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Abstract We investigate first-order conditions for canonical and optimal subspace
(Tucker format) tensor product approximations to square integrable functions. They
reveal that the best approximation and all of its factors have the same smoothness
as the approximated function itself. This is not obvious, since the approximation is
performed in L2.
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1 Introduction

The L2 function spaces, whether real- or complex-valued, possess a natural tensor
product structure. For example, if we consider dimensions d1 and d2 ∈ N, then the
identity

L2(
R

d1+d2
) = L2(

R
d1

) ⊗ L2(
R

d2
)

(1.1)

expresses the well-known fact that each function f ∈ L2(Rd1+d2) can be written as a
(probably infinite) sum of products

f (x, y) =
r∑

k=1

uk(x)vk(y)
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of functions uk ∈ L2(Rd1) and vk ∈ L2(Rd1) almost everywhere. But (1.1) means
more than that. If we set

(u ⊗ v)(x, y) := u(x)v(y) (1.2)

for u ∈ L2(Rd1) and v ∈ L2(Rd2), then the right-hand side of (1.1) is defined as the
closure of the linear hull of functions {u⊗ v} with respect to the norm induced by the
inner product, which is generated from

(u1 ⊗ v1, u2 ⊗ v2)L2(Rd1 )⊗L2(Rd2 ) := (u1, u2)L2(Rd1 ) · (v1, v2)L2(Rd2 ) (1.3)

via linear expansion. Here (u1, u2)L2(Rdn ) denotes the usual inner product in L2(Rdn).
Due to Fubini’s theorem, the inner product (1.3) coincides with that of L2(Rd1+d2):

(u1 ⊗ u2, v1 ⊗ v2)L2(Rd1 )⊗L2(Rd2 ) = (u1 ⊗ u2, v1 ⊗ v2)L2(Rd1+d2 ).

This is why (1.1) holds in the sense of Hilbert spaces.1 The observation can be gen-
eralized to arbitrary dimensions and orders, that is,

L2(
R

d) := L2(
R

d1+d2+···+dN
) =

N⊗

n=1

L2(
R

dn
)

for arbitrary positive integers N,d1, d2, . . . , dN . In the following, we will use R
d with

a multi-index d = (d1, d2, . . . , dN) as an abbreviation for R
d1+d2+···+dN .

Given a function f ∈ L2(Rd), there are a lot of theoretical and practical reasons
one would like to obtain a decomposition

f =
r∑

k=1

u1
k ⊗ u2

k ⊗ · · · ⊗ uN
k (1.4)

with un
k ∈ L2(Rdn) and small r . For instance, this would allow an integration of f

to be performed much more easily and with a significantly reduced numeric cost. In
fact, such decompositions seem suitable for breaking the “curse of dimensionality,”
which arises in the numerical treatment of high-dimensional problems, see, e.g., [8]
for a survey. However, it may be quite difficult or impossible to obtain such a decom-
position. A simple expansion of f into tensor products of fixed basis functions of
L2(Rdn) does not solve the problem, since it usually leads to r = ∞. In fact, the case
that an arbitrary chosen function f from L2(Rd) admits a finite representation (1.4)
can be expected to be an exception, since, by definition, L2(Rd) is the completion of
the set of functions with this property. There may be hope for functions with special
structure coming from special applications, but this is not the subject of this article.

1Of course the Lebesgue measure is constructed in this special way. The point is that an identity like (1.1)

is not necessarily true for other Hilbert spaces of functions such as H 1.



Constr Approx (2011) 34:371–391 373

The minimal r ∈ N ∪ {∞} needed in (1.4) for a decomposition of f is called the
rank of f . If the rank is too large or even infinite, one seeks for an approximation of
low rank r < ∞, that is, one tries to solve the problem2

∥∥∥∥∥
f −

r∑

k=1

u1
k ⊗ u2

k ⊗ · · · ⊗ uN
k

∥∥∥∥∥
0

= min (1.5)

for un
k ∈ L2(Rdn). This is called the best canonical rank-r approximation and can

be seen as a nonlinear m-term approximation (with m = r) for which the dictionary
consists of all rank-one functions. We ask the following question: Which regularity
can we expect the factors un

k of a best approximation to have in comparison to the
regularity of f ? This question is important for instance in quantum chemistry [2, 3,
5, 9, 10], where tensor products are used to approximate wave functions of atoms and
molecules, and such wave functions have to lie in the Sobolev space H 1 to be physi-
cally meaningful. More generally, the regularity of tensor product approximations is
relevant in the treatment of high-dimensional partial differential equations by tensor
methods. It may also be useful from an approximation theoretical point of view, e.g.,
for estimating convergence rates of procedures solving (1.5) or related questions. Fur-
thermore, a high regularity of the factors allows for a further compression and sparse
representation of the solution.

Unfortunately, minimization problem (1.5) can be ill-posed3 and does not admit
a solution for every choice of f , see [11] for this issue. To prevent our results from
being too vacuous we will focus on local minima of (1.5). Additionally, we analyze
in Sect. 4.5 a regularized minimization problem used in practice.

There are other tensor product approximation models, which have the benefit of
being well-posed problems because they contain more structure. In this paper we
shall also investigate the approximation of f by a tensor from the so-called optimal
subspace, also known as Tucker format or rank-(r1, r2, . . . , rN ) approximation:

∥∥∥∥∥
f −

r1∑

k1=1

r2∑

k2=1

. . .

rN∑

kN=1

αk1k2...kN
u1

k1
⊗ u2

k2
⊗ · · · ⊗ uN

kN

∥∥∥∥∥
0

= min. (1.6)

The integers r1, r2, . . . , rN > 0 are given, the functions un
kn

∈ L2(Rdn) and the coeffi-
cients αk1k2...kN

are to be determined. The special case r1 = r2 = · · · = rN = 1 is the
canonical rank-one approximation. The approximating tensor in (1.6) is an element
of the subspace

⊗N
n=1 Un with Un = span{un

1, u
n
2, . . . , un

rn
}, and since every tensor

g ∈ ⊗N
n=1 Un can be written in this form, we can reformulate (1.6) into

‖f − g‖0 = min, g ∈
N⊗

n=1

Un, Un ⊆ L2(
R

dn
)
, dimUn ≤ rn,

2To enhance the readability, we will now use the abbreviations ‖ · ‖0 and (·, ·)0 for the norm and inner

product of L2(Rd ). The dimension d will always be clear from the context. In the case of complex spaces,
the inner product is supposed to be conjugate linear in the second argument.
3Exceptions of this statement are the cases r = 1 or N ≤ 2.
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with the subspaces Un as unknowns. This explains the name of the model. It was
shown in [13] that (1.6) is a well-posed problem, that is, has at least one solution for
every choice of f . Again, one might ask for the regularity of a solution.

The answer to this question for both types of approximation is given in Theo-
rems 4.5 and 5.2, respectively: the factors un

k in the solution essentially have the
same regularity as the function f with regard to the corresponding variable xn. Since
a solution is a sum of products and each factor lies in, say, the Sobolev space Hs , the
mixed regularity is even higher in the sense that certain mixed partial derivatives up
to order sN are possible. As a consequence, an Hs function of finite rank always pos-
sesses certain mixed derivatives up to degree sN , see Corollary 4.9. A similar result
holds for finite-dimensional subspace decompositions of functions (Corollary 5.6).

Since we know that (1.6) always has L2 solutions, Theorem 5.2 implies that for
f ∈ Hs(Rd) and r1, r2, . . . , rN chosen appropriately the problem

∥∥
∥∥∥
f −

r1∑

k1=1

r2∑

k2=1

. . .

rN∑

kN=1

αk1k2...kN
u1

k1
⊗ u2

k2
⊗ · · · ⊗ uN

kN

∥∥
∥∥∥

0

= min,

un
kn

∈ Hs(Rdn),

stated in Hs , also admits solutions, which coincide with the ones of (1.6) (Corol-
lary 5.8). From an opposite point of view, this means that switching to the larger
space L2 for approximating f does not affect the regularity of the solution. This is
not obvious, since possible minimizers cannot be bounded a priori in Hs (whereas
they can in L2), which is usually necessary to apply any sort of Weierstrass theorem.
The proofs of Theorems 4.5 and 5.2 consist of an analysis of necessary first-order
conditions which the L2 solutions of (1.5) and (1.6) have to satisfy.

The results derived in this paper appear valid and expectable at first glance. How-
ever, since we did not find them rigorously formulated or proved in the literature, we
decided to write this article to show that best tensor product approximations to square
integrable functions preserve regularity. This is remarkable because the approxima-
tion is performed in L2. It is interesting to note that in [12] very similar arguments
are applied by Tyrtyshnikov in a finite-dimensional setting, to show that best low-rank
approximations preserve linear constraints which the target tensor is subject to.

2 The Main Idea

We present the key idea of this article. Recall definition (1.2) of the tensor product of
two functions.

Lemma 2.1 Let f ∈ L2(Rd1+d2) and let v1, v2, . . . , vr ∈ L2(Rd2), r ∈ N, be linearly
independent. Let further G = [gkl] with gkl = (vk, vl)0 denote the Gram matrix of
v1, v2, . . . , vr . Then the unique solution u1, u2, . . . , ur ∈ L2(Rd1) of
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∥∥∥∥
∥
f −

r∑

k=1

uk ⊗ vk

∥∥∥∥
∥

2

0

= min (2.1)

is almost everywhere given by

uk(x) =
∫

f (x, y)wk(y)dy, k = 1,2, . . . , r, (2.2)

where wk = ∑r
l=1 γklvl and Γ = [γkl] denotes the inverse of the G.

Remark 2.2 It is well known that the Gram matrix of v1, v2, . . . , vr is invertible if
and only if v1, v2, . . . , vr are linearly independent. As we will see in the proof, for-
mulae (2.2) are simply the normal equations for the inner integral in (2.1). They are
an analog of the well-known solution formula for alternating least squares approxi-
mation of a discrete tensor in the canonical low-rank format [7].

Proof For almost every x ∈ R
d1 the function y 	→ fx(y) = f (x, y) is square inte-

grable. Since v1, v2, . . . , vr are linearly independent, for these values of x the inner
integral

Iu(x) =
∫ ∣∣∣∣∣

f (x, y) −
r∑

k=1

uk(x)v(y)

∣∣∣∣∣

2

dy =
∥∥∥∥∥
fx −

r∑

k=1

uk(x)vk

∥∥∥∥∥

2

0

is minimal if and only if the coefficients uk(x) satisfy the normal equations

0 =
(

r∑

k=1

uk(x)vk − fx, vl

)

0

=
r∑

k=1

gkluk(x) − (fx, vl)0, l = 1,2, . . . , r.

This is equivalent to

uk(x) =
r∑

l=1

γ kl(fx, vl)0 =
(

fx,

r∑

l=1

γklvl

)

0

,

which is (2.2). If chosen this way, u1, u2, . . . , ur obviously solve (2.1). Let ũ1, ũ2, . . . ,

ũr be another solution. Then for almost every x ∈ R
d1 we have that fx is square in-

tegrable and Iũ(x) = Iu(x) is minimal. As follows from the considerations above,
this implies ũk(x) = uk(x) for k = 1,2, . . . , r , which proves the uniqueness in
L2(Rd1). �

Equality (2.2) is the starting point for our regularity analysis. As one can expect,
the regularity of u(x) in (2.2) depends on the regularity properties of the target func-
tion f (x, y) with regard to the variable x only. We will make this statement more
precise in the next section.
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3 Spaces of Anisotropic Regularity

In this article we mainly focus on Sobolev spaces Hs of s-times weakly differentiable
functions. Let F :L2(Rd) → L2(Rd) denote the Fourier transform. For a function
u ∈ L2(Rd) ∩ L1(Rd) it is given by

(Fu)(ω) =
(

1√
2π

)n ∫
u(x)e−iω·x dx. (3.1)

Let s ≥ 0. Then the Sobolev space Hs(Rd) is defined as the completion of the space
of infinitely differentiable functions with compact support on R

d under the norm

‖u‖2
s =

∫ (
1 + |ω|2)s∣∣(Fu)(ω)

∣∣2
dω.

Since the domain is unbounded, the following definition is equivalent:

Hs
(
R

d
) = {

u ∈ L2(
R

d
) | ‖u‖2

s < ∞}
.

In general, s can be any nonnegative real number. If s is an integer, the definition
leads to the classical Sobolev spaces of s-times weakly differentiable functions. For
s = 0 one obtains L2.

The spaces Hs contain functions of isotropic regularity, that is, functions which
possess the same smoothness with regard to every spatial variable. Assume we have a
partition d = (d1, d2, . . . , dN) of R

d = R
d1+d2+···+dN . In accordance with the tensor

product viewpoint of this article, and in order to obtain more precise results, we want
to allow for the possibility that the target function f ∈ L2(Rd) in the tensor product
approximation has different regularity properties for each variable xn ∈ R

dn . For this
purpose, we define the norms

‖f ‖2
s,n =

∫ (
1 + |ωn|2

)s∣∣(Ff )(ω)
∣∣2 dω,

where F is now the Fourier transform on L2(Rd) and ω ∈ R
d is partitioned into

ωn ∈ R
dn . The corresponding Hilbert space is denoted by

Hs,n
(
R

d) = {
f ∈ L2(

R
d) | ‖f ‖s,n < ∞}

.

This space contains functions f for which xn 	→ f (x1, x2, . . . , xN) is in Hs(Rdn) for
almost every (x1, . . . , xn−1, xn+1, . . . , xN). The Sobolev space Hs(Rd) is obviously
contained in Hs,n(Rd) for every choice of n. In fact, it is completely characterized
by this property.

The following lemma shows how the image of an integral operator is related to the
regularity of its kernel function.

Lemma 3.1 Let s ≥ 0, f ∈ Hs,1(Rd1+d2), and v ∈ L2(Rd2). Then u defined almost
everywhere by

u(x) =
∫

f (x, y)v(y)dy (3.2)



Constr Approx (2011) 34:371–391 377

belongs to Hs(Rd1) and satisfies the estimate

‖u‖s ≤ ‖f ‖s,1‖v‖0.

Proof We denote by F1, F2, and F the Fourier transforms on L2(Rd1), L2(Rd2)

and L2(Rd1+d2), respectively. It is possible to write the function f as

f =
∞∑

k=1

φk ⊗ ψk

with φk ∈ L2(Rd1)∩L1(Rd1) and ψk ∈ L2(Rd2)∩L1(Rd2), where the limit is taken in
L2 (take, for instance, constant functions with rectangular support). Since the integral
operator (3.2) depends continuously on the kernel function, we have

u =
∞∑

k=1

φk

∫
ψk(y)v(y)dy

in L2. Consequently,

‖u‖2
s =

∫ (
1 + |ω|2)s

∣
∣∣∣∣

∫ ∞∑

k=1

(F1φk)(ω)ψk(y)v(y)dy

∣
∣∣∣∣

2

dω. (3.3)

Note that ‖∑∞
k=1(F1φk) ⊗ ψk‖0 = ‖f ‖0 by Plancherel’s theorem, which implies

that y 	→ ∑∞
k=1(F1φk)(ω)ψk(y) is square integrable for almost every ω. Therefore,

we can apply Schwarz’s inequality on the inner integral in (3.3). Using once more
Plancherel’s theorem, we obtain the estimate

‖u‖2
s ≤

∫ ∫ (
1 + |ω|2)s

∣
∣∣∣∣

∞∑

k=1

(F1φk)(ω)(F2ψk)(ξ)

∣
∣∣∣∣

2

dξ dω · ‖v‖2
0.

With the aid of (3.1) one verifies that the double integral equals ‖f ‖s,1. �

4 Regularity of Canonical Low-Rank Approximations

Combining Lemma 3.1 with Lemma 2.1, we obtain a regularity result for tensor prod-
uct approximations with two factors.

Lemma 4.1 Consider the situation in Lemma 2.1, but with f ∈ Hs,1(Rd1+d2). Then
every uk belongs to Hs(Rd1) and satisfies ‖uk‖s ≤ ‖f ‖s,1‖wk‖0.

We intend to use this lemma to prove the regularity of canonical low-rank approx-
imations with an arbitrary number of factors.
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4.1 Notation

We fix N ≥ 2 and a partition d = (d1, d2, . . . , dN) of R
d = R

d1+d2+···+dN and intro-
duce some abbreviations in order to treat the general case clearly. We set

T (uk) = u1
k ⊗ u2

k ⊗ · · · ⊗ uN
k .

Each un
k belongs to L2(Rdn), and their tensor product T (uk) of order N is a function

in L2(Rd), namely,

T (uk)(x) =
N∏

n=1

un
k(xn),

where x = (x1, x2, . . . , xN) is partitioned correspondingly into xn ∈ R
dn . Further-

more, for fixed n ∈ {1,2, . . . ,N} the reduced tensor products of order N − 1,

T n(uk) = u1
k ⊗ · · · ⊗ un−1

k ⊗ un+1
k ⊗ · · · ⊗ uN

k , (4.1)

will be useful. These are functions in L2(Rd1+···+dn−1+dn+1+···+dN ), namely,

T n(uk)(̃x) =
N∏

m=1
m �=n

um
k (xm),

with x̃ partitioned correspondingly.

4.2 Rank

Every function g ∈ L2(Rd) can be written as a sum of tensor products

g =
r∑

k=1

T (uk) (4.2)

with r ∈ N ∪ {∞}.
Definition 4.2 The rank of g is the minimal r ∈ N ∪ {∞} such that g can be repre-
sented in the form (4.2). One writes rankg = r .

Of course, the rank of g depends on the partition d of the spatial space R
d into

spaces of lower dimension, that is, on the choice of d1, d2, . . . , dN . Throughout this
text we assume this partition to be fixed.

The following observation will be of importance. We have found it in [4].

Lemma 4.3 Let g = ∑r
k=1 T (uk) with r = rankg < ∞. Then for every n ∈

{1,2, . . . ,N} the set
{
T n(u1), T

n(u2), . . . , T
n(ur )

}

with T n(uk) as in (4.1) is linearly independent in L2(Rd1+···+dn−1+dn+1+···+dN ).
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Proof It is sufficient4 to prove this for n = 1. If we assume T 1(ur ) = ∑r−1
k=1 βkT

1(uk),
then

g =
r∑

k=1

T (uk) =
r−1∑

k=1

u1
k ⊗ T 1(uk) + u1

r ⊗ T 1(ur ) =
r−1∑

k=1

(
u1

k + βku1
r

) ⊗ T 1(uk).

This contradicts rankg = r . �

4.3 Canonical rank-r Approximation

Let f ∈ L2(Rd) be given. The best canonical rank-r approximation of f is defined
as a solution g of the problem

‖f − g‖0 = min, rankg ≤ r, (4.3)

or, in parametrized form,
∥∥∥∥∥
f −

r∑

k=1

T (uk)

∥∥∥∥∥
0

= min. (4.4)

We emphasize again that for certain choices of f and r the problem can be ill-posed
and does not admit a global solution. Moreover, these cases are not rare [11]. In the
following, we are concerned with local minima of (4.3), that is, with local minima of
g 	→ ‖f − g‖0 with respect to the set of functions of rank at most r .

Lemma 4.4 If g is a local minimum of (4.3) and r ≤ rankf , then rankg = r .

Proof This is more or less clear, since otherwise we could find a nonzero rank-one
approximation h to f − g such that

∥∥f − (g + λh)
∥∥

0 < ‖f − g‖0

for all 0 < λ ≤ 1. This would contradict the local optimality of g. �

Theorem 4.5 Let r ≤ rankf , r < ∞, and g = ∑r
k=1 T (uk) be a local minimum

of (4.3). Then for each n = 1,2, . . . ,N the functions un
k inherit the regularity of the

function f with regard to the variable xn ∈ R
dn , that is, if f belongs to Hsn,n(Rd),

then un
k is in Hsn(Rdn) for k = 1,2, . . . , r .

Proof We fix un
k for n ≥ 2 and show that u1

1, u
1
2, . . . , u

1
r ∈ Hs1(Rd1). The other com-

ponents can be treated in the same way by permuting the order of the factors. The set
of functions u1

1, u
1
2, . . . , u

1
r is a local minimum of the problem

∥∥∥
∥∥
f −

r∑

k=1

u1
k ⊗ T 1(uk)

∥∥∥
∥∥

2

0

= min.

4A permutation of the factors of a tensor would leave its rank invariant.
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Since this functional is nonnegative and quadratic in u1
k , a local minimum is also the

global minimum. According to Lemma 4.4 the solution g of (4.3) has rank r . Hence
the functions T 1(u1), T

1(u2), . . . , T
1(ur ) are linearly independent by Lemma 4.3.

The theorem is therefore an application of Lemma 4.1. �

Remark 4.6 Of course, the theorem implies that the solution g itself is in Hsn,n(Rd)

for n = 1,2, . . . ,N , but as mentioned in the introduction one obtains an even higher
mixed regularity. Since g is a sum of tensor products, it is possible to take deriva-
tives of order sn independently in each direction n, that is, g possesses certain mixed
derivatives up to order s1 + s2 + · · · + sN . Function spaces of mixed derivatives can
play an important role for approximation in high spatial dimensions. Recent work by
Yserentant [15] has shown this in the context of the electronic Schrödinger equation
in quantum chemistry.

Remark 4.7 The condition r ≤ rankf appears naturally, for if one solves (4.3) with
r > rankf , one gets the exact solution g = f but usually not in a minimal represen-
tation. Then additional terms un

k could appear that are not in Hsn but would cancel
out in a minimal rank-r representation.

Remark 4.8 In the theorem it is assumed that g is a local minimum of (4.3), that is,
a local minimum on the admissible set of functions of rank at most r . In practice, one
tries to solve the parametrized problem (4.4) as a function of the factors un

k . It seems
to be a difficult question whether a local minimum in the parameter space is also
a local minimum of (4.3). At least for global minima, if existent, this is obviously
the case. As one can see in the proof, the theorem is in principle valid for local
minima of (4.4) if one additionally assumes that the solution has full rank r . One
may conjecture that this is always the case, but a rigorous proof is required.

For the case r = rankf < ∞ the theorem makes the following interesting claim:

Corollary 4.9 If rankf is finite, then in every representation

f =
rankf∑

k=1

T (uk)

the functions un
k have the same regularity as f with regard to the variable xn ∈ R

dn ,
that is, if f ∈ Hsn,n(Rd), then un

k ∈ Hsn(Rdn) for k = 1,2, . . . , r .

According to Remark 4.6 this means that for instance an Hs function of finite
rank always possesses certain mixed derivatives up to order sN . This is an interest-
ing interaction between the algebraic concept of rank and the analytic concept of
smoothness.

4.4 Norm Estimates

Theorem 4.5 guarantees that the factors un
k in a best low-rank approximation lie in

certain Sobolev spaces, but gives no estimate on the corresponding Sobolev norm.
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The estimation of the norm of the factors is an intrinsic difficulty of the canonical
tensor format. It is closely related to the fact that the problem can be ill-posed.

To obtain a reasonable formula for each factor, one should first eliminate the scal-
ing indeterminacy by writing a solution g of (4.3) in the normalized form

g =
r∑

k=1

αkT (uk),
∥∥un

k

∥∥
0 = 1 (4.5)

for k = 1,2, . . . , r and n = 1,2, . . . ,N . The coefficients αk carry the L2 norm
of each summand, that is, |αk| = ‖αkT (uk)‖0. For each n, let Gn = [gn

kl] =
[(T n(uk), T

n(ul ))0] be the Gram matrix of the complementary factors T n(u1),

T n(u2), . . . , T
n(ur ), and let Γ n = [γ n

kl] be its inverse. Under the assumptions of The-
orem 4.5, Lemma 4.1 provides the general estimate

∥
∥αku

n
k

∥
∥

sn
≤ ‖f ‖sn,n‖wk‖0 (4.6)

with

wk =
r∑

l=1

γ n
klT

n(uk).

Denoting the kth row vector of Γ n by γ n
k and utilizing that the spectral norm ‖Gn‖2

dominates the diagonal entries gn
kk = 1 of Gn, we have

‖wk‖2
0 = (

γ n
k

)∗
Gnγ n

k

≤ ∥∥Gn
∥∥

2

∥∥γ n
k

∥∥2
2 ≤ ∥∥Gn

∥∥
2

∥∥Γ n
∥∥2

2 ≤ ∥∥Gn
∥∥2

2

∥∥Γ n
∥∥2

2 ≤ (
κ2

(
Gn

))2
,

where κ2(G
n) = ‖Gn‖2‖Γ n‖2 = λmax(Gn)/λmin(Gn) is the spectral condition

number of Gn. From (4.6) one thus obtains

∥∥un
k

∥∥
sn

≤ κ2(G
n)

|αk| ‖f ‖sn,n. (4.7)

This estimate can be useful if lower bounds for |αk| and upper bounds for κ2(G
n) are

available. However, as mentioned above, such bounds are hard to determine a priori.
In the case of the L2 norm (sn = 0), inequality (4.7) states that

1 ≤ κ2(G
n)

|αk| ‖f ‖0 (4.8)

for all k and n. Therefore, the best bound we can hope to get in (4.7) is ‖f ‖sn,n/‖f ‖0,
which would be a perfect estimate. We can also deduce from (4.8) that κ2(G

n) has
to be large if |αk| is large. Unfortunately, the converse does not need to be true, that
is, |αk| can be very small even if all Gn are bad-conditioned. However, in this case
the term T (uk) is of less importance in the low-rank approximation (4.5) (and may
be removed). Assuming that all the matrices Gn have almost the same condition, we
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hence obtain the best norm estimates (4.7) for the most important rank-one terms
T (uk). This observation warrants further detailed investigation.

To get some deeper insight into the behavior of κ2(G
n), let Gm = [(um

k ,um
l )0]

denote the Gram matrices of the factors um
1 , um

2 , . . . , um
r . For each n, observe that

Gn is the Hadamard (pointwise) product of the matrices Gm for m �= n. All these
matrices are positive semidefinite and have ones on the diagonal. By a well-known
theorem on the eigenvalues of Hadamard products [6, Theorem 5.3.4], one can hence
for each n deduce the estimate5

κ2
(
Gn

) ≤ minm �=n(λmax(Gm))

maxm �=n(λmin(Gm))
≤ min

m �=n

(
κ2(Gm)

)
.

In particular, if one of the Gram matrices of the factors, say Gm, is well-conditioned,
then so is Gn for all n �= m. In the best case, the set um

1 , um
2 , . . . , um

r is orthonormal,
i.e., Gm = I (identity matrix), and this implies Gn = I for n �= m. For these n, in-
equality (4.7) then gives a good estimate. However, κ2(G

m) can still be arbitrarily
large.

To explain the relation between αk and κ2(G
n), we introduce still another Gram

matrix G, namely the one of the rank-one functions T (u1), T (u2), . . . , T (ur ) them-
selves, that is, G = [(T (uk), T (ul ))0]. The vector α = (α1, α2, . . . , αr)

T is the solu-
tion of the normal equation

GT α = φ,

where φk = (f,T (uk))0, k = 1,2, . . . , r . For each n = 1,2, . . . ,N , we can write G

as the Hadamard product of Gn and Gn. By the theorem cited above, this implies

κ2(G) ≤ min
n

(
min

{
κ2(Gn), κ2

(
Gn

)})
.

Now, if ‖α‖2 is much larger than ‖f ‖0, this indicates that κ2(G) is large. Conse-
quently, all of the matrices Gn and Gn have to be bad-conditioned or (the former)
even singular. This explains inequality (4.8).

4.5 Regularization

It was mentioned above that the canonical rank-r approximation (4.3) can be an ill-
posed problem. This is related to the phenomenon of diverging rank-one terms T (uk)

in a minimizing sequence [11]. In numerical practice one therefore often adds a regu-
larization term to bound the norms of the T (uk). We want to show that our regularity
results remain valid in this case.

For a given λ > 0, we consider the problem of finding functions un
k ∈ L2(Rdn),

k = 1,2 . . . , r and n = 1,2, . . . ,N , such that
∥∥∥∥∥
f −

r∑

k=1

T (uk)

∥∥∥∥∥

2

0

+ λ

r∑

k=1

∥∥T (uk)
∥∥2

0 = min. (4.9)

5It is possible that λmin(Gm) = 0 for all m �= n or even for all m. In this case, the value of the middle and
right term in the inequality is understood as ∞, and the estimate is pointless.
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It is possible to prove that this problem has a solution for every choice of f and r .
The trick is to expand the un

k into an orthonormal basis of span{un
1, un

2, . . . , un
r }, that

is,

un
k =

r∑

l=1

cn
klξ

n
l , (4.10)

with (ξn
k , ξn

l )0 = δkl . In principle, this is a subspace decomposition as discussed in
the next section. One can assume that for each mode n the norms ‖un

k‖0 of the factors
are equal for k = 1,2, . . . , r (equilibrated). This then implies that in a minimizing se-
quence for (4.9) all the coefficients cn

kl in (4.10) remain bounded and hence can be as-
sumed to converge. In particular, one may fix them a priori. As can be easily seen, the
norms ‖T (uk)‖0 and ‖∑r

k=1 T (uk)‖0 of the solution are then also determined in ad-
vance. It therefore remains to maximize the real part of the overlap (f,

∑r
k=1 T (uk))0

with respect to the parametrization (4.10) (with the cn
kl being fixed). In each mode n,

this is a convex maximization problem of a weakly sequentially continuous functional
on the set of all orthonormal systems {ξn

1 , ξn
2 , . . . , ξn

r }, that is, on a Stiefel manifold,
and is known to admit a solution. For details we refer to [13, Theorem 2.12] and in
particular to Sect 3.8 therein for a very similar problem.

Theorem 4.10 Let r ≤ rankf , r < ∞. Assume for a local minimum of (4.9) that
rank(

∑r
k=1 T (uk)) = r . Then for each n = 1,2, . . . ,N the functions un

k inherit the
regularity of the function f with regard to the variable xn ∈ R

dn , that is, if f belongs
to Hsn,n(Rd), then un

k is in Hsn(Rdn) for k = 1,2, . . . , r .

Proof Again, we limit ourselves to n = 1. The functions u1
1, u

1
2, . . . , u

1
r locally mini-

mize the functional

∥∥∥∥∥
f −

r∑

k=1

u1
k ⊗ T 1(uk)

∥∥∥∥∥

2

0

+ λ

r∑

k=1

∥∥u1
k

∥∥2
0

∥∥T 1(uk)
∥∥2

0, (4.11)

with the un
k being fixed for n ≥ 2. We now mimic the proof of Lemma 2.1. Let x = x1,

y = (x2, . . . , xN), uk = u1
k , and vk = T 1(uk) for abbreviation. Then for almost every

x ∈ R
d1 the function y 	→ fx(y) = f (x, y) is square integrable. For almost every of

these x the inner integral of (4.11),

Iu(x) =
∫ (∣∣∣∣∣

fx(y) −
r∑

k=1

uk(x)vk(y)

∣∣∣∣∣

2

+ λ

r∑

k=1

∣∣uk(x)
∣∣2∣∣vk(y)

∣∣2

)

dy

=
∥∥∥∥∥
fx −

r∑

k=1

uk(x)vk

∥∥∥∥∥

2

0

+ λ

r∑

k=1

∣∣uk(x)
∣∣2‖vk‖2

0,
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has to be minimal, which is the case if and only if the coefficients u1(x), u2(x), . . . ,

ur (x) satisfy the first-order condition

r∑

k=1

(1 + λδkl)(vk, vl)0uk(x) = (fx, vl)0, l = 1,2, . . . , r.

Namely, by Lemma 4.3, the diagonally shifted Gram matrix Gλ = [(1+λδkl)(vk, vl)0]
is positive definite. Denoting the inverse by Γ λ = [γ λ

kl], we obtain, for almost every
x ∈ R

d1 , the solution formula

uk(x) =
r∑

l=1

γ λ
kl(fx, vl)0 =

(

fx,

r∑

l=1

γ λ
klvl

)

0

=
∫

f (x, y)

r∑

l=1

γ λ
klvl(y)dy

for k = 1,2, . . . , r . By Lemma 3.1, this proves the theorem. �

The question whether the condition rank(
∑r

k=1 T (uk)) = r is really necessary in
the above theorem requires further investigation. Similarly to Lemma 4.4, it seems
natural to conjecture that it already follows from the assumption rankf ≥ r .

5 Regularity of Optimal Subspace Approximations

In this section we will prove the regularity of optimal subspace approximations. The
arguments are basically the same as for the canonical rank-r approximation.

5.1 Subspace rank

Again, let d = (d1, d2, . . . , dN) be a fixed partition of R
d = R

d1+d2+···+dN . Every
function g ∈ L2(Rd) can be written in the form

g =
r1∑

k1=1

r2∑

k2=1

. . .

rN∑

kN=1

αk1k2...kN
u1

k1
⊗ u2

k2
⊗ · · · ⊗ uN

kN
(5.1)

with un
kn

∈ L2(Rdn) and rn ∈ N ∪ {∞}. This is called a subspace representation or
Tucker decomposition; the tensor α is called the core tensor. If for each n we set
Un = span{un

1, un
2, . . . , un

rn
}, then (5.1) simply states that g ∈ ⊗N

n=1 Un.

Definition 5.1 For n = 1,2, . . . ,N the n-rank of g is defined as the minimal number
rn for which there is a subspace Un ⊆ L2(Rdn) of dimension rn such that

g ∈ L2(
R

d1
) ⊗ · · · ⊗ L2(

R
dn−1

) ⊗ Un ⊗ L2(
R

dn+1
) ⊗ · · · ⊗ L2(

R
dN

)
.

We write rankn g for the n-rank and say that g has subspace rank (or Tucker rank)
(r1, r2, . . . , rN ) if and only if rn = rankn g for n = 1,2, . . . ,N .
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The n-ranks generalize the concepts of row and column rank of a matrix. If they
are finite, it can be easily seen (for instance by projection arguments) that the sub-
spaces Un in the definition above are uniquely determined6 and that g ∈ ⊗N

n=1 Un.
The Un are therefore called minimal supporting subspaces of g. The n-ranks can
equivalently be defined as the (canonical) ranks of the mode-n matricizations of g, as
it is frequently done for finite-dimensional tensors [7]. For example, rank1 g equals
the rank of g when treated as an order-2 tensor g ∈ L2(Rd1) ⊗ L2(Rd2+···+dN ).

5.2 Optimal Subspace Approximation

Given f ∈ L2(Rd) and r1, r2, . . . , rN ∈ N, the problem of optimal subspace approxi-
mation (also called Tucker approximation) consists of finding a function g ∈ L2(Rd)

such that

‖f − g‖0 = min, rankn g ≤ rn, n = 1,2, . . . ,N. (5.2)

In the parametrized form we seek for functions un
kn

∈ L2(Rdn) and a core tensor α

such that
∥∥∥∥∥
f −

r1∑

k1=1

r2∑

k2=1

. . .

rN∑

kN=1

αk1k2...kN
u1

k1
⊗ u2

k2
⊗ · · · ⊗ uN

kN

∥∥∥∥∥
0

= min. (5.3)

As mentioned in the introduction, the true unknowns in this problem are the N sub-
spaces Un = span{un

1, u
n
2, . . . , un

rn
}. It can be shown that (5.2) has at least one global

solution [13], but it is not clear whether the optimal subspaces Un are uniquely deter-
mined. This is definitely not the case if rankn g < rn for at least one n. Unfortunately,
there is no analog to Lemma 4.4. We do not know under which conditions the sub-
space rank of a solution g will indeed be (r1, r2, . . . , rN ). If one considers as a trivial
example the case N = 2, that is, a function of the form

f =
∞∑

k=1

uk ⊗ vk,

then every solution g of (5.2) with r1 = 1 and r2 arbitrarily chosen will have rank 1
and hence subspace rank (1,1). So one should choose r2 = 1 to get the result with
the fewest terms. This is a priori hard to see in general so that usually an uncertainty
concerning the initial choice of the rn will remain. Therefore, the regularity result pre-
sented below focuses on the minimal supporting subspaces of a solution. The claim
is that they are subspaces of Sobolev spaces corresponding to the smoothness of f .

Theorem 5.2 Suppose that rn < ∞ for n = 1,2, . . . ,N and g is a local minimum
of (5.2), that is, a local minimum with respect to the set of functions whose n-rank
is at most rn for all n = 1,2, . . . ,N . Let (q1, q2, . . . , qN) be the subspace rank of g,

6In the case rn = ∞ an additional minimality condition has to be imposed to obtain a unique subspace
Un , but this case is not of much interest here.
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and let Un denote the qn-dimensional supporting subspaces such that g ∈ ⊗N
n=1 Un.

Then f ∈ Hsn,n(Rd) implies that Un is a subspace of Hsn(Rdn). In other words, in
every representation

g =
q1∑

k1=1

q2∑

k2=1

. . .

qN∑

kN=1

αk1k2...kN
u1

k1
⊗ u2

k2
⊗ · · · ⊗ uN

kN

the functions un
kn

belong to Hsn(Rdn) for kn = 1,2, . . . , qn and n = 1,2, . . . ,N .

Proof We prove this only for n = 1. We can find a decomposition g = ∑q1
k=1 u1

k ⊗T 1
k

with u1
k ∈ U1 and T 1

k ∈ L2(Rd1+···+dN ) for k = 1,2, . . . , q1. Since q1 is minimal, the
T 1

k have to be linearly independent (see the proof of Lemma 4.3). Since the set of
functions u1

1, u
1
2, . . . , u

1
q1

is a (global) minimum of the quadratic problem

∥∥∥∥∥
f −

q1∑

k=1

u1
k ⊗ T 1

k

∥∥∥∥∥

2

0

= min,

the claim of the theorem is again a consequence of Lemma 4.1. �

Remark 5.3 Concerning the mixed regularity of g, Remark 4.6 applies.

Remark 5.4 Obviously, we have qn ≤ rn for n = 1,2, . . . ,N . In view of the fact that
the smoothness of the solution g does not depend on its representation, Theorem 5.2
appears quite satisfactory. However, from a constructive point of view it would be
useful to know the values of the qn and derive conditions which ensure qn = rn. This
question requires further research, but since it is purely algebraic in nature we will
not deliberate on it in this article.

Remark 5.5 Closely related to the previous remark is the observation that the theorem
is also valid for local minima in the parameter space, that is, for local minima of (5.3),
provided that they have full subspace rank (r1, r2, . . . , rN ). In particular, to guarantee
un

kn
∈ Hsn(Rdn) for a fixed direction n it is sufficient that rankn g = rn. For numerical

computations one always considers the parametrized problem (5.3).

The theorem implies the regularity of exact subspace decompositions if the sub-
spaces are finite-dimensional.

Corollary 5.6 If rankn f is finite and f ∈ Hsn,n(Rd) for n = 1,2, . . . ,N , then the
minimal supporting subspaces of f are subspaces of Hsn(Rdn).

Remark 5.7 Let Un be finite-dimensional subspaces of L2(Rdn) and V = ⊗N
n=1 Un.

Then the corollary states that Hsn,n(Rd) ∩ V �= ∅ for n = 1,2, . . . ,N if and only if
Un ⊆ Hsn(Rdn).

Since (5.2) always admits at least one solution, we are allowed to reformulate
Theorem 5.2 as an existence result.
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Corollary 5.8 Let f ∈ Hsn,n(Rd) for n = 1,2, . . . ,N . Then the problem
∥∥∥
∥∥
f −

r1∑

k1=1

r2∑

k2=1

. . .

rN∑

kN=1

αk1k2...kN
u1

k1
⊗ u2

k2
⊗ · · · ⊗ uN

kN

∥∥∥
∥∥

0

= min, un
kn

∈ Hsn
(
R

dn
)
,

stated in the spaces Hsn , always admits a solution. The set of solutions coincides with
the one of problem (5.2).

5.3 Norm estimates

Under the assumption of Theorem 5.2, let g ∈ ⊗N
n=1 Un be a local minimum of (5.2).

Using the singular value decomposition, it is possible to find orthonormal bases
u1

1, u
1
2, . . . , u

1
q1

of U1 and T 1
1 , T 1

2 , . . . , T 1
q1

of
⊗N

n=2 Un such that

g =
q1∑

k=1

σ 1
k u1

k ⊗ T 1
k .

Permuting the factors of the tensor product, that is, the spatial variables of the function
g, one can find a basis un

1, un
2, . . . , un

qn
and a set σn

1 , σ n
2 , . . . , σ n

qn
of “singular values”

with this property for each of the subspaces Un. In this case, Lemma 4.1 provides the
estimate

‖un
k‖sn ≤ ‖f ‖sn,n

|σn
k | ≤ ‖f ‖sn,n

mink |σn
k |

for each n = 1,2, . . . ,N . Note that σn
k = |(f,un

k ⊗ T n
k )0|, since g is the best approx-

imation of f in
⊗N

n=1 Un.

6 Classically Differentiable Functions

Up to this point, our notion of regularity focused on the Sobolev spaces Hs of weakly
differentiable functions in order to stay within a Hilbert space setting. But of course
one may also think of regularity as classical differentiability. We want to catch up
on this issue here. The key observation of our analysis, as stated in Lemma 2.1, is
that the solutions of least squares tensor product approximations satisfy an integral
equation of the form

u(x) =
∫

f (x, y)v(y)dy. (6.1)

This opens the door for a lot of possible refinements of the previous results and can
be regarded as the central statement of this article. Above, we argued that the func-
tion u has the same Hs -regularity as the kernel f with respect to the variable x

(Lemma 3.1). Under certain conditions this transfers to differentiable and continu-
ously differentiable functions. For simplicity we consider only the latter. The basic
tool is the following standard result from measure theory:
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Lemma 6.1 Let U be an open subset of R
d1 and φ: Rd1 × R

d2 → C be an inte-
grable function which possesses continuous partial derivatives ∂φ

∂xν
(x, y) for ν =

1,2, . . . , d1. Assume there exists an integrable function η ≥ 0 on R
d2 such that

∣∣∣∣
∂φ

∂xν

(x, y)

∣∣∣∣ ≤ η(y)

for all (x, y) ∈ U × R
d2 . Then the function

u(x) =
∫

φ(x, y)dy

is integrable and continuously differentiable on U with the partial derivatives

∂u

∂xν

(x) =
∫

∂φ

∂xν

(x, y)dy.

Remark 6.2 For the partial differentiability of u it is only necessary that φ is partially
differentiable. The continuity of the partial derivatives ∂u

∂xν
is a separate assertion

which requires the continuity of the partial derivatives of φ. A proof of both state-
ments can be found for instance in [1].

We present two examples of how this result can be used to refine Lemma 3.1. Since
we are dealing with functions on the whole space, it is clear that, in order to bound
the partial derivatives as required in Lemma 6.1, one has to incorporate their decay
behavior. As a first example where this works, we consider the spaces Cm

0 (Rd) of
m-times continuously differentiable functions with compact support in R

d , including
m = ∞. If u ∈ Cm

0 (Rd), then, in usual multi-index notation,

Dαu(x) = ∂ |α|u(x)

∂x
α1
1 ∂x

α2
2 . . . ∂x

αd

d

exists and is continuous for all multi-indices α with |α| = α1 + α2 + · · · + αd ≤ m.
For simplicity we only treat the isotropic case here. A generalization to spaces of
anisotropic smoothness is straightforward.

Lemma 6.3 Let f ∈ Cm
0 (Rd1+d2), m ∈ N∪{∞}, and v ∈ L2(Rd2). Then the function

u defined by (6.1) is in Cm
0 (Rd1) and7

Dαu(x) =
∫

Dα
x f (x, y)v(y)dy (6.2)

for all multi-indices α with |α| ≤ m.

7By Dα
x we indicate partial derivatives with regard to x ∈ R

d1 .
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Proof We give a proof for m = 1; the general case follows by induction. If we set

φ(x, y) = f (x, y)v(y),

choose an arbitrary bounded open set U ∈ R
d1 , and assume v(y) < ∞ for all y ∈

R
d2 , we find the assumptions of Lemma 6.1 being satisfied. Indeed, as a majorizing

function we may choose

η(y) = sup
x∈U

∣∣f (x, y)
∣∣∣∣v(y)

∣∣.

This function is integrable, which follows from the fact that

y 	→ sup
x∈U

∣∣f (x, y)
∣∣

is square integrable as a continuous function with bounded support. Since U is arbi-
trary, (6.2) follows for all x ∈ R

d1 . �

As a second example we consider Schwartz spaces S of rapidly decreasing func-
tions. These are infinitely differentiable functions u(x) for which

x 	→ xβDαu(x)

remains bounded for all multi-indices α and β , see, e.g., [14].

Lemma 6.4 Let f ∈ S (Rd1+d2) and v ∈ L2(Rd2). Then the function u defined
by (6.1) is in S (Rd1), and its partial derivatives are given by (6.2).

Proof Let B denote the unit ball in R
d2 . Any Schwartz function f ∈ S (Rd1+d2)

can be bounded on R
d1 × B by a constant and outside of this region by a scalar

multiple of y 	→ |yβ |−1, with β chosen in such a way that this function is square
integrable on R

d2 \ B . Thus, f (x, y) can be bounded by a square integrable function
η(y) on the whole space R

d1+d2 . Consequently, the product |f (x, y)v(y)| with the
square integrable function v can be bounded by the integrable function |η(y)v(y)|.
Since Dαf is a Schwartz function for every multi-index α, a repeated application
of Lemma 6.1 on the functions φ(x, y) = Dαf (x, y)v(y) therefore shows that u is
infinitely differentiable, and that its partial derivatives are given by (6.2). In the same
way one shows that

xβDαu(x) =
∫

xβDα
x f (x, y)v(y)dy

remains bounded for every choice of β by bounding the rapidly decreasing function
xβDα

x f (x, y) by a square integrable function of y. This proves that u ∈ S . �

Concerning the application to tensor product approximations, we do not want to
reformulate every single theorem. Instead, we summarize the result.
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Theorem 6.5 In Theorems 4.5 and 5.2 as well as in Corollaries 4.9, 5.6, and 5.8, the
spaces Hsn,n may be replaced by the spaces Cm

0 or S or their anisotropic variants.

Here we used that Cm
0 and S are both subspaces of L2.

7 Conclusion

We have shown that first-order conditions for the factors in unconstrained best tensor
product approximation problems in L2 take the form of integral equations

u(x) =
∫

f (x, y)v(y)dy,

with the target function f one wants to approximate as kernel. In particular, we
considered canonical rank-r and optimal subspace approximations. This observation
leads more or less immediately to results on the regularity of the solutions in depen-
dence on the regularity of f itself. We demonstrated this for the spaces Hs , Cm

0 , and
S over the whole space. One can interpret the result as follows: if the target func-
tion f is smooth enough, then best tensor product approximations of f , even though
one will hardly ever be able to calculate them exactly, have as good and even bet-
ter regularity properties than f itself. This shows, for example, that tensor product
approaches in quantum chemistry are valid from a physical point of view. Another
conclusion is that a best low-rank approximation of a smooth function can be ex-
pected to have a high approximability on the set of admissible low-rank functions,
for instance, by infinitely differentiable functions. This lets us hope that methods for
calculating tensor product approximations can be constructed which converge fast
to almost optimal results, provided that they are sophisticated enough to exploit the
regularity of the factors shown in this article.

We have stated and proved the theorems for L2 spaces over R
d . This enabled us

to define the Sobolev regularity via the Fourier transform and to give a simple proof
of Lemma 3.1. If An ⊆ R

dn are measurable domains, then

N⊗

n=1

L2(An) = L2(A1 × A2 × · · · × AN).

The results can be extended to such spaces if one can link the mapping properties
of integral operators to the regularity of the kernel function. We suppose that this is
possible in many situations.
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