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Abstract For each noninteger complex number λ, the Hilbert matrix

Hλ =
(

1

n + m + λ

)
n,m≥0

defines a bounded linear operator on the Hardy spaces Hp, 1 < p < ∞, and on the
Korenblum spaces A−τ , τ > 0. In this work, we determine the point spectrum with
multiplicities of the Hilbert matrix acting on these spaces. This extends to complex
λ results by Hill and Rosenblum for real λ. We also provide a closed formula for
the eigenfunctions. They are in fact closely related to the associated Legendre func-
tions of the first kind. The results will be achieved through the analysis of certain
differential operators in the commutator of the Hilbert matrix.
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1 Introduction

For each λ ∈ C \ Z, the Hilbert matrix of parameter λ is

Hλ =
(

1

n + m + λ

)
n,m≥0

.

Hill [4], see also the work by Rosenblum [9], showed that any nonnegative complex
number is a latent root of Hλ. He also determined the multiplicities of all latent roots
of Hλ for nonnegative real λ and in particular for all positive integers, thus solving
the eigenvalue problem for λ real. The aim of this work is to extend this result to
λ ∈ C \ R. Indeed, if we restrict ourselves to the Hardy space or the Korenblum
classes, then the eigenvalue problem is completely solved for complex λ. We will
also provide an explicit formula for the eigenfunctions of Hλ and identify them with
the associated Legendre functions of the first kind.

In Sect. 2, we will review some known integral representations of the Hilbert ma-
trix based on the Hankel form. We will also show that the Hilbert matrix preserves
the Hardy spaces and the Korenblum spaces. The fact that Hλ acts boundedly on Hp ,
1 < p < ∞, has already been proved in [2] for λ = 1.

In Sect. 3, we will show that Hλ almost commutes with certain differential opera-
tors D. Indeed, we are interested in the operator defined formally by

f → HλDf − DHλf, (1.1)

where D is a differential operator.
Finally, in Sect. 4, we will provide a description of the point spectrum of the

Hilbert matrix Hλ acting on the Hardy spaces Hp , for p > 1, and on the Korenblum
spaces A−τ , A−τ

0 , for 0 < τ < 1.

2 Integral Operator Representations

Let D denote the unit disk. For each 1 ≤ p < ∞, the Hardy space Hp consists of
those functions f analytic on D for which the norm

‖f ‖p
p = sup

0<r<1

∫ 2π

0

∣∣f (
reiθ

)∣∣p dθ

2π

is finite. We also denote by H∞ the space of bounded analytic functions on D en-
dowed with the supremum norm.

In addition, we will also consider the Korenblum spaces, which are special cases
of weighted spaces of analytic functions. For each real number τ > 0, the Banach
space A−τ consists of those functions f analytic on D for which the norm

‖f ‖τ = sup
D

(
1 − |z|)τ ∣∣f (z)

∣∣
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is finite. The Banach subspace A−τ
0 consists of those f in A−τ for which

(
1 − |z|)τ ∣∣f (z)

∣∣ → 0 as |z| → 1−.

The Hilbert matrix of parameter λ can be represented with the help of the Hankel
form with symbol tλ/κ , where κ = e2πiλ − 1 and λ ∈ C \Z. More precisely, from the
identity

i

κ

∫ 2π

0
eiθ(m+n+λ) dθ = 1

m + n + λ
,

we see that the Hilbert matrix of parameter λ extends to a bounded operator on the
Hardy space H2, which will also be denoted by Hλ, defined by

(Hλf )(z) = i

κ

∫ 2π

0

f (eiθ )eiθλ

1 − eiθ z
dθ.

Obviously, it is also possible to define Hλf for f in the Hardy space H1. How-
ever, this representation is not easy to work with. Therefore, we shall use alternative
integral representations obtained by changing the path of integration in the above for-
mula. The more classical representation for the case f ∈ H1 and �λ > 0 is obtained
in the following way: the Hilbert matrix of parameter λ is

Hλ =
(

1

m + n + λ

)
m,n≥0

.

Thus for f (z) = ∑∞
n=0 anz

n ∈ H1, Hardy’s inequality (see [3], for instance) implies
that

∞∑
n=0

|an|
n + 1

≤ π‖f ‖H1 .

Hence the power series

F(z) =
∞∑

n=0

( ∞∑
m=0

am

m + n + λ

)
zn

has bounded coefficients, thus its radius of convergence is greater than or equal to 1
and we obtain a well-defined analytic function Hλf on the disc D for each f ∈ H1.
A standard computation shows that, for �λ > 0, we have

(Hλf )(z) = lim
r→1

∫ r

0

f (t)tλ−1

1 − tz
dt =

∫ 1

0

f (t)tλ−1

1 − tz
dt.

Indeed, if we set

(
Hr

λf
)
(z) =

∞∑
n=0

zn

∞∑
m=0

amrm+n+λ

m + n + λ
,
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then

(
Hr

λf
)
(z) =

∞∑
n=0

zn

∞∑
m=0

am

∫ r

0
tm+n+λ−1 dt

=
∞∑

n=0

zn

∫ r

0

( ∞∑
m=0

amtm

)
tn+λ−1 dt

=
∞∑

n=0

zn

∫ r

0
f (t)tn+λ−1 dt

=
∞∑

n=0

∫ r

0
f (t)tλ−1(tnzn

)
dt

=
∫ r

0
f (t)tλ−1

( ∞∑
n=0

tnzn

)
dt

=
∫ r

0

f (t)tλ−1

1 − tz
dt.

Therefore,

(Hλf )(z) =
∫ 1

0

f (t)tλ−1

1 − tz
dt.

A similar argument yields that the same representation holds true when f is in the
Korenblum space A−τ , 0 < τ < 1. For the remaining case �λ ≤ 0, we shall use a
similar approach. We will integrate along the boundary of a Stolz angle at 1. Through-
out the rest of this work, C will be the closed path defined by the boundary of the
Stolz angle {z ∈ D : |1 − z| ≤ σ(1 − |z|)} where σ > 1 is fixed. We assume that C is
positively oriented, that is, in the counterclockwise sense. Now, for 0 < ε < 1, we see
that the straight line with equation �z = ε and C meet exactly at two conjugate points
aε and aε , where 	aε > 0. To fix notation, for any nonnegative intergers n and m, we
set zn+m+λ−1 = e(n+m+λ−1) log z, where log z = ln |z|+ i arg z with arg z ∈ [0,2π); of
course, other definitions are possible in the argument below. Let Cε denote the subarc
of C that goes from aε to aε in the counterclockwise sense. Next, consider the closed
contour C′

ε obtained by adding the line segments 	z = ±	aε and a semicircle (on
the left half-plane) of center 0 and radius 	aε to Cε . With f in H1 or A−τ , using
Cauchy’s theorem, we have

∫
C′

ε

f (t)tλ−1

1 − tz
dt = 0.

Thus, making ε tend to 0, one easily sees that the following integral representation
holds:

(Hλf )(z) = 1

κ

∫
C

f (t)tλ−1

1 − tz
dt. (2.1)



Constr Approx (2012) 36:353–374 357

Now, (2.1) makes sense also for �λ ≤ 0, which provides an integral representation for
Hλ whenever λ ∈ C \ Z. Moreover, as the above argument shows, this representation
is independent of the aperture σ of the Stolz angle.

Theorem 2.1 Let f be analytic on D and integrable on [0,1], and let Hλf be as in
(2.1). Then

(i) if f ∈ Lp([0,1]), 1 < p < ∞, then Hλf ∈ Hp ;
(ii) if 0 < τ < 1 and |f (x)| = O((1 − x)−τ ) as x → 1, then Hλf ∈ A−τ ;

(iii) if 0 < τ < 1 and |f (x)| = o((1 − x)−τ ) as x → 1, then Hλf ∈ A−τ
0 .

In particular, if X is one of the spaces Hp , 1 < p < ∞, A−τ or A−τ
0 , 0 < τ < 1,

then Hλ is a bounded linear operator from X into itself. Moreover, Hλ is the unique
operator T on X such that

T zn =
∞∑

m=0

zm

m + n + λ
,

where by abuse of notation we write z for the identity function on D.

Proof To prove (i), observe that if h ∈ Hq , with 1/p + 1/q = 1, a straightforward
computation shows that

∫ 2π

0
(Hλf )

(
reiθ

)
h
(
eiθ

) dθ

2π
= 1

κ

∫
C

f (t)h(rt̄)tλ−1 dt.

Since the arc length measure on C is a Carleson measure, by Hölder’s inequality, we
find that ∣∣∣∣

∫ 2π

0
(Hλf )

(
reiθ

)
h
(
eiθ

) dθ

2π

∣∣∣∣ ≤ M‖f ‖p‖h‖q,

where M is a positive constant independent of f and h. By duality, this implies

∫ 2π

0

∣∣(Hλf )
(
reiθ

)∣∣p dθ

2π
≤ Mp‖f ‖p

p.

To prove (ii), observe that if |f (x)| ≤ M(1 − x)−τ , where M is a positive constant
and 0 < τ < 1, then

(
1 − |z|)τ ∣∣(Hλf )(z)

∣∣ ≤ M
(
1 − |z|)τ

∫
C

|f (t)|
1 − |t ||z| |dt |

≤ M‖f ‖τ

(
1 − |z|)τ

∫
C

(1 − |t |)−τ

1 − |t ||z| |dt |

for all z ∈ D. It is easy to see that the last term in the above display is uniformly
bounded in z ∈ D, which shows that Hλf ∈ A−τ .
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To prove (iii), observe first that

(
1 − |z|)τ

∫
C∩{|t |≤1−δ}

f (t)tλ−1

1 − tz
dt → 0 as |z| → 1−.

Hence, the previous estimate yields that

lim|z|→1

(
1 − |z|)τ ∣∣(Hλf )(z)

∣∣ ≤ M1 sup
1−δ≤|t |<1

(
1 − |t |)τ ∣∣f (t)

∣∣

for a positive constant M1 > 0 and for any 0 < δ < 1. Now, the boundedness of Hλ

on the spaces considered in the statement of the theorem follows immediately from
the closed graph theorem. Finally, the fact that

Hλz
n =

∞∑
m=0

zm

m + n + λ

is obvious, since

1

κ

∫
C

tm+n+λ−1 dt = 1

m + n + λ
.

The uniqueness assertion follows immediately from the fact that polynomials are
dense in Hp , 1 < p < ∞, and A−τ

0 ,0 < τ < 1 and weak-star dense in A−τ . �

Remark The case in which X = Hp , 1 < p < ∞, and λ = 1 was proved earlier in [2].

3 Differential Operators in the Commutator

The purpose of this section is to prove that Hλ almost commutes with certain differ-
ential operators D. Indeed, we are interested in the operator defined formally by

f → HλDf − DHλf. (3.1)

We shall only investigate linear differential operators of second order with polyno-
mial coefficients. These are defined by

Df = q3f
′′ + q2f

′ + q1f, (3.2)

where

q3(z) =
3∑
0

αjz
j , q2(z) =

2∑
0

βj z
j , q1(z) = γ1z.

The main result of this section provides a class of such operators where the commu-
tator in question has rank one. We shall assume throughout that λ ∈ C \ Z.
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Theorem 3.1 Let D be a differential operator as in (3.2). Assume that the polynomi-
als q1, q2, q3 in (3.2) satisfy

q1(z) = [
αλ(λ + 1) − λγ

]
z,

q2(z) = (z − 1)
[(

2α(λ + 1) − γ
)
z − γ

]
,

q3(z) = αz(z − 1)2

for some constants α,γ ∈ C. Then for every f ∈ A−τ , 0 < τ < 1, we have

HλDf − DHλf = 1

κ
(λ − 1)(αλ − γ )

∫
C

f (t)tλ−2 dt,

where C is the contour in (2.1).

Proof By means of the integral representation formula (2.1), we see that

J (z) = κ(HλDf )(z) − κ(DHλf )(z) =
∫

C

(Df )(t)tλ−1

1 − tz
dt − D

∫
C

f (t)tλ−1

1 − tz
dt.

(3.3)
Observe that Df ∈ L1(C) whenever f ∈ A−τ so that the integrals involved make
sense. Now write z = ζ−1, for |ζ | > 1, and for a polynomial p of degree n, write

p̃(z) = znp

(
1

z

)
.

With this notation, from (3.3), we obtain

J

(
1

ζ

)
= ζ

∫
C

(Df )(t)tλ−1

ζ − t
dt − 2q̃3(ζ )

∫
C

f (t)tλ+1

(ζ − t)3
dt

− q̃2(ζ )

∫
C

f (t)tλ

(ζ − t)2
dt − q̃1(ζ )

∫
C

f (t)tλ−1

ζ − t
dt.

Now assume that

f (z) = (1 − z)2g(z), (3.4)

where g ∈ A−τ . On C, we have 1 − |t | ≤ |1 − t | ≤ σ(1 − |t |), where σ is a fixed
number greater than 1, and by (3.4), we see that |f (t)| = O(|1 − t |2−τ ) as t → 1
on C. Thus we can integrate by parts in equality (3.3) to obtain

J

(
1

ζ

)
= ζ

∫
C

(Df )(t)tλ−1

ζ − t
dt − q̃3(ζ )

∫
C

(f (t)tλ+1)′′

ζ − t
dt

+ q̃2(ζ )

∫
C

(f (t)tλ)′

ζ − t
dt − q̃1(ζ )

∫
C

f (t)tλ−1

ζ − t
dt.

Next we set

q̃i (ζ ) = q̃i (ζ ) − q̃i (t) + q̃i (t) , i = 1,2,3,

ζ = ζ − t + t,
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and integrate by parts again using the same argument together with the fact that both
q̃3 and q̃2 have degree 2. We have

J

(
1

ζ

)
=

∫
C

(Df )(t)tλ

ζ − t
dt

−
∫

C

q̃3(t)(f (t)tλ+1)′′ − q̃2(t)(f (t)tλ)′ + q̃1(t)f (t)tλ−1

ζ − t
dt

+
∫

C

(Df )(t)tλ−1 dt −
∫

C

q̃3(ζ ) − q̃3(t)

ζ − t

(
f (t)tλ+1)′′

+
∫

C

(
q̃2(ζ ) − q̃2(t)

)(
f (t)tλ

)′ dt

=
∫

C

(Df )(t)tλ − q̃3(t)(f (t)tλ+1)′′ + q̃2(t)(f (t)tλ)′ − q̃1(t)f (t)tλ−1

ζ − t
dt

+
∫

C

(Df )(t)tλ−1 dt − q2(0)

∫
C

f (t)tλ dt.

Observe now that

(Df )(t)tλ − q̃3(t)
(
f (t)tλ+1)′′ + q̃2(t)

(
f (t)tλ

)′ − q̃1(t)f (t)tλ−1

= f ′′(t)
[
q3(t)t

λ − q̃3(t)t
λ+1] + f ′(t)

[
q2(t)t

λ − 2(λ + 1)q̃3(t)t
λ + q̃2(t)t

λ
]

+ f (t)
[
q1(t)t

λ − λ(λ + 1)q̃3(t)t
λ−1 + q̃2(t)λtλ−1 − q̃1(t)t

λ−1],
which vanishes under the conditions in the hypotheses. Furthermore, integrating by
parts once again, we obtain

∫
C

(Df )(t)tλ−1 dt =
∫

C

q3(t)f
′′(t)tλ−1 + q2(t)f

′(t)tλ−1 + q1(t)f (t)tλ−1 dt

=
∫

C

f (t)
[(

q3(t)t
λ−1)′′ − (

q2(t)t
λ−1)′ + q1(t)t

λ−1]dt

=
∫

C

f (t)
[
γ tλ + (λ − 1)(αλ − γ )tλ−2]dt.

Thus

∫
C

(Df )(t)tλ−1 dt − q2(0)

∫
C

f (t)tλ dt

=
∫

C

f (t)
[
γ tλ + (λ − 1)(αλ − γ )tλ−2]dt −

∫
C

γf (t)tλ dt

=
∫

C

f (t)(λ − 1)(αλ − γ )tλ−2 dt,
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and the equation in the statement is satisfied for every function f as in (3.4). To
remove this extra assumption, let f ∈ A−τ be arbitrary and for 0 < a < 1 set

fa(z) =
(

1 − z

1 − az

)2

f (z).

We then have

(HλDfa)(z) − (DHλfa)(z) = 1

κ

∫
C

fa(t)(λ − 1)(αλ − γ )tλ−2 dt.

We claim that

(a) (HλDfa)(z) → (HλDf )(z),

(b) (DHλfa)(z) → (DHλf )(z),

(c)
∫

C

fa(t)(λ − 1)(αλ − γ )tλ−2 dt →
∫

C

f (t)(λ − 1)(αλ − γ )tλ−2 dt

as a → 1−, for all z ∈ D.
To prove (a), we write

(HλDfa)(z) = 1

κ

∫
C

(Dfa)(t)

1 − tz
dt (3.5)

and note that

fa(z) = Φa(z)f (z),

where

Φa(z) =
(

1 − z

1 − az

)2

satisfies |Φa(z)| ≤ 4 for each z ∈ D. It is also easy to see that

∣∣Φ ′
a(z)

∣∣ ≤ 2
(
1 − |z|)−1 and

∣∣Φ ′′
a (z)

∣∣ ≤ 2
(
1 − |z|)−2

for each z ∈ D. Using once again that on the contour C we have that 1−|t | ≤ |1− t | ≤
σ(1 − |t |), we may obtain the estimates

∣∣f ′′
a (t)

∣∣ ≤ M1

( |f (t)|
|1 − t |2 + |f ′(t)|

|1 − t | + ∣∣f ′′(t)
∣∣),

∣∣f ′
a(t)

∣∣ ≤ M2

( |f (t)|
|1 − t | + ∣∣f ′(t)

∣∣)

for all t ∈ C and where Mi , i = 1,2, are positive constants. Hence from the particular
form of these differential operators, it follows that

∣∣(Dfa)(t)
∣∣ ≤ M3

[(
1 − |t |)2∣∣f ′′(t)

∣∣ + (
1 − |t |)∣∣f ′(t)

∣∣ + ∣∣f (t)
∣∣]

≤ Mf

(
1 − |t |)−τ

,
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where M3 is another constant and Mf is a constant that depends only on f . Thus (a)
follows from (3.5) and the bounded Lebesgue convergence theorem.

The proof of (b) is much easier. Indeed, the bounded Lebesgue convergence theo-
rem applied to the identity (2.1) immediately yields

(Hλfa)(z) → (Hλf )(z)

uniformly on compacts, as a → 1−. Hence

(DHλfa)(z) → (DHλf )(z)

as a → 1−, for all z ∈ D.
Finally, (c) also follows by a further application of the bounded Lebesgue conver-

gence theorem. �

We shall only make use of two operators from this family, namely, those obtained
for α = 0; γ = −1 and α = 1; γ = λ; that is,

(D1,λf )(z) = (
z2 − 1

)
f ′(z) + λzf (z),

(D2,λf )(z) = z(z − 1)2f ′′(z) + (z − 1)
[
(λ + 2)z − λ

]
f ′(z) + λzf (z).

Obviously, these two operators generate the linear space of operators considered in
Theorem 3.1 The next proposition is valid for any complex region whenever we can

define on it a branch of (1 − z)
−λ+ν

2 and (1 + z)
−λ−ν

2 . In particular, since we will need
them to be analytic on the unit disk D, we can always define a branch of the former
on C \ [1,+∞) and a branch of the latter on C \ (−∞ − 1].

Proposition 3.2

(i) For ν ∈ C, the space of solutions of the equation

D1,λf = νf (3.6)

is one-dimensional and it is spanned by

fλ(z) = (1 − z)
−λ+ν

2 (1 + z)
−λ−ν

2 .

(ii) The solutions of the equation

D1,λg − νg = fλ

are

gλ(z) =
(

1

2
log

(
z − 1

z + 1

)
+ k

)
(1 − z)

−λ+ν
2 (1 + z)

−λ−ν
2 ,

where k ∈ C is arbitrary.
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Proof (i) Equation (3.6) is equivalent to

f ′(z) = −λz − ν

z2 − 1
f (z).

Thus

f (z) = ce
− ∫

λz−ν

z2−1
dz = c(1 − z)

−λ+ν
2 (1 + z)

−λ−ν
2 ,

where c is constant.
(ii) The equation now is

(
z2 − 1

)
g′(z) + (λz − ν)g(z) = fλ(z). (3.7)

The solution of the corresponding homogeneous equation is provided by (i), that is,

g(z) = k(1 − z)
−λ+ν

2 (1 + z)
−λ−ν

2 , k ∈ C.

Now we look for a particular solution of (3.7) of the form

gp(z) = kz(1 − z)
−λ+ν

2 (1 + z)
−λ−ν

2 ,

which we substitute in (3.7) to obtain

k′
z = 1

z2 − 1
.

Thus,

kz = 1

2
log

(
z − 1

z + 1

)
.

Therefore, the general solution of (3.7) is

g(z) =
(

1

2
log

(
z − 1

z + 1

)
+ k

)
(1 − z)

−λ+ν
2 (1 + z)

−λ−ν
2 . �

As might be expected, the spectral theory of D2,λ is more complicated. However,
it turns out that the eigenvalue problem

D2,λf = νf

reduces to the classical hypergeometric equation

z(1 − z)f ′′ + [
γ − (α + β + 1)z

]
f ′ − αβf = 0. (3.8)

In fact, the reduction of the above equation to the hypergeometric one has been in-
tensively studied (see [7], for instance).
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As usual, we denote the hypergeometric function by

2F1(α,β;γ ; z) = 1 + αβ

1!γ z + α(α + 1)β(β + 1)

2!γ (γ + 1)
z2 + · · ·

=
∞∑

n=0

(α)n(β)n

(γ )n

zn

n! ,

where (α)n = α(α + 1) · · · (α + n − 1). In general, the radius of convergence is 1,
except when α or β are nonpositive integers, in which case the series reduces to a
polynomial.

Theorem 3.3 For λ ∈ C \ Z and ν ∈ C, the solutions of the eigenvalue problem

D2,λf = νf

analytic in D form a one-dimensional space spanned by

f (z) = (1 − z)a 2F1(a + 1, a + λ;λ; z) = (1 − z)a
′

2F1
(
a′ + 1, a′ + λ;λ; z), (3.9)

where a and a′ are solutions of the quadratic equation

w2 + w + λ = ν. (3.10)

Moreover, if a, a′ are ordered by �a′ ≥ − 1
2 ≥ �a, then:

(i) if a �= − 1
2 and a + 1 − λ = −a′ − λ /∈ N ∪ {0}, then the limit

lim
x→1−(1 − x)−�a

∣∣f (x)
∣∣

exists, is finite and nonzero;
(ii) if a �= − 1

2 and λ − a − 1 = a′ + λ = −n, n ∈ N ∪ {0}, then �λ ≤ 1
2 and

f (z) = (1 − z)a
′
Q(z),

where Q(z) is a polynomial of degree n;
(iii) if a = − 1

2 , then

∣∣f (z)
∣∣ = O

((
1 − |z|)−1/2 log

1

1 − |z|
)

as |z| → 1−.

Proof We begin with the substitution f (z) = (1 − z)ag(z) to obtain the equation

z(z − 1)2g′′(z) + (z − 1)
(
z(2a + λ + 2) − λ

)
g′(z)

+ (
z
(
a2 + a + aλ + λ

) − aλ − ν
)
g(z) = 0.
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If a2 +a +λ = ν, the above equation becomes the well-known hypergeometric equa-
tion, see (3.8), with parameters α,β, γ subject to

α + β = 2a + λ + 1;
αβ = aλ + ν = a2 + a + aλ + λ = (a + 1)(a + λ);
γ = λ.

Obviously, this leads to the choice α = a + 1, β = a + λ, γ = λ, and the solu-
tions of the eigenvalue problem are those provided in the statement of the theorem.
The fact that our solution is independent of the choice of the root a of (3.10) is Eu-
ler’s Formula, see [1] (in older literature it is also called Kummer’s first formula, see
[5] p. 248, formula (9.5.3) or [8]), a well-known identity for hypergeometric func-
tions.

To prove (i), we use the results in [5], Sect. 9.3, to find the following known Gauss’
formula

lim
x→1− 2F1(a + 1, a + λ;λ;x) = Γ (λ)Γ (−2a − 1)

Γ (λ − a − 1)Γ (−a)
�= 0,

and the right-hand side is finite and nonzero under the hypothesis of the statement.
The fact that (ii) holds follows directly from the power series expansion of the

hypergeometric function 2F1(a + 1, a + λ;λ; z).
Finally, to prove (iii), we observe that the coefficients of 2F1(a + 1, a + λ;λ; z)

satisfy

∣∣∣∣ (1/2)n(−1/2 + λ)n

n!(λ)n

∣∣∣∣ = O

(
1

n

)
n → ∞,

hence

∣∣
2F1(a + 1, a + λ;λ; z)∣∣ ≤ M log

1

1 − |z| ,

where M is a positive constant, which gives the desired estimate. �

Remark Using the Pfaff transformation (see for example [8]), we have

fa(z) = (1 − z)a 2F1(a + 1, a + λ;λ; z) = 1

1 − z
2F1

(
a + 1,−a;λ; z/(z − 1)

)

= Γ (λ)(−z)1/2−λ/2

1 − z
P 1−λ

a

(
1 + z

1 − z

)
,

where P 1−λ
a denotes the associated Legendre function of the first kind of parameters

a and 1 − λ (see p. 192 in [5]). Observe that P 1−λ
a ((1 + z)/(1 − z)) can be seen as a

function analytic on the unit disk multiplied by (−z)−1/2+λ/2, which justifies the last
equality above.
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Corollary 3.4 For each λ ∈ C \ Z and for each a ∈ C, set

fa(z) = (1 − z)a 2F1(a + 1, a + λ;λ; z).

Then, for − 1
2 ≥ �a > −1, we have that Hλfa is defined and satisfies

Hλfa = − π

sinπa
fa.

Moreover,

(i) If a �= − 1
2 and a + 1 − λ /∈ N ∪ {0}, then fa ∈ A−τ if and only if τ > −�a and

fa ∈ Hp if and only if 1
p

> �a.

(ii) If a �= − 1
2 and λ − a − 1 = −n with n ∈ N ∪ {0}, then fa ∈ A−τ for all τ ≥

�a + 1, fa ∈ A−τ
0 for all τ > �a + 1, and fa ∈ Hp whenever 1

p
> �a + 1.

(iii) If a = − 1
2 , then fa ∈ A−τ

0 for τ > 1
2 and fa ∈ Hp whenever p < 2.

Proof For each a ∈ C, we can find ν ∈ C such that a is a root of (3.10). If a′ denotes
the other root of this equation, then fa = fa′ . Hence, by Theorems 2.1 and 3.3, either
Hλfa or Hλfa′ is well defined. Moreover, from Theorem 3.3 we find that

(D2,λ − νI)Hλfa = Hλ(D2,λ − νI)fa = 0;

i.e., Hλfa ∈ ker(D2,λ − νI), which, by Theorem 3.3, has dimension one. Thus,

Hλfa = μfa

for some μ ∈ C. Since fa(0) = 1, we have

μ = (Hλfa)(0) = 1

κ

∫
C

tλ−1fa(t)dt.

In order to compute the value of the right-hand side, we need the identity

1

κ

∫
C

tx−1(1 − t)y−1 dt = Γ (x)Γ (y)

Γ (x + y)
, (3.11)

where κ = e2πix − 1. This equality holds whenever �y > 0 and Γ (x),Γ (y), and
Γ (x + y) are defined. Indeed, this is well known for �x > 0, hence for general x,
it follows by the identity theorem for analytic functions. With (3.11) at hand, we
compute
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(Hλfa)(0) = 1

κ

∫
C

tλ−1fa(t)dt

= 1

κ

∫
C

tλ−1(1 − t)a 2F1(a + 1, a + λ;λ; t)dt

= 1

κ

∞∑
n=0

(a + 1)n(a + λ)n

n!(λ)n

∫
C

tλ+n−1(1 − t)a dt

=
∞∑

n=0

Γ (a + 1 + n)

Γ (a + 1)

Γ (a + λ + n)

Γ (a + λ)

Γ (λ)

n!Γ (λ + n)

Γ (a + 1)Γ (λ + n)

Γ (a + 1 + λ + n)

= 1

κ

Γ (a + 1)Γ (λ)

Γ (a + λ)

∞∑
n=0

Γ (a + n + 1)

n!Γ (a + 1)

∫
C

tλ+n+a−1 dt

= 1

κ

Γ (a + 1)Γ (λ)

Γ (a + λ)

∫
C

tλ+a−1(1 − t)−a−1 dt

= Γ (a + 1)Γ (λ)

Γ (a + λ)

Γ (λ + a)Γ (−a)

Γ (λ)

= − π

sinπa
;

the interchange of integration and summation in the above equalities is justified by
standards estimates. Finally, (i)–(iii) are direct consequences of Theorem 2.1. �

4 Eigenfunctions of the Hilbert Matrix

The purpose of this section is to prove the following theorem, which describes the
point spectrum of the operators Hλ on the spaces we are considering. Recall that X

denotes one of the spaces Hp,p > 1, or A−τ , A−τ
0 , for 0 < τ < 1.

Theorem 4.1 Let λ ∈ C \ Z, and let

S(X) = {
a : (1 − z)a ∈ X

}
.

Assume that λ ∈ S(X); then

(i) The operator Hλ has the eigenvalues ±π cscπλ with multiplicities [N
2 ] and

[N−1
2 ], respectively, where N is the largest integer for which the function z →

(1 − z)−N−λ belongs to X. Furthermore, if

fn(z) = (1 − z)−n−λ(1 + z)n, 0 ≤ n ≤ N,

then ker(Hλ − π cscπλ I) is spanned by the functions f2k , 0 ≤ k ≤ N/2, and
ker(Hλ + π cscπλ I) is spanned by the functions f2k+1, 0 ≤ k ≤ N/2 − 1/2.

(ii) If p ≥ 2 or 0 < τ < 1/2, then Hλ has no other eigenvalues.
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(iii) If p < 2 or 1/2 < τ < 1, the point spectrum of Hλ on X is the image of the set

S(X) ∩
({

�a ≤ −1

2

}
∪ {−λ,−λ − 1}

)

by the map a → −π cscπa. Each eigenvalue −π cscπa, a �= −λ,−λ − 1, has
multiplicity one and the corresponding eigenspace is spanned by the hypergeo-
metric function 2F1(a+1, a+λ;λ; ·). Finally, if X = A−1/2, the point spectrum
of Hλ contains the image of the set

S
(
A−1/2) ∩

({
�a < −1

2

}
∪ {−λ,−λ − 1}

)∖{
−1

2

}

by the map a → −π cscπa. Again, each eigenvalue −π cscπa, a �= −λ, a �=
−λ − 1, has multiplicity one, and the corresponding eigenfunction is spanned
by 2F1(a + 1, a + λ;λ; ·).

The proof of this result requires several steps which we shall treat separately.
Throughout the remainder of this work, X will be one of the spaces Hp,p > 1, or
A−τ , A−τ

0 , 0 < τ < 1 and λ a fixed number in C \ Z. Finally, we continue to write
κ = e2πiλ − 1.

Lemma 4.2 Let g,h ∈ X satisfy

(μI − Hλ)h(z) = g(z)

for some μ ∈ C \ {0}. If D1,λg ∈ X, then D1,λh ∈ X.

Proof We have

h(z) = 1

μ
(Hλh)(z) + 1

μ
g(z),

which implies

(D1,λh)(z) = 1

μ
(HλD1,λh)(z) − λ − 1

μκ

∫
C

tλ−2h(t)dt + 1

μ
D1,λg(z). (4.1)

Now, if h ∈ A−τ , it follows that (see [3])

(1 − x)
∣∣h′(x)

∣∣ = O
(
(1 − x)−τ

)
as x → 1−,

and if f ∈ Hp , then the following map (see [6]) belongs to Lp([0,1]):
x → (1 − x)h′(x).

Thus, by Theorem 2.1, HλD1,λh ∈ X, hence by (4.1), D1,λh ∈ X. �

Lemma 4.3 If μ ∈ C \ {0} and 1 ∈ (Hλ − μI)X, then (Hλ − μI)X contains all the
polynomials.
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Proof We prove the statement by induction on the degree n of the polynomial. Thus
by assumption, the statement holds true when n = 0. Assume that (Hλ − μI)X con-
tains all the polynomials of degree at most n. If h ∈ X satisfies (Hλh − μh) = zn,
then by Theorem 3.1, we have

(Hλ − μI)(D1,λh)(z) − D1,λz
n = const,

which shows

(Hλ − μI)(D1,λh)(z) = (n + λ)zn+1 − nzn + const.

By Lemma 4.2, we have that D1,λh ∈ X, and the result follows. �

Lemma 4.4 Let μ ∈ C \ {0}, and let f ∈ ker(Hλ − μI), f �= 0. If X is one of the
spaces Hp , p ≥ 2, or A−τ , A−τ

0 , 0 < τ < 1
2 , or f ∈ H∞, then (Hλ − μI)X cannot

contain the constant functions. In particular,
∫

C

f (t)tλ−2 dt = 0,

and D1,λf ∈ ker(Hλ − μI).

Proof By Theorem 3.1 and Lemma 4.2, it suffices to prove the first part of the state-
ment, since

(Hλ − μI)D1,λf (z) − D1,λ(Hλ − μI)f (z) = 1

κ
(λ − 1)

∫
C

f (t)tλ−2 dt.

If we assume the contrary, that is,

k =
∫

C

f (t)tλ−2 dt �= 0,

then f �= 0, and by Theorem 3.1, we have

(Hλ − μI)D1,λf = k

κ
(λ − 1).

By Lemma 4.2, we conclude that 1 ∈ (Hλ − μI)X. Thus by Lemma 4.3, we find that
(Hλ − μI)X contains all polynomials. Now let p be a polynomial and g ∈ X with
Hλg − μg = p. For 0 < r < 1, we have

∫ 2π

0
f

(
reiθ

)
p
(
re−iθ

) dθ

2π

=
∫ 2π

0
f

(
reiθ

)(
(Hλg)

(
re−iθ

) − μg
(
re−iθ

)) dθ

2π

=
∫ 2π

0
f

(
reiθ

)
(Hλg)

(
re−iθ

) dθ

2π
−

∫ 2π

0
(Hλf )

(
reiθ

)
g
(
re−iθ

) dθ

2π
.
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By the integral representation (2.1) and a direct computation based on Cauchy’s for-
mula, we obtain from the last two integrals

∫ 2π

0
f

(
reiθ

)
p
(
re−iθ

) dθ

2π
= 1

κ

∫
C

f
(
r2t

)
g(t)tλ−1 dt − 1

κ

∫
C

f (t)g
(
r2t

)
tλ−1 dt.

Taking into account the values of the parameters p and τ , or if f ∈ H∞, then the
right-hand side of this equality converges to zero when r → 1−, whenever g ∈ X.
This implies

lim
r→1−

∫ 2π

0
f

(
reiθ

)
p
(
re−iθ

) dθ

2π
= 0

for every polynomial p, which leads to a contradiction, since f �= 0. �

The last step needed in the proof of Theorem 4.1 is a little bit more involved. We
shall make extensive use of two identities. First, from the integral representation (2.1)
of Hλ, we easily deduce that

z(Hλf )(z) = z

κ

∫
C

f (t)tλ−1

1 − tz
dt = − 1

κ

∫
C

f (t)tλ−2 dt + 1

κ

∫
C

f (t)tλ−1

1 − tz
dt;

that is,

z(Hλf )(z) = − 1

κ

∫
C

f (t)tλ−2 dt + (Hλ−1f )(z). (4.2)

We shall use this equality in the equivalent form

(1 − z)(Hλf )(z) = 1

κ

∫
C

f (t)tλ−2 dt + Hλ−1
(
(z − 1)f

)
(z), (4.3)

where we have once more denoted by z the identity function on D.
As an immediate consequence, we note the following simple observation.

Lemma 4.5 Let μ ∈ C \ {0} and f ∈ ker(Hλ − μI). Then (z − 1)f ∈ H∞.

Proof By (4.3), we have that

(1 − z)f (z) = 1

κμ

∫
C

f (t)tλ−2 dt + 1

μ
Hλ−1(z − 1)f (z),

and

∣∣(Hλ−1(z − 1)f
)
(ζ )

∣∣ ≤ M

∫
C

|f (t)||t − 1|
1 − t |ζ | |dt |

≤ M1

∫
C

∣∣f (t)
∣∣|dt |

for some constants M and M1, which completes the proof. �
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Our second identity is a well-known characterization of Hankel operators. If B

denotes the backward shift

(Bf )(z) = f (z) − f (0)

z
,

then

BHλf = Hλzf. (4.4)

Lemma 4.6 If μ ∈ C \ {0}, then

dim ker(Hλ − μI) < +∞.

Proof Obviously, it will suffice to show that

M =
{
f ∈ ker(Hλ − μI) :

∫
C

f (t)tλ−2 dt = 0

}

has finite dimension. Note that by (4.3), we have
(
Hλ−1(1 − z)f

)
(z) = (Hλ−1f )(z) − (Hλf )(z) = (z − 1)(Hλf )(z) = μ(z − 1)f (z)

(4.5)
for all f ∈ M; that is,

(1 − z)M ⊂ ker(Hλ−1 + μI).

By Lemma 4.5, we also have (1 − z)M ⊂ H∞ ⊂ H2.
Next let N be the closure of (1 − z)M in H2, which is a subset of ker(Hλ−1 +

μI)|H2 . We construct the standard orthonormal basis in N formed with the functions
en, n ≥ 1, which solve the extremal problems

e(n)
n (0) = sup

{∣∣f (n)(0)
∣∣ : f ∈ N ,‖f ‖ ≤ 1, f (k)(0) = 0, k < n

}
.

We claim that this orthonormal basis must be finite. Indeed, by Lemma 4.4, we have
∫

C

ent
λ−3 dt = 0

for all n, so that (4.5) applies and shows that

Hλ−2(1 − z)en = μ(1 − z)en.

By (4.4), we have also

μ(1 − z)
en

zn
= Hλ−2(1 − z)znen.

Now note that since en is orthogonal to zen,
∥∥∥∥(1 − z)

en

zn

∥∥∥∥
2
= ∥∥(1 − z)en

∥∥
2 = √

2.
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On the other hand, the standard duality argument yields

∥∥Hλ−2(1 − z)znen

∥∥
2 = sup

‖h‖2≤1

∣∣∣∣1

c

∫
C

(1 − t)en(t)h(t)tn+λ−3 dt

∣∣∣∣
≤ 1

|c|
∫

C

|1 − t |(1 − |t |2)−1|t |n+λ−3|dt |,

where we have used the standard estimate

∣∣g(z)
∣∣ ≤ (

1 − |z|2)− 1
2 ‖g‖2.

Thus the inequality

√
2|μ| ≤ 1

|c|
∫

C

|1 − t |(1 − |t |2)−1|t |n+λ−3|dt |

implies that dim N < +∞, and the proof is complete. �

We are now prepared to prove Theorem 4.1.

Proof of Theorem 4.1 The proof is divided into three steps.

First Step. We show that the functions fn defined in the statement satisfy

(Hλfn)(z) = (−1)nπ cscπλ fn(z) (4.6)

and ∫
C

fn(t)t
λ−2 dt = 0, 0 ≤ n ≤ N.

Second Step. Conversely, we prove that every eigenspace Mμ of Hλ with
∫

C

f (t)tλ−2 dt = 0, ∀f ∈ Mμ,

is spanned by a subset of {fn : 0 ≤ n ≤ N}. Thus (i) and (ii) will follow by
Lemma 4.4.

Third Step. We show that if f is an eigenfunction of Hλ with
∫

C

f (t)tλ−2 dt �= 0,

then the corresponding eigenspace has dimension one and consequently f is an
eigenfunction of D2,λ. Then the result follows by Corollary 3.4.

Proof of Step 1. Let λ ∈ S(X). Since N is the largest integer for which the function
fn(z) = (1 − z)−N−λ belongs to X, we must have N + λ < 1, so that n + λ < 0 for
all integers n < N . Now, recall from Corollary 3.4 that f0 satisfies

(Hλf0)(z) = π cscπλf0(z).
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To prove the claim for general n ≤ N , we proceed by induction. Assume that (4.6)
holds for n − 1, and note that

fn(z) = z + 1

z − 1
fn−1(z).

In view of the fact that n ≤ N , we also have that

fn(z) = lim
a→1−

(
−1 + 2az

az − 1

)
fn−1(z)

in the norm of X. But then by (4.4), we can write

(Hλfn)(z) = − lim
a→1−

(−I − 2aB(I − aB)−1)(Hλfn−1)(z)

in the norm of X, and a direct computation gives

(Hλfn)(z) = lim
a→1−

(
−Hλfn−1(z) − 2a

Hλfn−1(z) − Hλfn−1(a)

z − a

)

= lim
a→1−(−1)nπ cscπλ

(
fn−1(z) + 2a

fn−1(z) − fn−1(a)

z − a

)

= (−1)nπ cscπλ

(
fn−1(z) + 2

fn−1(z)

z − 1

)
= (−1)nπ cscπλ fn(z),

where we have used the fact that n − 1 + λ < 0. Now observe that the functions fn

satisfy ∫
C

fn(t)t
λ−2 = 0, 0 ≤ n ≤ N.

This follows, for instance, directly from Theorem 3.1, since fn are eigenfunctions
for both Hλ and D1,λ.

Proof of Step 2. Let Mμ = ker(Hλ − μI) be a nonzero eigenspace with the addi-
tional property that ∫

C

f (t)tλ−2 dt = 0, f ∈ Mμ. (4.7)

By Theorem 3.1 and Lemma 4.2, we have that D1,λMμ ⊂ Mμ, and by Lemma 4.5,
Mμ has finite dimension. The eigenfunctions of D1,λ|Mμ must be the form pro-
vided by Proposition 3.2, and as eigenfunctions of Hλ they must extend analyti-
cally in C \ [1,∞). This implies that the functions in question belong to the set
{fn : 0 ≤ n ≤ N}. Now another application of Proposition 3.2 shows that the equa-
tion

D1,λg − νg = fn

cannot have solutions analytic near −1. Thus we conclude that Mμ is spanned by
a subset of {fn : 0 ≤ n ≤ N}, which proves Step 2.
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Proof of Step 3. We need to show that if μ ∈ C \ {0} and f ∈ ker(Hλ − μI) with
∫

C

f (t)tλ−2 dt �= 0,

then

dim ker(Hλ − μI) = 1

and f is an eigenfunction of D2,λ. To verify this statement, we use (4.3) again to
conclude that

μ(1 − z)f (z) = 1

κ

∫
C

f (t)tλ−2 dt + (
Hλ−1(z − 1)f

)
(z),

which implies that (Hλ−1 + μI)X contains the constants.
If dim ker(Hλ − μI) ≥ 2, then we can find a function g ∈ ker(Hλ − μI) with g �= 0
and ∫

C

g(t)tλ−2 dt = 0.

Now an application of (4.3) to g shows that

μ(1 − z)g(z) = Hλ−1(z − 1)g(z).

By Lemma 4.5, we obtain that (1 − z)g ∈ ker(Hλ−1 + μI)
⋂

H∞, which leads to
a contradiction by Lemma 4.4. Thus ker(Hλ − μI) is spanned by f and by Theo-
rem 3.3, f must be an eigenvalue of D2,λ and Step 3 is proved. This completes the
proof of the theorem. �
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