 1)(n + α + β + 1)(n + α + β + 2)

(α + β + 2n + 1)(α + β + 2n + 3)
,

βn = (−1)n
2√
K

(β − α)
√

n(n + α + β + 1)

(α + β + 2n)(α + β + 2n + 2)
,

γn = − 2√
K

1

2n + α + β

√
n(n − 1)(α + n)(β + n)

(α + β + 2n − 1)(α + β + 2n + 1)
.

Proof There exists an expansion φn = ∑n
k=0 an,kΦk , where

an,k = 〈φn,Φk〉α+1,β+1 = K−1〈φn, rΦk〉α,β .

Since r has degree 2, it follows from the orthogonality relations for φn that an,k = 0
for 0 ≤ k ≤ n − 3.

We compute the three remaining coefficients. The value of an,n follows from com-
paring leading coefficients; an,n = lc(φn)

lc(Φn)
. We have

lc(φn) = 2−n(n + α + β + 1)n

√
2n + α + β + 1

α + β + 1

(α + β + 1)n

n!(α + 1, β + 1)n

and lc(Φn) is obtained by replacing (α,β) by (α +1, β +1), which leads to the result
for αn = an,n.
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For a polynomial p of degree n, let k(p) denote the coefficient of (1 − x)n−1.
Then

an,n−1 = k(φn) − an,nk(Φn)

lc(Φn−1)
.

We have

k(φn) = (−1)n+1lc(φn)
2n(α + n)

α + β + 2n
,

and k(Φn) is obtained by replacing (α,β) by (α + 1, β + 1), which gives the expres-
sion for βn = an,n−1.

Finally, the expression for γn = an,n−2 follows from

an,n−2 = K−1 lc(rΦn−2)

lc(φn)
= −K−1 lc(Φn−2)

lc(φn)
. �

We now use [8, Lemma 3.1] to write the differential operator T as a five-diagonal
operator.

Proposition 3.2 The operator T defined by (1.1) acts as a five-diagonal operator on
the basis {φn}n∈N of H by

T φn = anφn+2 + bnφn+1 + cnφn + bn−1φn−1 + an−2φn−2, (3.3)

with coefficients given by

an = Kαnγn+2(Λn + ρ), bn = Kαnβn+1(Λn + ρ) + Kβnγn+1(Λn+1 + ρ),

cn = Kα2
n(Λn + ρ) + Kβ2

n(Λn−1 + ρ) + Kγ 2
n (Λn−2 + ρ),

where Λn = −n(n + α + β + 3), K , ρ are given by (3.1), (3.2), and αn,βn, γn are as
in Lemma 3.1.

One easily verifies that a−1 = a−2 = b−1 = 0. Furthermore, we have the factor-
ization

Λn + ρ = −
(

n + 1

2
(α + β + 3 + κ)

)(
n + 1

2
(α + β + 3 − κ)

)
.

3.2 Matrix-Valued Orthogonal Polynomials

From Theorem 2.2 and Proposition 3.2, it follows that the functions Fφn, n ∈ N,
satisfy the five-term recurrence relation

λ(Fφn)(λ) = an(Fφn+2)(λ) + bn(Fφn+1)(λ) + cn(Fφn)(λ)

+ bn−1(Fφn−1)(λ) + an−2(Fφn−2)(λ), (3.4)

for almost all λ ∈ σ . Furthermore, the set {Fφn}n∈N is an orthonormal basis for
L2(V). We can determine an explicit expression for Fφn in terms of hypergeometric
functions.
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Lemma 3.3 For n ∈N, let Fn(δ, η) = Fn(δ, η;α,β, κ) denote the series

Fn(δ, η) = Dn

n∑

l=0

(−n,n + α + β + 1, 1
2 (α + δ + 1))l

l!(α + 1, 1
2 (α + β + η + δ + 2))l

× 3F2

(
1
2 (1 + δ + η + κ), 1

2 (1 + δ + η − κ), 1
2 (β + η + 1)

1 + η, 1
2 (α + β + η + δ + 2 + 2l)

;1

)

,

with

Dn = 1

2

√
2n + α + β + 1

α + β + 1

(α + β + 1, α + 1)n

n!(β + 1)n

× Γ (α + β + 2, 1
2 (α + δ + 1), 1

2 (β + η + 1))

Γ (α + 1, β + 1, 1
2 (α + β + η + δ + 2))

.

Then, for λ ∈ σ ,

(Fφn)(λ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
Fn(δλ, ηλ)

Fn(δλ,−ηλ)

)

, λ ∈ Ω2,

Fn(δλ, η(λ)), λ ∈ Ω1,

Fn(δ(λ), η(λ)), λ ∈ Ωd.

The above 3F2-series converges absolutely if �(α − δ + 1 + 2l) > 0, which is the
case if λ ∈ Ω1 ∪ Ω2. For λ ∈ Ωd , the 3F2-series terminates.

Proof We compute

In =
∫ 1

−1

(
1 − x

2

)− 1
2 (α−δ+1)(1 + x

2

)− 1
2 (β−η+1)

× 2F1

(
1
2 (1 + δ + η + κ), 1

2 (1 + δ + η − κ)

1 + η
; 1 + x

2

)

× 2F1

(−n,n + α + β + 1

α + 1
; 1 − x

2

)
w(α,β)(x) dx.

Interchanging the order of summation and integration, and using the Beta-integral,
we obtain

In = Cn

n∑

l=0

∞∑

m=0

(−n,n + α + β + 1)l

2l l!(α + 1)l

( 1
2 (1 + δ + η + κ), 1

2 (1 + δ + η − κ))m

2mm!(1 + η)m

×
∫ 1

−1
(1 − x)

1
2 (α+δ−1)+l (1 + x)

1
2 (β+η−1)+m dx
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= C′
n

n∑

l=0

∞∑

m=0

(−n,n + α + β + 1, 1
2 (α + δ + 1)l

l!(α + 1)l

× ( 1
2 (1 + δ + η + κ), 1

2 (1 + δ + η − κ), 1
2 (β + η + 1))m

m!(1 + η)m ( 1
2 (α + β + η + δ + 2))l+m

,

where

C′
n = 1

2

Γ (α + β + 2, 1
2 (α + δ + 1), 1

2 (β + η + 1))

Γ (α + 1, β + 1, 1
2 (α + β + η + δ + 2))

.

Now the result follows from the explicit expressions for φn and the integral trans-
form F . �

From Lemma 3.3, it follows that

F0(δ, η) = D03F2

(
1
2 (1 + δ + η + κ), 1

2 (1 + δ + η − κ), 1
2 (β + η + 1)

1 + η, 1
2 (α + β + η + δ + 2)

;1

)

,

and

F1(δ, η) = D1

[

3F2

(
1
2 (1 + δ + η + κ), 1

2 (1 + δ + η − κ), 1
2 (β + η + 1)

1 + η, 1
2 (α + β + η + δ + 2)

;1

)

− (α + β + 2)(α + δ + 1)

(α + 1)(α + β + η + δ + 2)

× 3F2

(
1
2 (1 + δ + η + κ), 1

2 (1 + δ + η − κ), 1
2 (β + η + 1)

1 + η, 1
2 (α + β + η + δ + 4)

;1

)]
.

These two functions and the five-term recurrence relation from (3.4) completely de-
termine the functions Fφn.

We define 2 × 2-matrix-valued orthogonal polynomials Pn, n ∈ N, by the three-
term recurrence relations

λPn(λ) = AnPn+1(λ) + BnPn(λ) + A∗
n−1Pn−1(λ), λ ∈ σ,

An =
(

a2n 0
b2n+1 a2n+1

)
, Bn =

(
c2n b2n

b2n c2n+1

)
, (3.5)

and the initial conditions P−1(λ) = 0 and P0(λ) = I . The matrix elements an, bn,
and cn are given in Proposition 3.2. From the five-term recurrence relation (3.4), we
obtain, for m ∈ N,

(
Fφ2m(λ)

Fφ2m+1(λ)

)
= Pm(λ)

(
Fφ0(λ)

Fφ1(λ)

)
if λ ∈ Ω1 ∪ Ωd,

(
Fφ2m(λ)t

Fφ2m+1(λ)t

)
= Pm(λ)

(
Fφ0(λ)t

Fφ1(λ)t

)
if λ ∈ Ω2.

(3.6)
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The orthogonality relations for Fφn, n ∈N, can now be reformulated as orthogonality
relations for the matrix-valued polynomials Pn, see [8, Theorem 2.1].

Theorem 3.4 The 2 × 2-matrix-valued orthogonal polynomials Pn, n ∈ N, defined
by (3.5) satisfy the orthogonality relations

δmnI = 1

2πD

∫

Ω2

Pm(λ)W2(λ)Pn(λ)∗ dλ

−iηλ

+ 1

2πD

∫

Ω1

Pm(λ)W1(λ)Pn(λ)∗v(λ)
dλ

−iδλ

+ 1

D

∑

λ∈Ωd

Pm(λ)W1(λ)Pn(λ)∗Nλ,

with

W1(λ) =
( |(Fφ0)(λ)|2 (Fφ0)(λ)(Fφ1)(λ)

(Fφ0)(λ)(Fφ1)(λ) |(Fφ1)(λ)|2
)

,

W2(λ) =
(〈(Fφ0)(λ), (Fφ0)(λ)〉V (λ) 〈(Fφ0)(λ), (Fφ1)(λ)〉V (λ)

〈(Fφ1)(λ), (Fφ0)(λ)〉V (λ) 〈(Fφ1)(λ), (Fφ1)(λ)〉V (λ)

)
,

where 〈x, y〉V (λ) = x∗V (λ)y. Here Ω1,Ω2,Ωd ⊂ R are as in (2.2) and (2.5), the
functions δλ and ηλ are as defined in (2.3), the weight functions v,V and N are
defined by respectively (2.7), (2.8), and (2.10), and the constant D is given in (2.11).

Remark 3.5 In [8, Proposition 3.6], a q-analog of Theorem 3.4 is considered. The
functions φn in this case are the little q-Jacobi polynomials, and the integral trans-
form F is simply the integral transform corresponding to the continuous dual q-Hahn
polynomials. It would be very interesting to see if similar results can be obtained for
other q-analogs of the Jacobi polynomials, such as big q-Jacobi polynomials [1],
Askey–Wilson polynomials [3], and Ruijsenaars’ R-function [18].

3.3 The Special Case α = β

We assume α = β , and for convenience we also assume Ωd = ∅. In this case, Ω1 = ∅,
and δλ = ηλ for all λ ∈ Ω2. The spectral decomposition of T can now be obtained in
a different way.

The coefficient bn in the five-diagonal expression for T vanishes, so T reduces to
a tridiagonal operator or Jacobi operator. Explicitly,

T φn = anφn+2 + cnφn + an−2φn−2,
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with

an = (n + 1
2 (α + β + 3 + κ))(n + 1

2 (α + β + 3 − κ))

2n + 2α + 3

×
√

(n + 2)(n + 1)(n + 2α + 1)(n + 2α + 2)

(2n + 2α + 1)(2n + 2α + 5)
,

cn = − (n + 2α + 1)(n + 2α + 2)(n + 1
2 (α + β + 3 + κ))(n + 1

2 (α + β + 3 − κ))

(2n + 2α + 1)(2n + 2α + 3)

− n(n − 1)(n + 1
2 (α + β − 1 + κ))(n + 1

2 (α + β − 1 − κ))

(2n + 2α − 1)(2n + 2α + 1)
.

The spectral decomposition can be described with the help of the orthonormal Wilson
polynomials [2, 19], which are defined by

Wn

(
x2;a, b, c, d

) =
√

(a + b, a + c, a + d)n(a + b + c + d)2n

n!(b + c, b + d, c + d,n + a + b + c + d − 1)n

× 4F3

(−n,n + a + b + c + d − 1, a + ix, a − ix

a + b, a + c, a + d
;1

)
.

If a, b, c, d > 0, these polynomials are orthonormal with respect to an absolutely
continuous measure on (0,∞).

For m ∈ N, we define

W e
m(x) = Wm

(
(2x)2; 1

2 (α + 1), 1
2 (α + 1), 1

4 (1 + κ), 1
4 (1 − κ)

)
,

W o
m(x) = Wm

(
(2x)2; 1

2 (α + 1), 1
2 (α + 1), 1

4 (3 + κ), 1
4 (3 − κ)

)
.

Then we obtain from the three-term recurrence relation for the Wilson polynomials,

−(
(α + 1)2 + x2)W e

m(x) = a2mW e
m+1(x) + c2mW e

m(x) + a2m−2W
e
m−1(x),

−(
(α + 1)2 + x2)W o

m(x) = a2m+1W
o
m+1(x) + c2m+1W

o
m(x) + a2m−1W

o
m−1(x).

Let μe and μo denote the orthogonality measures for the Wilson polynomials W e
m

and W o
m. The unitary operator U :H → L2(μe) ⊕ L2(μo), given by

Uφn =
{

W e
m if n = 2m,

W o
m if n = 2m + 1,

(3.7)

satisfies UT = MU , where M is multiplication by −((α + 1)2 + x2). So T indeed
has continuous spectrum (−∞,−(α + 1)2) = Ω2, with multiplicity 2.

The Hilbert space H(α,α) can also be split up in a natural way. From (1.1), we
see that T (with α = β) leaves invariant the subspaces of even/odd functions, so
we can split H accordingly into He and Ho. The Jacobi (Gegenbauer) polynomials
φ2m(x) are even polynomials; hence they form an orthonormal basis for He, and by a
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quadratic transformation they can be transformed into multiples of P
(α,− 1

2 )
m (2x2 −1).

Similarly, the odd polynomials φ2m+1(x) form an orthonormal basis for Ho, and

they can transformed into multiples of xP
(α, 1

2 )
m (2x2 − 1). Obviously there are similar

transformations for the Jacobi polynomials Φ2m and Φ2m+1. Now the operator T

restricted to He or Ho can be treated as in [12, Sect. 3]. The unitary operator U is
given in each case by a Jacobi function transform, see Remark 2.3, so that we obtain
a special case of Koornwinder’s formula [16] stating that Jacobi polynomials are
mapped to Wilson polynomials by the Jacobi function transform. In this light, (3.6)
can be considered as a matrix-analog of Koornwinder’s formula.

Remark 3.6 There exists an extension of Koornwinder’s formula on the level of Wil-
son polynomials [6, Theorem 6.7]: Wilson polynomials are mapped to Wilson poly-
nomials by the Wilson function transform. It would be interesting to see if there also
exists a matrix-analog of this formula.

4 Proofs for Sect. 2

In this section, we perform the spectral analysis of the second-order differential op-
erator T defined by (1.1), considered as an unbounded operator on the Hilbert space
H defined in the beginning of Sect. 2.

4.1 Eigenfunctions

The eigenvalue equation Tfλ = λfλ is a second order differential equation with regu-
lar singular points at 1,−1 and ∞, so it has hypergeometric (i.e., 2F1) solutions. We
first determine these solutions.

We define for λ ∈C \ (Ω1 ∪ Ω2), see (2.2), the functions

φ−
λ (x) =

(
1 − x

2

)− 1
2 (α+δ(λ)+1)(1 + x

2

)− 1
2 (β+η(λ)+1)

× 2F1

(
1
2

(
1 − δ(λ) − η(λ) − κ

)
, 1

2

(
1 − δ(λ) − η(λ) + κ

)

1 − η(λ)
; 1 + x

2

)

,

φ+
λ (x) =

(
1 − x

2

)− 1
2 (α+δ(λ)+1)(1 + x

2

)− 1
2 (β−η(λ)+1)

× 2F1

(
1
2

(
1 − δ(λ) + η(λ) − κ

)
, 1

2

(
1 − δ(λ) + η(λ) + κ

)

1 + η(λ)
; 1 + x

2

)

,

and

ψ−
λ (x) =

(
1 − x

2

)− 1
2 (α+δ(λ)+1)(1 + x

2

)− 1
2 (β+η(λ)+1)

× 2F1

(
1
2

(
1 − δ(λ) − η(λ) − κ

)
, 1

2

(
1 − δ(λ) − η(λ) + κ

)

1 − δ(λ)
; 1 − x

2

)

,
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ψ+
λ (x) =

(
1 − x

2

)− 1
2 (α−δ(λ)+1)(1 + x

2

)− 1
2 (β+η(λ)+1)

× 2F1

(
1
2

(
1 + δ(λ) − η(λ) − κ

)
, 1

2

(
1 + δ(λ) − η(λ) + κ

)

1 + δ(λ)
; 1 − x

2

)

,

where δ and η are defined by (2.3). From Euler’s transformation for 2F1-series,
it follows that φ±

λ is invariant under δ(λ) 	→ −δ(λ); similarly, ψ±
λ is invariant

under η(λ) 	→ −η(λ). Note that ψ±
λ (x) is obtained from φ±

λ (x) by the substitu-
tion (α,β, x) 	→ (β,α,−x), and vice versa. Note also that the 2F1-series in φ±

λ is
summable at x = 1 if �(δ(λ)) > 0, and that the 2F1-series in ψ±

λ is summable at
x = −1 if �(η(λ)) > 0.

Remark 4.1 From here on we will just write δ and η, instead of δ(λ) and η(λ).

Proposition 4.2 The functions φ±
λ , ψ±

λ are solutions of the eigenvalue equation
Tf = λf .

Proof Suppose f is a solution of the eigenvalue equation Tf = λf . A calculation

shows that if f (x) = (1 − x)− 1
2 (α+δ+1)(1 + x)− 1

2 (β+η+1)φ(x), then φ satisfies
(
1 − x2)φ′′(x) + [

δ − η + (δ + η − 2)x
]
φ′(x)

− 1

4
(1 − η − δ − κ)(1 − η − δ + κ)φ(x) = 0.

Now set t = 1
2 (1 + x). Then

t (1 − t)
d2φ

dt2
+

[
(1 − η) −

(
1 + 1

2
(1 − δ − η − κ) + 1

2
(1 − δ − η + κ)

)
t

]
dφ

dt

− 1

4
(1 − η − δ − κ)(1 − η − δ + κ)φ = 0.

This is the hypergeometric differential equation (see, e.g., [2, Chap. 2]) with coeffi-
cients

a = 1

2
(1 − δ − η − κ), b = 1

2
(1 − δ − η + κ), c = 1 − η.

The 2F1-functions in φ−
λ ,ψ−

λ are well-known solutions of this differential equation,
so φ−

λ ,ψ−
λ are solutions of the eigenvalue equation. The proof for φ+

λ and ψ+
λ is

similar. �

For later reference, we need connection formulas for φ±
λ and ψ±

λ .

Proposition 4.3 For c defined by (2.6),

ψ±
λ (x) = c(η;±δ)φ+

λ (x) + c(−η;±δ)φ−
λ (x), (4.1)
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φ±
λ (x) = c(δ;±η)ψ+

λ (x) + c(−δ;±η)ψ−
λ (x). (4.2)

Proof This follows from a three-term transformation for 2F1-functions, see, e.g., [2,
(2.3.11)]. �

The following identities for the c-function turn out to be useful.

Lemma 4.4 The c-function defined by (2.6) satisfies:

(i) c(x;y) = − y
x
c(−y;−x),

(ii) c(x;y)c(−x;−y) − c(x;−y)c(−x;y) = − y
x

.

Remark 4.5 Using the reflection equation for the Γ -function, Lemma 4.4(ii) is equiv-
alent to the trigonometric identity

sin(πx) sin(πy) = sin

(
π

2
(y − x + κ)

)
sin

(
π

2
(y − x − κ)

)

− sin

(
π

2
(−y − x + κ)

)
sin

(
π

2
(−y − x − κ)

)
,

and can also be proved in this way.

Proof The first identity follows from Γ (z + 1) = zΓ (z).
For the second identity, we note that Proposition 4.3 implies

(
c(δ;η) c(−δ;η)

c(δ;−η) c(−δ;−η)

)
=

(
c(η; δ) c(−η; δ)

c(η;−δ) c(−η;−δ)

)−1

,

which in turn implies

c(δ;η) = c(−η;−δ)

c(η; δ)c(−η;−δ) − c(η;−δ)c(−η; δ) .

Applying the first identity to the numerator then gives

c(η; δ)c(−η;−δ) − c(η;−δ)c(−η; δ) = − δ

η
,

which proves the second identity. �

We also need the behavior of the eigenfunctions near the endpoints −1 and 1.

Lemma 4.6 For x ↓ −1, we have

φ±
λ (x) =

(
1 + x

2

)− 1
2 (β∓η+1)(

1 +O(1 + x)
)
.



294 Constr Approx (2013) 38:277–309

For x ↑ 1, we have

ψ±
λ (x) =

(
1 − x

2

)− 1
2 (α∓δ+1)(

1 +O(1 − x)
)
.

Proof This is straightforward from the explicit expressions as 2F1-series. �

Remark 4.7 Observe that the function |φ±
λ |2w(α,β) is in L1(−1,0) if and only if

±�(η) > 0. Furthermore, |ψ±
λ |2w(α,β) is in L1(0,1) if and only if ±�(δ) > 0.

4.2 Spectral Analysis

We determine the spectrum and the spectral decomposition of T .
For functions f,g that are differentiable at a point x ∈ (−1,1), we define

[f,g](x) = p(x)W(f,g)(x),

where

p(x) = C(1 − x)α+2(1 + x)β+2, C = 2−α−β−1 Γ (α + β + 2)

Γ (α + 1, β + 1)
,

and W(f,g) denotes the Wronskian

W(f,g)(x) = f ′(x)g(x) − f (x)g′(x).

For 1 ≤ a < b ≤ 1 we denote by D(a, b) the subspace of L2((a, b),w(α,β)(x) dx)

consisting of functions f such that:

• f is continuously differentiable on (a, b),
• f ′ is absolutely continuous on (a, b),
• Tf ∈ L2((a, b),w(α,β)(x) dx).

Note that D(a, b) is dense in L2((a, b),w(α,β)(x) dx).

Lemma 4.8 Let 1 ≤ a < b ≤ 1 and f,g ∈ D(a, b). Then
∫ b

a

(
(Tf )(x)g(x) − f (x)(T g)(x)

)
w(α,β)(x) dx = [f, ḡ](b) − [f, ḡ](a).

Proof We write the differential operator T as

T = (1 − x)−α(1 + x)−β d

dx

(
(1 − x)α+2(1 + x)β+2 d

dx

)
+ ρ

(
1 − x2).

Then it follows that
∫ b

a

(
(Tf )(x)g(x) − f (x)(T g)(x)

)
w(α,β)(x) dx

=
∫ b

a

[
g(x)

d

dx

(
p(x)f ′(x)

) − f (x)
d

dx

(
p(x)g′(x)

)]
dx.
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Using integration by parts, this is equal to

[
p(x)f ′(x)g(x) − p(x)f (x)g′(x)

]b
a
,

which gives the result. �

Let D0 ⊂ H consist of the functions in D(−1,1) with support on a compact inter-
val in (−1,1).

Proposition 4.9 The densely defined operator (T ,D0) is symmetric.

Proof Clearly, we have limx↓−1[f, ḡ](x) = limx↑1[f, ḡ](x) = 0 for f,g ∈ D0. Then
the result follows from Lemma 4.8. �

The function x 	→ [f,g](x), x ∈ (−1,1), is constant if f and g are solutions of
the eigenvalue equations Ty = λy. In the following lemma, we determine the value
of the constant in the case of the eigenfunctions ψ±

λ en φ±
λ .

Lemma 4.10 For λ ∈C \ (−∞,−(α + 1)2),
[
φ−

λ ,φ+
λ

] = −ηD and
[
ψ+

λ ,φ+
λ

] = −ηD c(−η; δ),

where D = 2α+β+3C = 4Γ (α+β+2)
Γ (α+1,β+1)

(see also (2.11)).

Note that [ψ−
λ ,ψ+

λ ] and [ψ−
λ ,φ−

λ ] can be obtained from Lemma 4.10 using
(α,β, x) 	→ (β,α,−x) and (δ, η) 	→ (−δ,−η), respectively.

Proof We have

[
φ−

λ ,φ+
λ

] = C lim
x↓−1

(1 − x)α+2(1 + x)β+2
(

dφ−
λ

dx
(x)φ+

λ (x) − φ−
λ (x)

dφ+
λ

dx
(x)

)
.

Using

dφ±
λ

dx
(x) = −1

4
(β ∓ η + 1)

(
1 + x

2

)− 1
2 (β∓η+1)−1(

1 +O(1 + x)
)
, x ↓ −1,

we find
[
φ−

λ ,φ+
λ

] = −ηD.

Now from the connection formula (4.1), we obtain
[
ψ+

λ ,φ+
λ

] = c(−η; δ)[φ−
λ ,φ+

λ

] = −ηD c(−η; δ). �

Let us mention that from the explicit formula (2.6) for c(−η; δ) and Lemma 4.10,
it follows that [ψ+

λ ,φ+
λ ] = 0 if and only if λ ∈C \ (−∞,−(α + 1)2) is a solution of

1

2

(
1 + δ(λ) + η(λ) ± κ

) = −n, (4.3)
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for some n ∈ N, or equivalently,

√
λ + (α + 1)2 +

√
λ + (β + 1)2 = −2n − 1 ∓ κ. (4.4)

Proposition 4.11 The symmetric operator (T ,D0) has a unique self-adjoint exten-
sion.

We denote the self-adjoint extension again by T .

Proof By [4, Theorem XIII.2.10], the adjoint of (T ,D0) is (T ,D(−1,1)), so the
deficiency spaces of (T ,D0) consist of the solutions of the differential equations
Tf = ±if that are in H, [4, Corollary XIII.2.11]. Let f ∈ H be a solution of
Tf = if . Then f must be a linear combination of φ+

i and φ−
i , since these are lin-

early independent solutions of this eigenvalue equation by Lemma 4.10. Note that
�(η(i)) > 0, so by Remark 4.7, φ−

i is not L2 near −1, which implies that f is a mul-
tiple of φ+

i . In the same way, it follows that f is a multiple of ψ+
i . But φ+

i and ψ+
i

are linearly independent by Lemma 4.10; hence f = 0. In the same way, it follows
that f ∈ H satisfying Tf = −if is the zero function. So T has deficiency indices
(0,0), which implies it has a unique self-adjoint extension. �

Assume λ ∈ C\R. In this case, �(η),�(δ) > 0, so φ+
λ ∈ L2((−1,0),w(α,β)(x) dx)

and ψ+
λ ∈ L2((0,1),w(α,β)(x) dx). We define the Green kernel by

Kλ(x, y) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

φ+
λ (x)ψ+

λ (y)

[ψ+
λ ,φ+

λ ] , x < y,

φ+
λ (y)ψ+

λ (x)

[ψ+
λ ,φ+

λ ] , x > y.

Then K(·, y) ∈ H for any y ∈ (−1,1). The Green kernel is useful for describing the
resolvent operator Rλ = (T − λ)−1.

Lemma 4.12 For λ ∈C \R, the resolvent Rλ is given by

Rλf = (
y 	→ 〈

f,Kλ(·, y)
〉)
, f ∈D0.

Proof First note that if f ∈ D0,

lim
x↓−1

[
φ+

λ , f
]
(x) = 0 = lim

x↑1

[
ψ+

λ , f
]
(x).
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Now from Lemma 4.8 we obtain

Rλ(T − λ)f (y) = ψ+
λ (y)

[ψ+
λ ,φ+

λ ]
∫ y

−1

(
(T − λ)f

)
(x)φ+

λ (x)w(α,β)(x) dx

+ φ+
λ (y)

[ψ+
λ ,φ+

λ ]
∫ 1

y

(
(T − λ)f

)
(x)ψ+

λ (x)w(α,β)(x) dx

= 1

[ψ+
λ ,φ+

λ ]
(
ψ+

λ (y)
[
f,φ+

λ

]
(y) − φ+

λ (y)
[
f,ψ+

λ

]
(y)

)
,

since (T − λ)φ+
λ = 0 and (T − λ)ψ+

λ = 0. Writing out the terms between brackets,
we obtain

Rλ(T − λ)f (y)

= 1

[ψ+
λ ,φ+

λ ]
(

−f (y)p(y)ψ+
λ (y)

dφ+
λ

dx
(y) + f (y)p(y)φ+

λ (y)
dψ+

λ

dx
(y)

)

= f (y). �

Now we can determine the spectral measure E of T by

〈
E(a,b)f, g

〉 = lim
ε′↓0

lim
ε↓0

1

2πi

∫ b−ε′

a+ε′

(〈Rλ+iεf, g〉 − 〈Rλ−iεf, g〉)dλ, f,g ∈ D0,

(4.5)
see [4, Theorem XII.2.10]. We write

〈Rλf,g〉 =
∫∫

(x,y)∈Δ

(
f (x)g(y) + f (y)g(x)

)φ+
λ (x)ψ+

λ (y)

[ψ+
λ ,φ+

λ ]
× w(α,β)(x)w(α,β)(y) d(x, y), (4.6)

where Δ = {(x, y) ∈R
2 | −1 < x < 1, x < y < 1}.

Let λ ∈R. To compute the spectral measure, we have to consider the limit

lim
ε↓0

(
φ+

λ−iε(x)ψ+
λ−iε(y)

η(λ − iε)c(−η(λ − iε); δ(λ − iε))
− φ+

λ+iε(x)ψ+
λ+iε(y)

η(λ + iε)c(−η(λ + iε); δ(λ + iε))

)
.

(4.7)
Note that

lim
ε↓0

η(λ + iε) =

⎧
⎪⎨

⎪⎩

lim
ε↓0

η(λ − iε) ∈ R≥0 if λ + (β + 1)2 ≥ 0,

lim
ε↓0

η(λ − iε) ∈ iR>0 if λ + (β + 1)2 < 0,
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and

lim
ε↓0

δ(λ + iε) =

⎧
⎪⎨

⎪⎩

lim
ε↓0

δ(λ − iε) ∈ R≥0 if λ + (α + 1)2 ≥ 0,

lim
ε↓0

δ(λ − iε) ∈ iR>0 if λ + (α + 1)2 < 0.

We see that we have to distinguish several cases.

4.3 The Continuous Spectrum

We define an integral transform F (2)
c mapping f ∈ D0 to a C

2-valued function on
Ω2 = (−∞,−(β + 1)2) by

(
F (2)

c f
)
(λ) =

∫ 1

−1
f (x)

(
ϕ+

λ (x)

ϕ−
λ (x)

)
w(α,β)(x) dx, λ ∈ Ω2, f ∈ D0,

where the functions ϕ±
λ are defined by (2.13).

Proposition 4.13 Let a, b ∈ Ω2 with a < b. Then

〈
E(a,b)f, g

〉 = 1

2πD

∫ b

a

(
F (2)

c g
)
(λ)∗

(
1 v12(λ)

v21(λ) 1

)(
F (2)

c f
)
(λ)

dλ

−iηλ

,

where (recall from (2.9))

v21(λ) = c(ηλ; δλ)

c(−ηλ; δλ)
,

and v12(λ) = v21(λ). Here δλ and ηλ are defined by (2.3).

Proof First observe that limε↓0 δ(λ + iε) = δλ and limε↓0 δ(λ − iε) = δλ = −δλ.
Similarly, limε↓0 η(λ + iε) = ηλ and limε↓0 η(λ − iε) = ηλ = −ηλ. This gives us

lim
ε↓0

φ+
λ+iε = ϕ+

λ , lim
ε↓0

φ+
λ−iε = ϕ−

λ .

Now the limit in (4.7) is equal to

Iλ(x, y) = lim
ε↓0

(
ϕ+

λ (x)ψ+
λ+iε(y)

−ηλc(−ηλ; δλ)
+ ϕ−

λ (x)ψ+
λ−iε(y)

−ηλc(ηλ;−δλ)

)
.

Using the connection formula (4.1), this becomes

Iλ(x, y) = − 1

ηλ

(
c(ηλ; δλ)

c(−ηλ; δλ)
ϕ+

λ (x)ϕ+
λ (y) + ϕ+

λ (x)ϕ−
λ (y) + ϕ−

λ (x)ϕ+
λ (y)

+ c(−ηλ;−δλ)

c(ηλ;−δλ)
ϕ−

λ (x)ϕ−
λ (y)

)
,
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which is manifestly symmetric in x and y. Using ϕ+
λ (x) = ϕ−

λ (x), we see that

Iλ(x, y) = − 1

ηλ

(
ϕ+

λ (y)

ϕ−
λ (y)

)∗ (
1 v12(λ)

v21(λ) 1

)(
ϕ+

λ (x)

ϕ−
λ (x)

)
.

Now we can symmetrize the double integral in (4.6) again, and then the result follows
from (4.5). �

Next we define an integral transform F (1)
c mapping D0 to complex-valued func-

tions on Ω1 = (−(β + 1)2,−(α + 1)2) by

(
F (1)

c f
)
(λ) =

∫ 1

−1
f (x)ϕλ(x)w(α,β)(x) dx, λ ∈ Ω1, f ∈ D0,

where ϕλ(x) is defined by (2.12).

Proposition 4.14 Let a, b ∈ Ω1 with a < b. Then

〈
E(a,b)f, g

〉 = 1

2πD

∫ b

a

(
F (1)

c f
)
(λ)

(
F (1)

c g
)
(λ)v(λ)

dλ

−iδλ

,

where (recall from (2.7))

v(λ) = 1

c(δλ;η(λ))c(−δλ;η(λ))
.

Proof In this case,

lim
ε↓0

δ(λ + iε) = δλ = − lim
ε↓0

δ(λ − iε) and lim
ε↓0

η(λ + iε) = η(λ) = lim
ε↓0

η(λ − iε).

Consequently, using Euler’s transformation for 2F1-functions,

lim
ε↓0

φ+
λ+iε = ϕλ = lim

ε↓0
φ+

λ−iε,

and

lim
ε↓0

ψ+
λ−iε(x) = lim

ε↓0
ψ+

λ+iε(x),

so that the limit (4.7) is equal to

Iλ(x, y) = lim
ε↓0

(
ϕλ(x)ψ−

λ+iε(y)

−δλc(δλ;η(λ))
+ ϕλ(x)ψ+

λ+iε(y)

−δλc(−δλ;η(λ))

)
,

where we have used Lemma 4.4(i). Using the connection formula (4.2), we obtain

Iλ(x, y) = lim
ε↓0

ϕλ(x)[c(−δλ;η(λ))ψ−
λ+iε(y) + c(δλ;η(λ))ψ+

λ+iε(y)]
−δλc(δλ;η(λ))c(−δλ;η(λ))

= ϕλ(x)ϕλ(y)

−δλc(δλ;η(λ))c(−δλ;η(λ))
.

The result follows from (4.5) and (4.6) after symmetrizing the double integral. �
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Since the spectrum is a closed set, the points −(α + 1)2 and −(β + 1)2 must
belong to the spectrum.

Proposition 4.15 The points −(α + 1)2 and −(β + 1)2 belong to the continuous
spectrum of T .

Proof This follows from the fact that none of the eigenfunctions is in H for these
values of λ, see Remark 4.7. �

4.4 The Discrete Spectrum

Recall from (2.5) the finite set

Ωd =
{
λn

∣∣n ∈ N and n ≤ 1

2
(κ − 1)

}
,

where λn is defined by (2.4). For κ ≥ 1, i.e., if Ωd is nonempty, we define the integral
transform Fd on H by

(Fdf )(λ) = 〈f,ϕλ〉, λ ∈ Ωd, f ∈H,

where ϕλn is defined by (2.14). Note that ϕλn = φ+
λn

.

Proposition 4.16 Let −(α + 1)2 < a < b. If Ωd ∩ (a, b) consists of exactly one num-
ber λn, then

〈
E(a,b)f, g

〉 = (Fdf )(λn)(Fdg)(λn)
Nλn

D
, f,g ∈H,

where (recall from (2.10))

Nλn = Res
λ=λn

(
c(η(λ), δ(λ))

η(λ)c(−η(λ); δ(λ))

)
.

Furthermore, if Ωd ∩ (a, b) = ∅, then
〈
E(a,b)f, g

〉 = 0, f, g ∈H.

Proof Assume Ωd ∩ (a, b) = {λn}. By (4.5) and (4.6), we have

〈
E(a,b)f, g

〉 = D−1
∫∫

(x,y)∈Δ

(
f (x)g(y) + f (y)g(x)

)
w(α,β)(x)w(α,β)(y)

×
[

1

2πi

∫

C

φ+
λ (x)ψ+

λ (y)

−η(λ)c(−η(λ); δ(λ))
dλ

]
d(x, y),

where C is a small clockwise oriented rectifiable closed curve encircling λn exactly
once. The integral over the curve C is equal to

φ+
λn

(x)ψ+
λn

(y) Res
λ=λn

(
1

η(λ)c(−η(λ); δ(λ))

)
.
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By (4.3), we have c(−η(λ); δ(λ)) = 0 if and only if λ = λn, n ∈ Z, where λn is de-
fined by (2.4). So in this case, (4.1) becomes ψ+

λn
= c(η(λn); δ(λn))φ

+
λn

, from which
we see that the integrand is symmetric in x and y. Symmetrizing the double integral
gives the result. �

Corollary 4.17 Suppose Ωd is nonempty. Then the following orthogonality relations
hold:

〈ϕλm,ϕλn〉 = D

Nλn

δmn, λm,λn ∈ Ωd.

Proof Let λn,λm ∈ Ωd , and set f = ϕλm and g = ϕλn . From Proposition 4.16, it
follows that 〈ϕλm,ϕλn〉 = 0 if λn �= λm. Furthermore, if λn = λm, then

〈ϕλn,ϕλn〉 = 〈ϕλn,ϕλn〉〈ϕλn,ϕλn〉
Nλn

D
,

from which the result follows. �

We have now completely determined the spectrum of T .

Theorem 4.18 The self-adjoint closure of the densely defined operator (T ,D0) has
continuous spectrum (−∞,−(α + 1)2] and (possibly empty) discrete spectrum Ωd .
The sets Ω2 and Ω1 inside the continuous spectrum have multiplicity two and one,
respectively.

4.5 The Integral Transform

We define an integral transform F on D0 ⊂ H by

Ff = F (2)
c f +F (1)

c f +Fdf, f ∈ D0. (4.8)

For f ∈D0, this coincides with the integral transform defined in (2.15).

Proposition 4.19 F extends uniquely to an isometry F :H → L2(V).

Proof For f,g ∈ D0, we have

〈f,g〉 = 〈Ff,Fg〉V
by Propositions 4.13, 4.14, and 4.16, so F : D0 → L2(V) is an isometry. By continu-
ity of F and density of D0 in H, it extends uniquely to an isometry H → L2(V). �

Our next goal is to show that F : H → L2(V) is surjective and determine the
inverse. For convenience, we assume that T has no discrete spectrum.

For 0 < a < 1, we define

〈f,g〉a =
∫ a

−a

f (x)g(x)w(α,β)(x) dx
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for all functions f,g for which the integral converges. Note that for f,g ∈ H, the
limit a ↑ 1 gives the inner product 〈f, ḡ〉. Suppose now that fλ is a solution of the
eigenvalue equation Tfλ = λfλ. Then by Lemma 4.8,

〈fλ,fλ′ 〉a = [fλ,fλ′ ](a) − [fλ,fλ′ ](−a)

λ − λ′ , λ,λ′ ∈R, λ �= λ′.

We will use this expression with fλ = ϕ±
λ , and we want to let a ↑ 1. We need to

consider several cases.

4.5.1 Case 1: λ,λ′ ∈ Ω2

From Lemma 4.6, we find for x ↓ −1, cf. the proof of Lemma 4.10,

[
ϕ+

λ ,ϕ−
λ′

]
(x) = D

2
(ηλ + ηλ′)

(
1 + x

2

) 1
2 (ηλ−ηλ′ )(

1 +O(1 + x)
)
,

[
ϕ+

λ ,ϕ+
λ′

]
(x) = D

2
(ηλ − ηλ′)

(
1 + x

2

) 1
2 (ηλ+ηλ′ )(

1 +O(1 + x)
)
.

The behavior at x = −1 of [ϕ−
λ ,ϕ+

λ′ ](x) and [ϕ−
λ ,ϕ−

λ′ ](x) follows from ϕ+
λ (x) =

ϕ−
λ (x). For x ↑ 1, we use the expansion from (4.2) (recall that ϕ±

λ = limε↓0 φ±
λ+iε)

and Lemma 4.6 to find

[
ϕ+

λ ,ϕ−
λ′

]
(x) = D

2

∑

ε,ε′∈{+,−}
c(εδλ;ηλ)c

(−ε′δλ′ ;−ηλ′
)(

εδλ + ε′δλ′
)

×
(

1 − x

2

) 1
2 (εδλ−ε′δλ′ )(

1 +O(1 − x)
)
,

and

[
ϕ+

λ ,ϕ+
λ′

]
(x) = D

2

∑

ε,ε′∈{+,−}
c(εδλ;ηλ)c

(−ε′δλ′ ;ηλ′
)(

εδλ + ε′δλ′
)

×
(

1 − x

2

) 1
2 (εδλ−ε′δλ′ )(

1 +O(1 − x)
)
.

We will need the following behavior of the c-functions.

Lemma 4.20 The c-function defined by (2.6) satisfies

c(δλ;ηλ) =
{
O(e−π

√−λ), λ → −∞,

O(1), λ ↑ −(β + 1)2,

c(−δλ;ηλ) =
{
O(1), λ → −∞,

O(1), λ ↑ −(β + 1)2.
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Proof This follows from the definition (2.6) of the c-function and well-known
asymptotic properties of the Γ -function, see, e.g., [2, Sect. 1.4]. �

Proposition 4.21 Let f ∈ C(Ω2) satisfy

f (λ) =
{
O(|λ|−1−ε), λ → −∞,

O(1), λ ↑ −(β + 1)2,

for some ε > 0, and let λ′ ∈ Ω2. Then

lim
a↑1

∫

Ω2

f (λ)
〈
ϕ+

λ ,ϕ−
λ′

〉
a
dλ = −2πiD δλ′c(−δλ′ ;ηλ′)c(δλ′ ;−ηλ′)f

(
λ′).

Proof Note that, for λ �= λ′,

ηλ + ηλ′

λ − λ′ = 1

ηλ − ηλ′
,

ηλ − ηλ′

λ − λ′ = 1

ηλ + ηλ′
, (4.9)

and similar expressions are valid for δλ. Now use δλ = i|δλ| and ηλ = i|ηλ|, and write
N = − 1

2 ln( 1−a
2 ). Then

lim
a↑1

∫

Ω2

f (λ)
〈
ϕ+

λ ,ϕ−
λ′

〉
a
dλ

= lim
a↑1

∫

Ω2

f (λ)
[ϕ+

λ ,ϕ−
λ′ ](a) − [ϕ+

λ ,ϕ−
λ′ ](−a)

λ − λ′ dλ

= D

2
lim

N→∞

(∫

Ω2

f (λ)
∑

ε∈{+,−}

(
ξε−(λ)

cosN(|δλ| + ε|δλ′ |)
δλ + εδλ′

+ iξ ε+(λ)
sinN(|δλ| + ε|δλ′ |)

δλ + εδλ′

)
dλ,

−
∫

Ω2

f (λ)
cosN(|ηλ| − |ηλ′ |)

ηλ − ηλ′
dλ − i

∫

Ω2

f (λ)
sinN(|ηλ| − |ηλ′ |)

ηλ − ηλ′
dλ

)
,

where

ξε±(λ) = c(δλ;ηλ)c(εδλ′ ;−ηλ′) ± c(−δλ;ηλ)c(−εδλ′ ;−ηλ′).

The terms with ξ+± vanish by the Riemann–Lebesgue lemma, which follows from
Lemma 4.20 and the assumptions on f .

Claim

lim
N→∞

(∫

Ω2

f (λ)ξ−− (λ)
cosN(|δλ| − |δλ′ |)

δλ − δλ′
dλ −

∫

Ω2

f (λ)
cosN(|ηλ| − |ηλ′ |)

ηλ − ηλ′
dλ

)

= 0.
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Proof of Claim Using (4.9) and cos θ1 −cos θ2 = −2 sin( θ1+θ2
2 ) sin( θ1−θ2

2 ), we obtain

ξ−− (λ)
cosN(|δλ| − |δλ′ |)

δλ − δλ′
− cosN(|ηλ| − |ηλ′ |)

ηλ − ηλ′

= ξ−− (λ)(δλ + δλ′) − (ηλ + ηλ′)

λ − λ′ cosN
(|δλ| − |δλ′ |)

+ 2 sin N
2 (|δλ| + |ηλ| − |δλ′ | − |ηλ′ |) sin N

2 (|δλ| − |ηλ| + |δλ′ | − |ηλ′ |)
ηλ − ηλ′

.

We multiply the right-hand side of the above identity by f (λ) and integrate

over λ. Since the function λ 	→ ξ−− (λ)(δλ+δλ′ )−(ηλ+ηλ′ )
λ−λ′ has a removable singularity

by Lemma 4.4(ii), it follows from the Riemann–Lebesgue lemma that the first term
vanishes as N → ∞. For the second term, we may use

∣∣∣∣
sin N

2 (|δλ| + |ηλ| − |δλ′ | − |ηλ′ |)
ηλ − ηλ′

∣∣∣∣ ≤ B

for λ in a neighborhood of λ′ and for some B > 0. Then we see that we can apply the
Riemann–Lebesgue lemma again, which proves the claim. �

To finish the proof of the proposition, we use

lim
N→∞

1

π

∫ B

A

g(x)
sinN(x − y)

x − y
dx = g(y) (4.10)

if g ∈ L1(A,B) is continuous. Then

lim
a↑1

∫

Ω2

f (λ)
〈
ϕ+

λ ,ϕ−
λ′

〉
a
dλ = iD

2
lim

N→∞

∫

Ω2

f (λ)ξ−+ (λ)
sinN(|δλ| − |δλ′ |)

δλ − δλ′
dλ

− iD

2
lim

N→∞

∫

Ω2

f (λ)
sinN(|ηλ| − |ηλ′ |)

ηλ − ηλ′
dλ

= −πiD
(
δλ′ξ−+

(
λ′) + ηλ′

)
f

(
λ′),

provided ξ−+ f and f are continuous functions in L1(Ω2), which is indeed the case.
Here we used the substitutions x = |δλ| and x = |ηλ| before applying (4.10); note that
dx
dλ

= − 1
2x

in both cases. Finally, applying Lemma 4.4(ii) with (x, y) = (δλ, ηλ), the
last expression becomes

−2πiD δλ′c(−δλ′ ;ηλ′)c(δλ′ ;−ηλ′)f
(
λ′),

which finishes the proof. �

The following result is proved in the same way as Proposition 4.21.
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Proposition 4.22 Let f ∈ C(Ω2) satisfy the same conditions as in Proposition 4.21,
and let λ′ ∈ Ω2. Then

lim
a↑1

∫

Ω2

f (λ)
〈
ϕ+

λ ,ϕ+
λ′

〉
a
dλ = −2πiD δλ′c(δλ′ ;ηλ′)c(−δλ′ ;ηλ′)f

(
λ′).

By combining Propositions 4.21 and 4.22, we obtain the following result.

Proposition 4.23 Let f1 and f2 satisfy the conditions from Proposition 4.21. Then

F (2)
c

[
1

2πD

∫

Ω2

(
ϕ+

λ (x)

ϕ−
λ (x)

)∗ (
f1(λ)

f2(λ)

)
dλ

](
λ′) = −iδλ′A

(
λ′)

(
f1(λ

′)
f2(λ

′)

)
,

where

A
(
λ′) =

(
c(−δλ′ ;ηλ′)c(δλ′ ;−ηλ′) c(δλ′ ;ηλ′)c(−δλ′ ;ηλ′)

c(δλ′ ;−ηλ′)c(−δλ′ ;−ηλ′) c(−δλ′ ;ηλ′)c(δλ′ ;−ηλ′)

)
.

Proof Let f1 and f2 satisfy the conditions of Proposition 4.21. Then from this propo-
sition and from applying Fubini’s theorem, we obtain

− iδλ′c(δλ′ ;ηλ′)c(−δλ′ ;−ηλ′)f2
(
λ′)

= 1

2πD
lim
a↑1

∫

Ω2

f2(λ)

∫ a

−a

ϕ+
λ (x)ϕ−

λ′ (x)w(α,β)(x) dx dλ

=
∫ 1

−1

[
1

2πD

∫

Ω2

f2(λ)ϕ−
λ (x) dλ

]
ϕ−

λ′ (x)w(α,β)(x) dx.

From Propositions 4.21 and 4.22, we find three similar identities, leading to

∫ 1

−1

[
1

2πD

∫

Ω2

(
ϕ+

λ (x)

ϕ−
λ (x)

)∗ (
f1(λ)

f2(λ)

)
dλ

](
ϕ+

λ′ (x)

ϕ−
λ′ (x)

)
w(α,β)(x) dx

= −iδλ′A
(
λ′)

(
f1(λ

′)
f2(λ

′)

)
,

which is the desired result. �

We need the inverse of the matrix A(λ) from Proposition 4.23.

Lemma 4.24 For λ ∈ Ω2, A(λ)−1 = V (λ), with V (λ) defined by (2.8).

Proof We have

detA(λ) = c(δλ;−ηλ)c(−δλ;ηλ)
(
c(δλ;−ηλ)c(−δλ;ηλ) − c(δλ;ηλ)c(−δλ;−ηλ)

)

= ηλ

δλ

c(δλ;−ηλ)c(−δλ;ηλ)
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by Lemma 4.4(ii). Now it is straightforward to compute the inverse of A. The result
then follows from the definition of V (λ) and Lemma 4.4(i). �

Let C0(Ω2;C2) denote the set of continuous C2-valued functions g = (
g1
g2

)
on Ω2

satisfying

gj (λ) =
{
O(|λ|− 1

2 −ε), λ → −∞,

O(|λ + (β + 1)2| 1
2 ), λ ↑ −(β + 1)2,

j = 1,2,

for some ε > 0. For g ∈ C0(Ω2;C2), we define the function G(2)
c g by

(
G(2)

c g
)
(x) = 1

2πD

∫

Ω2

(
ϕ+

λ (x)

ϕ−
λ (x)

)∗
V (λ)g(λ)

dλ

−iηλ

, x ∈ (−1,1).

Proposition 4.25 Let g ∈ C0(Ω2;C2) and λ ∈ Ω2. Then (F (2)
c G(2)

c g)(λ) = g(λ).

Proof Let g ∈ C0(Ω2;C2), and define the C2-valued function f by f (λ) = (
f1(λ)

f2(λ)

) =
1

−iδλ
A(λ)−1g(λ). Since

v21(λ) =
{
O(e−π

√−λ), λ → −∞,

O(1), λ ↑ −(β + 1)2,

by Lemma 4.20, the functions f1 and f2 satisfy the conditions from Proposition 4.21.
Now Proposition 4.23 shows that

F (2)
c

[
1

2πD

∫

Ω2

(
ϕ+

λ (x)

ϕ−
λ (x)

)∗ 1

−iδλ

A(λ)−1g(λ)dλ

](
λ′) = g

(
λ′).

From Lemma 4.24, we see that the term inside square brackets is exactly
(G(2)

c g)(x). �

4.5.2 Case 2: λ,λ′ ∈ Ω1

In this case,

lim
x↓−1

[ϕλ,ϕλ′ ](x) = 0,

and for x ↑ 1, we have

[ϕλ,ϕλ′ ](x) = D

2

∑

ε,ε′∈{+,−}
c
(
εδλ;η(λ)

)
c
(−ε′δλ′ ;η(

λ′))(εδλ + ε′δλ′
)

×
(

1 − x

2

) 1
2 (εδλ−ε′δλ′ )(

1 +O(1 − x)
)
.

We have the following behavior of the c-functions.
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Lemma 4.26 The c-function defined by (2.6) satisfies

c
(±δλ;η(λ)

) =
{
O(1), λ ↓ −(β + 1)2,

O(|λ + (α + 1)2|− 1
2 ), λ ↑ −(α + 1)2.

In the same way as in Proposition 4.21, this leads to the following result.

Proposition 4.27 Let f be a continuous function satisfying

f (λ) =
{
O(1), λ ↓ −(β + 1)2,

O(|λ + (α + 1)2|− 1
2 +ε), λ ↑ −(α + 1)2,

for some ε > 0, and let λ′ ∈ Ω1. Then

lim
a↑1

∫

Ω1

f (λ)〈ϕλ,ϕλ′ 〉a dλ = −2πiD δλ′

v(λ′)
f

(
λ′),

where (recall from (2.7)) v(λ′) = (c(δλ′ ;η(λ′))c(−δλ′ ;η(λ′)))−1.

Note that

v(λ) =
{
O(1), λ ↓ −(β + 1)2,

O(|λ + (α + 1)2|), λ ↑ −(α + 1)2,

by Lemma 4.26. Let C0(Ω1) denote the set of continuous functions g on Ω1 satisfy-
ing

g(λ) =
{
O(1), λ ↓ −(β + 1)2,

O(|λ + (α + 1)2|ε), λ ↑ −(α + 1)2,

for some ε > 0. We define an integral transform G(1)
c on C0(Ω1) by

(
G(1)

c g
)
(x) = 1

2πD

∫

Ω1

g(λ)ϕλ(x)W(1)(λ)
dλ

−iδλ

, x ∈ (−1,1), g ∈ C0(Ω1).

Now similarly to Proposition 4.25, it follows from Proposition 4.27 that F (1)
c is a

left-inverse of G(1)
c .

Proposition 4.28 For g ∈ C0(Ω1) and λ ∈ Ω1, we have (F (1)
c G(1)

c g)(λ) = g(λ).

4.6 The Integral Transform G

We define G on C0(Ω1) ∪ C0(Ω2;C2) by G = G(1)
c ⊕ G(2)

c . We will show that F is a
left-inverse of G. We need the following result.
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Proposition 4.29

(i) Let λ ∈ Ω1 and g ∈ C0(Ω1). Then (F (2)
c G(1)

c g)(λ) = (
0
0
).

(ii) Let λ ∈ Ω2 and g ∈ C0(Ω2;C2). Then (F (1)
c G(2)

c g)(λ) = 0.

Proof Let λ ∈ Ω2 and λ′ ∈ Ω1. Then

lim
x↓−1

[
ϕ±

λ ,ϕλ′
]
(x) = 0,

and for x ↑ 1,

[
ϕ±

λ ,ϕλ′
]
(x) = D

2

∑

ε,ε′∈{+,−}
c(εδλ;±ηλ)c

(−ε′δλ′ ;η(
λ′))(εδλ + ε′δλ′

)

×
(

1 − x

2

) 1
2 (εδλ−ε′δλ′ )(

1 +O(1 − x)
)
.

Similarly to the proof of Proposition 4.21, it follows by application of the Riemann–
Lebesgue lemma that

lim
a↑1

∫

Ω2

f (λ)
〈
ϕ±

λ ,ϕλ′
〉
a
dλ = lim

a↑1

∫

Ω2

f (λ)
[ϕ±

λ ,ϕλ′ ](a) − [ϕ±
λ ,ϕλ′ ](−a)

λ − λ′ dλ = 0

for suitable functions f . As in Proposition 4.23, we obtain from this (F (2)
c G(1)

c g)(λ) =
( 0

0

)
.

In the same way, it follows from

lim
a↑1

∫

Ω1

f (λ)
〈
ϕλ,ϕ

±
λ′ ,

〉
a
dλ = lim

a↑1

∫

Ω1

f (λ)
[ϕλ,ϕ

±
λ′ ](a) − [ϕλ,ϕ

±
λ′ ](−a)

λ − λ′ dλ = 0,

for suitable functions f , that (F (1)
c G(2)

c g)(λ) = 0. �

Combining Propositions 4.25, 4.28, and 4.29 shows that (F ◦ G)g = g for
g ∈ C0(Ω1) ∪ C0(Ω2;C2).

Proposition 4.30 The integral transform G extends uniquely to an operator G :
L2(V) →H such that G = F−1.

Proof Let g ∈ C0(Ω1) ∪ C0(Ω2;C2). Then

〈g,g〉V = 〈
(F ◦ G)g, (F ◦ G)g

〉
V = 〈Gg,Gg〉

by Proposition 4.19. Since C0(Ω1) ∪ C0(Ω2;C2) is dense in H, G extends by con-
tinuity uniquely to an operator G : L2(V) → H, and F ◦ G extends to the identity
operator on H; hence G = F−1. �
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Remark 4.31 In case the discrete spectrum Ωd is nonempty, the inverse of F is the
extension of the operator G = G(1)

c ⊕ G(2)
c ⊕ Gd , with

(Gdg)(x) = 1

D

∑

λ∈Ωd

g(λ)ϕλ(x)Nλ, x ∈ (−1,1),

for any function g : Ωd → C. The proof in this case is the same as in the case of the
empty discrete spectrum.
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