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Abstract K. Mahler introduced the concept of perfect systems in the general theory
he developed for the simultaneous Hermite–Padé approximation of analytic func-
tions. We prove that Nikishin systems are perfect, providing by far the largest class
of systems of functions for which this important property holds. As consequences,
in the context of Nikishin systems, we obtain: an extension of Markov’s theorem
to simultaneous Hermite–Padé approximation, a general result on the convergence
of simultaneous quadrature rules of Gauss–Jacobi type, the logarithmic asymptotics
of general sequences of multiple orthogonal polynomials, and an extension of the
Denisov–Rakhmanov theorem for the ratio asymptotics of mixed type multiple or-
thogonal polynomials.
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1 Introduction

1.1 Some Historical Remarks

In 1873, Charles Hermite published in [31] his proof of the transcendence of e making
use of simultaneous rational approximation of systems of exponentials. That paper
marked the beginning of the modern analytic theory of numbers.

The formal theory of simultaneous rational approximation for general systems of
analytic functions was initiated by K. Mahler in lectures delivered at the University
of Groningen in 1934–1935. These lectures were published years later in [37]. Impor-
tant contributions in this respect are also due to his students J. Coates and H. Jager,
see [13] and [32]. K. Mahler’s approach to the simultaneous approximation of finite
systems of analytic functions may be reformulated in the following terms.

Let f = (f0, . . . , fm) be a family of analytic functions in some domain D of the
extended complex plane containing ∞. Fix a nonzero multi-index n = (n0, . . . , nm) ∈
Z

m+1+ , |n| = n0 + · · · , nm. There exist polynomials an,0, . . . , an,m, not all identically
equal to zero, such that

(i) degan,j ≤ nj − 1, j = 0, . . . ,m (degan,j ≤ −1 means that an,j ≡ 0),
(ii)

∑m
j=0 an,j (z)fj (z) − dn(z) = O(1/z|n|), z → ∞,

for some polynomial dn. Analogously, there exists Qn, not identically equal to zero,
such that

(i) degQn ≤ |n|,
(ii) Qn(z)fj (z) − Pn,j (z) = O(1/znj +1), z → ∞, j = 0, . . . ,m,

for some polynomials Pn,j , j = 0, . . . ,m.

Initially, the polynomials an,0, . . . , an,m were called Latin and Qn German poly-
nomials, due to the letters employed in denoting them (see the papers of Mahler,
Coates, and Jager cited above). The polynomials dn and Pn,j , j = 0, . . . ,m, are
uniquely determined from (ii) once their partners are found. Later, the two con-
structions were called type I and type II polynomials (approximants) of the system
(f0, . . . , fm). Algebraically, the two constructions are closely related. This is clearly
shown in [13, 32], and [37]. When m = 0, both definitions coincide with that of the
well-known Padé approximation in its linear presentation.

Apart from Hermite’s result, type I, type II, and a combination of the two (called
mixed type), have been employed in the proof of the irrationality of other numbers.
For example, in [8], F. Beukers shows that Apery’s proof (see [1]) of the irrationality
of ζ(3) can be placed in the context of mixed type Hermite–Padé approximation. See
[53] for a brief introduction and survey on the subject. More recently, mixed type
approximation has appeared in random matrix and nonintersecting Brownian motion
theories (see, for example, [7, 14, 34], and [35]).

In applications in the areas of number theory, convergence of simultaneous rational
approximation, and asymptotic properties of type I and type II polynomials, a central
question is if these polynomials have no defect; that is, if they attain the maximal
degree possible.

Definition 1.1 A multi-index n is said to be normal for the system f for type I ap-
proximation (respectively, for type II) if degan,j = nj − 1, j = 0, . . . ,m (respec-
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tively, degQn = |n|). A system of functions f is said to be perfect if all multi-indices
are normal.

It is easy to verify that (an,0, . . . , an,m) and Qn are uniquely determined to within
a constant factor when n is normal. Moreover, if a system is perfect, the order of
approximation in parts ii) above is exact for all n. The convenience of these properties
is quite clear.

Considering the construction at the origin (instead of z = ∞, which we chose for
convenience), the system of exponentials considered by Hermite (ew0z, . . . , ewmz),

wi �= wj , i �= j, i, j = 0, . . . ,m, is known to be perfect for type I and type II. A sec-
ond example of a perfect system for both types is that given by the binomial functions
(1 − z)w0 , . . . , (1 − z)wm,wi − wj �∈ Z. All multi-indices n such that n0 ≥ · · · ≥ nm

are known to be type I and type II normal for (logm(1 − x), . . . , log(1 − x),1). When
normality occurs for multi-indices with decreasing components, the system is said to
be weakly perfect. Basically, these are the only examples known of perfect or weakly
perfect systems, except for certain ones formed by Cauchy transforms of measures.

1.2 Markov Systems and Orthogonality

Let s be a finite Borel measure with constant sign whose compact support consists of
infinitely many points and is contained in the real line. Hereafter, we only consider
such measures. By Δ we denote the smallest interval which contains the support,
supp s, of s. We denote this class of measures by M(Δ). Let

ŝ(z) =
∫

ds(x)

z − x

denote the Cauchy transform of s. Obviously, ŝ ∈ H(C \ Δ); that is, it is analytic in
C \ Δ.

If we apply the construction above to the system formed by ŝ (m = 0), it is easy
to verify that Qn turns out to be orthogonal to all polynomials of degree less than
n ∈ Z+. Consequently, degQn = n, all its zeros are simple and lie in the open con-
vex hull Co(supp s) of supp s. Therefore, such systems of one function are perfect.
These properties make it possible to deduce Markov’s theorem on the convergence of
(diagonal) Padé approximations of ŝ that was published in [38]. For this reason, ŝ is
also called a Markov function.

Markov functions are quite relevant in several respects. Many elementary func-
tions can be expressed as such. The resolvent function of self-adjoint operators admits
that type of representation. If one allows complex weights, any reasonable analytic
function in the extended complex plane with a finite number of algebraic singularities
adopts that form. This fact, and the use of Padé approximation, have played a central
role in some of the most relevant achievements in recent decades concerning the ex-
act rate of convergence of the best rational approximation; namely, A.A. Gonchar and
E.A. Rakhmanov’s result, see [26, 28], and [5], on the best rational approximation of
e−x on [0,+∞); and H. Stahl’s theorem, see [50], on the best rational approximation
of xα on [0,1].

Let us consider two other examples of general systems of Markov functions much
more illustrative for our purpose.
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1.2.1 Angelesco Systems

In [2], A. Angelesco considered the following systems of functions. Let Δj , j =
0, . . . ,m, be pairwise disjoint bounded intervals contained in the real line and sj , j =
0, . . . ,m, a system of measures such that Co(supp sj ) = Δj .

Fix n ∈ Z
m+1+ , and consider the type II approximant of the so-called Angelesco

system of functions (ŝ0, . . . , ŝm) relative to n. It turns out that

∫

xνQn(x) dsj (x) = 0, ν = 0, . . . , nj − 1, j = 0, . . . ,m.

Therefore, Qn has nj simple zeros in the interior (with respect to the Euclidean
topology of R) of Δj . In consequence, since the intervals Δj are pairwise disjoint,
degQn = |n|, and Angelesco systems are type II perfect. Type I perfectness for An-
gelesco systems has not been studied.

Unfortunately, Angelesco’s paper received little attention, and such systems reap-
pear many years later in [39] where E.M. Nikishin deduces some of their formal
properties.

Though type II normality for Angelesco systems is so easy to deduce, the multiple
orthogonal polynomials and the rational approximations associated with them do not
have good asymptotic behavior. In [27] and [3], their logarithmic and strong asymp-
totic formulas, respectively, are given. In this respect, a different system of Markov
functions turns out to be much more interesting and foundational from the geometric
and analytic points of view.

1.2.2 Nikishin Systems

In an attempt to construct general classes of functions for which normality takes
place, in [40] E.M. Nikishin introduced the concept of an MT-system. Let Δα,Δβ

be two nonintersecting bounded intervals contained in the real line and σα ∈
M(Δα), σβ ∈ M(Δβ). With these two measures, we define a third one as follows
(using the differential notation):

d〈σα,σβ〉(x) = σ̂β(x) dσα(x);

that is, one multiplies the first measure by a weight formed by the Cauchy transform
of the second measure. Certainly, this product of measures is noncommutative.

Above, σ̂β denotes the Cauchy transform of the measure σβ . The reader may ar-
gue, and we agree, that the appropriate notation is σ̂β . However, throughout the paper,
we will need Cauchy transforms of measures with several sub-indices and supra-

indices; for example ŝ2
1,j (and much more extended). The correct notation causes

space consumption and aesthetic inconveniences. So, note carefully that ŝ2
1,j is not

the Cauchy transform of s sub-indexed with 1, j and then squared, but precisely the
Cauchy transform of a measure denoted s2

1,j . The good news is that powers rarely

appear in the paper, and they are clear from the context (for example, (−1)j or z2).
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Definition 1.2 Take a collection Δj , j = 0, . . . ,m, of intervals such that

Δj ∩ Δj+1 = ∅, j = 0, . . . ,m − 1.

Let (σ0, . . . , σm) be a system of measures such that Co(suppσj ) = Δj ,σj ∈
M(Δj ), j = 0, . . . ,m. We say that (s0, . . . , sm) = N (σ0, . . . , σm), where

s0 = σ0, s1 = 〈σ0, σ1〉, . . . , sm = 〈
σ0, 〈σ1, . . . , σm〉〉

is the Nikishin system of measures generated by (σ0, . . . , σm).

Fix n ∈ Z
m+1+ , and consider the type II approximant of the Nikishin system of

functions (ŝ0, . . . , ŝm) relative to n. It is easy to prove that
∫

xνQn(x) dsj (x) = 0, ν = 0, . . . , nj − 1, j = 0, . . . ,m.

All the measures sj have the same support; therefore, it is not immediate to conclude
that degQn = |n|. Nevertheless, if we denote

sj,k = 〈σj , σj+1, . . . , σk〉, j < k, sj,j = 〈σj 〉 = σj ,

the previous orthogonality relations may be rewritten as

∫ (

p0(x) +
m∑

k=1

pj (x)ŝ1,k(x)

)

Qn(x) dσ0(x) = 0, (1)

where p0, . . . , pm are arbitrary polynomials such that degpk ≤ nk − 1, k = 0, . . . ,m.

Definition 1.3 A system of real continuous functions u0, . . . , um defined on an in-
terval Δ is called an AT-system on Δ for the multi-index n ∈ Z

m+1+ if for any choice
of real polynomials (that is, with real coefficients) p0, . . . , pm,degpk ≤ nk − 1, the
function

m∑

k=0

pk(x)uk(x)

has at most |n| − 1 zeros on Δ. If this is true for all n ∈ Z
m+1+ , we have an AT system

on Δ.

In other words, u0, . . . , um forms an AT-system for n on Δ when the system of
functions

(
u0, . . . , x

n0−1u0, u1, . . . , x
nm−1um

)

is a Tchebyshev system on Δ of order |n| − 1. From the properties of Tchebyshev
systems (see [33, Theorem 1.1]), it follows that given x1, . . . , xN ,N < |n|, points in
the interior of Δ, one can find polynomials h0, . . . , hm, conveniently, with deghk ≤
nk − 1, such that

∑m
k=0 hk(x)uk(x) changes sign at x1, . . . , xN , and has no other

points where it changes sign on Δ.
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In [40], Nikishin stated without proof that the system of functions (1, ŝ1,1, . . . , ŝ1,m)

forms an AT-system for all multi-indices n such that n0 ≥ · · · ≥ nm (he proved it when
additionally n0 − nm ≤ 1). Due to (1), this implies that Nikishin systems are type II
weakly perfect.

The proof of Nikishin’s assertion is a consequence of [16, Theorem 4.1]. Actually,
Driver and Stahl proved normality for the wider class of multi-indices

Z
m+1+ (�) = {

n ∈ Z
m+1+ : 0 ≤ j < k ≤ m ⇒ nk ≤ nj + 1

}

(see also [29]). In [16, Theorem 4.2], for the same class of multi-indices, the authors
also proved type I weak perfectness for Nikishin systems. In the same paper (see
remark on p. 171), it is shown that when m = 1, Nikishin systems are type II perfect.
Improvements are also contained in [10, Theorem 1] (see also [23, Theorem 2]),
where normality is proved for all multi-indices in

Z
m+1+ (∗) = {

n ∈ Z
m+1+ :� ∃0 ≤ i < j < k ≤ m such that ni < nj < nk

}

and [20, Theorem 1], containing the proof that for m = 2, Nikishin systems are type II
perfect.

Ever since the appearance of [40], a subject of major interest for those involved
in simultaneous approximation was to determine whether or not Nikishin systems
are perfect. The main result of this paper gives a positive answer to this question.
Moreover, we will prove perfectness for mixed type Nikishin systems, containing
type I and type II as particular cases. The proof is based on the reduction of the
problem to the case of multi-indices with decreasing components (that is, to weak
perfectness). Hereafter,

Z
m+1+ (•) = {

n ∈ Z
m+1+ : n0 ≥ · · · ≥ nm

}
.

Notice that

Z
m+1+ (•) ⊂ Z

m+1+ (�) ⊂ Z
m+1+ (∗) ⊂ Z

m+1+ .

When m = 0, these sets are equal. For m = 1, the last two coincide. If m ≥ 2, they
are all distinct.

The proof of the main result relies on interesting reduction formulas concerning
products and ratios of Cauchy transforms of measures. We will see numerous con-
sequences of the perfectness of Nikishin systems in: convergence of simultaneous
Padé approximation, convergence of simultaneous quadrature rules, and asymptotic
properties of multiple orthogonal polynomials.

1.2.3 Mixed Type Nikishin Systems

In [47], Sorokin introduced the following construction. Let

F = (fj.k)

be an (m2 + 1) × (m1 + 1) dimensional matrix of analytic functions in some domain
D of the extended complex plane containing ∞. Fix a multi-index n = (n1;n2) ∈
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Z
m1+1
+ × Z

m2+1
+ such that |n1| = |n2| + 1. We write ni = (ni,0, . . . , ni,mi

), i = 1,2.

There exists a vector polynomial An = (an,0, . . . , an,m1) such that

(a) An �≡ 0,degan,k ≤ n1,k − 1, k = 0, . . . ,m1,

(b) (FA
t
n − D

t
n)(z) = (O(1/zn2,0+1), . . . , O(1/zn2,m2 +1)t =: O(1/zn2+1), z → ∞

for some m2 + 1 dimensional vector polynomial Dn (the super-index t means tak-
ing transpose and 0 denotes the zero vector). Finding An reduces to solving a linear
homogeneous system of |n2| equations determined by the conditions (b) on |n1| un-
knowns (the total number of coefficients of the polynomials an,k, k = 0, . . . ,m1).
Since |n2| + 1 = |n1|, a nontrivial solution exists.

Definition 1.4 A nonzero vector An satisfying (a)–(b) is called a mixed type vector
polynomial relative to F and n ∈ Z

m1+1
+ ×Z

m2+1
+ , |n1| = |n2|+1. If degan,k = n1,k −

1, k = 0, . . . ,m1, the multi-index n is called mixed type normal. F is mixed type
perfect when all multi-indices in Z

m1+1
+ ×Z

m2+1
+ such that |n1| = |n2|+1 are normal.

This construction has as particular cases type I (m2 = 0) and type II (m1 = 0)

polynomials.
Let S1 = (s1

0,0, . . . , s
1
0,m1

) = N (σ 1
0 , . . . , σ 1

m1
), S2 = (s2

0,0, . . . , s
2
0,m2

) = N (σ 2
0 ,

. . . , σ 2
m2

), σ 1
0 = σ 2

0 , be two given Nikishin systems generated by m1 + 1 and m2 + 1
measures, respectively. We emphasize the fact that both Nikishin systems stem from
the same basis measure σ 1

0 = σ 2
0 , but there is no other restriction on them. Let us

introduce the row vectors

U = (
1, ŝ2

1,1, . . . , ŝ
2
1,m2

)
, V = (

1, ŝ1
1,1, . . . , ŝ

1
1,m1

)

and the (m2 + 1) × (m1 + 1) dimensional matrix function

W = U
t
V.

Define the matrix Markov type function

Ŝ(z) =
∫

W(x) dσ 2
0 (x)

z − x
,

understanding that integration is carried out entry by entry on the matrix W. We say
that Ŝ is a mixed type Nikishin system of functions.

In the rest of the paper, we will study mixed type Nikishin systems and their mixed
type polynomials. Occasionally, we reduce the study to type II (m1 = 0). In such
cases, for simplicity, we reduce the notation. Namely, n = (n0, . . . , nm), the vector
function will be f = (ŝ0, . . . , ŝm), where m = m2, and (s0, . . . , sm) = N (σ0, . . . , σm).
The mixed type polynomials An will then be denoted by Qn.

1.3 Statement of the Main Results

Mixed type Nikishin systems and their associated mixed type polynomials satisfy
many interesting properties. Let us begin with:
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Theorem 1.1 Let (s1,1, . . . , s1,m) = N (σ1, . . . , σm) be given. Then the system
(1, ŝ1,1, . . . , ŝ1,m) forms an AT-system on any interval Δ disjoint from Δ1 =
Co(suppσ1). Moreover, for each n ∈ Z

m+1+ , and arbitrary polynomials with real
coefficients pk,degpk ≤ nk − 1, k = 0, . . . ,m, the linear form p0 +∑m

k=1 pkŝ1,k has
at most |n| − 1 zeros in C \ Δ1.

From here, we can prove:

Theorem 1.2 The matrix Ŝ is mixed type perfect. For each n ∈ Z
m1+1
+ × Z

m2+1
+ ,

|n1| = |n2| + 1, the vector polynomial An is uniquely determined up to a constant
factor.

In particular, this means that Nikishin systems are type I and type II perfect.
An easy consequence of Theorem 1.2 (more precisely, of Lemma 2.3 below) is

that the linear form

An := an,0 +
m1∑

k=1

an,k ŝ
1
1,k

has at least |n2| sign changes in the interior (with respect to the Euclidean topology
of R) of the interval Δ0. In particular, for any n ∈ Z

m+1+ , the type II polynomial
Qn(= an,0) has all its zeros located inside Co(suppσ0). This has a striking conse-
quence in terms of the convergence of type II rational approximation of Nikishin
systems.

In [40], it was proved that for (s0, s1) = N (σ0, σ1),

lim
n→∞

Pn,k

Qn
= ŝk, k = 0,1,

uniformly on compact subsets of C \ Co(suppσ0), where the limit is taken along the
sequence n = (n,n), n ∈ Z+. When m2 = 0, the corresponding result is Markov’s
classical theorem on the convergence of Padé approximants, see [38]. The extension
to diagonal sequences for arbitrary m and n ∈ Λ ⊂ Z

m+1+ (•) such that |n| → ∞ and
max{n0 −nm : n ∈ Λ} < ∞ is contained in [12, Corollary 1] (which also includes the
case when the measures have unbounded support and a Carleman type condition is
satisfied). Combining Theorem 1.2 and [22, Theorem 1], we obtain:

Corollary 1.1 Let (s0,0, . . . , s0,m) = N (σ0, . . . , σm) and Λ ⊂ Z
m+1+ be given. As-

sume that there exist constants c > 0, κ < 1, such that

nj ≥ |n|
m + 1

− c|n|κ , j = 0, . . . ,m.

Then

lim
n∈Λ

Pn,k

Qn
= ŝ0,k, K ⊂ C \ Co(suppσ0), k = 0, . . . ,m.

Moreover,

lim sup
n∈Λ

∥
∥
∥
∥ŝ0,k − Pn,k

Qn

∥
∥
∥
∥

1/2|n|

K
≤ δK < 1, k = 0, . . . ,m,



Constr Approx (2011) 34:297–356 305

where ‖ · ‖K denotes the uniform norm on K,

δK = max
{|ϕt (z)| : z ∈ K, t ∈ Co(suppσ1) ∪ {∞}},

and ϕt represents conformally C \ Co(suppσ0) onto the unit circle with ϕt (t) = 0,

ϕ′
t (t) > 0.

Throughout the paper, the notation

lim
n∈Λ

gn(z) = g(z), K ⊂ Ω,

stands for uniform convergence of the sequence of functions {gn}, n ∈ Λ, to the func-
tion g on each compact subset K contained in the indicated region (in this case Ω).

This result gives a very general extension of Markov’s theorem. Notice that the
sequences are not required to be close to diagonal (equal components in the multi-
indices).

Since the zeros xn,j , j = 1, . . . , |n|, of Qn are simple, we can decompose Pn,k/Qn
as follows:

Pn,k(z)

Qn(z)
=

|n|∑

i=1

λn,k,i

z − xn,i

, λn,k,i = lim
z→xn,i

(z − xn,i )
Pn,k(z)

Qn(z)
= Pn,k(xn,i )

Q′
n(xn,i )

.

The following analog of the Gauss–Jacobi quadrature formula holds:

Corollary 1.2 Let (s0,0, . . . , s0,m) = N (σ0, . . . , σm) and n = Z
m+1+ be given. Then

for each k = 0, . . . ,m and every polynomial p,degp ≤ |n| + nk − 1,

∫

p(x)ds0,k(x) =
|n|∑

i=1

λn,k,ip(xn,i ).

If n = (n,n + 1, . . . , n + 1), then

sign(λn,k,i ) = sign(s0,k), i = 1, . . . , |n|.

Consequently, for the sequence of multi-indices {(n,n+ 1, . . . , n+ 1)}n∈Z+ ⊂ Z
m+1+ ,

for any bounded Riemann–Stieltjes integrable function f on Co(suppσ0) and each
k = 0, . . . ,m,

∫

f (x)ds0,k(x) = lim
n→∞

|n|∑

i=1

λn,k,if (xn,i ).

This result provides convergence of the quadrature formulas simultaneously for
all the measures in the Nikishin system taking the same nodes in all the quadrature
formulas. Simultaneous quadrature formulas were studied in [9] in connection with
certain applications to computer graphics illuminating bodies. Whenever feasible, si-
multaneous quadrature formulas are more efficient, from the computational point of



306 Constr Approx (2011) 34:297–356

view, compared to the use of Gauss–Jacobi quadrature independently on each mea-
sure. In [23], a more detailed study of simultaneous quadrature formulas for Nikishin
systems of measures may be found. We wish to point out that for the class of multi-
indices considered in Corollary 1.2, all the statements in [23, Corollary 2] hold true
for all k = 0, . . . ,m.

Theorem 1.1 follows easily from:

Theorem 1.3 Let (s1,1, . . . , s1,m) = N (σ1, . . . , σm) and n = (n0, . . . , nm) ∈ Z
m+1+ be

given. Then there exists a permutation λ of (0, . . . ,m) which reorders the components
of n decreasingly, nλ(0) ≥ · · · ≥ nλ(m), and an associated Nikishin system S(λ) =
(r1,1, . . . , r1,m) = N (ρ1, . . . , ρm) such that for any real polynomials pk,degpk ≤
nk − 1, there exist real polynomials qk such that

p0 +
m∑

k=1

pkŝ1,k =
(

q0 +
m∑

k=1

qkr̂1,k

)

ŝ1,λ(0), degqk ≤ nλ(k) − 1, k = 0, . . . ,m.

We wish to point out that here ŝ1,0 denotes the function identically equal to 1;
this is relevant when λ(0) = 0. There may be several permutations λ for which the
statement holds, each one with an associated S(λ). We do not know if there is an S(λ)

for each λ which reorders the components of n decreasingly. As reference, we can
say that there exists S(λ) (but not exclusively) for that λ which additionally satisfies
the condition that for all 0 ≤ j < k ≤ n with nj = nk , then also λ(j) < λ(k).

Theorem 1.4 Suppose that S1 = (s1
0,0, . . . , s

1
0,m1

) = N (σ 1
0 , . . . , σ 1

m1
), S2 = (s2

0,0,

. . . , s2
0,m2

) = N (σ 2
0 , . . . , σ 2

m2
), σ 1

0 = σ 2
0 , and n = (n1;n2) ∈ Z

m1+1
+ × Z

m2+1
+ , |n1| =

|n2| + 1, be given. Let λ2 and S(λ2) = N (ρ2
1 , . . . , ρ2

m2
) be a permutation and a

Nikishin system associated with N (σ 2
1 , . . . , σ 2

m2
) and n2 by Theorem 1.3. Construct

(r2
0,0, . . . , r

2
0,m2

) = N (ρ2
0 , . . . , ρ2

m2
), where ρ2

0 = ŝ2
1,λ2(0)

σ 2
0 . Then

∫

xν An(x) dr2
0,k(x) = 0, ν = 0, . . . , n2,λ2(k) − 1, k = 0, . . . ,m2.

Using Theorem 1.4 and results from [24], we can obtain logarithmic and ratio
asymptotics for sequences {An}n∈Λ,Λ ⊂ Z

m1+1
+ × Z

m2+1
+ , |n1| = |n2| + 1, under

appropriate assumptions on the measures generating S1, S2, and Λ.
A positive measure σ is said to be regular if

lim
n→∞κ

1/n
n = 1/cap(suppσ),

where cap(·) denotes the logarithmic capacity of the Borel set (·) and κn denotes the
leading coefficient of the nth orthonormal polynomial with respect to σ . A negative
measure σ is regular if −σ is regular. In either case, we write σ ∈ Reg. For equiva-
lent forms of defining regular measures, see sections 3.1 to 3.3 in [51] (in particular
Theorem 3.1.1). For short, we write (S1, S2) ∈ Reg to mean that all the measures
which generate both Nikishin systems (S1, S2) are regular.
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A region Ω of the extended complex plane which has a compact complement E

is said to be regular if the Dirichlet problem has a solution on Ω for any continuous
function defined on ∂U = ∂E. This is equivalent to proving that the Green’s function
on Ω with singularity at ∞ can be extended continuously to all C (for details on
Green’s function and regular domains, see [30, Theorem 10.12]). In this case, it is
customary to say also that E is a regular compact set.

Definition 1.5 We say that a compact set E is quasi-regular when E = Ẽ ∪ e, where
Ẽ is a regular compact set and e is at most a denumerable set whose accumulation
points lie in Ẽ.

Let Λ = Λ(p1,0, . . . , p1,m1;p2,0, . . . , p2,m2) ⊂ Z
m1+1
+ × Z

m2+1
+ be an infinite se-

quence of distinct multi-indices such that for each n = (n1,n2) ∈ Λ, |n1| = |n2| + 1,
and

lim
n∈Λ

n1,j

|n1| = p1,j ∈ (0,1), j = 0, . . . ,m1,

lim
n∈Λ

n2,j

|n2| = p2,j ∈ (0,1), j = 0, . . . ,m2.

The following two results require some normalization on the sequence of linear
forms under consideration. By Theorem 1.2, for each n ∈ Z

m1+1
+ × Z

m2+1
+ , |n1| =

|n2| + 1, An is uniquely determined except for a constant factor.

Definition 1.6 Let min{n1,0, . . . , n1,m1} ≥ 1. We say that An is monic if the leading
coefficient of an,j is 1, where j is either m1 when n1,m1 = min{n1,0, . . . , n1,m1}, or
if n1,m1 > min{n1,0, . . . , n1,m1} it is such that n1,j = min{n1,0, . . . , n1,m1} and n1,j <

n1,k, j < k ≤ m1.

We do not need to normalize An when n1 has components equal to zero. We have:

Theorem 1.5 Let Λ = Λ(p1,0, . . . , p1,m1;p2,0, . . . , p2,m2) ⊂ Z
m1+1
+ × Z

m2+1
+ ,

(S1, S2) ∈ Reg, S1 = N (σ 1
0 , . . . , σ 1

m1
), and S2 = N (σ 2

0 , . . . , σ 2
m2

) be given. As-
sume that the supports of the measures which generate S1, S2 are quasi-regular.
Then the associated sequence of monic mixed type multiple orthogonal linear forms
{An},n ∈ Λ, satisfies

lim
n∈Λ

∣
∣An(z)

∣
∣1/|n1| = G(z), K ⊂ C \ (Δ1

0 ∪ Δ1
1

)
,

where Δ1
i = Co(suppσ 1

i ), i = 0,1.

A formula for G is given in (48) during the proof of Theorem 1.5. It is expressed
in terms of the solution of a vector equilibrium problem for the logarithmic potential.
The matrix governing the interaction between the different potentials in the system
depends on (p1,0, . . . , p1,m1;p2,0, . . . , p2,m2).

By allowing quasi-regularity of the supports, this theorem is already novel for stan-
dard orthogonal polynomials (m1 = m2 = 0) (see Lemma 5.3 below). Theorem 1.5
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unifies the study of the logarithmic asymptotics of type I and type II multiple orthog-
onal polynomials under the most general conditions on the measures, their supports,
and the behavior of the sequence of multi-indices on which the limit is taken. It is mo-
tivated by the results of [11, 29], and [41], where type I and type II were considered
separately, and the generating measures are supported on intervals on which their
Radon Nikodym derivative is positive almost everywhere. In [24, Theorem 1.3] an
analog was obtained assuming that the components of n1,n2 are decreasing and the
supports of the generating measures are regular sets. The first study of the logarithmic
asymptotics of mixed type multiple orthogonal polynomials of Nikishin systems was
carried out in [48].

For the next result, we assume that supp(σ i
j ) = Δ̃i

j ∪ ei
j , j = 0, . . . ,mi, i = 1,2,

where Δ̃i
j is a bounded interval of the real line, |(σ i

j )
′| > 0 a.e. on Δ̃i

j , and ei
j is at

most a denumerable set without accumulation points in R \ Δ̃i
j . We denote this by

writing

S1 = N ′(σ 1
0 , . . . , σ 1

m1

)
, S2 = N ′(σ 2

0 , . . . , σ 2
m2

)
.

Notice the “prime” on N . In the context of this paper, this condition is the analog of
the one imposed by S.A. Denisov (see [15]) in his extension of E.A. Rakhmanov’s
celebrated theorem on ratio asymptotics of orthogonal polynomials. The original
proof of Rakhmanov’s theorem is in [44, 45]. An improved and reduced version of
the proof by the author may be found in [46].

Fix a vector l := (l1; l2) where 0 ≤ l1 ≤ m1 and 0 ≤ l2 ≤ m2. We define the multi-
index nl := (n1 +el1;n2 +el2) = (nl1

1 ;nl2
2 ), where eli denotes the unit vector of length

mi + 1 with all components equal to zero except the component (li + 1), which
equals 1.

Fix two permutations λ1, λ2, of (0, . . . ,m1) and (0, . . . ,m2), respectively, and
a positive number C. By Λ(λ1, λ2,C) we denote the set of all multi-indices n =
(n1;n2) ∈ Z

m1+1
+ × Z

m2+1
+ such that

(a) |n1| = |n2| + 1,

(b) λ1, S(λ1), and λ2, S(λ2), are solutions given by Theorem 1.3 to n1, N (σ 1
1 ,

. . . , σ 1
m1

), and n2, N (σ 2
1 , . . . , σ 2

m2
), respectively.

(c) ni,λi (0) − ni,λi (mi) ≤ C, i = 1,2.

Any sequence Λ ⊂ Z
m1+1
+ × Z

m2+1
+ of distinct multi-indices satisfying a) and

sup
{
max{ni,0, . . . , ni,mi

} − min{ni,0, . . . , ni,mi
} : n ∈ Λ, i = 1,2

}
< ∞

is contained in ∪λ1,λ2Λ(λ1, λ2,C) for some sufficiently large C, where the union is
taken over all possible pairs of permutations. Thus, any such Λ can be partitioned in
a finite number of sequences of indices satisfying (a)–(c) for the same pair λ1, λ2 of
permutations, plus a set containing a finite number of multi-indices.

Theorem 1.6 Let S1 = N ′(σ 1
0 , . . . , σ 1

m1
), S2 = N ′(σ 2

0 , . . . , σ 2
m2

) and λ1, λ2, be

given. Fix l = (l1; l2),0 ≤ l1 ≤ m1,0 ≤ l2 ≤ m2. Let Λ ⊂ Z
m1+1
+ × Z

m2+1
+ be an in-

finite sequence of distinct multi-indices such that for all n ∈ Λ, n,nl ∈ Λ(λ1, λ2,C)
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for some sufficiently large C. Then the associated sequence of monic mixed type mul-
tiple orthogonal linear forms {An},n ∈ Λ, satisfies

lim
n∈Λ

Anl (z)

An(z)
= A(l)(z), K ⊂ C \ (suppσ 1

0 ∪ Co
(
suppσ 1

1

))
,

where A(l) is a one-to-one analytic function in C \ (Δ̃1
0 ∪ Δ̃1

1).

An expression for A(l) will be given in (49) at the end of the proof of this result.
The answer is given in terms of a conformal representation of an associated Riemann
surface with m1 + m2 + 2 sheets and genus zero onto the extended complex plane. It
also depends on l, λ1, and λ2. We wish to point out that if Λ ⊂ Λ(λ1, λ2,C), taking
l1 = λ1(0) and l2 = λ2(0), then nl ∈ Λ(λ1, λ2,C + 1), for all n ∈ Λ. Therefore, for
any sequence Λ ⊂ Λ(λ1, λ2,C), we can always find at least one pair (l1; l2) for which
ratio asymptotics can be proved. In general, (l1; l2) is admissible if λ1 and λ2 applied
to nl1

1 and nl2
2 , respectively, are also decreasing for all n ∈ Λ except at most a finite

number of multi-indices.
For type II multiple orthogonal polynomials, with generating measures supported

on intervals, and multi-indices in Z
m+1+ (•), ratio asymptotics was proved in [6]. Dif-

ferent extensions followed in [36] and [24]. Theorem 1.6 follows from Theorem 1.4
and [24, Theorem 6.4].

Let M be the least common multiple of m1 + 1 and m2 + 1. Set ñ = (̃n1; ñ2),
which is obtained by adding M/(m1 + 1) to each component of n1 and M/(m2 + 1)

to each component of n2. We have:

Corollary 1.3 Let S1 = N ′(σ 1
0 , . . . , σ 1

m1
), S2 = N ′(σ 2

0 , . . . , σ 2
m2

) be given. Let Λ ⊂
Z

m1+1
+ × Z

m2+1
+ be an infinite sequence of distinct multi-indices such that |n1| =

|n2| + 1 for all n ∈ Λ and

sup
{
max{ni,0, . . . , ni,mi

} − min{ni,0, . . . , ni,mi
} : n ∈ Λ

}
< ∞, i = 1,2.

Then

lim
n∈Λ

Añ(z)

An(z)
= A(z), K ⊂ C \ (suppσ 1

0 ∪ Co
(
suppσ 1

1

))
.

An expression for A appears in (50).
The strong asymptotics of type II multiple orthogonal polynomials for Nikishin

systems was given by A. I. Aptekarev in [4] for diagonal sequences of multi-indices
and systems of generating measures formed by weights satisfying Szegő’s condition.
It remains the best result in this respect. To conclude the introduction, we call the
reader’s attention to the excellent survey by J. Nuttall [43] on Hermite–Padé poly-
nomials. Here, in the form of a general conjecture, the author draws the general pic-
ture of the asymptotic behavior of Hermite–Padé polynomials in terms of functions
which are solutions of boundary value problems on associated Riemann surfaces. Our
asymptotic results once more confirm his (at that time somewhat bold) predictions.
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2 Proof of Theorems 1.1, 1.2 and Corollary 1.1

We begin with some auxiliary lemmas.

Lemma 2.1 Let sk, k = 1, . . . ,m, be finite signed Borel measures with compact
support such that Co(supp sk) = Δ ⊂ R. Let F(z) = f0(z) + ∑m

k=1 fk(z)ŝk(z) ∈
H(C \ Δ), where fk ∈ H(V ), k = 0, . . . ,m, and V is a neighborhood of Δ. If
F(z) = O(1/z2), z → ∞, then

m∑

k=1

∫

fk(x) dsk(x) = 0, (2)

whereas F(z) = O(1/z), z → ∞, implies that

F(z) =
m∑

k=1

∫
fk(x) dsk(x)

z − x
. (3)

Proof Let Γ ⊂ V be a positively oriented closed smooth Jordan curve that sur-
rounds Δ. If F(z) = O(1/z2), z → ∞, from Cauchy’s theorem, Fubini’s theorem,
and Cauchy’s integral formula, it follows that

0 =
∫

Γ

F (z) dz =
m∑

k=1

∫

Γ

fk(z)ŝk(z) dz

=
m∑

k=1

∫ ∫

Γ

fk(z) dz

z − x
dsk(x) = 2πi

m∑

k=1

∫

fk(x) dsk(x),

and we obtain (2). On the other hand, if F(z) = O(1/z), z → ∞, and we assume
that z is in the unbounded connected component of the complement of Γ , Cauchy’s
integral formula and Fubini’s theorem render

F(z) = 1

2πi

∫

Γ

F (ζ ) dζ

z − ζ

= 1

2πi

m∑

k=1

∫

Γ

fk(ζ )ŝk(ζ ) dζ

z − ζ

=
m∑

k=1

∫
1

2πi

∫

Γ

fk(ζ ) dζ

(z − ζ )(ζ − x)
dsk(x) =

m∑

k=1

∫
fk(x) dsk(x)

z − x
,

which is (3). �

Lemma 2.2 Let (s1,1, . . . , s1,m) = N (σ1, . . . , σm) and n ∈ Z
m+1+ be given. Consider

the linear form

Ln = p0 +
m∑

k=1

pkŝ1,k, degpk ≤ nk − 1, k = 0, . . . ,m,
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where the polynomials pk have real coefficients. Assume that n0 = max{n0, n1 −
1, . . . , nm − 1}. If Ln had at least |n| zeros in C \ Δ1, the reduced form p1 +∑m

k=2 pkŝ2,k would have at least |n| − n0 zeros in C \ Δ2.

Proof The function Ln is symmetric with respect to the real line Ln(z) = Ln(z);
therefore, its zeros come in conjugate pairs. Thus, if Ln has at least |n| zeros in
C \ Δ1, there exists a polynomial wn,degwn ≥ |n|, with real coefficients and zeros
contained in C \ Δ1 such that Ln/wn ∈ H(C \ Δ1). This function has a zero of order
≥ |n| − n0 + 1 at ∞. Consequently, for all ν = 0, . . . , |n| − n0 − 1,

zν Ln

wn
= O

(
1/z2) ∈ H(C \ Δ1), z → ∞,

and

zν Ln

wn
= zνp0

wn
+

m∑

k=1

zνpk

wn
ŝ1,k.

From (2), it follows that

0 =
∫

xν

(

p1 +
m∑

k=2

pkŝ2,k

)

(x)
dσ1(x)

wn(x)
, ν = 0, . . . , |n| − n0 − 1,

taking into consideration that s1,1 = σ1 and ds1,k(x) = ŝ2,k(x) dσ1(x), k = 2, . . . ,m.
These orthogonality relations imply that p1 + ∑m

k=2 pkŝ2,k has at least |n| − n0
sign changes in the interior of Δ1. In fact, if there were at most |n| − n0 − 1 sign
changes, one could easily construct a polynomial p of degree ≤ |n| − n0 − 1 such
that p(p1 +∑m

k=2 pkŝ2,k) does not change sign on Δ1, which contradicts the orthog-
onality relations. Therefore, already in the interior of Δ1 ⊂ C \ Δ2, the reduced form
would have the number of zeros claimed. �

Using induction, this lemma already allows one to prove the AT property for multi-
indices in Z

m+1+ (�). That result is due to Driver and Stahl (see [17, Theorem 2.4.1]).
We reduce the general case to the one with n0 = max{n0, n1 −1, . . . , nm −1} with:

Lemma 2.3 Let (s1,1, . . . , s1,m) = N (σ1, . . . , σm),m ≥ 1, and n ∈ Z
m+1+ be given.

Consider the linear form Ln defined in Lemma 2.2. Assume that nj = max{n0 + 1,

n1, . . . , nm}. Then there exist a Nikishin system (s∗
1,1, . . . , s

∗
1,m) = N (σ ∗

1 , . . . , σ ∗
m),

a multi-index n∗ = (n∗
0, . . . , n

∗
m) ∈ Z

m+1+ which is a permutation of n with n∗
0 = nj ,

and polynomials with real coefficients p∗
k ,degp∗

k ≤ n∗
k − 1, k = 0, . . . ,m, such that

Ln = p0 +
m∑

k=1

pkŝ1,k =
(

p∗
0 +

m∑

k=1

p∗
k ŝ

∗
1,k

)

ŝ1,j = L∗
nŝ1,j .

The proof is quite intricate and we leave it to the next section. Instead, let us prove
Theorem 1.1 assuming that the Lemma 2.3 is true.
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Proof of Theorem 1.1 Obviously, the first statement of the theorem follows from the
second. We prove the second one using induction on m. For m = 0, the linear form
reduces to a polynomial of degree ≤ n0 − 1 and thus has at most n0 − 1 zeros in the
complex plane as claimed.

Assume that the result is true for any Nikishin system with m − 1(≥ 0) measures,
and let us show that it is also valid for Nikishin systems with m measures. To the
contrary, let us suppose that Ln has at least |n| zeros on C \ Δ1.

Should n0 = max{n0, n1, . . . , nm}, by Lemma 2.2 the linear form p1 +∑m
k=2 pkŝ2,k

would have at least |n| − n0 zeros in C \ Δ2. Now, |n| − n0 is the norm of the multi-
index (n1, . . . , nm) which together with the Nikishin system N (σ2, . . . , σm) define
the reduced form. This contradicts the induction hypothesis.

Suppose that nj = max{n0 + 1, n1, . . . , nm}. According to Lemma 2.3, the linear
form L∗

n has the same zeros as Ln in C \ Δ1, since ŝ1,j is never zero on that region.
The multi-index n∗ which determines L∗

n has the same norm as n and its first com-
ponent satisfies the assumptions of Lemma 2.2. Following the same arguments as
before, we arrive at a contradiction. The proof is complete. �

For the proof of Theorem 1.2 and Corollary 1.1, we also use:

Lemma 2.4 Let Ŝ and n ∈ Z
m1+1
+ × Z

m2+1
+ , |n1| = |n2| + 1, be given. Then An sat-

isfies
∫

Ln2(x)An(x) dσ 2
0 (x) = 0 (4)

for any linear form

Ln2(x) = p0(x) +
m2∑

j=1

pj (x)ŝ2
1,j (x),

where the pj , j = 0, . . . ,m2, denote arbitrary polynomials such that degpj ≤
n2,j − 1. An has exactly |n2| zeros in C \ Co(suppσ 1

1 ), they are simple, and they
lie in the interior of Co(suppσ 1

0 ).

Proof In fact, from the condition (b) of Definition 1.4, it follows that there exists a
polynomial dn,j such that for any polynomial pj ,degpj ≤ n2,j −1, j ∈ {0, . . . ,m2},

pj (z)

(
m1∑

k=0

an,k(z)

∫
ŝ2

1,j (x)ŝ1
1,k(x) dσ 2

0 (x)

z − x
− dn,j (z)

)

= O
(
1/z2), z → ∞,

(here ŝ2
1,0 ≡ 1) and the function on the left-hand side is holomorphic in C \

Co(suppσ 2
0 ). Using Lemma 2.1, it follows that

∫

pj (x)ŝ2
1,j (x)

m1∑

k=0

an,k(x)ŝ1
1,k(x) dσ 2

0 (x) = 0.

Adding these relations for j = 0, . . . ,m2, we obtain (4).
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From Theorem 1.1, we know that An has at most |n1| − 1 = |n2| zeros on C \
Co(suppσ 1

1 ). From (4) it follows that this form has at least |n2| sign changes in the
interior of Co(suppσ 2

0 ) = Co(suppσ 1
0 ). Therefore, the last statement is obtained. �

Let us prove Theorem 1.2 assuming that Lemma 2.3 (Theorem 1.1) is true.

Proof of Theorem 1.2 Suppose that for some n,An is not normal. That is, some com-
ponent an,k of An has degan,k ≤ n1,k −2. According to Theorem 1.1, An can have on
the interval Co(suppσ 2

0 ) at most |n1|−2 = |n2|−1 zeros. Consequently, this function
can have in the interior of Co(suppσ 2

0 ) at most N ≤ |n2| − 1 sign changes. Suppose
this is the case, and let x1, . . . , xN be the points where it changes sign. According
to Theorem 1.1, (1, ŝ2

1,1, . . . , ŝ
2
1,m2

) is also an AT system. Using the properties of
Tchebyshev systems, we can find polynomials p0, . . . , pm2, with degpj ≤ n2,j − 1,

such that Ln(x) = p0(x) +∑m2
j=1 pj (x)ŝ2

1,j (x) changes sign at x1, . . . , xN , and has

no other points where it changes sign in the interior of Co(suppσ 2
0 ). Therefore, the

function Ln(x)An(x) has constant sign on Co(suppσ 2
0 ), but this contradicts (4) since

σ 2
0 is a measure with constant sign whose support contains infinitely many points.

Thus, degan,k = n1,k − 1, k = 0, . . . ,m1, and perfectness has been established.
Let us assume that there are two noncollinear solutions An,A

∗
n, to (a)–(b). Then

there exists a real constant C �= 0 such that An − CA
∗
n �≡ 0 and at least one of the

components of An −CA
∗
n satisfies deg(an,k −Ca∗

n,k) ≤ n1,k −2. This is not possible,
since An − CA

∗
n also solves (a)–(b), and according to what was proved above, all its

components must have maximum possible degree. �

Definition 2.1 Let E be a subset of the complex plane and U the class of all cover-
ings of E by disks Un. The radius of Un is denoted by |Un|. The (one-dimensional)
Hausdorff content of E is

h(E) = inf
{∑

|Un| : {Un} ∈ U
}
.

Let {fn}n∈Λ be a sequence of functions defined on a region D ⊂ C. We say that
{fn}n∈Λ converges to f in Hausdorff content on D if, for every compact set K ⊂ D

and any ε > 0,

lim
n∈Λ

h
({

z ∈ K : |fn(z) − f (z)| > ε
})= 0.

We denote this by

H − lim
n→∞fn = f, K ⊂ D.

In [25, Lemma 1], A.A. Gonchar proved that if the functions fn are holomorphic
in D and they converge in Hausdoff content to f in D, then f is in fact holomorphic
in D (more precisely, differs from a holomorphic function on a set of zero Hausdorff
content), and the convergence (to the equivalent holomorphic function) is uniform on
each compact subset of D.
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Proof of Corollary 1.1 In [22, Theorem 1], it was proved that under the assumptions
of the corollary, for each k = 0, . . . ,m,

H − lim
n∈Λ

Rn,k = ŝk, K ⊂ C \ Co(suppσ0).

Due to Gonchar’s lemma and the last assertion of Lemma 2.4, it follows that conver-
gence is uniform on each compact subset of C \ Co(suppσ0). Regarding the proof of
the rate of convergence, we refer to the last sentence on page 104 of [22] (see also
[22, Corollary 1]). �

3 Proof of Lemma 2.3 and Corollary 1.2

It is well known (see appendix in [33] and [51, Theorem 6.3.5]) that for each s ∈
M(Δ), there exists a measure τ ∈ M(Δ) and �(z) = az + b, a = 1/|s|, b ∈ R, such
that

1/ŝ(z) = �(z) + τ̂ (z), (5)

where |s| is the total variation of the measure s. For convenience, we call τ the inverse
measure of s. Such measures will appear frequently in our reasonings, so we will fix
a notation to distinguish them. They will always refer to inverses of measures denoted
by s and will carry over to them the corresponding sub-indices. The same goes for
the polynomials �. For instance, if sα,β = 〈σα,σβ〉,

1/ŝα,β(z) = �α,β(z) + τ̂α,β(z).

For convenience, sometimes we write 〈σα,σβ̂〉 in place of ŝα,β . This is especially
useful later on where we need the Cauchy transforms of complicated expressions of
products of measures for which we do not have a shorthand notation. Since sα,α = σα ,
we also write

1/σ̂α(z) = �α,α(z) + τ̂α,α(z).

Lemma 3.1 Let σα ∈ M(Δα), σβ ∈ M(Δβ), and Δα ∩ Δβ = ∅. Then:

σ̂α(z)σ̂β(z) = 〈σα,σβ̂〉(z) + 〈σβ,σα̂〉(z), z ∈ C \ (Δα ∪ Δβ), (6)

σ̂α(z)

〈σα,σβ̂〉(z) = |σα|
|〈σασβ〉| +

∫ 〈σβ,σα̂〉(xα)

σ̂β(xα)

dτα,β(xα)

z − xα

= |σα|
|〈σα,σβ〉| +

〈
τα,β

σ̂β

, σβ, σα

〉̂

(z), (7)

〈σα,σβ̂〉(z)
σ̂α(z)

= |〈σα,σβ〉|
|σα| −

∫ 〈σβ,σα̂〉(xα) dτα,α(xα)

z − xα

= |〈σα,σβ〉|
|σα| − 〈τα,α, σβ, σα̂〉(z). (8)
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Proof In fact, (6) follows from the chain of equalities

σ̂α(z)σ̂β(z) =
∫ ∫

dσα(xα) dσβ(xβ)

(z − xα)(z − xβ)
=
∫ ∫ (

1

z − xα

− 1

z − xβ

)
dσα(xα) dσβ(xβ)

xα − xβ

=
∫

σ̂α(xβ)
dσβ(xβ)

z − xβ

+
∫

σ̂β(xα)
dσα(xα)

z − xα

= 〈σα,σβ̂〉(z) + 〈σβ,σα̂〉(z).

Notice that

σ̂α(z)

〈σα,σβ̂〉(z) − |σα|
|〈σασβ〉| = O

(
1

z

)

∈ H(C \ Δα), z → ∞.

From (5) and (6), it follows that

σ̂α(z)

〈σα,σβ̂〉(z) = σ̂β(z)σ̂α(z)

σ̂β(z)〈σα,σβ̂〉(z) = 〈σα,σβ̂〉(z) + 〈σβ,σα̂〉(z)
σ̂β(z)〈σα,σβ̂〉(z)

= 1

σ̂β(z)
+ 〈σβ,σα̂〉(z)

σ̂β(z)
�α,β + 〈σβ,σα̂〉(z)

σ̂β(z)
τ̂α,β(z).

Since − |σα |
|〈σασβ 〉| + 1

σ̂β
+ 〈σβ,σα̂〉

σ̂β
�α,β and 〈σβ,σα̂〉

σ̂β
are analytic on a neighborhood of the

interval Δα , which contains the support of τα,β , relation (3) implies (7).
The proof of (8) is similar but somewhat more direct. Again, we have that

〈σα,σβ̂〉(z)
σ̂α(z)

− |〈σα,σβ〉|
|σα| = O

(
1

z

)

∈ H(C \ Δα), z → ∞.

From (5) and (6), we get

〈σα,σβ̂〉(z)
σ̂α(z)

= σ̂α(z)σ̂β(z) − 〈σβ,σα̂〉(z)
σ̂α(z)

= σ̂β(z) − 〈σβ,σα̂〉(z)�α,α(z) − 〈σβ,σα̂〉(z)τ̂α,α(z).

But −|〈σα,σβ 〉|
|σα | + σ̂β − 〈σβ,σα̂〉�α,α and 〈σβ,σα̂〉 are analytic in a neighborhood of

Δα ; therefore, (3) implies (8). �

Formulas (5)–(6) are the building blocks for (7)–(8) and many more interesting
relations. Let us further extend Lemma 3.1. The new formulas may be put into two
groups, since (9) may be regarded a special case of (10) and (11)–(12) as special
cases of (13). Putting each group in one formula causes some notational incongruence
which we prefer to avoid for the benefit of the reader.

Lemma 3.2 Let (s1,1, . . . , s1,m) = N (σ1, . . . , σm) be given. Then:

ŝ1,k

ŝ1,1
= |s1,k|

|s1,1| − 〈
τ1,1, 〈s2,k, σ1〉̂

〉
, 1 = j < k ≤ m, (9)
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ŝ1,k

ŝ1,j

= |s1,k|
|s1,j | + (−1)j

〈
τ1,j , 〈τ2,j , s1,j 〉, . . . , 〈τj,j , sj−1,j 〉, 〈sj+1,k, σj 〉̂

〉
,

2 ≤ j < k ≤ m, (10)

ŝ1,1

ŝ1,j

= |s1,1|
|s1,j | +

〈
τ1,j

ŝ2,j

, 〈s2,j , σ1〉
〉̂

= |s1,1|
|s1,j | + |〈s2,j , σ1〉|

|s2,j | τ̂1,j − 〈
τ1,j , 〈τ2,j , s1,j 〉̂

〉
, 1 = k < j ≤ m, (11)

ŝ1,2

ŝ1,j

= |s1,2|
|s1,j | −

〈

τ1,j ,
〈τ2,j , s1,j 〉

ŝ3,j

, 〈s3,j , σ2〉
〉̂

= |s1,2|
|s1,j | − |〈s3,j , σ2〉|

|s3,j |
〈
τ1,j , 〈τ2,j , s1,j 〉̂

〉+ 〈
τ1,j , 〈τ2,j , s1,j 〉, 〈τ3,j , s2,j 〉̂

〉
,

2 = k < j ≤ m, (12)

ŝ1,k

ŝ1,j

= |s1,k|
|s1,j | + (−1)k−1

×
〈

τ1,j , 〈τ2,j , s1,j 〉, . . . , 〈τk−1,j , sk−2,j 〉, 〈τk,j , sk−1,j 〉
ŝk+1,j

, 〈sk+1,j , σk〉
〉̂

= |s1,k|
|s1,j | + (−1)k−1 |〈sk+1,j , σk〉|

|sk+1,j |
× 〈

τ1,j , 〈τ2,j , s1,j 〉, . . . , 〈τk−1,j , sk−2,j 〉, 〈τk,j , sk−1,j 〉̂
〉

+ (−1)k
〈
τ1,j , 〈τ2,j , s1,j 〉, . . . , 〈τk,j , sk−1,j 〉, 〈τk+1,j , sk,j 〉̂

〉
,

3 = k < j ≤ m. (13)

Proof Cauchy transforms equal zero at infinity; therefore, the constants appearing on
the right-hand sides in each of the first equalities of (9)–(13) must be as indicated if
in fact the other term is a Cauchy transform. Consequently, we will not pay atten-
tion to the constants coming out of the consecutive transformations we make in our
deduction and simply denote them by consecutive constants Cj .

Obviously, (9) is deduced from (8), taking σα = σ1 = s1,1 and σβ = 〈σ2, . . . , σk〉 =
s2,k . Formula (10) is obtained applying (8) inside out several times as we will indicate.

Let 2 ≤ j < k ≤ m. Using (8) on ŝj,k/ŝj,j , we have that

〈σj−1, σj , . . . , σk̂〉 =
〈
sj−1,j

ŝj,j
, sj,k

〉̂

=
〈
ŝj,k

ŝj,j
sj−1,j

〉̂

= C1ŝj−1,j − 〈
sj−1,j , τj,j , 〈sj+1,k, σj 〉̂

〉
. (14)
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In particular, if j = 2, we get

〈σ1, σ2, . . . , σk̂〉 =
〈
s1,2

ŝ2,2
, s2,k

〉̂

=
〈
ŝ2,k

ŝ2,2
s1,2

〉̂

= C1ŝ1,2 − 〈
s1,2, τ2,2, 〈s3,k, σ2〉̂

〉
,

and applying (8) on 〈s1,2, τ2,2, 〈s3,k, σ2〉̂〉/ŝ1,2, it follows that

ŝ1,k

ŝ1,2
= C1 − 1

ŝ1,2

〈
s1,2, τ2,2, 〈s3,k, σ2〉̂

〉= |s1,k|
|s1,2| + 〈

τ1,2, 〈τ2,2, s1,2〉, 〈s3,k, σ2〉̂
〉
,

which is (10) for j = 2.
Assume that j ≥ 3. We write then

ŝ1,k =
〈

σ1, . . . , σj−2,
ŝj,k

ŝj,j
sj−1,j

〉̂

,

and on account of (14), we obtain

ŝ1,k

ŝ1,j

= C1 − 1

ŝ1,j

〈
σ1, . . . , σj−2, sj−1,j , τj,j , 〈sj+1,k, σj 〉̂

〉
.

This means that

ŝ1,k

ŝ1,3
= C1 − 1

ŝ1,3

〈
s1,3

ŝ2,3
, s2,3, τ3,3, 〈s4,k, σ3〉

〉̂

, j = 3,

or

ŝ1,k

ŝ1,j

= C1 − 1

ŝ1,j

〈

σ1, . . . , σj−3,
sj−2,j

ŝj−1,j

, sj−1,j , τj,j , 〈sj+1,k, σj 〉
〉̂

, j ≥ 4.

Using (8) again, it follows that

〈sj−1,j , τj,j , sj+1,k, σĵ 〉
ŝj−1,j

= C2 − 〈
τj−1,j , 〈τj,j , sj−1,j 〉, 〈sj+1,k, σj 〉̂

〉
.

Substituting above, we have

ŝ1,k

ŝ1,3
= C3 + (−1)2 1

ŝ1,3

〈
s1,3, τ2,3, 〈τ3,3, s2,3〉, 〈s4,k, σ3〉̂

〉
, j = 3,

or

ŝ1,k

ŝ1,j

= C3 + (−1)2 1

ŝ1,j

〈
σ1, . . . , σj−3, sj−2,j , τj−1,j , 〈τj,j , sj−1,j 〉, 〈sj+1,k, σj 〉̂

〉
,

j ≥ 4.

If j = 3, one more use of (8) brings us to (10). If j ≥ 4, we keep on applying (8)
inside out until we arrive at

ŝ1,k

ŝ1,j

= C4 + (−1)j−1 1

ŝ1,j

〈
s1,j , τ2,j , 〈τ3,j , s2,j 〉, . . . , 〈τj,j , sj−1,j 〉, 〈sj+1,k, σj 〉̂

〉
,
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which is just one step away from (10) through (8), taking

σα = s1,j , σβ = 〈
τ2,j , 〈τ3,j , s2,j 〉, . . . , 〈τj,j , sj−1,j 〉, 〈sj+1,k, σj 〉

〉
.

Now, let us prove formulas (11)–(13). The second equality in each one of these
relations is an immediate consequence of (8), since from it we get

〈sk+1,j , σk̂〉
ŝk+1,j

= |〈sk+1,j , σk〉|
|sk+1,j | − 〈τk+1,j , sk,ĵ 〉. (15)

The proof of the first equality is obtained, generally speaking, as in proving (10),
except that we begin using relation (7) once. In fact, when k = 1, formula (11) follows
directly from (7), taking σα = σ1 = s1,1 and σβ = s2,j .

Assume that 2 ≤ k < j ≤ m. Using (7), it follows that

〈σk−1, σk̂〉 =
〈
sk−1,j

ŝk,j

, sk,k

〉̂

=
〈
ŝk,k

ŝk,j

sk−1,j

〉̂

= C5ŝk−1,j +
〈

sk−1,j ,
τk,j

ŝk+1,j

, 〈sk+1,j , σk〉
〉̂

.

Consequently,

ŝ1,2

ŝ1,j

= C5 + 1

ŝ1,j

〈

s1,j ,
τ2,j

ŝ3,j

, 〈s3,j , σ2〉
〉̂

, k = 2,

or

ŝ1,k

ŝ1,j

= C5 + 1

ŝ1,j

〈

σ1, . . . , σk−2, sk−1,j ,
τk,j

ŝk+1,j

, 〈sk+1,j , σk〉
〉̂

, k ≥ 3.

From this point on, we use (8). From this formula, we obtain

〈sk−1,j ,
τk,j

ŝk+1,j
, 〈sk+1,j , σk 〉̂〉

ŝk−1,j

= C6 −
〈

τk−1,j ,
〈τk,j , sk−1,j 〉

ŝk+1,j

, 〈sk+1,j , σk〉
〉̂

,

and (12) readily follows if k = 2. For k ≥ 3, this implies

ŝ1,3

ŝ1,j

= C7 − 1

ŝ1,j

〈

s1,j , τ2,j ,
〈τ3,j , s2,j 〉

ŝ4,j

, 〈s4,j , σ3〉
〉̂

, k = 3,

or

ŝ1,k

ŝ1,j

= C7 − 1

ŝ1,j

〈

σ1, . . . , σk−3, sk−2,j , τk−1,j ,
〈τk,j , sk−1,j 〉

ŝk+1,j

, 〈sk+1,j , σk〉
〉̂

, k ≥ 4.

Continuing down, using (8) on each step, we obtain

ŝ1,k

ŝ1,j

= C8 + (−1)k−2 1

ŝ1,j
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×
〈

s1,j , τ2,j , 〈τ3,j , s2,j 〉, . . . , 〈τk−1,j , sk−2,j 〉, 〈τk,j , sk−1,j 〉
ŝk+1,j

, 〈sk+1,j , σk〉
〉̂

.

One more use of (8) with

σα = s1,j ,

σβ =
〈

τ2,j , 〈τ3,j , s2,j 〉, . . . , 〈τk−1,j , sk−2,j 〉, 〈τk,j , sk−1,j 〉
ŝk+1,j

, 〈sk+1,j , σk〉
〉

,

gives the first equality of (13). With this we conclude the proof. �

Remark 3.1 We wish to point out that formulas (9)–(10) and the second equalities in
(11)–(13) are contained in [18, Theorem 3.1.3], where they were deduced using the
Stieltjes-Plemelj inversion formula. Our explicit expressions of the right-hand sides
are necessary for the arguments to follow. Additionally, the first equalities in (11)–
(13) are of great value for the proof of the general case.

Proof of Lemma 2.3 when j = 1 From (5) and (9), we have

Ln

ŝ1,1
= p0

ŝ1,1
+ p1 +

m∑

k=2

pk

ŝ1,k

ŝ1,1

=
(

�1,1p0 + p1 +
m∑

k=2

|s1,k|
|s1,1|pk

)

+ p0τ̂1,1 −
m∑

k=2

pk〈τ1,1, s2,k, σ1̂〉 = L∗
n.

We are done taking n∗ = (n1, n0, n2, . . . , nm) and

N
(
σ ∗

1 , . . . , σ ∗
m

)= N
(
τ1,1, 〈σ2, σ1〉, σ3, . . . , σm

)
,

since 〈s2,k, σ1〉 = 〈〈σ2, σ1〉, σ3, . . . , σk〉 when k ≥ 3. �

Hereafter, 2 ≤ j ≤ m. From (5), (10), and the first equalities in (11)–(13), one has

Ln

ŝ1,j

= p0

ŝ1,j

+ pj +
m∑

k �=j,k=1

pk

ŝ1,k

ŝ1,j

=
(

�1,jp0 + pj +
m∑

k �=j,k=1

|s1,k|
|s1,j |pk

)

+ p0τ̂1,j + p1

〈
τ1,j

ŝ2,j

, 〈s2,j , σ1〉
〉̂

+
j−1∑

k=2

(−1)k−1pk

×
〈

τ1,j , 〈τ2,j , s1,j 〉, . . . , 〈τk−1,j , sk−2,j 〉, 〈τk,j , sk−1,j 〉
ŝk+1,j

, 〈sk+1,j , σk〉
〉̂

+ (−1)j
m∑

k=j+1

pk

〈
τ1,j , 〈τ2,j , s1,j 〉, . . . , 〈τj,j , sj−1,j 〉, 〈sj+1,k, σj 〉̂

〉
. (16)
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Now, it is not so clear what the auxiliary Nikishin system should be because some
annoying ratios of Cauchy transforms have appeared. We shall see that already for
j = 2 there are two candidates, and for general j the number of candidates equals
2j−1.

We can use (15) (see the second inequalities in (11)–(13)) to obtain

Ln

ŝ1,j

=
(

�1,jp0 + pj +
m∑

k �=j,k=1

|s1,k|
|s1,j |pk

)

+
(

p0 + |〈s2,j , σ1〉|
|s2,j | p1

)

τ1,j

+
j−1∑

k=2

(−1)k−1
(

pk−1 + |〈sk+1,j , σk〉|
|sk+1,j | pk

)

× 〈
τ1,j , 〈τ2,j , s1,j 〉, . . . , 〈τk,j , sk−1,j 〉̂

〉

+ (−1)j−1pj−1
〈
τ1,j , 〈τ2,j , s1,j 〉, . . . , 〈τj,j , sj−1,j 〉̂

〉

+ (−1)j
m∑

k=j+1

pk

〈
τ1,j , 〈τ2,j , s1,j 〉, . . . , 〈τj,j , sj−1,j 〉, 〈sj+1,k, σj 〉̂

〉
. (17)

(The sum
∑j−1

k=2 is empty if j = 2.)
If we are in the class Z

m+1+ (∗) of multi-indices, and we take j to be the first
component for which nj = max{n0 +1, n1, . . . , nm}, then n0 ≥ · · · ≥ nj−1. It follows
that

deg

(

�1,j p0 + pj +
m∑

k �=j,k=1

|s1,k|
|s1,j |pk

)

≤ nj − 1

and

deg

(

pk−1 + |〈sk+1,j , σk〉|
|sk+1,j | pk

)

≤ nk−1 − 1, k = 1, . . . , j − 1.

Thus L∗
n is the right-hand side of (17), which is a linear form generated by the multi-

index n∗ = (nj , n0, . . . , nj−1, nj+1, . . . , nm) ∈ Z
m+1+ and the Nikishin system

N
(
σ ∗

1 , . . . , σ ∗
m

)= N
(
τ1,j , 〈τ2,j , s1,j 〉, . . . , 〈τj,j , sj−1,j 〉, 〈σj+1, σj 〉, σj+2, . . . , σm

)
.

This would be sufficient to prove the AT property within the class Z
m+1+ (∗) be-

cause it is easy to observe that then (n0, . . . , nj−1, nj+1, . . . , nm) ∈ Z
m+(∗) (see the

proof of Theorem 1.2). This result was first obtained in [23, Theorem 2].
Of course, (17) is still valid in the general case, but, if it is not true that n0 ≥ . . . ≥

nj−1, some of the degrees of the polynomials in the linear form on the right-hand
side blow up with respect to the bounds established by the components of n∗. We
must proceed with caution. For this, we need two more reduction formulas which are
contained in the next lemma.

Let τα,β;γ,γ denote the inverse measure of 〈〈σα,σβ〉, σγ 〉. That is,

1/
〈〈σα,σβ〉, σγ

〉̂
(z) = �α,β;γ,γ (z) + τ̂α,β;γ,γ (z),
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where �α,β;γ,γ denotes a first-degree polynomial. This notation seems unnecessarily
complicated. It is consistent with the one used later for more general inverse measures
which will be needed.

Lemma 3.3 Let Δγ , Δα , and Δβ be three intervals such that Δγ ∩ Δα = ∅ = Δβ ∩
Δα. Let σγ ∈ M(Δγ ), σα ∈ M(Δα), and σβ ∈ M(Δβ). Then for any f ∈ L1(σγ ),

σ̂α(z)

〈σα,σβ̂〉(z)
〈〈τα,α, σβ, σα〉, f σγ , σα

〉̂
(z) =

〈 〈σβ,σα̂〉
σ̂β

τα,β, f σγ , σα, σβ

〉̂

(z), (18)

〈σα,σβ̂〉(z)
〈〈σα,σβ〉, σγ 〉̂(z)

〈 〈σβ,σα̂〉
σ̂β

τα,β, σγ , σα, σβ

〉̂

(z)

=
〈 〈σβ,σα,σγ 〉̂

σ̂β

〈σγ ,σα, σβ̂〉
σ̂γ

τα,β;γ,γ

〉̂

(z). (19)

Proof Let us prove (18). Taking into account (6) and (8), we have that

〈〈τα,α, σβ, σα〉, 〈f σγ ,σα 〉̂〉(z)
= 〈f σγ ,σα̂〉(z)〈τα,α, σβ, σα̂〉(z) − 〈〈f σγ ,σα〉, τα,α, σβ, σα

〉̂
(z)

= 〈f σγ ,σα̂〉(z)
( |〈σα,σβ〉|

|σα| − 〈σα,σβ̂〉(z)
σ̂α(z)

)

−
∫ ( |〈σα,σβ〉|

|σα| − 〈σα,σβ̂〉(xγ )

σ̂α(xγ )

)
f (xγ )d〈σγ ,σα〉(xγ )

z − xγ

=
∫

〈σα,σβ̂〉(xγ )
f (xγ ) dσγ (xγ )

z − xγ

− 〈f σγ ,σα̂〉(z) 〈σα,σβ̂〉(z)
σ̂α(z)

.

This and (7) render

σ̂α(z)

〈σα,σβ̂〉(z)
〈〈τα,α, σβ, σα〉, f σγ , σα

〉̂
(z)

= σ̂α(z)

〈σα,σβ̂〉(z)
∫

〈σα,σβ̂〉(xγ )
f (xγ ) dσγ (xγ )

z − xγ

− 〈f σγ ,σα̂〉(z)

= −〈f σγ ,σα̂〉(z) + |σα|
|〈σα,σβ〉| 〈f σγ ,σα, σβ̂〉(z)

+ 〈f σγ ,σα, σβ̂〉(z)
〈
τα,β

σ̂β

, 〈σβ,σα〉
〉̂

(z).

Since

σ̂α(z)

〈σα,σβ̂〉(z)
〈〈τα,α, σβ, σα〉, f σγ , σα

〉̂
(z) = O

(
1

z

)

∈ H(C \ Δα), z → ∞,
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and the transforms −〈f σγ ,σα̂〉 + |σα |
|〈σα,σβ 〉| 〈f σγ ,σα, σβ̂〉 and 〈f σγ ,σα, σβ̂〉 are ana-

lytic on a neighborhood of Δα, on account of (3), we obtain (18).
Now we prove (19). From (8) and (6),

〈 〈σβ,σα̂〉
σ̂β

τα,β, σγ , σα, σβ

〉̂

(z)

= |〈σβ,σα〉|
|〈σβ〉| 〈τα,β, σγ , σα, σβ̂〉(z) − 〈〈τα,β, σγ , σα, σβ〉, τβ,β, σα, σβ

〉̂
(z)

= |〈σβ,σα〉|
|〈σβ〉| 〈τα,β, σγ , σα, σβ̂〉(z) − 〈τα,β, σγ , σα, σβ̂〉(z)〈τβ,β , σα, σβ̂〉(z)

+ 〈〈τβ,β, σα, σβ〉, 〈τα,β, σγ , σα, σβ 〉̂〉(z)

= 〈σβ,σα̂〉(z)
σ̂β(z)

〈τα,β, σγ , σα, σβ̂〉(z) + 〈〈τβ,β, σα, σβ〉, 〈τα,β, σγ , σα, σβ 〉̂〉(z)

= 〈σβ,σα̂〉(z)
σ̂β(z)

( |〈〈σα,σβ〉, σγ 〉|
|〈σα,σβ〉| − 〈〈σα,σβ〉, σγ 〉̂(z)

〈σα,σβ̂〉(z)
)

+
∫ ( |〈〈σα,σβ〉, σγ 〉|

|〈σα,σβ〉| − 〈〈σα,σβ〉, σγ 〉̂(xβ)

〈σα,σβ̂〉(xβ)

)
d〈τβ,β, σα, σβ〉(xβ)

z − xβ

= −〈σβ,σα̂〉(z)
σ̂β(z)

〈〈σα,σβ〉, σγ 〉̂(z)
〈σα,σβ̂〉(z)

+
( 〈σβ,σα̂〉(z)

σ̂β(z)
+ 〈τβ,β, σα, σβ̂〉(z)

) |〈〈σα,σβ〉, σγ 〉|
|〈σα,σβ〉|

− 〈
τβ,β, 〈σα,σβ〉, σγ

〉̂
(z)

= −〈σβ,σα̂〉(z)
σ̂β(z)

〈〈σα,σβ〉, σγ 〉̂(z)
〈σα,σβ̂〉(z) + |〈σβ,σα〉|

|〈σβ〉|
|〈〈σα,σβ〉, σγ 〉|

|〈σα,σβ〉|
− 〈

τβ,β, 〈σα,σβ〉, σγ

〉̂
(z)

= −〈σβ,σα̂〉(z)
σ̂β(z)

〈〈σα,σβ〉, σγ 〉̂(z)
〈σα,σβ̂〉(z) − |〈〈σα,σβ〉, σγ 〉|

|σβ | − 〈
τβ,β, 〈σα,σβ〉, σγ

〉̂
(z)

= −〈σβ,σα̂〉(z)
σ̂β(z)

〈〈σα,σβ〉, σγ 〉̂(z)
〈σα,σβ̂〉(z) + 〈σβ,σα,σγ 〉̂(z)

σ̂β(z)
.

In the second to last equality above, we employed that

0 = lim
z→∞ zσ̂α(z)σ̂β(z)

= lim
z→∞ z〈σα,σβ̂〉(z) + lim

z→∞ z〈σβ,σα̂〉(z) = |〈σα,σβ〉| + |〈σβ,σα〉|,
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which implies that |〈σα,σβ〉| = −|〈σβ,σα〉|. Analogously, −|〈〈σα,σβ〉, σγ 〉| =
−|〈〈σα,σγ 〉, σβ〉| = |〈σβ, 〈σα,σγ 〉〉|, and by (8),

〈σβ, 〈σα,σγ 〉̂〉
σ̂β

= |〈σβ, 〈σα,σγ 〉〉|
|σβ | − 〈

τβ,β,
〈〈σα,σγ 〉, σβ

〉̂〉

= −|〈〈σα,σβ〉, σγ 〉|
|σβ | − 〈

τβ,β, 〈σα,σβ〉, σγ

〉̂
,

which is used in the last equality. Therefore, from the chain of equations and (7), we
derive that

〈σα,σβ̂〉(z)
〈〈σα,σβ〉, σγ 〉̂(z)

〈 〈σβ,σα̂〉
σ̂β

τα,β, σγ , σα, σβ

〉̂

(z)

= −〈σβ,σα̂〉(z)
σ̂β(z)

+ 〈σβ,σα,σγ 〉̂(z)
σ̂β(z)

〈σα,σβ̂〉(z)
〈〈σα,σβ〉, σγ 〉̂(z)

= −〈σβ,σα̂〉(z)
σ̂β(z)

+ 〈σβ,σα,σγ 〉̂(z)
σ̂β(z)

|〈σα,σβ〉|
|〈〈σα,σβ〉, σγ 〉|

+ 〈σβ,σα,σγ 〉̂(z)
σ̂β(z)

〈
τα,β;γ,γ

σ̂γ

, σγ , σα, σβ

〉̂

(z).

Taking into consideration that

〈σα,σβ̂〉(z)
〈〈σα,σβ〉, σγ 〉̂(z)

〈 〈σβ,σα̂〉
σ̂β

τα,β, σγ , σα, σβ

〉̂

(z) = O
(

1

z

)

∈ H(C \ Δα), z → ∞,

whereas −〈σβ,σα̂〉
σ̂β

+ 〈σβ,σα,σγ 〉̂
σ̂β

|〈σα,σβ 〉|
|〈〈σα,σβ 〉,σγ 〉| and 〈σβ,σα,σγ 〉̂

σ̂β
are analytic on a neighbor-

hood of Δα , using (3), we obtain (19). �

Proof of Lemma 2.3 when 2 ≤ j ≤ m Set

L∗
n = p∗

0 + p0τ̂1,j + p1

〈
τ1,j

ŝ2,j

, 〈s2,j , σ1〉
〉̂

+
j−1∑

k=2

(−1)k−1pk

×
〈

τ1,j , 〈τ2,j , s1,j 〉, . . . , 〈τk−1,j , sk−2,j 〉, 〈τk,j , sk−1,j 〉
ŝk+1,j

, 〈sk+1,j , σk〉
〉̂

+ (−1)j
m∑

k=j+1

pk

〈
τ1,j , 〈τ2,j , s1,j 〉, . . . , 〈τj,j , sj−1,j 〉, 〈sj+1,k, σj 〉̂

〉
, (20)
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where

p∗
0 = �1,jp0 + pj +

m∑

k �=j,k=1

|s1,k|
|s1,j |pk, degp∗

0 ≤ nj − 1 = n∗
0 − 1.

We took this function from the right-hand side of (16). We must show that there
exist a multi-index n∗ ∈ Z

m+1+ , which is a permutation of n, and a Nikishin system
N (σ ∗

0 , . . . , σ ∗
m) which allow for the expression of L∗

n as a linear form generated by
them with polynomials with real coefficients. So far, n∗

0 defined above serves the
purpose of being the first component of n∗ and p∗

0 of being the polynomial part of
the linear form.

First step. Is n0 ≥ n1 or n0 ≤ n1? (When n0 = n1 we can proceed either way.)

(A1) If n0 ≥ n1, take n∗
1 = n0 and σ ∗

1 = τ1,j . Decompose
〈s2,j ,σ1̂〉

ŝ2,j
using (8). Then

the first three terms of L∗
n are

p∗
0 + p0σ̂

∗
1 + p1

〈
σ ∗

1

ŝ2,j

, 〈s2,j , σ1〉
〉̂

= p∗
0 +

(

p0 + |〈s2,j , σ1〉|
|s2,j | p1

)

σ̂ ∗
1 − p1

〈
σ ∗

1 , 〈τ2,j , s1,j 〉̂
〉
.

Consequently, taking p∗
1 = p0 + |〈s2,j ,σ1〉|

|s2,j | p1, we have that degp∗
1 ≤ n∗

1 −1(= n0 −1).
In the case that j = 2, we obtain

L∗
n = p∗

0 + p∗
1 τ̂1,2 − p1

〈
τ1,2, 〈τ2,2, s1,2〉̂

〉+
m∑

k=3

pk

〈
τ1,2, 〈τ2,2, s1,2〉, 〈s3,k, σ2〉̂

〉

(compare with (17)). Then the proof would be complete taking n∗ = (n2, n0, n1,

n3 . . . , nm) and the Nikishin system

N
(
σ ∗

1 , . . . , σ ∗
m

)= N
(
τ1,2, 〈τ2,2, s1,2〉, 〈σ3, σ2〉, σ4, . . . , σm

)
.

(If m = 2, then n∗ = (n2, n0, n1) and the Nikishin system is N (τ1,2, 〈τ2,2, s1,2〉).)
If j ≥ 3, we obtain

L∗
n = p∗

0 + p∗
1 σ̂ ∗

1 − p1
〈
σ ∗

1 , 〈τ2,j , s1,j 〉̂
〉− p2

〈

σ ∗
1 ,

〈s3,j , σ2̂〉
ŝ3,j

〈τ2,j , s1,j 〉
〉̂

+
j−1∑

k=3

(−1)k−1pk

×
〈

σ ∗
1 , 〈τ2,j , s1,j 〉, . . . , 〈τk−1,j , sk−2,j 〉, 〈τk,j , sk−1,j 〉

ŝk+1,j

, 〈sk+1,j , σk〉
〉̂

+ (−1)j
m∑

k=j+1

pk

〈
σ ∗

1 , 〈τ2,j , s1,j 〉, . . . , 〈τj,j , sj−1,j 〉, 〈sj+1,k, σj 〉̂
〉
.
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(B1) If n0 ≤ n1, take n∗
1 = n1 and σ ∗

1 = 〈s2,j ,σ1̂〉
ŝ2,j

τ1,j . We can rewrite (20) as fol-

lows:

L∗
n = p∗

0 + p1σ̂
∗
1 + p0

〈
ŝ2,j

〈s2,j , σ1̂〉σ
∗
1

〉̂

+
j−1∑

k=2

(−1)k−1pk

×
〈

ŝ2,j

〈s2,j , σ1̂〉σ
∗
1 , 〈τ2,j , s1,j 〉, . . . , 〈τk−1,j , sk−2,j 〉, 〈τk,j , sk−1,j 〉

ŝk+1,j

, 〈sk+1,j , σk〉
〉̂

+ (−1)j
m∑

k=j+1

pk

〈
ŝ2,j

〈s2,j , σ1̂〉σ
∗
1 , 〈τ2,j , s1,j 〉, . . . , 〈τj,j , sj−1,j 〉, 〈sj+1,k, σj 〉

〉̂

.

(21)

Decompose
ŝ2,j

〈s2,j ,σ1̂〉
using (7). Then the first three terms of L∗

n in (21) can be

expressed as

p∗
0 + p1σ̂

∗
1 + p0

〈
ŝ2,j

〈s2,j , σ1̂〉σ
∗
1

〉̂

= p∗
0 +

(

p1 + |s2,j |
|〈s2,j , σ1〉|p0

)

σ̂ ∗
1 + p0

〈

σ ∗
1 ,

ŝ1,j

σ̂1
τ2,j ;1,1

〉̂

.

Taking p∗
1 = p1 + |s2,j |

|〈s2,j ,σ1〉|p0, we have that degp∗
1 ≤ n∗

1 − 1(= n1 − 1).

If j = 2, due to (18) (in the next formula ŝ4,k ≡ 1 if k = 3),

ŝ2,2

〈s2,2, σ1̂〉
〈〈τ2,2, s1,2〉, 〈s3,k, σ2〉̂

〉= σ̂2

〈σ2, σ1̂〉
〈〈τ2,2, s1,2〉, ŝ4,kσ3, σ2

〉̂

=
〈 〈σ1, σ2̂〉

σ̂1
τ2,2;1,1, ŝ4,kσ3, σ2, σ1

〉̂

=
〈 〈σ1, σ2̂〉

σ̂1
τ2,2;1,1, 〈σ3, σ2, σ1〉, s4,k

〉̂

.

Consequently,

L∗
n = p∗

0 + p∗
1 σ̂ ∗

1 + p0

〈

σ ∗
1 ,

ŝ1,2

σ̂1
τ2,2;1,1

〉̂

+
m∑

k=3

pk

〈

σ ∗
1 ,

ŝ1,2

σ̂1
τ2,2;1,1, 〈σ3, σ2, σ1〉, s4,k

〉̂

.

In this situation, we would be done considering n∗ = (n2, n1, n0, n3, . . . , nm) and the
system

N
(
σ ∗

1 , . . . , σ ∗
m

)= N
( 〈σ2, σ1̂〉

σ̂2
τ1,2,

〈σ1, σ2̂〉
σ̂1

τ2,2;1,1, 〈σ3, σ2, σ1〉, σ4, . . . , σm

)

.
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(Should m = 2, then n∗ = (n2, n1, n0), and the Nikishin system is N (
〈σ2,σ1̂〉

σ̂2
τ1,j ,

〈σ1,σ2̂〉
σ̂1

τ2,2;1,1).) This result already includes new multi-indices for which it is possible
to prove normality. The only sub-case studied previously (see [20]) was for m = 2.
Therefore, if j = 2, we are done.

Let us assume that j ≥ 3. (The algorithm ends after j − 1 steps.) So far, we have
used the notation sk,l only with k ≤ l. We will extend its meaning to k > l, in which
case

sk,l = 〈σk, σk−1, . . . , σl〉, k > l.

Notice that if l < k < j , then

〈sk,j , sk−1,l〉 = 〈sk,l, sk+1,j 〉.
The inverse measure of 〈sk,j , sk−1,l〉 we denote by τk,j ;k−1,l ; that is,

1/〈sk,j , sk−1,l̂〉 = �k,j ;k−1,l + τ̂k,j ;k−1,l .

In particular, τ2,j ;1,1 denotes the inverse measure of 〈s2,j , σ1〉.
Let us transform the measures in

∑j−1
k=2 of (21). Regarding the term with p2, using

(19) with σα = σ2, σβ = s3,j , and σγ = σ1, we obtain

ŝ2,j

〈s2,j , σ1̂〉
〈 〈τ2,j , s1,j 〉

ŝ3,j

, 〈s3,j , σ2〉
〉̂

=
〈 〈s3,j , σ2, σ1̂〉

ŝ3,j

ŝ1,j

σ̂1
τ2,j ;1,1

〉̂

.

For j = 3,
∑j−1

k=3 is empty, so here the formulas make sense when j ≥ 4. Using (18),
with σα = s2,j , σβ = σ1, σγ = τ3,j , and

f = f1,j,k

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

〈s4,j ,σ3̂〉
ŝ4,j

, 3 = k < j ≤ m,

〈 〈τ4,j ,s3,j 〉
ŝ5,j

, 〈s5,j , σ4〉̂〉, 4 = k < j ≤ m,

〈〈τ4,j , s3,j 〉, . . . , 〈τk−1,j , sk−2,j 〉, 〈τk,j ,sk−1,j 〉
ŝk+1,j

, 〈sk+1,j , σk 〉̂〉, 5 ≤ k < j ≤ m,

we obtain

ŝ2,j

〈s2,j , σ1̂〉
〈

〈τ2,j , s1,j 〉, . . . , 〈τk−1,j , sk−2,j 〉, 〈τk,j , sk−1,j 〉
ŝk+1,j

, 〈sk+1,j , σk〉
〉̂

=
〈
ŝ1,j

σ̂1
τ2,j ;1,1, f1,j,kτ3,j , s2,j , σ1

〉̂

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

〈 ŝ1,j

σ̂1
τ2,j ;1,1,

〈τ3,j ,s2,j ,σ1〉
ŝ4,j

, 〈s4,j , σ3〉̂〉 , 3 = k < j ≤ m,

〈 ŝ1,j

σ̂1
τ2,j ;1,1, 〈τ3,j , s2,j , σ1〉, 〈τ4,j ,s3,j 〉

ŝ5,j
, 〈s5,j , σ4〉̂〉, 4 = k < j ≤ m,

〈 ŝ1,j

σ̂1
τ2,j ;1,1, 〈σ̂1s2,ĵ 〉τ3,j , ŝ3,j τ4,j , . . . , ŝk−2,j τk−1,j ,

〈σ̂ksk+1,j 〉̂ŝk−1,j

ŝk+1,j
τk,ĵ 〉 ,

5 ≤ k < j ≤ m.
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In the last row, we used a more compact notation to fit the line. Notice that it is the
same as
〈
ŝ1,j

σ̂1
τ2,j ;1,1, 〈τ3,j , s2,j , σ1〉, 〈τ4,j , s3,j 〉, . . . , 〈τk−1,j , sk−2,j 〉, 〈τk,j , sk−1,j 〉

ŝk+1,j

, 〈sk+1,j , σk〉
〉̂

.

As for the terms in
∑m

k=j+1, applying (18) with σα = s2,j , σβ = σ1, σγ = τ3,j ,
and

f = f1,j,k =
{ 〈s4,k, σ3̂〉, 3 = j < k ≤ m,

〈〈τ4,j , s3,j 〉, . . . , 〈τj,j , sj−1,j 〉, 〈sj+1,k, σj 〉̂〉, 4 ≤ j < k ≤ m,

it follows that

ŝ2,j

〈s2,j , σ1̂〉
〈〈τ2,j , s1,j 〉, . . . , 〈τj,j , sj−1,j 〉, 〈sj+1,k, σj 〉̂

〉

=
〈
ŝ1,j

σ̂1
τ2,j ;1,1, f1,j,kτ3,j , s2,j , σ1

〉̂

=

⎧
⎪⎪⎨

⎪⎪⎩

〈 ŝ1,3
σ̂1

τ2,3;1,1, 〈τ3,3, s2,3, σ1〉, 〈s4,k, σ3〉̂〉 , 3 = j < k ≤ m,

〈 ŝ1,j

σ̂1
τ2,j ;1,1, 〈τ3,j , s2,j , σ1〉, 〈τ4,j , s3,j 〉, . . . , 〈τj,j , sj−1,j 〉, 〈sj+1,k, σj 〉̂〉 ,

4 ≤ j < k ≤ m.

When j = m, no such terms exist.
Therefore,

L∗
n = p∗

0 + p∗
1 σ̂ ∗

1 + p0

〈

σ ∗
1 ,

ŝ1,j

σ̂1
τ2,j ;1,1

〉̂

− p2

〈

σ ∗
1 ,

〈s3,j , σ2, σ1̂〉
ŝ3,j

ŝ1,j

σ̂1
τ2,j ;1,1

〉̂

+
j−1∑

k=3

(−1)k−1pk

〈

σ ∗
1 ,

ŝ1,j

σ̂1
τ2,j ;1,1, f1,j,kτ3,j , s2,j , σ1

〉̂

+ (−1)j
m∑

k=j+1

pk

〈

σ ∗
1 ,

ŝ1,j

σ̂1
τ2,j ;1,1, f1,j,kτ3,j , s2,j , σ1

〉̂

.

Using the notation for f1,j,k defined previously, in (A1) we ended up with

L∗
n = p∗

0 + p∗
1 σ̂ ∗

1 − p1
〈
σ ∗

1 , 〈τ2,j , s1,j 〉̂
〉− p2

〈

σ ∗
1 ,

〈s3,j , σ2̂〉
ŝ3,j

〈τ2,j , s1,j 〉
〉̂

+
j−1∑

k=3

(−1)k−1pk

〈
σ ∗

1 , 〈τ2,j , s1,j 〉, f1,j,kτ3,j , s2,j

〉̂

+ (−1)j
m∑

k=j+1

pk

〈
σ ∗

1 , 〈τ2,j , s1,j 〉, f1,j,kτ3,j , s2,j

〉̂
.
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Set

σ
(l1)
2 =

{
ŝ1,j τ2,j , l1 = 1,

ŝ1,j

σ̂1
τ2,j ;1,1, l1 = 0.

The two formulas for L∗
n may be unified as

L∗
n = p∗

0 + p∗
1 σ̂ ∗

1 + (−1)l1pl1

〈
σ ∗

1 , σ
(l1)
2

〉̂ − p2

〈

σ ∗
1 ,

〈s3,j , s2,l1+1̂〉
ŝ3,j

σ
(l1)
2

〉̂

+
m∑

k=3,k �=j

δk,jpk

〈
σ ∗

1 , σ
(l1)
2 , f1,j,kτ3,j , s2,l1+1, s3,j

〉̂
, nl1 = min{n0, n1}, (22)

where

δk,j =
{

(−1)k−1, k < j,

(−1)j , k > j.

We also have

degp∗
0 ≤ nj − 1 = n∗

0 − 1, degp∗
1 ≤ max{n0, n1} − 1 = n∗

1 − 1.

For j = 2, we found the following solutions:

max{n0, n1} (n∗
0, . . . , n

∗
m) N (σ ∗

1 , . . . , σ ∗
m)

n0 (n2, n0, n1, n3, . . . , nm) N (τ1,2, 〈τ2,2, s1,2〉, s3,2, σ4, . . . , σm),

n1 (n2, n1, n0, n3, . . . , nm) N (
ŝ2,1
ŝ2,2

τ1,2,
ŝ1,2
ŝ1,1

τ2,2;1,1, s3,1, σ4, . . . , σm).

(If m = 2, then n∗ has only the first three components and the Nikishin system has
only the first two measures indicated.)

We are ready for the induction hypothesis, but, for the sake of clarity, let us take
one more step.

Second step. The case j = 2 has been solved; therefore, j ≥ 3. We ask whether
min{n0, n1} ≥ n2 or min{n0, n1} ≤ n2. (When min{n0, n1} = n2, we can proceed ei-
ther way.)

(A2) If min{n0, n1} ≥ n2, take n∗
2 = min{n0, n1} and σ ∗

2 = σ
(l1)
2 , l1 ∈ {0,1}. De-

compose
〈s3,j ,s2,l1+1̂〉

ŝ3,j
using (8). Then the first four terms of L∗

n reduce to

p∗
0 + p∗

1 σ̂ ∗
1 + (−1)l1pl1

〈
σ ∗

1 , σ ∗
2

〉̂ − p2

〈

σ ∗
1 ,

〈s3,j , s2,l1+1̂〉
ŝ3,j

σ ∗
2

〉̂

= p∗
0 + p∗

1 σ̂ ∗
1 + p∗

2

〈
σ ∗

1 , σ ∗
2

〉̂ + p2
〈
σ ∗

1 , σ ∗
2 , τ3,j , s2,l1+1, s3,j

〉̂
, nl1 = min{n0, n1},

with p∗
2 = (−1)l1pl1 − |〈s3,j ,s2,l1+1〉|

|s3,j | p2, degp∗
2 ≤ n∗

2 − 1.

In the case j = 3, we have

L∗
n = p∗

0 + p∗
1 σ̂ ∗

1 + p∗
2

〈
σ ∗

1 , σ ∗
2

〉̂ + p2
〈
σ ∗

1 , σ ∗
2 , τ3,3, s2,l1+1, s3,3

〉̂
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−
m∑

k=4

pk

〈
σ ∗

1 , σ ∗
2 , f1,3,kτ3,3, s2,l1+1, s3,3

〉̂
.

This subcase produces the two solutions (in both, min{n0, n1} ≥ n2):

max{n0, n1} (n∗
0, . . . , n

∗
m) N (σ ∗

1 , . . . , σ ∗
m)

n0 (n3, n0, n1, n2, . . .) N (τ1,3, ŝ1,3τ2,3, ŝ2,3τ3,3, s4,3, . . .),

n1 (n3, n1, n0, n2, . . .) N (
〈s2,3,σ1̂〉

ŝ2,3
τ1,3,

ŝ1,3
ŝ1,1

τ2,3;1,1, 〈τ3,3, s2,3, σ1〉, s4,3, . . .).

If m = 3, then n∗ has only the first four components and the Nikishin system has only
the first three measures indicated. When m ≥ 4,

(
n∗

4, . . . , n
∗
m

)= (n4, . . . , nm),
(
σ ∗

5 , . . . , σ ∗
m

)= (σ5, . . . , σm), (if m ≥ 5).

Let j ≥ 4. Define

f = f2,j,k =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈s5,j ,σ4̂〉
ŝ5,j

, 4 = k < j ≤ m,

〈 〈τ5,j ,s4,j 〉
ŝ6,j

, 〈s6,j , σ5〉̂〉 , 5 = k < j ≤ m,

〈〈τ5,j , s4,j 〉, . . . , 〈τk−1,j , sk−2,j 〉, 〈τk,j ,sk−1,j 〉
ŝk+1,j

, 〈sk+1,j , σk 〉̂〉,
6 ≤ k < j ≤ m,

〈s5,k, σ4̂〉, 4 = j < k ≤ m,

〈〈τ5,j , s4,j 〉, . . . , 〈τj,j , sj−1,j 〉, 〈sj+1,k, σj 〉̂〉, 5 ≤ j < k ≤ m.

From (22), we obtain

L∗
n = p∗

0 + p∗
1 σ̂ ∗

1 + p∗
2

〈
σ ∗

1 , σ ∗
2

〉̂+ p2
〈
σ ∗

1 , σ ∗
2 , τ3,j , s2,l1+1, s3,j

〉̂

+ p3

〈

σ ∗
1 , σ ∗

2 ,
〈s4,j , σ3̂〉

ŝ4,j

τ3,j , s2,l1+1, s3,j

〉̂

+
m∑

k=4,k �=j

δk,jpk

〈
σ ∗

1 , σ ∗
2 , 〈τ3,j , s2,l1+1, s3,j 〉, f2,j,kτ4,j , s3,j

〉̂
,

nl1 = min{n0, n1}. (23)

(B2) If min{n0, n1} ≤ n2, take n∗
2 = n2 and σ ∗

2 = 〈s3,j ,s2,l1+1̂〉
ŝ3,j

σ
(l1)
2 . Using (7) to

decompose
ŝ3,j

〈s3,j ,s2,l1+1̂〉
, the first four terms of L∗

n in (22) become

p∗
0 + p∗

1 σ̂ ∗
1 − p2

〈
σ ∗

1 , σ ∗
2

〉̂+ (−1)l1pl1

〈

σ ∗
1 ,

ŝ3,j

〈s3,j , s2,l1+1̂〉σ
∗
2

〉̂

= p∗
0 + p∗

1 σ̂ ∗
1 + p∗

2

〈
σ ∗

1 , σ ∗
2

〉̂+ (−1)l1pl1

〈

σ ∗
1 , σ ∗

2 ,
〈s2,l1+1, s3,ĵ 〉

ŝ2,l1+1
τ3,j ;2,l1+1

〉̂

,
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nl1 = min{n0, n1},

where p∗
2 = −p2 + (−1)l1

|ŝ3,j |
|〈s3,j ,s2,l1+1̂〉|pl1,degp∗

2 ≤ n∗
2 − 1.

If j = m = 3, we are done. Should m ≥ 4 and j = 3, using (18) with σα = σ3 =
s3,3, σβ = s2,l1+1, σγ = s4,k , and f ≡ 1, for the terms in

∑m
k=4, we obtain (see defi-

nition of f1,3,k)

〈
σ

(l1)
2 , f1,3,kτ3,3, s2,l1+1, s3,3

〉̂ =
〈

ŝ3,3

〈s3,3, s2,l1+1̂〉σ
∗
2 , 〈τ3,3, s2,l1+1, s3,3〉, s4,k, s3,3

〉̂

=
〈

σ ∗
2 ,

〈s2,l1+1, s3,3̂〉
ŝ2,l1+1

τ3,3;2,l1+1, s4,k, s3,l1+1

〉̂

.

Therefore,

L∗
n = p∗

0 + p∗
1 σ̂ ∗

1 + p∗
2

〈
σ ∗

1 , σ ∗
2

〉̂+ (−1)l1pl1

〈

σ ∗
1 , σ ∗

2 ,
〈s2,l1+1, s3,ĵ 〉

ŝ2,l1+1
τ3,j ;2,l1+1

〉̂

−
m∑

k=4

pk

〈

σ ∗
1 , σ ∗

2 ,
〈s2,l1+1, s3,3̂〉

ŝ2,l1+1
τ3,3;2,l1+1, s4,k, s3,l1+1

〉̂

.

The case j = 3 is finished with two additional solutions (in both, min{n0, n1} ≤ n2):

max{n0, n1} (n∗
0, . . . , n

∗
m) N (σ ∗

1 , . . . , σ ∗
m)

n0 (n3, n0, n2, n1, . . .) N (τ1,3,
ŝ3,2
ŝ3,3

ŝ1,3τ2,3,
ŝ2,3
ŝ2,2

τ3,3;2,2, s4,2, . . .),

n1 (n3, n1, n2, n0, . . .) N (
〈s2,3,σ1̂〉

ŝ2,3
τ1,3,

ŝ3,1
ŝ3,3

ŝ1,3
ŝ1,1

τ2,3;1,1,
〈s2,1,s3,3̂〉

ŝ2,1
τ3,3;2,1,

s4,1, . . .).

If m = 3, then n∗ has only the first four components and the Nikishin system has only
the first three measures indicated. When m ≥ 4,

(
n∗

4, . . . , n
∗
m

)= (n4, . . . , nm),
(
σ ∗

5 , . . . , σ ∗
m

)= (σ5, . . . , σm) (if m ≥ 5).

Let us transform the terms in
∑m

k=3,k �=j of (22). Assume that j ≥ 4. Consider the
function multiplying p3, that is, when 3 = k < j ≤ m. Using (19) with σα = σ3, σβ =
s4,j , and σγ = s2,l1+1, we obtain

〈
σ

(l1)
2 , f1,j,3τ3,j , s2,l1+1, s3,j

〉̂

=
〈

ŝ3,j

〈s3,j , s2,l1+1̂〉σ
∗
2 ,

〈s4,j , σ3̂〉
ŝ4,j

τ3,j , s2,l1+1, s3,j

〉̂

=
〈

σ ∗
2 ,

〈s4,j , s3,l1+1̂〉
ŝ4,j

〈s2,l1+1, s3,ĵ 〉
ŝ2,l1+1

τ3,j ;2,l1+1

〉̂

, l1 ∈ {0,1}.

To reduce the terms in
∑j−1

k=4 when 5 ≤ j ≤ m, and
∑m

k=j+1 for 4 ≤ j < m, apply
(18) with σα = s3,j , σβ = σ2 or σβ = 〈σ2, σ1〉, σγ = τ4,j , and f = f2,j,k . It follows
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that

〈
σ

(l1)
2 , f1,j,kτ3,j , s2,l1+1, s3,j

〉̂

=
〈

ŝ3,j

〈s3,j , s2,l1+1̂〉σ
∗
2 , 〈τ3,j , s2,l1+1, s3,j 〉, f2,j,kτ4,j , s3,j

〉̂

=
〈

σ ∗
2 ,

〈s2,l1+1, s3,ĵ 〉
ŝ2,l1+1

τ3,j ;2,l1+1, f2,j,kτ4,j , s3,j , s2,l1+1

〉̂

, l1 ∈ {0,1}.

Therefore,

L∗
n = p∗

0 + p∗
1 σ̂ ∗

1 + p∗
2

〈
σ ∗

1 , σ ∗
2

〉̂+ (−1)l1pl1

〈

σ ∗
1 , σ ∗

2 ,
〈s2,l1+1, s3,ĵ 〉

ŝ2,l1+1
τ3,j ;2,l1+1

〉̂

+ p3

〈

σ ∗
1 , σ ∗

2 ,
〈s4,j , s3,l1+1̂〉

ŝ4,j

〈s2,l1+1, s3,ĵ 〉
ŝ2,l1+1

τ3,j ;2,l1+1

〉̂

,

∑

k=4,k �=j

δk,jpk

〈

σ ∗
1 , σ ∗

2 ,
〈s2,l1+1, s3,ĵ 〉

ŝ2,l1+1
τ3,j ;2,l1+1, f2,j,kτ4,j , s3,j , s2,l1+1

〉̂

,

l1 ∈ {0,1}.

(24)

Let us write down (23)–(24) in one expression. Recall that j ≥ 4. Take

σ
(l2)
3 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ŝ2,j τ3,j , l1 = 1 in (23),

〈s2,j , σ1̂〉τ3,j , l1 = 0 in (23),

ŝ2,j

ŝ2,2
τ3,j ;2,2, l1 = 1 in (24),

〈s2,1,s3,j 〉̂
ŝ2,1

τ3,j ;2,1, l1 = 0 in (24).

Then

L∗
n = p∗

0 + p∗
1 σ̂ ∗

1 + p∗
2

〈
σ ∗

1 , σ ∗
2

〉̂+ (−1)l2pl2

〈
σ ∗

1 , σ ∗
2 , σ

(l2)
3

〉̂

+ p3

〈

σ ∗
1 , σ ∗

2 ,
〈s4,j , s3,l2+1̂〉

ŝ4,j

σ
(l2)
3

〉̂

+
m∑

k=4,k �=j

δk,jpk

〈
σ ∗

1 , σ ∗
2 , σ

(l2)
3 , f2,j,kτ4,j , s3,l2+1, s4,j

〉̂
,

nl2 = min{n0, n1, n2}. (25)

We also have that degp∗
k ≤ n∗

k − 1, k = 0,1,2, where

n∗
k =

⎧
⎨

⎩

nj = max{n0 + 1, n1, . . . , nm}, k = 0,

max{n0, n1}, k = 1,

max{min{n0, n1}, n2}, k = 2,

(26)
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and the measures σ ∗
1 , σ ∗

2 have also been determined. The polynomials p∗
0,p∗

1,p∗
2 , the

indices n∗
0, n

∗
1, n

∗
2, and the measures σ ∗

1 , σ ∗
2 will not change in subsequent reductions.

The structure of a Nikishin system breaks down in the Cauchy transform multiplying
p3 due to an annoying ratio of Cauchy transforms modifying the third measure in the
corresponding product.

With this unified formula, you can repeat the line of reasoning employed in
step 2 (or 1) and so on. Let us write down the eight solutions corresponding
to j = 4. In the table, besides (26), we have that n∗

3 = max{min{n0, n1, n2}, n3},
n∗

4 = min{n0, . . . , n3}, and of course n∗
0 = n4.

(n∗
1, . . . , n

∗
4) N (σ ∗

1 , . . . , σ ∗
m)

(n0, n1, n2, n3) N (τ1,4, ŝ1,4τ2,4, ŝ2,4τ3,4, ŝ3,4τ4,4, s5,4, . . .)

(n1, n0, n2, n3) N (
〈s2,4,σ1̂〉

ŝ2,4
τ1,4,

ŝ1,4
σ̂1

τ2,4;1,1, 〈τ3,4, s2,4, σ1〉, ŝ3,4τ4,4, s5,4, . . .)

(n0, n2, n1, n3) N (τ1,4,
〈s3,4,σ2̂〉

ŝ3,4
ŝ1,4τ2,4,

ŝ2,4
σ̂2

τ3,4;2,2, 〈τ4,4, s3,2, σ4〉, s5,4, . . .)

(n1, n2, n0, n3) N (
〈s2,4,σ1̂〉

ŝ2,4
τ1,4,

〈s3,4,s2,1̂〉
ŝ3,4

ŝ1,4
σ̂1

τ2,4;1,1,
〈s2,1,s3,4̂〉

ŝ2,1
τ3,4;2,1,

〈τ4,4, s3,1, σ4〉, s5,4, . . .)

(n0, n1, n3, n2) N (τ1,4, ŝ1,4τ2,4,
ŝ4,3
σ̂4

ŝ2,4τ3,4,
ŝ3,4
σ̂3

τ4,4;3,3, s5,3, . . .)

(n1, n0, n3, n2) N (
〈s2,4,σ1̂〉

ŝ2,4
τ1,4,

ŝ1,4
σ̂1

τ2,4;1,1,
ŝ4,3
σ̂4

〈τ3,4, s2,4, σ1〉, ŝ3,4
σ̂3

τ4,4;3,3, s5,3, . . .)

(n0, n2, n3, n1) N (τ1,4,
〈s3,4,σ2̂〉

ŝ3,4
ŝ1,4τ2,4,

ŝ4,2
σ̂4

ŝ2,4
σ̂2

τ3,4;2,2,
〈s3,2,σ4̂〉

ŝ3,2
τ4,4;3,2, s5,2, . . .)

(n1, n2, n3, n0) N (
〈s2,4,σ1̂〉

ŝ2,4
τ1,4,

〈s3,4,s2,1̂〉
ŝ3,4

ŝ1,4
σ̂1

τ2,4;1,1,
ŝ4,1
σ̂4

〈s2,1,s3,4̂〉
ŝ2,1

τ3,4;2,1,

〈s3,1,σ4̂〉
ŝ3,1

τ4,4;3,1, s5,1, . . .)

If m = 4, then n∗ has only the first five components and the Nikishin system has only
the first four measures indicated. When m ≥ 5,

(
n∗

5, . . . , n
∗
m

)= (n5, . . . , nm),
(
σ ∗

6 , . . . , σ ∗
m

)= (σ6, . . . , σm) (if m ≥ 6).

Summarizing, in step 1 we proved the statement of Lemma 2.3 when j = 2, show-
ing that there are two solutions, and for j ≥ 3, we obtained formula (22), which
allowed us to prove in step 2 that the lemma is true when j = 3, with 4 solutions, and
for j ≥ 4 to obtain formula (25), similar to (22), which provides the instruments to
carry out step 3 and so on. The case j = 1 was treated separately. The induction will
be on the number of successful steps we have been able to carry out. The counter of
the steps will be denoted j∗. Fix j,2 ≤ j ≤ m. Assume that we have been able to
carry out j∗ steps. Let us describe what we have obtained in:

Step j∗. Induction hypothesis. We have proved that the statement of Lemma 2.3
holds when j = j∗ + 1, with 2j−1 = 2j∗

solutions, and when j ≥ j∗ + 2, we have
defined:

(1) indices

n∗
k =

{
nj = max{n0 + 1, n1, . . . , nm}, k = 0,

max{min{n0, . . . , nk−1}, nk}, k = 1, . . . , j∗.
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(2) integers lk, k = 0, . . . , j∗, inductively as follows: l0 = 0, l1 is the subindex be-
tween those of n0, n1 not employed in defining n∗

1, and so forth until lj∗ , which
is the subindex between those of n0, . . . , nj∗ that was not employed in defining
n∗

1, . . . , n
∗
j∗ . In particular,

nlk = min{n0, . . . , nk}.
(3) polynomials

p∗
k =

⎧
⎪⎨

⎪⎩

�1,jp0 + pj +∑m
i=1,i �=j

|s1,i |
|s1,j |pi, k = 0,

(−1)lk−1plk−1 + C1,j,kpk, k = 1, . . . , j∗, min{n0, . . . , nk−1} ≥ nk,

(−1)k−1pk + C2,j,kplk−1 , k = 1, . . . , j∗, min{n0, . . . , nk−1} ≤ nk.

where C1,j,k,C2,j,k, are real constants different from zero.
(4) functions

fj∗,j,k =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈sj∗+3,k, σj∗+2̂〉, j∗ + 2 = j < k ≤ m,

〈〈τj∗+3,j , sj∗+2,j 〉, . . . , 〈τj,j , sj−1,j 〉, 〈sj+1,k, σj 〉̂〉,
j∗ + 3 ≤ j < k ≤ m,

〈sj∗+3,j ,σj∗+2̂〉
ŝj∗+3,j

, j∗ + 2 = k < j ≤ m,

〈 〈τj∗+3,j ,sj∗+2,j 〉
ŝj∗+4,j

, 〈sj∗+4,j , σj∗+3〉̂〉, j∗ + 3 = k < j ≤ m,

〈ŝj∗+2,j τj∗+3,j , . . . , ŝk−2,j τk−1,j ,
〈τk,j ,sk−1,j 〉

ŝk+1,j
, 〈sk+1,j , σk 〉̂〉 ,

j∗ + 4 ≤ k < j ≤ m.

(5) measures σ ∗
1 , . . . , σ ∗

j∗ and σ
(lj∗ )

j∗+1 whose supports are contained in the same inter-
vals Δ1, . . . , Δj∗+1 as σ1, . . . , σj∗+1, respectively, where

σ
(lj∗ )

j∗+1 =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

〈τj∗+1,j , sj∗,lj∗−1+1, sj∗+1,j 〉,
if max{min{n0, . . . , nj∗−1}, nj∗} = nlj∗−1 ,

〈sj∗,lj∗−1+1,sj∗+1,j 〉̂
ŝj∗,lj∗−1+1

τj∗+1,j ;j∗,lj∗−1+1,

if max{min{n0, . . . , nj∗−1}, nj∗} = nj∗ .

With these elements, we have proved the formula (analogous to those obtained in
steps 1 and 2)

L∗
n = p∗

0 +
j∗
∑

k=1

p∗
k

〈
σ ∗

1 , . . . , σ ∗
k

〉̂+ (−1)lj∗ plj∗
〈
σ ∗

1 , . . . , σ ∗
j∗ , σ

(lj∗ )

j∗+1

〉̂

+ (−1)j
∗
pj∗+1

〈

σ ∗
1 , . . . , σ ∗

j∗ ,
〈sj∗+2,j , sj∗+1,lj∗+1̂〉

ŝj∗+2,j

σ
(lj∗ )

j∗+1

〉̂

+
m∑

k=j∗+2,k �=j

δk,jpk

〈
σ ∗

1 , . . . , σ ∗
j∗ , σ

(lj∗ )

j∗+1, fj∗,j,kτj∗+2,j , sj∗+1,lj∗+1, sj∗+2,j

〉̂
.

(27)
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Step j∗ + 1. Induction proof. To complete the induction we must prove in this
step that Lemma 2.3 is satisfied when j = j∗ + 2, with 2j∗+1 solutions, and when
j ≥ j∗ + 3 to produce a formula which extends (27) one more step.
(Case A) Suppose that max{min{n0, . . . , nj∗}, nj∗+1} = min{n0, . . . , nj∗} = nlj∗ .
Take

n∗
j∗+1 = nlj∗ and σ ∗

j∗+1 = σ
(lj∗ )

j∗+1.

Using (8) on
〈sj∗+2,j ,sj∗+1,lj∗+1̂〉

ŝj∗+2,j
, from (27) it follows that

L∗
n = p∗

0 +
j∗+1∑

k=1

p∗
k

〈
σ ∗

1 , . . . , σ ∗
k

〉̂

+ (−1)j
∗+1pj∗+1

〈
σ ∗

1 , . . . , σ ∗
j∗ , σ ∗

j∗+1, τj∗+2,j , sj∗+1,lj∗+1, sj∗+2,j

〉̂

+
m∑

k=j∗+2,k �=j

δk,jpk

〈
σ ∗

1 , . . . , σ ∗
j∗ , σ

(lj∗ )

j∗+1, fj∗,j,kτj∗+2,j , sj∗+1,lj∗+1, sj∗+2,j

〉̂
,

where

p∗
j∗+1 = (−1)lj∗ plj∗ + (−1)j

∗ |〈sj∗+2,j , sj∗+1,lj∗+1〉|
|sj∗+2,j | pj∗+1,

degp∗
j∗+1 ≤ nj∗+1 − 1.

Since fj∗,j∗+2,k = 〈sj∗+3,k, σj∗+2̂〉, if j = j∗ +2, we have that L∗
n is a linear form

generated by

n∗ = (
n∗

0, . . . , n
∗
j∗+1, nj∗+1, nj∗+3, . . . , nm

)

and the Nikishin system

N
(
σ ∗

1 , . . . , σ ∗
j∗+1, 〈τj∗+2,j∗+2, sj∗+1,lj∗+1, sj∗+2,j∗+2〉, sj∗+3,j∗+2, σj∗+4, . . . , σm

)
.

When m = j (= j∗ + 2), the system ends with the measure 〈τj∗+2,j∗+2, sj∗+1,l+1,

sj∗+2,j∗+2〉.
If j ≥ j∗ + 3, (27) may be expressed as

L∗
n = p∗

0 +
j∗+1∑

k=1

p∗
k

〈
σ ∗

1 , . . . , σ ∗
k

〉̂

+ (−1)j
∗+1pj∗+1

〈
σ ∗

1 , . . . , σ ∗
j∗+1, τj∗+2,j , sj∗+1,lj∗+1, sj∗+2,j

〉̂

+ (−1)j
∗+1pj∗+2

〈

σ ∗
1 , . . . , σ ∗

j∗+1,
〈sj∗+3,j , σj∗+2̂〉

ŝj∗+3,j

τj∗+2,j , sj∗+1,lj∗+1, sj∗+2,j

〉̂

+
m∑

k=j∗+3,k �=j

δk,jpk
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× 〈
σ ∗

1 , . . . , σ ∗
j∗+1, 〈τj∗+2,j , sj∗+1,lj∗+1, sj∗+2,j 〉, fj∗+1,j,kτj∗+3,j , sj∗+2,j

〉̂
,

(28)

where fj∗+1,j,k is defined as fj∗,j,k substituting j∗ by j∗ + 1.
(Case B) If max{min{n0, . . . , nj∗}, nj∗+1} = nj∗+1, take

n∗
j∗+1 = nj∗+1 and σ ∗

j∗+1 = 〈sj∗+2,j , sj∗+1,lj∗+1̂〉
ŝj∗+2,j

σ
(lj∗ )

j∗+1.

Rewrite (27) as

L∗
n = p∗

0 +
j∗
∑

k=1

p∗
k

〈
σ ∗

1 , . . . , σ ∗
k

〉̂+ (−1)j
∗
pj∗+1

〈
σ ∗

1 , . . . , σ ∗
j∗ , σ ∗

j∗+1

〉̂

+ (−1)lj∗ plj∗

〈

σ ∗
1 , . . . , σ ∗

j∗ ,
ŝj∗+2,j

〈sj∗+2,j , sj∗+1,lj∗+1̂〉σ
∗
j∗+1

〉̂

+
m∑

k=j∗+2,k �=j

δk,jpk

×
〈

σ ∗
1 , . . . , σ ∗

j∗ ,
ŝj∗+2,j

〈sj∗+2,j , sj∗+1,lj∗+1̂〉σ ∗
j∗+1, fj∗,j,kτj∗+2,j , sj∗+1,lj∗+1, sj∗+2,j

〉̂

.

Using (7), reduce
ŝj∗+2,j

〈sj∗+2,j ,sj∗+1,lj∗+1̂〉 in the term with plj∗ . This formula transforms

into

L∗
n = p∗

0 +
j∗+1∑

k=1

p∗
k

〈
σ ∗

1 , . . . , σ ∗
k

〉̂

+ (−1)lj∗ plj∗

〈

σ ∗
1 , . . . , σ ∗

j∗+1,
〈sj∗+1,lj∗+1, sj∗+2,ĵ 〉

ŝj∗+1,lj∗+1
τj∗+2,j ;j∗+1,lj∗+1

〉̂

+
m∑

k=j∗+2,k �=j

δk,jpk

×
〈

σ ∗
1 , . . . , σ ∗

j∗ ,
ŝj∗+2,j

〈sj∗+2,j , sj∗+1,lj∗+1̂〉σ
∗
j∗+1, fj∗,j,kτj∗+2,j , sj∗+1,lj∗+1, sj∗+2,j

〉̂

,

(29)

where

p∗
j∗+1 = (−1)j

∗
pj∗+1 + (−1)lj∗ |sj∗+2,j |

|〈sj∗+2,j , sj∗+1,lj∗+1〉|plj∗ ,

degp∗
j∗+1 ≤ nj∗+1 − 1.
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If m = j∗ +2, we are done, since the sum
∑m

k=j∗+2,k �=j is empty (recall that j∗ +2 ≤
j ≤ m).

Suppose that j∗ +2 = j < m. Using (18) with σα = σj∗+2, σβ = sj∗+1,lj∗+1, σγ =
sj∗+3,k , and f ≡ 1, for the terms in

∑m
k=j∗+3 (see definition of fj∗,j∗+2,k), (29)

becomes

L∗
n = p∗

0 +
j∗+1∑

k=1

p∗
k

〈
σ ∗

1 , . . . , σ ∗
k

〉̂

+ (−1)lj∗ plj∗

〈

σ ∗
1 , . . . , σ ∗

j∗+1,
〈sj∗+1,lj∗+1, σj∗+2̂〉

ŝj∗+1,lj∗+1
τj∗+2,j∗+2;j∗+1,lj∗+1

〉̂

+
m∑

k=j∗+3

δk,jpk

×
〈

σ ∗
1 , . . . , σ ∗

j∗+1,
〈sj∗+1,lj∗+1, σj∗+2̂〉

ŝj∗+1,lj∗+1
τj∗+2,j∗+2;j∗+1,lj∗+1, sj∗+3,k, sj∗+2,lj∗+1

〉̂

.

Thus, we conclude with j = j∗ + 2, taking

n∗ = (
n∗

0, . . . , n
∗
j∗+1, nlj∗ , nj∗+3, . . . , nm

)

and the Nikishin system

N
(

σ ∗
1 , . . . , σ ∗

j∗+1,
〈sj∗+1,lj∗+1, σj∗+2̂〉

ŝj∗+1,lj∗+1
τj∗+2,j∗+2;j∗+1,lj∗+1, sj∗+3,lj∗+1,

σj∗+4, . . . , σm

)

.

If m = j (= j∗ + 2), the system ends with the measure
〈sj∗+1,lj∗+1,σj∗+2̂〉

ŝj∗+1,lJ∗ +1
×

τj∗+2,j∗+2;j∗+1,lj∗+1.
Let j∗ + 3 ≤ j ≤ m. In (29), the measure multiplying pj∗+2 is transformed

by means of (19), with σα = σj∗+2, σβ = sj∗+3,j and σγ = sj∗+1,lj∗+1. All other
terms of

∑m
k=j∗+2,k �=j are reduced employing (18), taking σα = sj∗+2,j , σβ =

sj∗+1,lj∗+1, σγ = τj∗+2,j and f = fj∗+1,j,k (remember that fj∗+1,j,k is defined sub-
stituting j∗ by j∗ + 1 in the definition of fj∗,j,k as was already used at the end of
case A)). It is easy to verify that (29) can be expressed as

L∗
n = p∗

0 +
j∗+1∑

k=1

p∗
k

〈
σ ∗

1 , . . . , σ ∗
k

〉̂

+ (−1)lj∗ plj∗

〈

σ ∗
1 , . . . , σ ∗

j∗+1,
〈sj∗+1,lj∗+1, sj∗+2,ĵ 〉

ŝj∗+1,lj∗+1
τj∗+2,j ;j∗+1,lj∗+1

〉̂

+ (−1)j
∗+1pj∗+2
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×
〈

σ∗
1 , . . . , σ∗

j∗+1,
〈sj∗+3,j , sj∗+2,lj∗+1̂〉

ŝj∗+3,j

〈sj∗+1,lj∗+1, sj∗+2,j 〉̂
ŝj∗+1,lj∗+1

τj∗+2,j ;j∗+1,lj∗+1

〉̂

+
′∑

δk,jpk

×
〈

σ∗
1 , . . . , σ∗

j∗+1,
〈sj∗+1,lj∗+1, sj∗+2,j 〉̂

ŝj∗+1,lj∗+1
τj∗+2,j ;j∗+1,lj∗+1, fj∗+1,j,kτj∗+3,j ,

sj∗+2,j , sj∗+1,lj∗+1

〉̂

(30)

(
∑′ =∑m

k=j∗+3,k �=j ), which has the same structure as (28).
Let lj∗+1 denote the subindex between those of n0, . . . , nj∗+1 which was not em-

ployed in defining n∗
1, . . . , n

∗
j∗+1; then

nlj∗+1 = min{n0, . . . , nj∗+1}.

Notice that in case (A), lj∗+1 = lj∗ , and in case (B), lj∗+1 = j∗ + 1. Define

σ
(lj∗+1)

j∗+2 =

⎧
⎪⎪⎨

⎪⎪⎩

τj∗+2,j , sj∗+1,lj∗+1, sj∗+2,j , if max{min{n0, . . . , nj∗}, nj∗+1} = nlj∗ ,

〈sj∗+1,lj∗+1,sj∗+2,j 〉̂
ŝj∗+1,lj∗+1

τj∗+2,j ;j∗+1,lj∗+1,

if max{min{n0, . . . , nj∗}, nj∗+1} = nj∗+1.

With this notation, formulas (28) and (30) may be unified as

L∗
n = p∗

0 +
j∗+1∑

k=1

p∗
k

〈
σ ∗

1 , . . . , σ ∗
k

〉̂+ (−1)lj∗+1plj∗+1

〈
σ ∗

1 , . . . , σ ∗
j∗+1, σ

(lj∗+1)

j∗+2

〉̂

+ (−1)j
∗+1pj∗+2

〈

σ ∗
1 , . . . , σ ∗

j∗+1,
〈sj∗+3,j , sj∗+2,lj∗+1+1̂〉

ŝj∗+3,j

σ
(lj∗+1)

j∗+2

〉̂

+
m∑

k=j∗+3,k �=j

δk,jpk

× 〈
σ ∗

1 , . . . , σ ∗
j∗+1, σ

(lj∗+1)

j∗+2 , fj∗+1,j,kτj∗+3,j , sj∗+2,lj∗+1+1, sj∗+3,j

〉̂
.

With this we conclude the induction, and Lemma 2.3 has been proved. �

Before moving on, let us write down the expressions of the p∗
k after carrying out

j − 1 steps. We will need their structure for further developments. We have

L∗
n = p∗

0 +
m∑

k=1

p∗
k

〈
σ ∗

1 , . . . , σ ∗
k

〉̂
,
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where

p∗
k =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�1,j p0 + pj +∑m
i=1,i �=j

|s1,i |
|s1,j |pi, k = 0,

(−1)lk−1plk−1 + C1,j,kpk, k = 1, . . . , j − 1, max{nlk−1, nk} = nlk−1,

(−1)k−1pk + C2,j,kplk−1, k = 1, . . . , j − 1, max{nlk−1 , nk} = nk,

(−1)j−1pj−1, k = j, min{nlj−2, nj−1} = nj−1,

(−1)lj−1plj−2 , k = j, min{nlj−2, nj−1} = nlj−2,

(−1)jpk, k = j + 1, . . . ,m.

(31)
Lemma 2.3 has an immediate consequence in terms of the orthogonality condi-

tions satisfied by the linear form An (see (4)). We state it as a lemma which is useful
to prove Corollary 1.2 and the results on the asymptotic behavior of sequences of
these linear forms.

Lemma 3.4 Let Ŝ and n = (n1;n2) ∈ Z
m1+1
+ × Z

m2+1
+ , |n1| = |n2| + 1, be given.

Suppose that n2,j = max{n2,0 + 1, n2,1, . . . , n2,m2}. Let n∗
2 = (n∗

2,0, . . . , n
∗
2,m2

) and

N (σ 2∗
1 , . . . , σ 2∗

m2
) be a multi-index and a Nikishin system associated with n2 and

N (σ 2
1 , . . . , σ 2

m2
) through Lemma 2.3. Set dσ 2∗

0 = ŝ2
1,j (x)dσ 2

0 and (s2∗
0,0, s

2∗
0,1, . . . ,

s2∗
0,m2

) = N (σ 2∗
0 , σ 2∗

1 , . . . , σ 2∗
m2

). Then

∫

xν An(x) ds2∗
0,k(x) = 0, ν = 0, . . . , n∗

2,k − 1, k = 0, . . . ,m2. (32)

Proof For k = 0, since ds2∗
0,0 = dσ 2∗

0 = ŝ2
1,j (x) dσ 2

0 , (4) reduces to (32) when

Ln2(x) = xν ŝ2
1,j (x), ν = 0, . . . , n∗

2,0 − 1, taking into consideration that n∗
2,0 = n2,j .

Let j + 1 ≤ k ≤ m2. On account of Lemma 2.3 and (31),

Ln2(x) = xν ŝ2
1,k(x) =

( |s2
1,k|

|s2
1,j |

xν + (−1)j xν ŝ2∗
1,k

)

ŝ2
1,j .

Consequently, from (4) and the orthogonality for k = 0, we obtain

0 =
∫

xν ŝ2
1,k(x)An(x) dσ 2

0 (x)

= |s2
1,k|

|s2
1,j |

∫

xν An(x) ds2∗
0,0(x) + (−1)j

∫

xν An(x) ds2∗
0,k(x)

= (−1)j
∫

xν An(x) ds2∗
0,k(x), ν = 0, . . . , n∗

2,k − 1,

since n∗
2,k = n2,k ≤ n2,j = n∗

2,0, k = j + 1, . . . ,m2. Thus, for these values of k, the
assertion also holds.
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If k ∈ {1, . . . , j − 1} and max{n2,lk−1, n2,k} = n2,k, from Lemma 2.3 and (31), it
follows that

Ln2(x) = xν ŝ2
1,k(x) =

( |s2
1,k|

|s2
1,j |

xν + (−1)k−1xν ŝ2∗
1,k

)

ŝ2
1,j .

Using the same arguments as in the previous case, we obtain what is needed. Simi-
larly, when k = j and min{n2,lj−2, n2,j−1} = n2,j−1, then

Ln2(x) = xν ŝ2
1,j−1(x) =

( |s2
1,j−1|
|s2

1,j |
xν + (−1)j−1xν ŝ2∗

1,j

)

ŝ2
1,j ,

and integrating the statement follows.
Assume that (32) holds for all values of the parameter less than k,1 ≤ k ≤ j, and

let us show that it is also true for k. When max{n2,lk−1 , n2,k} = n2,k,1 ≤ k ≤ j − 1,

or min{n2,lj−2 , n2,j−1} = n2,j−1, k = j, we just proved that (31) is satisfied, so we
must only consider the cases when max{n2,lk−1 , n2,k} = n2,lk−1 ,1 ≤ k ≤ j − 1, and
min{n2,lj−2 , n2,j−1} = n2,lj−2, k = j. In this situation, if 1 ≤ k ≤ j − 1, we have that

Ln2(x) = xν ŝ2
1,lk−1

(x) =
(

C0x
ν +

k−1∑

i=1

C1x
ν ŝ2∗

1,i + (−1)lk−1xν ŝ2∗
1,k

)

ŝ2
1,j ,

(
ŝ2

1,0 ≡ 0
)
,

where Ci, i = 1, . . . , k − 1, are constants, C0 is also a constant if lk−1 �= 0, and it is
a first-degree polynomial when lk−1 = 0. From (4) and the induction hypothesis, it
follows that

0 =
∫

xν ŝ2
1,lk−1

(x)An(x) dσ 2
0 (x)

=
k−1∑

i=0

∫

Cix
ν An(x) ds2∗

0,i (x)

+ (−1)lk−1

∫

xν An(x) ds2∗
0,k(x) = (−1)lk−1

∫

xν An(x) ds2∗
0,k(x),

ν = 0, . . . , n∗
2,k − 1,

since n∗
2,k = n2,lk−1 = min{n2,0, . . . , n2,k−1} ≤ n∗

2,i , i = 0, . . . , k − 1, and when
lk−1 = 0 then n2,0 < n2,j = n∗

2,0. Notice that we have already proved (32) for all val-
ues of the parameter up to j − 1. When k = j and min{n2,lj−2 , n2,j−1} = n2,lj−2 , we
proceed analogously, taking Ln2 = xν ŝ2

1,lj−2
. Again, n∗

2,j ≤ n∗
2,i , i = 0, . . . , n∗

2,j−1,
and we can complete the induction. �

Remark 3.2 Fix k ∈ {1, . . . ,m2}. Taking pk ≡ 1,pi ≡ 0, i �= k, i = 0, . . . ,m2, one
obtains the formula that links s2

0,k with the measures s2∗
0,0, . . . , s

2∗
0,k (not all have to

appear).
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Proof of Corollary 1.2 From Lemma 2.4, we have that
∫

xνQn(x) ds0,k(x) = 0, ν = 0, . . . , nk − 1, k = 0, . . . ,m. (33)

Using the definition of type II Padé approximation, we have that for any polynomial
Q,degQ ≤ nk ,

Q(z)
(
Qn(z)ŝ0,k(z) − Pn,k(z)

)= O(1/z), z → ∞.

On account of (3), it follows that

Q(z)
(
Qn(z)ŝ0,k(z) − Pn,k(z)

)=
∫

Q(x)Qn(x) ds0,k(x)

z − x
. (34)

Taking Q ≡ 1, we obtain that

Pn,k(z) =
∫

Qn(z) − Qn(x)

z − x
ds0,k(x),

Pn,k(z)

Qn(z)
= 1

Qn(z)

∫
Qn(z) − Qn(x)

z − x
ds0,k(x).

Consequently, since the zeros of Qn(z) = ∏|n|
i=1(z − xn,i ) are simple and lie in the

interior of Co(suppσ0),

Pn,k(z)

Qn(z)
=

|n|∑

i=1

λn,k,i

z − xn,i

,

λn,k,i = lim
z→xn,i

(z − xn,i )
Pn,k(z)

Qn(z)
=
∫

Qn(x)

Q′
n(xn,i )

ds0,k(x)

x − xn,i

.

(35)

Let p be an arbitrary polynomial of degree ≤ |n| + nk − 1 and �n(z) =
∑|n|

i=0
Qn(z)p(xn,i )

Q′
n(xn,i )(z−xn,i )

be the Lagrange polynomial of degree |n| − 1 which interpo-
lates p at the zeros of Qn. Then

(p − �n)(z) = q(z)Qn(z), degq ≤ nk − 1.

From (33),
∫

(p − �n)(x) ds0,k(x) = 0.

Consequently, using (35),

∫

p(x)ds0,k(x) =
∫

�n(x) ds0,k(x) =
|n|∑

i=1

p(xn,i )

∫
Qn(x) ds0,k(x)

Qn(xn,i )(x − xn,i )

=
|n|∑

i=1

λn,k,ip(xn,i ),
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which gives the first statement of the corollary.
Let us consider the case when n0 = max{n0, n1 − 1, . . . , nm − 1}. According to

(34) with Q ≡ 1, Fubini’s theorem, and (33),
∫

tν
(
Qn(t)ŝ0,0(t) − Pn,0(t)

)
ds1,k(t)

=
∫

tν
∫

Qn(x) ds0,0(x)

t − x
ds1,k(t)

=
∫

Qn(x)

∫
tν ∓ xν

t − x
ds1,k(t) ds0,0(x)

=
∫

qν(x)Qn(x) ds0,0(x) −
∫

xνQn(x) ds0,k(x) = 0,

for all ν = 1, . . . , nk − 1 and k = 1, . . . ,m, since qν(x) = ∫
tν−xν

t−x
ds1,k(t) is a poly-

nomial such that degqν ≤ nk − 2 ≤ n0 − 1. This implies that

∫ (

p1(t) +
m∑

k=2

pk(t)ŝ2,k(t)

)
(
Qn(t)ŝ0,0(t) − Pn,0(t)

)
ds1,1(t) = 0,

for arbitrary polynomials pk,degpk ≤ nk − 1, k = 1, . . . ,m. Since, by Theorem 1.1,
(1, ŝ2,2, . . . , ŝ2,m) is an AT-system, it follows that Qnŝ0,0 − Pn,0 has at least |n| − n0
sign changes in the interior of Co(suppσ1).

Let Qn,1 be a monic polynomial of degree |n| − n0 whose simple zeros are points
where Qnŝ0,0 − Pn,0 changes sign on Co(suppσ1). It is easy to verify that

zν(Qnŝ0,0 − Pn,0)(z)

Qn,1(z)
= O

(
1/z2), z → ∞, ν = 0, . . . , |n| − 1.

Using (2), we obtain
∫

xνQn(x)
ds0,0(x)

Qn,1(x)
= 0, ν = 0, . . . , |n| − 1.

Then, for any Q̃,deg Q̃ ≤ |n|,
∫

Qn(x)
Q̃(z) − Q̃(x)

z − x

ds0,0(x)

Qn,1(x)
= 0,

which implies that

Q̃(z)

∫
Qn(x)

z − x

ds0,0(x)

Qn,1(x)
=
∫

Q̃(z)Qn(x)

z − x

ds0,0(x)

Qn,1(x)
.

In particular, with z = xn,i , taking Q̃(x) = Qn,1(x) and then Q̃(x) = Qn(x)
Q′

n(xn,i )(x−xn,i )
,

we have

λn,0,i =
∫

Qn(x)

Q′
n(xn,i )

ds0,0(x)

x − xn,i

=
∫

Qn,1(x)Qn(x)

Q′
n(xn,i )(x − xn,i )

ds0,0(x)

Qn,1(x)
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= Q′
n(xn,i )

Q′
n(xn,i )

Qn,1(xn,i )

∫
Qn(x)

Q′
n(xn,i )(x − xn,i )

ds0,0(x)

Qn,1(x)

=
∫ (

Qn(x)

Q′
n(xn,i )(x − xn,i )

)2
Qn,1(xn,i )

Qn,1(x)
ds0,0(x), i = 1, . . . , |n|.

Since (
Qn(x)

Q′
n(xn,i )(x−xn,i )

)2 Qn,1(xn,i )

Qn,1(x)
is positive for all x ∈ Co(supp s0,0), the second

statement of Corollary 1.2 follows for k = 0. Using standard arguments of one-
sided polynomial approximation of Riemann–Stieltjes integrable functions (see, e.g.,
[52, Theorem 15.2.2] and [23, Lemma 2]), the third statement is a consequence
of the first two for any sequence of multi-indices Λ ⊂ Z

m+1+ such that for all
n ∈ Λ,n0 = max{n0, n1 − 1, . . . , nm − 1}. In particular, the second and third state-
ments are valid when n = (n,n + 1, . . . , n + 1).

In the rest of the proof, we restrict our attention to multi-indices of the form
n = (n,n + 1, . . . , n + 1). Fix k ∈ {1, . . . ,m}. Since we have that nk = n + 1 =
max{n0 +1, n1, . . . , nm}, we can apply Lemma 3.4 with j = k, and we obtain that Qn
is multiple orthogonal with respect to n∗, which has n+ 1 in the first component, and
a Nikishin system N (σ ∗

0 , . . . , σ ∗
m) whose first measure is s∗

0,0 = s0,k . Consequently,
the coefficients

λn,k,i =
∫

Qn(x)

Q′
n(xn,i )

ds0,k(x)

x − xn,i

=
∫

Qn(x)

Q′
n(xn,i )

ds∗
0,0(x)

x − xn,i

must all have the same sign as s0,k . The convergence of the quadratures is obtained
as before. �

4 Proof of Theorems 1.3–1.4

Proof of Theorem 1.3 For m = 0, the result is trivially true since Ln = p0. When
m = 1, it is easy to deduce. Indeed, if n0 ≥ n1, take λ the identity and S(λ) = N (σ1);
otherwise, n0 < n1, and by Lemma 2.3,

p0 + p1ŝ1,1 = (
p∗

0 + p∗
1 τ̂1,1

)
ŝ1,1, degp∗

0 ≤ n1 − 1, degp∗
1 ≤ n0 − 1.

Hence, the solution is λ such that λ(0) = 1, λ(1) = 0, and S(λ) = N (τ1,1). In the
following, m ≥ 2.

Next, let us consider the case when n0 = max{n0, . . . , nm}. If n0 ≥ · · · ≥ nm, the
result is trivial taking λ the identity and S(λ) = N (σ1, . . . , σm). Otherwise, there
exists m̄,0 ≤ m ≤ m − 2, such that n0 ≥ · · · ≥ nm̄, nm̄ = max{nm̄, . . . , nm}, and
nm̄+1 < max{nm̄+2, . . . , nm}. (Consequently, nm̄+1 < nm̄.)

We have

Ln = p0 +
m∑

k=1

pkŝ1,k = p0 +
m̄∑

k=0

pkŝ1,k +
m∑

k=m̄+1

pk〈σ1, . . . , σm̄, sm̄+1,k̂〉 .

It is easy to check (see, for example, Lemma 2.1 in [36]) that for each k ∈ {m̄ +
1, . . . ,m},
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pk〈σ1, . . . , σm̄, sm̄+1,k̂〉 = �k,0 +
m̄∑

i=1

�k,i ŝ1,i + 〈σ1, . . . , σm̄,pksm̄+1,k̂〉 , (36)

deg�k,i ≤ degpk − 1, and these polynomials have real coefficients. Since nk ≤ nm̄ ≤
nm̄−1 ≤ n0 whenever k ∈ {m̄ + 1, . . . , nm}, the polynomials �k,i , i = 0, . . . , m̄, k =
m̄ + 1, . . . ,m, are absorbed by the polynomials pk, k = 0, . . . , m̄, without altering
the bound on the degrees of the second. Therefore, there exist polynomials with real
coefficients p̃k,deg p̃k ≤ nk − 1, k = 0, . . . , m̄, such that

p0 +
m∑

k=1

pkŝ1,k = p̃0 +
m̄∑

k=0

p̃k ŝ1,k +
〈

σ1, . . . , σm̄,

m∑

k=m̄+1

pksm̄+1,k

〉̂

= p̃0 +
m̄∑

k=0

p̃k ŝ1,k

+
〈

σ1, . . . , σm̄,

(

pm̄+1 +
m∑

k=m̄+2

pkŝm̄+2,k

)

σm̄+1

〉̂

. (37)

By assumption, nm̄+1 < max{nm̄+2, . . . , nm}. So we can apply Lemma 2.3 on
the linear form pm̄+1 + ∑m

k=m̄+2 pkŝm̄+2,k . Thus, there exist a Nikishin system
N (σ ∗̄

m+2, . . . , σ
∗
m), a multi-index (n∗̄

m+1, . . . , n
∗
m) ∈ Z

m−m̄+ , which is a permutation
of (nm̄+1, . . . , nm), and polynomials with real coefficients p∗

k ,degp∗
k ≤ n∗

k − 1, k =
m̄ + 1, . . . ,m, such that

pm̄+1 +
m∑

k=m̄+2

pkŝm̄+2,k =
(

p∗̄
m+1 +

m∑

k=m̄+2

p∗
k ŝ

∗̄
m+2,k

)

ŝm̄+2,j ,

where j is such that nj = max{nm̄+1, . . . , nm} and n∗̄
m+1 = nj . Substitute this for-

mula in (37) and reverse the application of (36) to pull out the polynomials p̃k of the
product of measures. The new polynomials lk,i , k ∈ {m̄+1, . . . , nm} which arise from
this second application of (36) are also absorbed by the polynomials p̃k, k = 0, . . . , m̄

in (37) without changing the bound on their degrees. Therefore, we get that for certain
polynomials with real coefficients p∗

k , k = 0, . . . ,m,

Ln = p∗
0 +

m̄∑

k=1

p∗
k ŝ1,k + p∗̄

m+1ŝ1,j +
m∑

k=m̄+2

p∗
k

〈
σ1, . . . , σm̄, sm̄+1,j , σ

∗̄
m+2, . . . , σ

∗
m

〉̂
,

(38)
which is a linear form generated by the multi-index n∗ = (n0, . . . , nm̄, nj , n

∗̄
m+2,

. . . , n∗
m), and the Nikishin system N (σ1, . . . , σm̄, sm̄+1,j , σ

∗̄
m+2, . . . , σ

∗
m).

Now we have that n0 ≥ · · · ≥ nm̄ ≥ nj and nj = max{nj ,n
∗̄
m+2, . . . , n

∗
m}. If

nm̄+2 ≥ · · · ≥ nm, we are done taking λ such that nλ(k) = n∗
k , ŝ1,λ(0) ≡ 1, and

S(λ) = N
(
σ1, . . . , σm̄, sm̄+1,j , σ

∗̄
m+2, . . . , σ

∗
m

)
.

Otherwise, we repeat the process with the linear form on the right-hand side of (38).
The new m̄ will certainly be larger than the previous one, and in a finite number of
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iterations we reorganize the entries of n in decreasing order, obtaining with it λ and
S(λ).

If n0 < max{n0, . . . , nm}, we apply first Lemma 2.3 and then proceed as we have
done before but with the form L∗

n = p∗
0 +∑m

k=1 p∗
k ŝ

∗
1,k and the multi-index n∗ arising

from that lemma. Thus, we find a permutation λ̄ of (0, . . . ,m) such that n∗̄
λ(0)

≥
· · · ≥ n∗̄

λ(m)
, S(λ̄) = N (ρ1, . . . , ρm), and polynomials with real coefficients qk, k =

0, . . . ,m, such that

L∗
n = q0 +

m∑

k=1

qkr̂1,k, degqk ≤ n∗̄
λ(k)

− 1, k = 0, . . . ,m.

If λ∗ is the permutation due to Lemma 2.3 which transports n into n∗, taking
λ = λ̄oλ∗ and S(λ) = S(λ̄), applying the formula of Lemma 2.3, the assertion of
Theorem 1.3 again follows. �

Using induction, we could have reduced a bit the proof of Theorem 1.3. Neverthe-
less, for the proof of Theorem 1.4 it was convenient to underline the fact that Theo-
rem 1.3 is a consequence of iterating the use of Lemma 2.3 and the trick exhibited in
(36)–(38).

Proof of Theorem 1.4 If m2 = 0 or m2 = 1 and n2,0 ≥ n2,1, the result is trivial. For
m2 = 1 and n2,0 < n2,1, the statement is contained in Lemma 3.4. So we restrict our
attention to m2 ≥ 2.

First, we consider the case when n2,0 = max{n2,0, . . . , n2,m2}. In this situation,
the result is trivial again if n2,0 ≥ · · · ≥ n2,m2 . If this is not the case, there exists
m̄,0 ≤ m̄ ≤ m2 − 2, such that n2,0 ≥ · · · ≥ n2,m̄, n2,m̄ = max{n2,m̄, . . . , n2,m2}, and
n2,m̄+1 < max{n2,m̄+2, . . . , n2,m2}.

According to (38), for any polynomials pk,degpk ≤ n2,k − 1,

p0 +
m2∑

k=1

pkŝ
2
1,k = p∗

0 +
m̄∑

k=1

p∗
k ŝ

2
1,k + p∗̄

m+1ŝ
2
1,j

+
m∑

k=m̄+2

p∗
k

〈
σ 2

1 , . . . , σ 2
m̄, s2

m̄+1,j , σ
2∗
m̄+2, . . . , σ

2∗
m

〉̂
,

where j is such that n2,j = max{n2,m̄+1, . . . , n2,m2}. This linear form is generated by

n∗
2 = (

n∗
2,0, . . . , n

∗
2,m2

)= (
n2,0, . . . , n2,m̄, n2,j , n

∗
2,m̄+2, . . . , n

∗
2,m2

)
,

and the Nikishin system

N
(
σ 2∗

1 , . . . , σ 2∗
m2

)= N
(
σ 2

1 , . . . , σ 2
m̄, s2

m̄+1,j , σ
2∗
m̄+2, . . . , σ

2∗
m2

)
.

Consider the extended Nikishin system N (σ 2∗
0 , σ 2∗

1 , . . . , σ 2∗
m2

) = N (σ 2
0 , σ 2∗

1 ,

. . . , σ 2∗
m2

). The form An is of multiple orthogonality with respect to n∗
2 and the ex-

tended Nikishin system.
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In fact, by definition, An satisfies

∫

xν An(x) ds2∗
0,k(x) = 0, ν = 0, . . . , n∗

2,k − 1, k = 0, . . . , m̄ + 1,

since s2∗
0,k = s2

0,k, n
∗
2,k = n2,k, k = 0, . . . , m̄, s2∗

0,m̄+1 = s2
0,j , and n∗

2,m̄+1 = n2,j . To
prove

∫

xν An(x) ds2∗
0,k(x) = 0, ν = 0, . . . , n∗

2,k − 1, k = m̄ + 2, . . . ,m2,

one follows arguments similar to those employed in proving Lemma 3.4, choosing
particular expressions for Ln2 of the form xν ŝ2

1,k̄
(k̄ is not always equal to k), and

taking into consideration (36)–(38) as well as (31). The details are left to the reader.
Once we have proved that An is of multiple orthogonality with respect to n∗

2 and
the extended Nikishin system, one repeats the process finding a new m̄, which is ob-
viously larger than the previous one, and in a finite number of iterations the statement
follows.

If n2,0 < max{n2,0, . . . , n2,m2}, the proof is reduced to the previous case by
Lemma 3.4. �

5 Proof of Theorems 1.5–1.6 and Corollary 1.3

If we apply Theorem 1.3 to the form An, we obtain that there exists a permuta-
tion λ1 of (0, . . . ,m1) and an associated Nikishin system S(λ1) = (r1

1,1, . . . , r
1
1,m1

) =
N (ρ1

1 , . . . , ρ1
m1

) such that

An = an,0 +
m1∑

k=1

an,k ŝ
1
1,k =

(

bn,0 +
m1∑

k=1

bn,k r̂1,k

)

ŝ1,λ1(0) = Bnŝ1,λ1(0),

where ŝ1,λ1(0) ≡ 1 if λ1(0) = 0, and degbn,k ≤ n1,λ1(k) − 1, k = 0, . . . ,m1. On
the other hand, from Theorem 1.4, we know that there exists a permutation λ2 of
(0, . . . ,m2) and a Nikishin system N (ρ2

0 , . . . , ρ2
m2

), where ρ2
0 = ŝ2

1,λ2(0)σ
2
0 , such that

for each k = 0, . . . ,m2,

∫

xν An(x) dr2
0,k(x) =

∫

xν Bn(x)ŝ1,λ1(0)(x) dr2
0,k(x) = 0, ν = 0, . . . , n2,λ2(k) −1.

Therefore, Bn is a linear form, generated by the multi-index (n1,λ1(0), . . . , n1,λ1(m1))

and S(λ1), which is of multiple orthogonality with respect to the multi-index
(n2,λ2(0), . . . , n2,λ2(m2)) and the Nikishin system (ŝ1,λ1(0)r

2
0 , r2

1 , . . . , r2
m2

) =
N (ŝ1,λ1(0)ρ

2
0 , ρ2

1 , . . . , ρ2
m2

). In other words,

Bn = (bn,0, . . . , bn,m1)
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is the mixed type multiple orthogonal polynomial relative to the pair of Nikishin
systems (S̃1, S̃2) and the multi-index ñ = (ñ1; ñ2) ∈ Z

m1+1
+ × Z

m2+1
+ , where

(
S̃1, S̃2)= (

N
(
ŝ1,λ1(0)ρ

2
0 , ρ1

1 , . . . , ρ1
m1

)
, N

(
ŝ1,λ1(0)ρ

2
0 , ρ2

1 , . . . , ρ2
m2

))
,

and

ñi = (ni,λi (0), . . . , ni,λi (m1)), i = 1,2.

Both ñ1 and ñ2 have decreasing components. Therefore, to derive Theorems 1.5
and 1.6 we can apply the results of [24].

Lemma 5.1 If (S1, S2) satisfies the hypotheses of Theorem 5 (respectively 6) the
same is true for (S̃1, S̃2).

Proof The systems S̃1 and S̃2 are obtained transforming the generating measures of
S1 and S2 through inversion of measures and multiplication by Cauchy transforms
of measures supported on disjoint intervals. We have to check that these operations
preserve the quasi-regularity of supports, the regularity of measures, and the property
concerning the Radon–Nikodym derivative of the measure.

Let σ ∈ M(Δ),Δ = Co(suppσ), τ be the inverse measure of σ , and g a continu-
ous function on Δ with constant sign and different from zero on Δ.

It is trivial that the supports of σ and gσ coincide and that σ ′ > 0 if and only
if gσ ′ > 0. It is well known and easy to verify (using, for example, the minimality
property of monic orthogonal polynomials) that σ ∈ Reg if and only if gσ ∈ Reg as
well.

Regarding the inversion of measures, the Stieltjes-Plemelj inversion formula im-
plies that the continuous parts of the supports of σ and τ coincide. From the formula
relating σ̂ and τ̂ , it is obvious that isolated mass points of σ outside its continuous
support become zeros of τ̂ (thus are no longer in the support of τ ). On the other hand,
in each connected component of Δ \ suppσ , σ̂ may have at most one zero (count-
ing multiplicity), because σ̂ is strictly monotonic when restricted to any one of those
components. Such zeros of σ̂ become mass points of τ . They are isolated, so they can
only accumulate on suppσ . Therefore, if suppσ = Ẽ ∪ e, where Ẽ is regular with re-
spect to the Dirichlet problem and e is at most a denumerable set of points which may
only accumulate on Ẽ, then supp τ = Ẽ ∪ ẽ, where ẽ is at most a denumerable set of
points which may only accumulate on Ẽ. In particular, the same holds when Ẽ is an
interval (case of Theorem 1.6).

If σ ∈ Reg, then τ ∈ Reg. Indeed, the denominator Qn of the nth diagonal Padé
approximant of σ̂ , taken with leading coefficient equal to 1, is the nth monic orthog-
onal polynomial with respect to σ . The numerator Pn−1 is an (n − 1)-th orthogonal
polynomial with respect to τ . By Markov’s theorem

lim
n

Pn−1(z)

Qn(z)
= σ̂ (z), K ⊂ C \ Δ.

In particular, the leading coefficient cn−1 of Pn−1 satisfies

lim
n

cn−1 = lim
n

lim
z→∞

zPn−1(z)

Qn(z)
= lim

z→∞ zσ̂ (z) = σ(Δ) �= 0.
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Therefore,

lim
n

∣
∣Qn(z)

∣
∣1/n = cap(suppσ)egΩ(z;∞) ⇔ lim

n

∣
∣
∣
∣
Pn(z)

cn

∣
∣
∣
∣

1/n

= cap(suppσ)egΩ(z;∞),

uniformly on compact subsets of C \ Δ, where gΩ(z;∞) denotes Green’s function
of the region Ω = C \ suppσ with singularity at ∞. But suppσ and supp τ differ on
a set of capacity zero, so their capacities coincide as well as the Green’s function of
the complement of their supports. The limits above are equivalent to regularity (see
[51, Theorem 3.1.1]).

That σ ′ > 0 a.e. on an interval is equivalent to τ ′ > 0 a.e. on the same interval
follows from the Stieltjes–Plemelj inversion formula. �

In order to prove Theorem 5, there is still one thing to be considered. The corre-
sponding result [24, Theorem 1.3] for the case of decreasing components in n1,n2,

was proved assuming that the supports of the measures were regular. We have to ex-
tend its applicability to the case of quasi-regular supports because, as follows from
the proof of the previous lemma, the regularity of the supports of the measures gen-
erating (S1, S2) does not guarantee regularity of the supports of the measures which
generate (S̃1, S̃2) since isolated mass points may arise.

We need some notation. M1(E) denotes the class of probability measures sup-
ported on E, and

V μ(z) =
∫

log
1

|z − ζ | dμ(z)

the logarithmic potential of the measures μ. If ql is a polynomial of degree l,

μql
= 1

l

∑

ql(x)=0

δx

is the associated normalized zero counting measure, where δx is the Dirac measure
with mass 1 at x. In [49, Theorem I.1.3], the authors prove:

Lemma 5.2 Let E ⊂ C be a compact subset of the complex plane and φ a continuous
function on E. Then there exists a unique μ̄ ∈ M1(E) and a constant w such that

V μ̄(z) + φ(z)

{≤ w, z ∈ supp μ̄,

≥ w, z ∈ E \ A, cap(A) = 0.

μ̄ and w are called the equilibrium measure and the equilibrium constant, respec-
tively, in presence of the external field φ on the compact E.

Useful discussions with H. Stahl led to the following improvement of [24,
Lemma 4.2], allowing us to reduce the assumption on suppσ to be quasi-regular.

Lemma 5.3 Let σ ∈ Reg, suppσ ⊂ R, where suppσ is quasi-regular. Let {φl}, l ∈
Λ ⊂ Z+, be a sequence of positive continuous functions on suppσ such that

lim
l∈Λ

1

2l
log

1

|φl(x)| = φ(x) > −∞,
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uniformly on suppσ . By {ql}, l ∈ Λ, denote a sequence of monic polynomials,
degql = l, and

∫

xkql(x)φl(x) dσ (x) = 0, k = 0, . . . , l − 1.

Then

∗ lim
l∈Λ

μql
= μ̄,

in the weak-star topology of measures, and

lim
l∈Λ

∣
∣
∣

∫
∣
∣ql(x)

∣
∣2φl(x) dσ (x)

∣
∣
∣
1/2l = exp (−w),

where μ̄ and w are the equilibrium measure and equilibrium constant in the presence
of the external field φ on suppσ =: E. We also have that

lim
l∈Λ

( |ql(z)|
‖qlφ

1/2
l ‖E

)1/l

= exp
(
w − V μ̄(z)

)
, K ⊂ C \ Co

(
supp(σ )

)
,

where ‖ · ‖E denotes the sup norm on E.

Proof Proceeding as in the proof of [24, Lemma 4.2], one shows that for any se-
quence of monic polynomials {pl}, l ∈ Λ, such that degpl = l,

lim sup
l∈Λ

( |pl(z)|
‖plφ

1/2
l ‖E

)1/l

≤ exp
(
w − V μ̄(z)

)
, K ⊂ C, (39)

and

lim inf
l∈Λ

∥
∥plφ

1/2
l

∥
∥1/l

E
≥ exp (−w). (40)

In particular, these relations hold for {ql}, l ∈ Λ. In [24, Lemma 4.2], it is also proved
that

lim sup
l∈Λ

∥
∥qlφ

1/2
l

∥
∥1/l

2 ≤ exp(−w), (41)

where ‖qlφ
1/2
l ‖2 is the L2 norm of qlφ

1/2
l with respect to σ . We may assume, without

loss of generality, that σ is positive. In deducing (39)–(41), the regularity of suppσ

is not required.
Combining (40)–(41), it follows that

lim inf
l∈Λ

(‖qlφ
1/2
l ‖E

‖qlφ
1/2
l ‖2

)1/l

≥ 1.

Should

lim sup
l∈Λ

(‖qlφ
1/2
l ‖E

‖qlφ
1/2
l ‖2

)1/l

≤ 1, (42)
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then

lim
l∈Λ

(‖qlφ
1/2
l ‖E

‖qlφ
1/2
l ‖2

)1/l

= 1,

and due to (40)–(41), we would have

lim sup
l∈Λ

∥
∥qlφ

1/2
l

∥
∥1/l

E
= lim sup

l∈Λ

∥
∥qlφ

1/2
l

∥
∥1/l

2 = exp(−w). (43)

Once (43) is attained, with the help of (39), one can conclude the proof as in [24,
Lemma 7]. So it remains to show that (42) takes place when we relax the regularity
of suppσ to quasi-regularity.

In [51, Theorem 3.2.3], it is proved (see (v) ⇒ (vi)) that (42) holds for any se-
quence of polynomials {pl}, l ∈ Λ, such that degpl = l, if the same property is sat-
isfied when φl ≡ 1, l ∈ Λ. Though the hypothesis of that theorem also contains the
assumption that suppσ is regular, the proof of this assertion is independent of the
regularity condition. Therefore, let us show that (42) holds true when φl ≡ 1, l ∈ Λ,

and suppσ is quasi-regular.
In fact, according to [51, Theorem 3.2.1 ii)] , we have that

lim sup
l∈Λ

( |pl(z)|
‖pl‖2

)1/l

≤ exp
(
gΩ(z;∞)

)
, K ⊂ C, (44)

where gΩ(z;∞) is the Green’s function of the region Ω = C \ E with singularity at

∞. Since E = Ẽ ∪ e, where Ẽ is regular with respect to the Dirichlet problem and
cap(e) = 0, we have that gΩ(z;∞) = gΩ̃(z;∞), Ω̃ = C \ Ẽ, and gΩ̃(z;∞) extends
continuously to all C.

Fix ε > 0, and let Uε = {z ∈ C : gΩ̃(z;∞) < ε}. This is an open set that contains
Ẽ where gΩ̃(z;∞) = 0 identically. Since the set e is at most denumerable and all
its accumulation points are contained in Ẽ, it follows that e \ Uε has at most a finite
number of points (or may be empty). Let {z1, . . . , zN } be the set of such points (should
there be any). For each fixed k = 1, . . . ,N,

|pl(zk)|2
‖pl‖2

2

σ(zk) ≤
∫ |pl(x)|2

‖pl‖2
2

dσ(x) = 1.

Consequently,

lim sup
l∈Λ

( |pl(zk)|
‖pl‖2

)1/l

≤ 1, k = 1, . . . ,N,

since σ(zk) > 0. Because of (44),

lim sup
l∈Λ

(‖pl‖E∩Uε

‖pl‖2

)1/l

≤ exp(ε).

This together with the previous inequality for zk, k = 1, . . . ,N , immediately imply
that
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lim sup
l∈Λ

(‖pl‖E

‖pl‖2

)1/l

≤ exp(ε).

The arbitrariness of ε > 0 renders what we set out to prove. �

The assumption that the points in e only accumulate on Ẽ is essential. If this was
not the case one could construct examples where (42) does not hold.

Proof of Theorem 1.5 We will prove |n1|th root asymptotics for the sequence
{Bn},n ∈ Λ. Since ŝ1,λ1(0)(z) �= 0, z ∈ C \ Δ1

1, the statement of the theorem read-
ily follows with the same limit.

For definiteness, in reordering the components of a given n, let us take that unique
pair of permutations (λ1, λ2) such that for each i = 1,2, whenever ni,λi (j) = ni,λi (k)

for some 0 ≤ j < k ≤ mi, then λi(j) < λi(k). By Λ(λ1, λ2) we denote the set of
all multi-indices in Λ whose components n1,n2, are reordered decreasingly with λ1

and λ2, respectively. We are only interested in those Λ(λ1, λ2) containing an infinite
number of elements of Λ. Fix (λ1, λ2), and let

(
S̃1, S̃2)= (

N
(
ŝ1,λ1(0)ρ

2
0 , ρ1

1 , . . . , ρ1
m1

)
, N

(
ŝ1,λ1(0)ρ

2
0 , ρ2

1 , . . . , ρ2
m2

))

be the pair of Nikishin systems associated with An by Theorems 1.3–1.4 with respect
to which Bn is a multiple orthogonal linear form.

Set

Pj =
m1∑

k=j

p1,λ1(k), j = 0, . . . ,m1, P−j =
m2∑

k=j

p2,λ2(k), j = 0, . . . ,m2.

Define the tri-diagonal matrix

C =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

P 2−m2
−P−m2 P−m2+1

2 0 · · · 0

−P−m2 P−m2+1

2 P 2−m2+1 −P−m2+1P−m2+2

2 · · · 0

0 −P−m2+1P−m2+2

2 P 2−m2+2 · · · 0

...
...

...
. . .

...

0 0 0 · · · P 2
m1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (45)

The sub-indices of the entries cj,k of C run from −m2 − 1 to m1 + 1.
Let M1(Ek) be the subclass of probability measures of M(Ek),

Ek =
{

suppρ1
k , k = 1, . . . ,m1,

suppρ2−k, k = −m2, . . . ,0.

Set

M1 = M1(E−m2) × · · · × M1(Em1).
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Given a vector measure μ = (μ−m2, . . . , μm1) ∈ M1 and j ∈ {−m2, . . . ,m1}, we
define the combined potential

W
μ
j (x) =

m1∑

k=−m2

cj,kV
μk (x), V μk (x) =

∫

log
1

|x − y| dμk(y).

Set

J (μ) =
m1∑

k,j=−m2

cj,k

∫ ∫

log
1

|x − y| dμj (x) dμk(y) =
∫

W
μ
j (x) dμj (x).

From Propositions 4.1–4.5 in [42, Chapter 5], it follows that there exists a unique
vector measure μ̄ = (μ̄−m2 , . . . , μ̄m1) ∈ M1 such that

J (μ̄) = inf
{
J (μ) : μ ∈ M1

}
, (46)

and that there exist constants w
μ̄
j , j = −m2, . . . ,m1, for which

W
μ̄
j (x)

{≤ w
μ̄
j , x ∈ supp μ̄j ,

≥ w
μ̄
j , x ∈ Ej \ Aj , cap(Aj ) = 0

(47)

for certain Borel sets Aj . For any two vector measures μ1,μ2 ∈ M1 such that
J (μ1) < ∞, J (μ2) < ∞, straightforward calculations yield

J
(
μ2)− J

(
μ1)= J

(
μ2 − μ1)+ 2

m1∑

j=−m2

∫

W
μ1

j (x) d
(
μ2

j − μ1
j

)
(x).

Since J (μ2 − μ1) ≥ 0 for all μ1,μ2 ∈ M1 (see [42, Proposition 4.2]), and sets of
capacity zero are negligible for measures with finite energy, if μ1 satisfies (47) it
also satisfies (46). Thus, (46)–(47) are equivalent, and a measure verifying any one
of the two is unique (and so are the constants in (47)). μ̄ is called the equilibrium
vector measure, and wμ̄ = (w

μ̄
−m2

, . . . ,w
μ̄
m1) the equilibrium vector constant, for the

logarithmic potential governed by the interaction matrix C on the system of compact
sets Ej , j = −m2, . . . ,m1.

From Lemma 5.1 we have that (S̃1, S̃2) ∈ Reg and the supports of the generating
measures are quasi-regular. If An is monic (see Definition 1.6), due to the way in
which Bn is constructed (in particular, see (31) in the proof of Lemma 2.3 and the
proof of Theorem 1.4) it follows that bn,m1 is either plus or minus an,λ−1

1 (m1)
. Thus,

its leading coefficient is either 1 or −1; that is, except for a sign change, Bn is monic
with the normalization imposed in [24, Theorem 5.1]. Following the proof of [24,
Theorem 5.1], but using Lemma 5.3 instead of [24, Lemma 5.1], one finds that

lim
n∈Λ(λ1,λ2)

∣
∣Bn(z)

∣
∣1/|n1 = exp

(

P1V
μ̄1(z) − P0V

μ̄0(z) − 2
m1∑

k=1

ω
μ̄
k

Pk

)

,
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K ⊂ C \ (Δ1
0 ∪ Δ1

1

)
,

where μ̄ = μ̄(C) = (μ̄−m2, . . . , μ̄m1) is the equilibrium vector measure and
(ω

μ̄
−m2

, . . . ,ω
μ̄
m1) is the system of equilibrium constants for the vector potential prob-

lem determined by the interaction matrix C defined in (45) on the system of compact
sets Ej , j = −m2, . . . ,m1.

It is easy to see that the interaction matrix C does not depend on (λ1, λ2) and
that the compact sets Ej , j = −m2, . . . ,m1, for each fixed j , may differ only on a
(denumerable) set of capacity zero depending on λ1, λ2 (see proof of Lemma 5.1).
Therefore, the equilibrium measure and the equilibrium constant are uniquely deter-
mined for any Λ(λ1, λ2) containing infinitely many terms of Λ. Consequently,

lim
n∈Λ

∣
∣An(z)

∣
∣1/|n1 = exp

(

P1V
μ̄1(z)−P0V

μ̄0(z)− 2
m1∑

k=1

ω
μ̄
k

Pk

)

, K ⊂ C \ (Δ1
0 ∪Δ1

1

)
.

(48)
With this we conclude the proof. �

Remark 5.1 If we denote by Qn,0 the monic polynomial whose zeros are those of
An, under the assumptions of Theorem 1.5, we have (see [24, Theorem 4.2])

∗ lim
n∈Λ

μQn,0 = μ̄0.

There are other linear forms related to An whose asymptotic zero distribution and
logarithmic asymptotic are described in terms of the other components of μ̄ and the
vector equilibrium constant. This allows us to give the logarithmic asymptotics of
the polynomials an,k as well. For a view of what can be expected, see [24, Sec-
tion 5]. These results can be used to give the exact rate of convergence of mixed type
Hermite–Padé approximants, see [24, Section 7] and [21, Theorem 7]. For example,
in case of type II approximation, under regularity of the generating measures and
quasi-regularity of their supports, the following limit exists:

lim
n∈Λ

∥
∥
∥
∥ŝ0,k − Pn,k

Qn

∥
∥
∥
∥

1/2|n|

K
, K ⊂ C \ (Co(suppσ0) ∪ Co(suppσ1)

)
, k = 0, . . . ,m.

Proof of Theorem 1.6 The existence of the limit claimed in Theorem 1.6 follows
directly from [24, Theorem 1.4], but to give an expression of the limit function, we
must introduce some notation.

Let λ1, λ2, and l = (l1; l2) be as given in Theorem 1.6. Consider the (m1 + m2 +
2)-sheeted Riemann surface

R =
m1⋃

k=−m2−1

Rk

formed by the consecutively “glued” sheets

R−m2−1 := C \ Δ̃−m2,
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Rk := C \ (Δ̃k ∪ Δ̃k+1), k = −m2, . . . ,m1 − 1, Rm1 := C \ Δ̃m1,

where the upper and lower banks of the slits of two neighboring sheets are identified.
Define

(l̃1; l̃2) := (
λ−1

1 (l1);λ−1
2 (l2)

)
.

Let ψ(l̃) be a single-valued function defined on R onto the extended complex plane
satisfying

ψ(l̃)(z) = C1

z
+ O

(
1

z2

)

, z → ∞(−l̃2−1),

ψ(l̃)(z) = C2 z + O(1), z → ∞(l̃1),

where C1 and C2 are nonzero constants. Since the genus of R is zero, ψ(l̃) exists and
is uniquely determined up to a multiplicative constant. Consider the branches of ψ(l̃)

corresponding to the different sheets k = −m2 − 1, . . . ,m1 of R:

ψ(l̃) := {
ψ

(l̃)
k

}m1
k=−m2−1.

Given an arbitrary function F(z) which has in a neighborhood of infinity a Laurent
expansion of the form F(z) = Czk + O(zk−1),C �= 0, and k ∈ Z, we write

F̃ := F/C.

Because of Theorem 1.4, Lemma 5.1, and the normalization adopted, the sequence
{Bn}, n ∈ Λ, satisfies all the assumptions of [24, Theorem 6.8]. Consequently,

lim
n∈Λ

Bnl (z)

Bn(z)
= C(l̃)ψ̃

(l̃)
0 (z), K ⊂ C \ (suppρ1

0 ∪ suppρ1
1

)
,

where C(l̃) is a constant, which only depends on l̃ and can be determined exactly (see
(69), (73), and (83) in [24]) in terms of the values of the branches of ψ(l̃) at ∞. Due
to the relation between Bn and An, we obtain

lim
n∈Λ

Anl (z)

An(z)
= C(l̃)ψ̃

(l̃)
0 (z), K ⊂ C \ (suppσ 1

0 ∪ Co
(
suppσ 1

1

))
, (49)

since suppσ 1
0 = suppρ1

0 and Co(suppρ1
1) ⊂ Co(suppσ 1

1 ). �

Proof of Corollary 1.3 As in the proof of Theorem 1.5, for definiteness, in reordering
the components of a given n, let us take that unique pair of permutations (λ1, λ2)

such that for each i = 1,2, whenever ni,λi (j) = ni,λi (k) for some 0 ≤ j < k ≤ mi,

then λi(j) < λi(k). By Λ(λ1, λ2), we denote the set of all multi-indices in Λ whose
components n1,n2, are reordered decreasingly with λ1 and λ2, respectively. We are
only interested in those Λ(λ1, λ2) containing an infinite number of elements of Λ.

Fix (λ1, λ2), and let
(
S̃1, S̃2)= (

N
(
ŝ1,λ1(0)ρ

2
0 , ρ1

1 , . . . , ρ1
m1

)
, N

(
ŝ1,λ1(0)ρ

2
0 , ρ2

1 , . . . , ρ2
m2

))
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be the pair of Nikishin systems associated with An by Theorems 1.3–1.4 with respect
to which Bn is a multiple orthogonal linear form.

Let M be the least common multiple of m1 + 1 and m2 + 1, and define d1 :=
M/(m1 + 1), d2 := M/(m2 + 1). Within the class of pairs l = (l1; l2) with 0 ≤ l1 ≤
m1, 0 ≤ l2 ≤ m2, we distinguish the subclass

L := {
(l1; l2) : l1 ≡ r mod (m1 + 1), l2 ≡ r mod (m2 + 1) for some 0 ≤ r ≤ M − 1

}
.

It is easy to check that for different r,0 ≤ r ≤ M −1, the pairs (l1, l2) in L are distinct.
Let p := (p1;p2), where p1 = (d1, . . . , d1) and p2 = (d2, . . . , d2) have m1 + 1 and
m2 + 1 components, respectively. By n + p we denote the multi-index (n1 + p1;n2 +
p2); that is, n + p = ñ.

Given n ∈ Λ(λ1, λ2) and 0 ≤ r ≤ M , let n(r) := n + q(r) where q(r) =
(q1(r);q2(r)) is the multi-index satisfying (qi (r) = (qi,0(r), . . . , qi,mi

(r)), i = 1,2)

qi,λi (j)(r) =
{

ki + 1, j = 0, . . . , si − 1,

ki, j = si, . . . ,mi,

r = ki(mi + 1) + si , 0 ≤ si ≤ mi.

Hence, n(0) = n, n(M) = n + p = ñ. It is easy to see that for all r ∈ {0, . . . ,M −
1}, the same pair (λ1, λ2) reorders the components of n(r) giving rise to the same
systems (S̃1, S̃2).

We have

An+p(z)

An(z)
=

M−1∏

r=0

An(r+1)(z)

An(r)(z)
.

Due to (49),

lim
n∈Λ(λ1,λ2)

Añ(z)

An(z)
=

∏

(l1,l2)∈L

C(l̃)ψ̃
(l̃)
0 (z), K ⊂ C \ (suppσ 1

0 ∪ Co
(
suppσ 1

1

))
, (50)

where l = (l1; l2) is precisely the multi-index satisfying l1 ≡ r mod (m1 + 1), l2 ≡
r mod (m2 + 1), and l̃ = (l̃1; l̃2) = (λ−1

1 (l1);λ−1
2 (l2)). The limit does not depend on

(λ1, λ2) because the set L̃ = {(l̃1; l̃2) : (l1; l2) ∈ L} is the same for all (λ1, λ2). The
proof is complete. �

Remark 5.2 The linear forms associated with An mentioned in the previous remark
also satisfy ratio asymptotics in the spirit of the results contained in [24, Sect. 6].
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