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Abstract We describe the distribution of the first finite number of eigenvalues in a
newly-forming band of the spectrum of the random Hermitian matrix model. The
method is rigorously based on the Riemann–Hilbert analysis of the corresponding
orthogonal polynomials. We provide an analysis with an error term of order N−2γ

where 1/γ = 2ν + 2 is the exponent of non-regularity of the effective potential, thus
improving even in the usual case the analysis of the pertinent literature.

The behavior of the first finite number of zeroes (eigenvalues) appearing in the
new band is analyzed and connected with the location of the zeroes of certain Freud
polynomials. In general, all these newborn zeroes approach the point of nonregularity
at the rate N−γ , whereas one (a stray zero) lags behind at a slower rate of approach.
The kernels for the correlator functions in the scaling coordinate near the emerging
band are provided together with the subleading term. In particular, the transition be-
tween K and K + 1 eigenvalues is analyzed in detail.
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1 Introduction

In this paper we consider the Hermitian matrix model in the scaling regime or – which
is the same – the orthogonal polynomials on the real line with a varying weight, in the
same spirit as [3, 8]. We address a particular situation of “nonregular” or “critical”
potential: this means that the mean-field electrostatic potential vanishes at some point
ξ0 outside of the support of the equilibrium measure. This situation corresponds to
a recent investigation [9] and is the situation where a band in the spectrum of the
corresponding matrix model or a new component of accumulation of the zeroes of
the orthogonal polynomials is about to appear (or has just disappeared).

We will mostly be taking the point of view of approximation theory, and hence we
will focus on the orthogonal polynomial side, but the more physically-oriented reader
will have no difficulty in translating those results. In a picturesque way we will think
of the zeroes of the polynomials as a growing population and thus call “colonies”
the first zeroes appearing near the new band, also termed the “outpost.” This should
explain the catchy title.

We will be using a particular (simplified) version of the double-scaling limit. In
this approach we keep the potential V (x) and the total charge T fixed but we add a
piecewise constant perturbation of order ln(N)/N to the potential near the outpost.
In due time (Appendix A) we will explain how this simplified approach yields in fact
identical results to the usual double-scaling.

In order to explain the setup in more detail, suppose that the effective potential
[21] ϕ(x) = 1

T
(V (x) − 2g + �) vanishes at ξ0 as C(x − ξ0)

2ν+2 (with some C > 0);
here ξ0 is some point outside of the support of the equilibrium measure [21]. We then
modify the potential (Sect. 3) by adding a step-like perturbation of the form

V (x) → ˜V (x) = V (x) − 2κT γ

N
lnNχJ (x), γ := 1

2ν + 2
. (1.1)

Here χJ is the characteristic function of a small interval around ξ0. The real parameter
κ determines the strength of the perturbation and the constants are crafted for later
convenience.

For κ < 0 the orthogonal polynomials do not exhibit any peculiar behavior in the
large N limit; for positive values of κ new zeroes of the OPs start appearing near the
outpost. It is natural that – since we can have only an integer number of such roots –
there are transition points in the asymptotic behavior for special values of κ. Specifi-
cally, the normalizations we have chosen are such that in the asymptotic regime there
are K roots near the outpost, where K is the integer nearest to κ. Clearly, transitions
must occur at κ ∈ N + 1

2 . The phenomenon is already captured by the leading or-
der asymptotics (Sect. 3). Indeed, one can construct a uniform approximation to the
orthogonal polynomials to order N−γ (1−2|δ|). The approximation is best when κ is
an integer and gets progressively worse as κ approaches a half-integer. In particular,
when κ is a half-integer the approximation breaks down (the error term is no longer
vanishing as N → ∞). This apparent obstruction was noted in [9] (see also [4, 20]).

We then show how to obtain an improved approximation in Sect. 4; indeed, we
construct a uniform asymptotic solution with an error term of order N−2γ (uniformly
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in κ!). Even in the ordinary case κ = 0 (which was dealt with in [8]) our approxi-
mation is better than the one usually provided in the literature (in fact in Sect. 4.7 we
show how to obtain an approximation of order N−1 for arbitrary κ).

Using this information we can study in detail the asymptotic behavior of the first
roots (Sect. 4.4). In a scaling parameter ζ ∼ Nγ (z − ξ0) they are related to the roots
of the Freud’s polynomials for the weight e−ζ 2ν+2

dζ . In particular:

• If κ ∈ [K,K + 1/2), then they are within a distance O(N−2γ δ) from the roots (in
the ζ -coordinate) of the K-th Freud polynomial.

• If κ ∈ (K − 1/2,K), then there are still K roots; however, while K − 1 of them
are within O(N−2γ δ) from the roots of the (K − 1)-st Freud polynomial, the “last
one” lags behind and meanders at a distance O(N2γ δ) in the ζ -coordinate. Note
that while escaping to infinity in the ζ -scaling parameter, such root is actually
converging to the outpost at a rate N−γ+2γ δ .

• When κ ∈ N + 1/2 (namely δ = 1
2 ), there is a stray root that remains at a finite

distance from the outpost, while the remaining converge to it.

In the main body of the paper we make the simplifying assumption that the support
of the equilibrium measure consists of one interval (one-cut assumption). However,
this is only a simplification and none (or almost none) of the conclusions are at all
dependent on it, but of course the formulæ for the outer parametrix are much simpler
to write and also easier to handle for those readers who do not know the theory of
Theta functions well.

In Appendix B we show (in a somewhat sketchy form) how to generalize to an
arbitrary number of cuts. Only one detail cannot be fully addressed in this general
case, and it concerns the improved asymptotic for some of the exceptional values
of κ ∈ N + 1/2 and exceptional spectral curves, namely the equivalent of formula
(4.51) for the multi-cut case and the corresponding sign. The knowledge of the sign
of (the imaginary part of) (4.51) is necessary to ensure that in particularly exceptional
circumstances certain denominators (4.22) do not vanish.

Remark 1.1 In a strange twist of events while the present manuscript was in the
final phases of preparation, a similar preprint [4] appeared where the author uses a
RH analysis for the simplest nonregular case. Shortly (two days) thereafter, another
independent preprint [20] on the same topic appeared, dealing with a more general
type of nonregularity (of the same type with which we deal).

Our work, however, provides a refined error analysis up to order N−2γ , whereas
both of the previous papers apparently give only the leading term asymptotics, with
an error term of order N−γ (1+2δ), thus not valid at the transition points (although
in [4] an analysis of the half-integer case is also provided but only for the simplest
nonregularity exponent).

In addition, we provide a detailed analysis of the location of the zeroes of the
orthogonal polynomials near the outpost.
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2 General Setting

The setting of the present paper will be identical in the most part to [3, 8]. Although
we present our findings in a self-contained way, we refer the reader to the pertinent
literature for more details on the subject.

Consider the Hermitian matrix model with measure given by

1

ZN

e− N
T

trV (M)dM, (2.1)

where ZN is a normalization constant. It is known [19] that the model is “solvable” in
terms of orthogonal polynomials (OPs) and that all spectral statistics can be described
in terms of suitable kernels constructed in terms of OPs.

Let {pn(x)} be the corresponding (monic) OPs that satisfy the following orthogo-
nality condition with the potential V (x) which we assume to be real and analytic:

∫

R

pn(x)pm(x)e− N
T

V (x) dx = hnδnm. (2.2)

The spectral statistics of the model are determined by the Christoffel–Darboux ker-
nel [19]

K(x,x′) =
n−1
∑

j=0

pj (x)pj (x
′)

hj

= pn(x)pn−1(x
′) − pn−1(x)pn(x

′)
hn−1(x − x′)

. (2.3)

The OPs are uniquely characterized by the following Riemann–Hilbert problem.
Define for z ∈ C \ R the matrix

Y(z) := Yn(z) :=
[

pn(z) φn(z)
−2iπ
hn−1

pn−1(z)
−2iπ
hn−1

φn−1(z)

]

,

φn(z) := 1

2iπ

∫

R

pn(x)e− N
T

V (x) dx

x − z
. (2.4)

The above matrix has the following jump-relations and asymptotic behavior that
uniquely characterize it [12, 13, 15, 16] (we drop the explicit dependence on n for
brevity):

Y+(x) = Y−(x)

[

1 e− N
T

V (x)

0 1

]

, Y (z) ∼ (

1 + O(z−1)
)

[

zn 0
0 z−n

]

. (2.5)

Replacing the orthogonality condition (2.2) by the above jump (and boundary) condi-
tions (2.5), we obtain the Riemann–Hilbert problem for the OPs. Using this setup we
especially want to investigate the asymptotics of the OPs as their degree n := N + r

goes to infinity while r is fixed to an integer.
The first step to solve the problem is to find the g-function, which we will define

using the equilibrium measure below. We briefly recall that, in the simple case where
the contour of integration in (2.2) is the real axis (see [1, 2] for a general approach
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not relying on a variational problem), the equilibrium measure is obtained from the
solution of a variational problem for a functional over probability measures on the real
axis, in the sense of potential theory [21]. Indeed, define the weighted electrostatic
energy [21]

F [μ] := 2
∫

R

V (x)dμ(x) +
∫

R

∫

R

ln
1

|x − x′| dμ(x)dμ(x′), (2.6)

where dμ is a positive measure supported on the real axis with total mass T =
∫

R
dμ(x).
It is known that the functional F attains a unique minimum (under mild assump-

tions on the growth of V (x) at infinity) at a measure ρ that is called the equilibrium
measure [5, 21].

It is also known [6] that the support of the measure ρ consists of a finite union of
disjoint bounded intervals and that ρ is smooth on the interior of the support.

Taking avail of the equilibrium measure, the g-function [5] is then typically de-
fined as

g(z) :=
∫

R

ρ(x) ln(z − x)dx = T ln z + O
(

z−1), (2.7)

where the logarithm must be defined with an appropriate cut extending, say, from
the leftmost endpoint of the support of ρ to +∞. The derivative of the function
g(z) (the “resolvent”) satisfies a pseudo-algebraic equation which is key to many
considerations in a different context but will be mostly irrelevant in this paper.

The main properties that enter the steepest descent analysis are the standard prop-
erties of the logarithmic transform. To this end we note that the representation (2.7)
implies immediately that �g(x) is harmonic away from the support of ρ and contin-
uous on the whole complex plane. The Euler–Lagrange variational equations equiva-
lent to the optimality of the equilibrium measure ρ [21] can be rephrased in terms of
the following conditions for the g-function:

• For x ∈ R we have

�ϕ(x) ≥ 0, ϕ(z) := V (z)

2
−g(z)+ �

2
= V (z)

2
−
∫

ρ(y) ln(x−y)dy+ �

2
(2.8)

for a suitable real constant �. �ϕ is the effective potential of the related electrostatic
problem.

• The opposite inequality (and hence the equality) holds on the support of ρ. Espe-
cially, � is chosen such that �ϕ = 0 on the support of ρ. (The support of ρ will
be called the cuts because they form the cuts of the functions g′(z) and ϕ′(z).)
Here and in the previous point, the g-function should be understood as the analytic
function defined by its integral representation (2.7) on the simply connected do-
main obtained by removing a half-line starting, e.g., at the rightmost endpoint of
the support of ρ and extending towards −∞. Then �ϕ(x) is actually nothing but
the boundary-value 1/2(ϕ+(x) + ϕ−(x)).

• In suitable finite left/right neighborhoods of the cuts, the function �ϕ(x), which is
also harmonic in the domain of analyticity of V (x), is negative.
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The situation we want to address in this paper is the case where the inequality
(2.8) is not strict on R outside of the cuts, but at some point ξ0 outside of the cuts,
the inequality is an equality. This situation corresponds to the critical situation where
a cut is about to emerge (or has just disappeared) at ξ0. In an optimistic view, we
will look at the situation as of that of an emerging spectral band, being gradually
populated by eigenvalues; it is thus appropriate to refer to the neighborhood of the
emerging band as an outpost colony of eigenvalues.

The pair of potentials V (x) and total charge T for which the inequality (2.8) is
not strict either outside or inside the cuts (this last occurrence corresponding to the
merger of two cuts) are called nonregular or, in the more physical-oriented literature,
critical. The steepest descent analysis was completely carried out in [8] in general
terms and specific analysis linking with Painlevé theory was carried out in [3] in
the case of a merger. For the “birth of a cut” (i.e., outpost colonization), a heuristic
argument and a double-scaling approach1 were used in [9]. While the intents of our
note and of [9] are clearly the same, the methods employed are radically different.

The conclusion that we achieve in a rigorous mathematical way will, however, be
parallel to that of [9], namely to show that we can describe the statistics of the first
finite number of eigenvalues that populate the forming cut in terms of an effective
“microscopic” matrix model of the size of the population of the outpost. In addition,
we strengthen those results by localizing exactly the relevant, finite number of roots
of the orthogonal polynomials.

3 Modified Setting: Changing Chemical Potential

In order to study a nontrivial scaling limit we modify the setting of the problem as
follows. As mentioned in the previous section, we consider the situation when we
have �ϕ(ξ0) = 0 for ξ0 ∈ R outside the cuts. Suppose that ξ0 is the point where ϕ(z)

has the critical point of order 2ν + 2, i.e.

ϕ(z) = O
(

(z − ξ0)
2ν+2), z ∼ ξ0. (3.1)

Then we choose a finite open interval J containing ξ0 that does not contain any
other turning points. We then consider the following modified orthogonality relation:

hnmδnm =
∫

R\J
pn(x)pm(x)e− N

T
V (x) dx

+ N2κγ

∫

J

pn(x)pm(x)e− N
T

V (x) dx, (3.2)

where we have defined the exponent of nonregularity

γ := (2ν + 2)−1. (3.3)

1This means that not only n → ∞ but also V,T are allowed to depend on n in a “slow” and fine-tuned
way.
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Fig. 1 The potential ˜V with the
chemical potential added, and
the corresponding effective
potential

In the above relation the parameter κ ∈ R will eventually determine the size of the
population of the colony near ξ0.

As the reader may realize, this amounts simply to a step-wise modification of the
potential. If χJ is the characteristic function of the interval J , then we may rewrite
(3.2) as a single integral without N2κγ using the modified potential

˜V (x) := V (x) −
(

2κT γ

N
lnN

)

χJ (x). (3.4)

The most interesting regime will turn out to be κ > 0, so that the potential is slightly
depressed near ξ0 (Fig. 1). While this is a “small” perturbation of the potential (which
would be irrelevant in a noncritical situation), since our potential is critical the effect
of this perturbation is fine-tuned to obtain a nontrivial perturbation. It will also be-
come clear that the actual choice of J is irrelevant as long as it contains ξ0 and no
cuts.

Although this “discontinuous” deformation may seem quite artificial at first, it
should become apparent later on that it actually makes no difference to the actual
behavior near the outpost. In a certain sense this is the essence of universality, but
we will explain in Appendix A how to approach the same problem from a more
“canonical” double-scaling limit, while retaining the main features.

The advantage of this simplified approach is that it allows us to immediately con-
centrate on the significant features (the actual RHP) without hindering the analysis
into details regarding the appropriate g-function.



232 Constr Approx (2009) 30: 225–263

Fig. 2 The jump matrices for Y

3.1 Normalized and Lens-Opened RHP

Taking avail of the general wisdom, in order to streamline the derivation we open the
lenses before normalizing the problem,2 thus modifying the jumps as shown in Fig. 2.
Lens opening simply means that we redefine

Ynew := Y

[

1 0

−e
N
T

V (z) 1

]

, on the upper lip, (3.5)

Ynew := Y

[

1 0

e
N
T

V (z) 1

]

, on the lower lip. (3.6)

For the time being the jumps on the dotted circles are the identity but later we define
separate RHP problems inside the circles. Then we will call all the RHP inside one
of the dotted disks the local problem whereas we call the problem outside the outer
problem.

After the lens-opening we define

˜Y (z) := e
N�
2T

σ3Y(z)e− N
T

g(z)σ3e− N�
2T

σ3, (3.7)

which satisfies a new, simpler RHP:

˜Y (x)+ = ˜Y(x)−

[

e
N
T

(g−−g+) e− N
T

(V −g+−g−+�)N2κγχJ (z)

0 e
N
T

(g+−g−)

]

, (3.8)

˜Y (z) 	 (1 + O(z−1))zrσ3 , z ∼ ∞. (3.9)

For simplicity we assume that there is only one finite band in the spectrum, namely
the spectral curve is of genus 0; the generalization to more bands is not conceptually
a problem but requires the use of Θ-functions which would make the note longer and
quite a bit more technical. Under this assumption, for x ∈ R,

g+(x) = −g−(x) + V (x) + �, for x ∈ R on the cut, (3.10)

g+(x) = g−(x) − 2iπT , for x ∈ R on the right of the cut, (3.11)

g+(x) = g−(x), for x ∈ R on the left of the cut. (3.12)

2We are of course assuming that V (z) is real-analytic.
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Fig. 3 The jump matrices for ˜Y

Fig. 4 Jump matrix for Ψ

Everywhere else on the complex plane g(z) is holomorphic. On account of these
properties for the g-function the jumps for ˜Y are shown in Fig. 3.

In the following the size of the dotted circles will be fixed to a nonzero value. In
this case the reader can verify that – outside of the dotted disks – the jumps on the
upper and lower rims of the lenses and on the real axis outside of the support of the
equilibrium measure become exponentially close to the identity, and uniformly so in
L2 ∩ L∞.

3.2 Outer Parametrix

For simplicity of exposition we assume that there is only one spectral band (1-cut)
apart from the one that is about to emerge. Furthermore, we assume that the irregular
point of the potential problem is set to ξ0 = 0, without loss of generality.

Removing all the jumps that are exponentially close to the identity, we are left with
the jump matrix as shown in Fig. 4. This provides the asymptotic RHP that we will
use to define outer parametrix. Below we describe the RHP that the outer parametrix
Ψ satisfies (for a specific solution to the RHP we will use Ψ with a subscript or a
dressing such as in ˜ΨK ):

Ψ (z) 	 (

1 + O
(

z−1))zrσ3, z ∼ ∞, (3.13)

Ψ (z)+ = Ψ (z)−
[

0 1
−1 0

]

, on the cut. (3.14)

It also needs to be supplemented by the boundary conditions at the turning points,

Ψ (z) = O
(

(z − a)−
1
4
)

, Ψ (z) = O
(

(z − b)−
1
4
)

, (3.15)
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Fig. 5 The uniformization of the plane sliced along the support of the equilibrium measure. The pattern
region is the “unphysical sheet”

where a and b are the two turning points. For the specific outer parametrix ΨK that
we consider soon, the growth condition at the outpost is given by

ΨK(z) = [AK,BK ] zKσ3 :=
[

Ax(z) Bx(z)

Ay(z) By(z)

]

zKσ3 . (3.16)

The matrix [AK,BK ] is analytic at z = 0 (note that ξ0 = 0) and det[AK,BK ] = 1. The
above four conditions give the Riemann–Hilbert problem for Ψ . We now describe a
specific solution ΨK (and [AK,BK ]) to the above RHP.

We now use the fact that there is only one cut, so that the two-sheeted cover of the
z-plane is a rational (i.e., genus 0) curve. The modifications needed for the case of an
arbitrary number of cuts are sketched in the appendix.

Let t be the uniformizing map of the genus-0 Riemann surface. We let t0 on the
t-plane map to the outpost on the z-plane. For the simplicity of the normalization, we
choose the location of the cut and the outpost in the following way:

z(t) := b − a

4

(

t + 1

t

)

+ b + a

2
= a − b

4t0
(t − t0)

(

1

t
− t0

)

, (3.17)

where a < b are the endpoints of the band; in the t-plane they correspond to t = ±1.
There are 2 points in the t-plane projecting to z = 0, namely the two solutions of
z(t) = 0. We denote the one outside the unit circle by t0, the other being 1

t0
.
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Define the spinorial Baker–Akhiezer vectors

Ψ (1)(t) :=
[

t r (
t−t0

t−1/t0
)K

√
dt

−it r−1(
t−t0

t−1/t0
)K

√
dt

]

,

(3.18)

Ψ (1),�(t) := Ψ (1)

(

1

t

)

=
[

it−r−1(
t−1/t0
t−t0

)K
√

dt

t−r (
t−1/t0
t−t0

)K
√

dt

]

where K is the closest nonnegative integer to κ (e.g., if κ = 2.4, then K = 2; if κ =
2.6, then K = 3). Note that the definition is ambiguous for κ ∈ 1

2 + Z; indeed, it will
be seen that for these exceptional values we cannot obtain a strong asymptotic result
using these methods and we need to use a refinement (Sect. 4), and the asymptotic
form of the OPs has a discontinuous change, namely the model exhibits a nonlinear
Stokes’ phenomenon in κ.

The advantage of this spinor representation and the uniformizing coordinate is that
we can easily write a general solution to the RHP (3.13), (3.14), (3.15), (3.16) of the
outer parametrix when there are exceptional points such as the outpost.

Using (3.18) one can write the following solution:

ΨK

(

t (z)
) :=

(

(b−a)
4

)rσ3+ 1
2

√
dz

[

Ψ (1)
(

t (z)
)

,Ψ (1),�
(

t (z)
)]

=
(

(b−a)
4

)rσ3

√

4z′(t)
b−a

[

t r i

tr+1

−it r−1 1
t r

]

(

t − t0

t − 1/t0

)Kσ3
∣

∣

∣

∣

t=t (z)

. (3.19)

In the above t (z) is the determination of t that lies outside the unit circle for z not on
the cut (the physical sheet), and the appropriate value on the cut. The square root is

the determination that behaves as
√

4z′(t)
b−a

∼ 1 near t = ∞.
We also see that the above matrix behaves as follows for large x and has the

following jump-discontinuity:

ΨK(z) 	 (

1 + O
(

z−1))zrσ3 (3.20)

ΨK(x)+ = Ψ (x)−
[

0 1
−1 0

]

. (3.21)

It is to be noted that

ΨK(z) = O
(

(z − a)−
1
4
)

, ΨK(z) = O
(

(z − b)−
1
4
)

. (3.22)

More importantly, the parametrix we have constructed behaves as follows in the
vicinity of the outpost:

ΨK(z) = (

C + O(z)
)

zKσ3 . (3.23)

From the expression of ΨK (3.16) one can also write [AK,BK ] as follows:

[AK,BK ] = ΨKz−Kσ3 =: [AK(0),BK(0)
]+ [

A′
K(0),B′

K(0)
]

z + O
(

z2), (3.24)
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Fig. 6 The jumps of the exact
solution ˜Y near the soft-edge

where for future reference we write the first two terms in the expansion

[

AK(0),BK(0)
]= ( b−a

4 )rσ3 t
Kσ3
0

√

1 − t−2
0

[

1 it−1
0

−it−1
0 1

]

t
rσ3
0

(

b − a

4ab

)Kσ3

, (3.25)

[

A′
K(0),B′

K(0)
]

= ( b−a
4 )rσ3 t

Kσ3
0

√

1 − t−2
0

[

0 i

t0
√

ab

− i

t0
√

ab
0

]

t
rσ3
0

(

b − a

4ab

)Kσ3

(3.26)

+ [

AK(0),BK(0)
]

(

1

(t2
0 − 1)

√
ab)

1 − r√
ab

σ3 + K(b + a)

2ab
σ3

)

. (3.27)

Remark 3.1 In [4, 20] the authors used a scaling limit by removing the charges cor-
responding to the new zeroes by adding a point-wise charge with the same total
mass. This amounts to multiplying the jump by a factor (x − ξ0)

2κ (in our nota-
tion). A drawback is that they need to cure the non-constant jump residual after the
lens-opening by introducing a scalar function D(x) (Szëgo function) solving a new
(scalar) RHP on the cut. In our case this scalar function is “built-in” the outer para-
metrix and corresponds to the term (

t−1/t0
t−t0

)K . As a result the outer parametrices are
at first sight of different nature, but, as should be the case, all terms can be put in
correspondence in the three approaches.

3.3 Parametrix Near the Simple Turning Points

This part is essentially identical to the established results in [5, 8]. We consider only
the right turning point at z = b; the method also works for the other one. Inside the
dotted disk we solve the exact RHP.

For simplicity of exposition we consider the case where the turning point is simple,
namely

ϕ(z) = 1

2
V (z) − g(z) = C(z − b)

3
2
(

1 + O(z − b)
)

, (3.28)
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Fig. 7 The usual jumps for the
local parametrix

for z not on the cut. [We will indicate the trivial modifications needed in the case of
nonregular behavior later.]

We define a local coordinate by

2

3
ξ

3
2 := N

T
ϕ(z), (3.29)

where the determination of the root is such that the cut is mapped to R− of ζ -plane.
We then introduce the standard Airy parametrix A0(ξ) [5, 8] as the piecewise

defined matrix A0
j (see Fig. 6) constructed in terms of the Airy function Ai(x) as

follows:

A0
j (ξ) := √

2πe− iπ
4

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

( y0 −y2
y′

0 −y′
2

)

e
2
3 ξ

3
2 σ3, j = 1,

(−y1 −y2
−y′

1 −y2

)

e
2
3 ξ

3
2 σ3, j = 2,

(−y2 y1

−y′
2 y′

1

)

e
2
3 ξ

3
2 σ3, j = 3,

( y0 y1
y′

0 y′
1

)

e
2
3 ξ

3
2 σ3, j = 4,

(3.30)

where we have used the definitions

yj := ωj Ai
(

ωjξ
)

, j = 0,1,2, ω = e2iπ/3. (3.31)

Each of the above has the following uniform asymptotic behavior near ξ = ∞:

A0(ξ) ∼ ξ− σ3
4

1√
2

(

1 1
−1 1

)

e
−iπσ3

4
(

1 + O
(

ξ−3/2)). (3.32)

This matrix has jumps on the rays (in the ξ -plane) as indicated in Fig. 7.
Thus, the final form of the local parametrix is simply

Aj (ξ) :=

:=F(z)
︷ ︸︸ ︷

e
iπσ3

4
1√
2

[

[

1 −1
1 1

]

ξ
σ3
4 A0

j (ξ). (3.33)
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Such matrix has the properties:

• it solves the exact jump conditions of the RHP in Fig. 6;
• the prefactor F(z) solves a RHP on the left

F(z)+ =
[

0 −1
1 0

]

F(z)−, ξ ∈ R−; (3.34)

• it behaves as A(ξ) = 1 + O(N−1) uniformly on the boundary because zKσ3 is
analytic and invertible with analytic inverse in the neighborhood. The only point
to raise is that Ψ (z)A(z) is bounded inside the disk. Indeed, near the turning point
we have

Ψ = O
(

(z − c)−
1
4
)

, F (z) = O
(

(z − c)−
1
4
)

. (3.35)

Thus, the product Ψ (z)F (z) may at most have square root singularities. However,
comparing the RHP that they solve, we see that the product is a single-valued
matrix and thus must be analytic since at worst it may have singularities of type

(z − c)− 1
2 . Since F(z) is solely responsible for the singularities arising in the local

parametrix at z = b, this proves the assertion.

Remark 3.2 If the turning points are non-regular, then we should use the local para-
metrices for the usual problem as described in [8]. None of the above considerations
(except for the bounds in the error terms) is significantly modified.

3.4 The Local Parametrix at the Outpost

At the outpost the effective potential behaves as ϕ(z) = V (z)
2 −g(z)+ �

2 	 T C0z
2ν+2

with C0 > 0. We define a new conformal parameter z̃ as follows:

z̃ := C
−γ

0
1

T
ϕ(z)γ = z + O

(

z2). (3.36)

We define D to be a finite open neighborhood around z = 0 that maps univalently to
a disk centered at z̃ = 0. We also define the local coordinate

ζ := C
γ

0 Nγ z̃. (3.37)

The RHP satisfied by the local parametrix R is as follows (we will use R with a
subscript or a decoration such as in ˜RK to indicate a specific solution to the RHP):

R+ = R−
[

1 e−ζ 2ν+2
N2κγ

0 1

]

, ζ ∈ R, (3.38)

R ∼ ζ−Kσ3 O(1), ζ → 0,

R ∼ 1 + O
(

N−ε
)

, z ∈ ∂D. (3.39)

Here ε is some positive number that will be determined in the subsequent analysis.
Increasing ε leads to a better asymptotics. In addition to the above conditions, we
also require that Ψ R is analytic in D, which implies that detR = 1.
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In Sect. 3.2, we obtain an outer parametrix ΨK which has the pole behavior of
order K at the outpost. We first look for the corresponding local parametrix, which
we will call RK .

3.4.1 Case κ < 0

We first observe that if κ < 0, then the solution is immediately written as3

R0 :=
⎡

⎣

1 N2κγ

2iπ

∫

R

e−ξ2ν+2
dξ

ξ−ζ

0 1

⎤

⎦ . (3.40)

On ∂D we have

R ∼ 1 + O
(

N2γ κ−γ
)

. (3.41)

This situation is “trivial” from the point of view of the asymptotics, and hence we
will only focus on the case κ > 0 in the following.

Remark 3.3 In fact, we observe from the explicit solution that if κ < −2ν − 2, then
we may simply use the identity matrix for the local parametrix, thus committing an
error smaller than O(N−1) which arises anyway on the boundary of the other turning
points.

3.4.2 Case κ ≥ 1/2

We recognize in (3.38) the Riemann–Hilbert problem of the orthogonal polynomials
for the weight e−ζ 2ν+2

dζ . Specifically, if we denote by P
(ν)
� (ζ ) the monic orthogonal

polynomials that satisfy

∫

R

P
(ν)
� (ξ)P

(ν)

�′ (ξ)e−ξ2ν+2
dξ = η�δ��′, η� > 0, (3.42)

then the solution of the RHP (3.38), (3.39) is simply given by

RK = z̃−Kσ3HK(ζ ), (3.43)

where

HK(ζ ) := C
−γKσ3
0 Nγδσ3

⎡

⎢

⎣

P
(ν)
K (ζ ) 1

2iπ

∫

R

P
(ν)
K (s)e−s2ν+2

ds

s−ζ

−2iπ
ηK−1

P
(ν)
K−1(ζ ) −1

ηK−1

∫

R

P
(ν)
K−1(s)e

−s2ν+2
dξ

s−ζ

⎤

⎥

⎦

× N−Kγσ3N(K−κ)γ σ3

3In fact all the results hold for κ < 1/2 as well.
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= C
−κγ σ3
0

⎡

⎢

⎣

Γ −KP
(ν)
K (ζ ) Γ 2κ−K

2iπ

∫

R

P
(ν)
K (s)e−s2ν+2

ds

s−ζ

−2iπΓ K−2κ

ηK−1
P

(ν)
K−1(ζ ) −Γ K

ηK−1

∫

R

P
(ν)
K−1(s)e

−s2ν+2
ds

s−ζ

⎤

⎥

⎦

× C
κγ σ3
0 , Γ := (C0N)γ . (3.44)

It is crucial to point out here that the right multiplier N−γ κσ3 is needed to satisfy
the correct jump relations (3.38), while the left multiplier C

−γKσ3
0 Nγδσ3 is needed to

restore the boundary condition (3.39). One can satisfy the boundary condition (only)
by choosing K as the closest integer of κ. Defining δ := κ −K ∈ (− 1

2 , 1
2 ), we obtain

the following estimate holding uniformly on the boundary:

RK = 1 + O
(

N−γ+2|δ|γ ), z ∈ ∂D. (3.45)

Lastly, ΨKRK is analytic in D, because the z−Kσ3 factor in (3.43) cancels out the
singularity of ΨK (4.2).

The important observation is that if κ ∈ 1
2 + Z, then the error term in (3.45) does

not tend to zero (it is O(1)). This is understandable, as these values separate regimes
where the value of K jumps by one unit and the whole strong asymptotic must change
its form. A similar problem arose in [9]. In Sect. 4 we will overcome this obstacle.

Remark 3.4 The orthogonal polynomials we are using here are a particular case of
the so-called Freud Orthogonal Polynomials [14].

3.5 Asymptotic Solution for ˜Y and Error Term

Collecting the results of the above analysis we have the following asymptotic solution
for ˜Y :

˜Yas :=

⎧

⎪

⎨

⎪

⎩

ΨK(z) outside of the disks,

ΨK(z)RK z ∈ D,

ΨK(z)A inside the disks around the turning points.

(3.46)

To find the error term we define the error matrix as follows:

E (z) := ˜Y˜Y−1
as =

⎧

⎪

⎨

⎪

⎩

˜YΨ −1
K (z) outside of the disks,

˜YR−1
K Ψ −1

K (z) z ∈ D,

˜Y A−1Ψ −1
K (z) inside the disks around the turning points.

(3.47)

The error matrix solves the residual RHP with the jump matrices as shown in
Fig. 8. It follows from the construction that there is no jump inside the dotted disks or
on the cut. On the disks with the Airy parametrix and on ∂D, the jumps converge to
the identity with uniform error bounds in L2 ∩ L∞. We evaluate these error bounds
now.

The jump of E on ∂D is evaluated as follows:

E −1− E+ = ΨKR−1
K Ψ −1

K = 1 + O
(

N−γ+2γ |δ|). (3.48)
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Fig. 8 The jumps of E

The jump of E on the disks of the Airy parametrix is similarly evaluated as follows:

E −1− E+ = ΨK A−1Ψ −1
K = 1 + O

(

N−1). (3.49)

Therefore, the error matrix has jump matrices that are uniformly close to the
identity with the error bound of O(N−γ+2γ |δ|) in L2 ∩ L∞. A well-known theo-
rem [5] guarantees that the error matrix itself is bounded by the same error bound,
i.e., E = 1 + O(N−γ+2γ |δ|). This gives the following error term for the (strong) as-
ymptotics of ˜Y :

˜Y = ˜Yas
(

1 + O
(

N−γ+2γ |δ|)). (3.50)

3.6 Necessity of Improved Approximation: A Nonlinear Stokes Phenomenon in κ

From the above estimate of the error term it appears that our global parametrix does
a poor approximation if κ is not exactly an integer, and it is no approximation at all
if κ ∈ 1

2 + Z, since the error term is not vanishingly small. These transition points
are the equivalent of the Stokes’ lines in the standard theory of asymptotics of ODEs,
where two solutions of the same RHP become of the same magnitude, whereas off
the line one is recessive and the other dominant.

The phenomenon is similar here: for κ ∈ (K − 1
2 ,K + 1

2 ), the dominant solution
is the one we have constructed with K , where for κ ∈ (K + 1

2 ,K + 3
2 ) it is the “next”

with K + 1.
For κ = K + 1

2 it is to be expected that both solutions are of the same magnitude
in a suitable sense and hence a “linear combination” should be sought for.

We show how to do this in the next section, and we will construct hence a para-
metrix including the subleading term in the N−γ expansion so as to have a uniform
approximation to within O(N−2γ ).

4 Asymptotic Solution for κ ∈ R up to O(N−2γ )

4.1 A Short Digression on Schlesinger Transformations

We start by observing that ΨK and ΨK+1 are related by a Schlesinger transformation,
as well as the local parametrices RK,RK+1. In particular, we consider the “raising”
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Schlesinger transformation that raises the order of poles by one

ΨK+1(z) =
(

1 + SK

z

)

ΨK(z) , (4.1)

for a z-independent matrix SK . To show this, it is sufficient to observe that ΨK+1Ψ
−1
K

has no jumps, behaves as the identity at infinity and has at most a simple pole at the
outpost. The formula follows immediately from Liouville’s theorem. Note also that
SK is a nilpotent matrix, as follows immediately from the fact that det(1+SK/z) ≡ 1.

For future reference we compute SK . Let us write the outer parametrix ΨK as

ΨK = [AK,BK ]zKσ3 , (4.2)

where [AK,BK ] is a 2×2 matrix holomorphic at z = 0. We also require det[AK,BK ]
≡ 1 to have detΨK = 1.

Let us compute SK in the raising Schlesinger transformation. The condition that
determines SK is that

AK(z) + 1

z
SKAK(z) = O(z), (4.3)

or, equivalently,
{

SKAK(0) = 0

AK(0) + SKA′
K(0) = 0

⇒ SKV = det[V,AK(0)]
det[AK(0),A′

K(0)]AK(0), ∀V ∈ C
2.

(4.4)
Similarly, the inverse “descending” transform

(

1 + ˜SK

z

)

ΨK = ΨK−1, (4.5)

requires the analyticity condition

BK(z) + 1

z
˜SKBK(z) = O(z). (4.6)

This determines ˜SK as

˜SKV = det[V,BK(0)]
det[BK(0),B′

K(0)]BK(0), (4.7)

for an arbitrary vector V. It is also important to note that, since we have explicitly
constructed the sequence of {ΨK |K = 0,1, . . .} in (3.19), the Schlesinger transfor-
mations between them must exist, and hence

det
[

BK(0),B′
K(0)

] �= 0 �= det
[

AK(0),A′
K(0)

]

, ∀K ∈ Z. (4.8)

Now let us consider the similar transformation for the local parametrix. Previously
in (3.43) we have constructed the local parametrix RK = z̃−Kσ3HK , where

HK 	
[

1 −uK/z̃

−�K−1/z̃ 1

]

z̃Kσ3 . (4.9)
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All the components of the matrix in RHS have the multiplicative error bounds of
1 + O(N−2γ z̃−2). The two variables uK and �K−1 are given by

uK = ηK

2iπ

N2γ δ−γ

C
2γK+γ

0

, �K−1 = 2iπ

ηK−1

C
2γK−γ

0

N2γ δ+γ
. (4.10)

Note the interesting relation uK�K = 1, which will be essential for the consistency of
our solution.

From a similar argument used for deriving (4.1) using Liouville’s theorem, one
obtains the following relation:

HK+1 =
[

z̃ uK

−�K 0

]

HK. (4.11)

This transform can also be derived from the three-term recurrence relation

ζPK(ζ ) = PK+1(ζ ) + ηK

ηK−1
PK−1(ζ ). (4.12)

The transformation matrix in (4.11) is LDU decomposed as follows:
[

z̃ uK

−�K 0

]

= L−1
K z̃σ3UK, LK :=

[

1 0
�K/̃z 1

]

, UK :=
[

1 uK/̃z

0 1

]

. (4.13)

From this we may view the matrices LK,UK as the “two halves” of the transfor-
mation that raises the order of the Freud’s OP by one. Therefore, these objects will
appear for the “half-raising” transform, or more generally for the continuous trans-
form that is parametrized by δ in the next section.

4.2 Improved Parametrices

Here we improve both the outer parametrix ΨK and the local parametrix RK to pro-
duce a legitimate asymptotics at half-integer κ and to produce a better asymptotics for
all κ. Especially, we will use certain transformations that resemble the Schlesinger
transformation discussed in the previous section.

Looking back at the error analysis, the dominant error (3.45) originates from the
off-diagonal term of HKz̃Kσ3 (4.9), especially from the terms u/̃z and �/̃z.

A natural way to correct this problem is to define a new local parametrix,4

Rκ := z̃−Kσ3UKLK−1HK = 1 + O
(

N−2γ
)

, z ∈ ∂D, (4.14)

so as to cancel out the leading off-diagonal terms. We get an improved error bound
which is independent of κ.

We may also change the order of LK−1 and UK in the above definition. Although
the two matrices LK−1 and UK do not commute, the non-commutativity is within the

4Our notation is not exactly consistent, since Rκ �= RK when κ = K . However, we believe that this will
not cause any confusion.
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error bound of O(N−2γ ) and, therefore, the order does not make any difference in
the asymptotics.

Given the local parametrix Rκ , we will find the corresponding improved outer
parametrix Ψκ . It is notable that Rκ is constructed out of LK−1 and UK , which
appear in the raising transform (4.13). This suggests that the appropriate outer para-
metrix Ψκ may come from a “partial 2-step Schlesinger” transformation of ΨK , such
as Ψκ = (1 +F1/z +F2/z

2)ΨK . F1 and F2 are then determined by the analyticity of
ΨκRκ at z = 0 or, equivalently,

(

1 + F1

z
+ F2

z2

)

ΨKz̃−Kσ3UKLK−1 = O(1), in D. (4.15)

Clearly, the issue is to remove the possible poles at z = 0, and the problem is ad-
dressed in the next section.

4.3 Improved Outer Parametrix

The improved outer parametrix, which we will denote by Ψκ
5, must satisfy the ana-

lyticity condition (4.15). Ψκ is uniquely solved by the condition (4.15), and we will
solve it in two steps by writing Ψκ , by first writing

Ψκ =
(

1 + G

z

)(

1 + F

z

)

ΨK. (4.16)

Remembering ΨK = [AK,BK ]zKσ3 (4.2), we can rewrite ΨκRκ as follows:

ΨκRκ =
(

1 + G

z

)(

1 + F

z

)

[˜AK,˜BK ]
[

1 uK/z

0 1

][

1 0
�K−1/z 1

]

˜HK. (4.17)

Note that the terms u/z and �/z depend on z and not on z̃. Accordingly, we have the
following definitions:

[˜AK,˜BK ] := [AK,BK ](z/̃z)Kσ3

[

1 uK

z̃
− uK

z

0 1

]

, (4.18)

which is analytic at z = 0, and

˜HK :=
[

1 0
�K−1

z̃
− �K−1

z
1

]

HK. (4.19)

The first step is to determine F by imposing the analyticity condition (and we
define another notation as below):

[ÂK,̂BK ] :=
(

1 + F

z

)

[˜AK,˜BK ]
[

1 uK/z

0 1

]

= O(1). (4.20)

5Note, once more, that Ψκ �= ΨK when κ = K as for Rκ . However, we believe that this will not cause
any confusion, since we are now constructing a refinement of the previous setting.
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Assuming we solved the above, the second step is to determine G by imposing the
new analyticity condition:

(

1 + G

z

)

[ÂK,̂BK ]
[

1 0
�K−1/z 1

]

= O(1). (4.21)

The above two analyticity conditions uniquely determine F and G, which can be
written as follows using an arbitrary vector V :

FV = uK det[V,˜AK(0)]
1 + uK det[˜AK(0),˜A′

K(0)]
˜AK(0),

GV = −�K−1 det[V,̂BK(0)]
1 + �K−1 det[̂B′

K(0),̂BK(0)]
̂BK(0). (4.22)

Here we have used the fact that det[˜AK(0),˜BK(0)] = det[ÂK(0),̂BK(0)] = 1.
From the above formulae it is easily noticed that F ∼ O(uK) and G ∼ O(�K−1).

This immediately tells us that [ÂK, B̂K ] = [˜AK,˜BK ] + O(uK) from the definition
(4.20). This is useful to know because now we can change all the ̂BK ’s into ˜BK ’s in
the above equation (4.22) while keeping the error under O(uK�K−1) = O(N−2γ ).
Since our asymptotic solution will have an error bound of O(N−2γ ), any term of that
order or lower is meaningless. In addition, it is useful to observe the following facts
for a further simplification:

˜AK(0) = AK(0), det
[

˜AK(0),˜A′
K(0)

]= det
[

AK(0),A′
K(0)

]

, (4.23)

˜BK(0) = BK(0), det
[

˜BK(0),˜B′
K(0)

]= det
[

BK(0),B′
K(0)

]+ O(uK).

(4.24)

As a result we obtain (the first column of) Ψκ up to O(N−2γ ) as follows:

Ψκ

∣

∣

(1)
:=
(

1 + G

z

)(

1 + F

z

)

AKzK

	 AKzK + uK det[AK,AK(0)]
1 + uK det[AK(0),A′

K(0)]AK(0)zK−1

− �K−1 det[AK,BK(0)]
1 + �K−1 det[B′

K(0),BK(0)]BK(0)zK−1 + O
(

N−2γ
)

. (4.25)

The second column is analogously given. In the last formula, when δ �= ±1/2, the
first term provides the leading term, which becomes the strong asymptotics for OPs
away from the outpost. Therefore, the strong asymptotics is δ independent.

The subleading term is either from the second or the third term, depending on the
value of δ. To decide, we must recall the scaling behaviors of uK ∼ Nγ(2δ−1) and
�K−1 ∼ N−γ (2δ+1) (4.10).

At both δ = ±1/2, the leading strong asymptotics changes. At δ = 1/2, uK is no
longer scaling with N and, therefore, the second term also contributes to the leading
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asymptotic behavior:

ΨK+1/2
∣

∣

(1)
= AKzK + uK det[AK,AK(0)]

1 + uK det[AK(0),A′
K(0)]AK(0)zK−1 + O

(

N−2γ
)

. (4.26)

One also observes that the number of roots at the outpost is still K as for −1/2 < δ <

1/2.
At δ = −1/2, �K−1 is the non-scaling parameter (see (4.10)) and, therefore, the

third term contributes to the leading asymptotic behavior:

ΨK−1/2
∣

∣

(1)
= AKzK − �K−1 det[AK,BK(0)]

1 + �K−1 det[B′
K(0),BK(0)]z

K−1BK(0)zK−1 + O
(

N−2γ
)

.

(4.27)
In this case the number of roots is K −1, one less than what it is for −1/2 < δ < 1/2.
The location of the missing root can also be found using the above expression.

To summarize:

(i) At half-integer κ, the number of roots at the outpost is given by the closest integer
that is smaller than κ.

(ii) At half-integer κ, the outer parametrix Ψκ cannot be obtained by approaching
from either side of κ.

4.4 Roots at the Outpost

So far, we have described the strong asymptotics away from the outpost. Now we turn
our attention to the inside of the disk D to look closely at the locations of the roots
at the outpost. To this purpose, we evaluate ΨκRκ up to O(N−2γ ) using (4.17). It
is a straightforward but long calculation if one tries to obtain the full asymptotics up
to O(N−2γ ). Instead, here we will obtain only the leading term and the subleading
term. (We write the full asymptotics in Appendix C for reference.)

Looking at the first column of ΨκRκ one gets

(

Nγ C
γ

0

)K
ΨκRκ

∣

∣

(1)
= (

AK(0) + O
(

N−γ+2|δ|γ ))P (ν)
K (ζ ) (4.28)

− (

BK(0) + O
(

N−γ+2|δ|γ ))Cγ

0 Nγ �K−1P
(ν)
K−1(ζ ).

(4.29)

Note that the above is the sum of two Freud’s OPs. One may object that, say for a
positive δ, the second term is within the error of the first term, and cannot contribute
as a subleading term. (For a negative δ it is the first term that provides the subleading
correction.) A closer look, however, shows that both error terms are ζ -independent up
to O(N−γ ) (which is not difficult to see from the general structure of the formula). So
the error terms only change the coefficients of the two polynomials up to O(N−γ ).

From (4.28) we now identify the asymptotic locations of the roots at the outpost.
Let us first consider a positive δ. The roots are determined by the zeros of P

(ν)
K (ζ ) at

the leading order. According to the explicit value of [AK,BK ] (3.25), the subleading
term N−2δγ P

(ν)
K−1(ζ ) contributes with the same sign as the leading term.
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Fig. 9 For δ > 0, a schematic
plot of polynomial at the
outpost. The dashed line is the

plot of P
(ν)
K

(ζ ). The deviation
between the two plots is of the
order N−2γ δ

Fig. 10 For δ < 0, a schematic
plot of polynomial at the
outpost. The dashed line is the

plot of P
(ν)
K−1(ζ ). One of the

zeros is found away from the
rest. In the z̃-plane, however, all
the zeros converge to z̃ = 0

Due to the well-known interlacing property of the OPs, this means that all the
roots are shifted from the zeros of P

(ν)
K (ζ ) by the amounts that scale as N−2δγ in the

ζ -coordinate.
In Fig. 9 we show a schematic view of OPs and the roots where the real OP

is shifted (to the left) from the leading asymptotics (Freud’s OP; dashed line) by
O(N−2γ δ).

For negative δ the leading asymptotics is now given by P
(ν)
K−1(ζ ) and therefore

we only see K − 1 roots to this order. Also from the explicit value of [AK,BK ], the
subleading term N−2γ |δ|P (ν)

K (ζ ) contributes with the same sign as the leading term,
which means that all the K − 1 roots shift to the right by O(N2δγ ).

Most interestingly, there appears another root (let us call it “the stray root”) to
the left of K − 1 roots, distanced by ∼ N2γ |δ|. As in the schematic view (Fig. 10),
the stray root scales differently from all the other roots. Though this root escapes
to infinity in the ζ -coordinate, it is actually converging to z = 0, only much more
slowly than the other roots. It is also interesting to observe that, from the direction of
the stray root, it seems to come from the main cut. The approximate location of the
stray root is given by

ζstray ∼ C
2Kγ

0

N2γ δ

Bx(0)

Ax(0)

2iπ

ηK−1
. (4.30)

Finally, let us consider the cases δ = ±1/2. For both cases, we get an additional
subleading term. As the formulae are not particularly illuminating we present them
in Appendix C.
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4.5 Kernel at the Outpost

Questions regarding universality hinge on the behavior of the kernel for the correla-
tors [19] in the scaling coordinate.

In general, the kernel is defined by

Kn(z, z
′) := 1

hn−1

pn(z)pn−1(z
′) − pn−1(z)pn(z

′)
z − z′

= 1

2iπ

[Y−1(z′)Y (z)]21

z − z′

= 1

2iπ

[˜Y−1(z′)˜Y (z)]21

z − z′ e− N
T

(g(z)+g(z′)−�). (4.31)

Using our asymptotics, ˜Y 	 ΨκRκ , we evaluate the kernel in the local coordinate
near the outpost:

Kn(ζ, ζ ′) 	 e− N
T

(g(z)+g(z′)−�)

2iπ(NC0)−γ

det[ΨκRκ(ζ )
∣

∣

(1)
,ΨκRκ(ζ ′)

∣

∣

(1)
]

ζ − ζ ′ (4.32)

	 −e− N
T

(g(z)+g(z′)−�)

N2γ κ(NC0)−γ

P
(ν)
K (ζ )P

(ν)
K−1(ζ

′) − P
(ν)
K (ζ ′)P (ν)

K−1(ζ )

ηK−1(ζ − ζ ′)

× (

1 + O
(

N−γ+2γ |δ|)). (4.33)

Using the expression of ΨκRκ in the appendix we can in principle obtain the kernel
up to O(N−2γ ) accuracy. Here we only show the leading term. The above approxi-
mation is valid for κ /∈ N+ 1

2 . This is exactly the kernel for Freud’s OPs, as we expect
from the previous sections.

At κ = K + 1/2 we obtain a different kernel at the leading order:

Kn(ζ
′, ζ ) = −e− N

T
(g(z)+g(z′)−�)

N2γ κ(NC0)−γ

(

P
(ν)
K (ζ )P

(ν)
K−1(ζ

′) − P
(ν)
K (ζ ′)P (ν)

K−1(ζ )

ηK−1(ζ − ζ ′)

+ αK

ηK

PK(ζ ′)PK(ζ )

)

(

1 + O
(

N−γ
))

, (4.34)

where the constant αK is given by

αK := uK det[AK(0),A′
K(0)]

1 + uK det[AK(0),A′
K(0)] . (4.35)

At κ = K − 1/2 we obtain the following kernel at the leading order:

Kn(ζ
′, ζ ) = −e− N

T
(g(z)+g(z′)−�)

N2γ κ(NC0)−γ

(

P
(ν)
K (ζ )P

(ν)
K−1(ζ

′) − P
(ν)
K (ζ ′)P (ν)

K−1(ζ )

ηK−1(ζ − ζ ′)

+ βK−1

ηK

PK−1(ζ
′)PK−1(ζ )

)

(

1 + O
(

N−γ
))

, (4.36)
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where the constant βK−1 is given by

βK−1 := − �K−1 det[B′
K(0),BK(0)]

1 + �K−1 det[B′
K(0),BK(0)] . (4.37)

4.6 Some Consistency Checks

So far we have seen that the various asymptotic properties are drastically changed
when κ is a half-integer. For κ = K +1/2 there are two ways to construct the asymp-
totics; one can apply a suitable (Schlesinger type) transformation starting from ΨK

or from ΨK+1. In this section, the consistency of the two approaches will be proved
in a completely general setting, without referring to the explicit global parametrix.

When δ = 1/2, we can obtain the same error bound using only UK without LK−1:

RK+1/2 := z̃−Kσ3UKHK. (4.38)

Correspondingly, the outer parametrix will then be written as

ΨK+1/2 :=
(

1 + F

z

)

ΨK, (4.39)

where F has been explicitly solved for in (4.22).
The same state can be approached from K + 1 by applying the “half-descending”

transformation. In this spirit, the local parametrix may be written as follows:

R
(new)
K+1/2 := z̃−(K+1)σ3LKHK+1. (4.40)

Consistency means that R
(new)
K+1/2 = RK+1/2, which is an elementary consequence of

the relations (4.11) together with the “factorization” (4.13). One realizes that uK�K =
1 is the key identity.

We can then find the corresponding outer parametrix Ψ
(new)
K+1/2 by demanding ana-

lyticity on Ψ
(new)
K+1/2R

(new)
K+1/2. To prove the consistency of the outer parametrix we write

ΨK+1/2 :=
(

1 + ˜F

z

)

ΨK+1 =
(

1 + ˜F

z

)(

1 + SK

z

)

ΨK, (4.41)

using the property of the Schlesinger transform.
Therefore, the proof of consistency amounts to the following identity:

(

1 + F

z

)

=
(

1 + ˜F

z

)(

1 + SK

z

)

. (4.42)

To prove this, remember the following identity:

(

1 + SK

z

)

[AK,BK ] = [AK+1,BK+1]zσ3 . (4.43)
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Here we do not use˜above A and B as we are dealing with a generic case. Then F

and ˜F are defined by the following conditions:

(

1 + F

z

)

[AK,BK ]
[

1 uK/z

0 1

]

= O(1), (4.44)

(

1 + ˜F

z

)

[AK+1,BK+1]
[

1 0
�K/z 1

]

= O(1). (4.45)

To prove (4.42) we only need to show that the following quantity is analytic:

(

1 + ˜F

z

)(

1 + SK

z

)

[AK,BK ]
[

1 uK/z

0 1

]

= O(1)

[

1 0
−�K/z 1

]

zσ3

[

1 uK/z

0 1

]

.

(4.46)
It is straightforward to see that the above does not have a pole (hence is analytic),
using the identity uK�K = 1. This concludes that Ψ

(new)
K+1/2 = ΨK+1/2, as it should.

Now let us look at the kernel obtained in the previous section. At κ = K + 1/2
the kernel has an additional term to the usual kernel from OPs. To make sense of the
additional term we recall the following general identity for OPs:

Pn(ζ )Pn−1(ζ
′) − Pn(ζ

′)Pn−1(ζ )

ηn−1(ζ − ζ ′)
=

n−1
∑

j=0

Pj (ζ )Pj (ζ
′)

ηj

. (4.47)

This tells us that the “raising operation” for the kernel is to add a term of the form
∝ Pn(ζ )Pn(ζ

′), which happens to be the new term appearing in (4.34).
The kernel at κ = K + 1/2 can be approached either from the K th kernel by

adding αKPK(ζ )PK(ζ ′) or from the K + 1th kernel by adding βKPK(ζ )PK(ζ ′).
The consistency of our result means the following identity:

(

P
(ν)
K (ζ )P

(ν)
K−1(ζ

′) − P
(ν)
K (ζ ′)P (ν)

K−1(ζ )

ηK(ζ − ζ ′)
+ αK

ηK

PK(ζ ′)PK(ζ )

)

(4.48)

=
(

P
(ν)
K+1(ζ )P

(ν)
K (ζ ′) − P

(ν)
K+1(ζ

′)P (ν)
K (ζ )

ηK(ζ − ζ ′)
+ βK

ηK

PK(ζ ′)PK(ζ )

)

. (4.49)

This is reduced to showing αK − βK = 1 which is easily obtained from the identity
uK�K = 1 and

det
[

AK(0),A′
K(0)

]= 1

det[B′
K+1(0),BK+1(0)] , (4.50)

which follows from a direct computation using the Schlesinger transformation.
There remains only one very exceptional case to consider: both formulæ in (4.22)

may fail if the denominator appearing there vanishes. This can happen since at κ =
K ± 1

2 one of the parameters �,u does not tend to zero.
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However, such an unlucky situation does not occur with our construction in (3.25).
A direct computation shows that

det
[

B′
K+1(0),BK+1(0)

]= −i
(b − a)2K+1(t2

0 − 1)4K+2

t06K+2r+642K+1
. (4.51)

Plugging into the denominator of (4.22) we have

1 + �K det
[

B′
K+1(0),BK+1(0)

]= 1 + 2iπ
C

2γK−γ

0

ηK

det
[

B′
K+1(0),BK+1(0)

]

.

(4.52)
Since ηK is the norm square of the monic Freud polynomial, and given the sign of
the imaginary part of (4.51), the denominator is strictly positive.

4.7 Arbitrarily Improved Error Bound

Here we explain how to construct the outer and the local parametrix that has arbitrary
small error bound, as one wants to achieve. Though we will not explicitly carry out
the evaluation of the corrections, the method already yields quite interesting identi-
ties which are otherwise hard to see. The main idea is to generalize the Schlesinger
transformation to a higher order.

Remark 4.1 The general framework for arbitrary improvement of the error is not
new and appeared in ([7], Sect. 7.2), based on the inversion of an operator close
to the identity in terms of a Neumann (geometric) series. The approach of [4] to
the problem was indeed based on those ideas. In a certain sense, our approach is a
manipulation whose “philosophical” meaning is the same as computing the terms of
the above-mentioned Neumann series, although the practical details may be different.

The Weyl function W(ζ) is defined by

W(ζ) := 1

2πi

∫

dμ(ξ)

ξ − ζ
=: −N−2κγ

∞
∑

j=1

μj

zj
. (4.53)

(Let us write z instead of the correct z̃, as we are not going to deal with the physical
coordinate.) The measure was given by dμ(ξ) = exp(−ξ2ν+2)dξ , but it can be gen-
eral in the following discussion. {μj } are the set of numbers defined by the expansion
around z = ∞. Note that they are also scaling with N as μj ∝ N2κγ−γj .

Then the matrix
[

1 N2κγ W(ζ )

0 1

]

(4.54)

satisfies the jump condition (3.38) for the local parametrix. Since the jump property
remains by any multiplication to the left, we may multiply a matrix to get:

˜RR :=
[

1
∑R

j=1 μj/z
j

0 1

][

1 N2κγ W(ζ )

0 1

]

= 1 + O
(

N2κγ−γ (R+1)
)

, z ∈ ∂D,

(4.55)
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which can be made as close to the identity (on the boundary of the disk) as one
wishes by increasing R. Especially at R = 2K we get the most modest error bound
N−γ+2γ δ , which we obtained in (3.45).

The same error bound can be obtained in a different way, using the following
property of the Weyl function and the Padé approximation provided by the orthogonal
polynomials associated to the measure dμ(ξ):

W(ζ) = −Qk(ζ )

Pk(ζ )
+ O

(

ζ−2k−1), (4.56)

where

Qk(ζ ) := 1

2iπ

∫

Pk(ζ ) − Pk(ξ)

ζ − ξ
dμ(ξ) (4.57)

is a polynomial of order k − 1.
Then the following matrix also has the same error bound as ˜R2K :

̂RK :=
[

1 N2κγ QK(ζ )/PK(ζ )

0 1

][

1 N2κγ W(ζ )

0 1

]

= 1 + O
(

N−γ+2γ δ
)

. (4.58)

Now let us find the corresponding outer parametrix. Here it is necessary that we
start from Ψ0 which does not have any pole at the outpost. Defining Ψ0 := [A0,B0]
we propose the outer parametrix of the form:

˜ΨR :=
(

1 +
R
∑

j=1

Fj

zj

)

[A0,B0]. (4.59)

For ˜ΨR
˜RR to be analytic near z = 0 we demand

(

1 +
R
∑

j=1

Fj

zj

)

[A0,B0]
[

1
∑R

j=1 μj/z
j

0 1

]

= O(1), (4.60)

which completely determines {Fj }. As shown in the appendix, they are given by the
solution of a linear equation.

Now that we have explained the method to obtain an arbitrarily good error bound
(on the boundary of the disk around the outpost), let us deduce a few implications.

As we have seen already, the leading outer parametrix is given by the N -
independent ΨK ; vice versa we have just defined a set of N -dependent outer para-
metrices ˜ΨR for R ≥ 2K that should all converge to ΨK , i.e.,

lim
N→∞

(

1 +
R
∑

j=1

Fj

zj

)

Ψ0 = ΨK, R ≥ 2K. (4.61)

Remember that {Fj } are determined by (4.60).
Moreover, looking at (4.55), the local parametrix does not contribute to the first

column of the full asymptotic solution ˜ΨR
˜RR , since ̂RK (or ˜RR) are upper-triangular.

Therefore, all the information about the asymptotics of the orthogonal polynomials
near the outpost in this setting is encoded directly in the outer parametrix itself (4.59).
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5 (New) Universality Behavior

We can now examine the result we have obtained in the neighborhood of the outpost.
In particular, we want to point out the behavior of zeroes of the orthogonal poly-

nomials pn(z) in this particular scaling regime.

• The normalized counting measure of the zeroes {z(n)
1 , . . . , z

(n)
n } of pn(z)

νn(x) := 1

n

n
∑

k=1

δ
(

x − z
(n)
1

)

(5.1)

converges in the sense of measures to the usual equilibrium measure, namely for
any continuous function f (x) ∈ C 0(R)

∫

R

νn(x)f (x) = 1

n

n
∑

k=1

f
(

z
(n)
1

)→
∫

R

f (x)ρ(x)dx. (5.2)

• The fine behavior of those zeroes is precisely that in the scaling s := (C0N)−γ (x −
ξ0). For 0 ≤ δ ≤ 1/2 they are converging to the location of the zeroes {s(K)

1 , . . . ,

s
(K)
K } of the orthogonal polynomial of degree K of the measure e−s2ν+2

ds. In
measure-theoretical terms, for any compactly supported continuous f (s)

∫

nνn(x)f
(

(C0N)γ (x − ξ0)
)=

K
∑

j=1

f
(

s
(K)
j

)

. (5.3)

• For −1/2 < δ < 0 they are converging to the location of the zeroes {s(K−1)
1 , . . . ,

s
(K−1)
K−1 } of the orthogonal polynomial of degree K − 1 of the measure e−s2ν+2

ds.
(There is also the unique “stray zero” that scales as xstray ∼ N−γ+2|δ|γ sstray. How-
ever, the constant sstray is not universal.)

• The correlation functions are the same – in the same scaling – as for the random
matrix model of size K

dμ(HK) := e−Tr(H 2ν+2
K ) dHK. (5.4)

In a certain picturesque sense, there is a “microscopic” matrix model in the macro-
scopic background.

• The kernel for the correlation functions Kn(x, x′) = pn(x)pn−1(x
′)−pn−1(x)pn(x′)

hn−1(x−x′) can
be computed from

Kn(x, x′) = 1

2iπ

[Y−1(x′)Y (x)]21

x − x′ , (5.5)

and thus a direct computation gives the new universal kernel near the outpost (in
the scaling coordinate):
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Kn(ζ
′, ζ ) = −e− N

T
(g(z)+g(z′)−�)

N2γ κ(NC0)−γ

(

P
(ν)
K (ζ )P

(ν)
K−1(ζ

′) − P
(ν)
K (ζ ′)P (ν)

K−1(ζ )

ηK−1(ζ − ζ ′)

)

× (

1 + O
(

N−γ+2γ |δ|)). (5.6)

At δ = ±1/2 there appears a new term – P
(ν)
K (ζ ′)P (ν)

K (ζ ) or P
(ν)
K−1(ζ

′)P (ν)
K−1(ζ ),

depending on the sign.

As we see, rather surprisingly, a finite-size matrix model (of particular type) arises
naturally as a scaling limit of a general one.

To conclude, we remark that using the same methods employed here it is possible
to handle a similar multicritical phenomenon where the “microscopic” matrix model
has any polynomial exponential weight rather than the Freud one. This requires, how-
ever, a more finely-tuned potential, namely, we need to introduce a dependence on N

into V and T . Similar considerations, but leading to Freud weights as in the main
body of the text, are contained in Appendix A.

We postpone this analysis to a future publication.
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Appendix A: Double-Scaling Approach

In this section we explain why our simplified approach using the chemical potential is
de facto equivalent to a more refined double-scaling limit. In [4, 20] the deformation
of the g-function was written in terms of the parameter T by fine-tuning T −Tcr (Tcr

being the critical total mass of the measure). In [20] a small dependence on V was
also introduced so that the critical point in the effective potential remains of the same
order of vanishing, 2ν + 2. Here we want to illustrate how our simplified approach
can be related to those.

Suppose that V := Vε(x), T := Tε depend on an external parameter which we
denote by ε in such a way that there exist a (finite) disjoint union of bounded intervals
J =⊔

Jk with endpoints smoothly depending on ε, a point ξ0(ε) /∈ J (also smoothly
depending on ε) and a real function h(x) with the properties

• h(x) is harmonic C \ J and continuous in C and at infinity h(x) ∼ ln |x|;
• 1

T
V (x) − h(x) ≡ 0 for x ∈ J ;

• 1
T

V (x) − h(x) = C(ε)(x − ξ0)
2ν+2(1 + O(x − ξ0)) − f (ε), with f (ε) a smooth

function in a neighborhood of ε = 0 with R � f ′(0) �= 0;
• other than the negative sign implied by the previous bullet point in a neighborhood

of ξ0 (for small ε) the sign of V (x)−h(x) on R\J is strictly positive (see Fig. 11).
• the sign of 1

T
�V (z) − h(z) is negative on a left/right neighborhood of each com-

ponent of J , and the size of this neighborhood is uniform in ε for small ε’s.

In the above C > 0 may depend on ε as long as it is smooth and bounded away
from 0, and all the Landau symbols should be uniform in ε. The function h here
is nothing but the real part of the g-function (up to addition of the Robin constant)
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Fig. 11 An example with ν = 1
and V of degree 6. This is a
numerically correct plot,
although the axes are scaled
differently for V and ϕ

and the last bullet point is equivalent to saying that h is the logarithmic energy of a
positive measure supported on J (a consequence of the Cauchy–Riemann equation
for harmonic functions).

In this framework then we could repeat verbatim the analysis by fine-tuning ε via
the implicit equation

f (ε) = 2κγ
lnN

N
. (A.1)

This equation defines ε(N) (for suitably large N ) since f (ε) has nonzero derivative
at ε = 0 and hence invertible near 0.

All the construction would still apply verbatim with the caveats that the turning
points are (slowly) moving in N and hence the outer parametrix, the local coordinates
ζ used to define the local parametrices (including the one at the outpost ξ0) depend
(smoothly and slowly) on N6.

The situation is not dissimilar to the one in [18] where an N -dependent g-function
(with N -dependent turning points) was employed. None of the analysis we have car-
ried out is significantly affected. In particular, the local RHP for the parametrix at the
outpost is identical with the only understanding that the conformal parameter ζ(z)

depends on N but only through ε and hence in a uniformly bounded way.
To convince the reader that the above list of requirements is not insanely restrictive

we show how to construct one such family of potentials V and total charges T . For
simplicity we restrict to a one-cut situation but this is purely in the interest of con-
ciseness. Methods similar to [1] could be used to construct a family for an arbitrary
number of cuts.

6By “smoothly and slowly” we mean that they are smooth functions of ε which, in turn, is of order lnN/N .
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Suppose that V (x) is a (real) polynomial of even degree and that V0, T0 is a multi-
critical pair like the one used in the main text. It is not difficult to show that we must
have in general degV ≥ 2ν + 4.

We now define a deformation depending on the parameter ε = T − Tcr . Here we
have chosen for transparency of exposition the deformation parameter as the devia-
tion from the critical total charge, but in general it may be an abstractly introduced
parameter.

As explained for example in [1], we can write the (complex) effective potential ϕ0

as

ϕ0(z) =
∫ z

b0

M0(x)(x − ξ0)
2ν+1

√

(x − a0)(x − b0), a0 < b0 < ξ0, (A.2)

where degM0 = degV ′ − 2ν − 2 and it is determined by the (algebraic) equation

M0(z)(z − ξ0)
2ν+1

√

(z − a0)(z − b0) = V ′
0(z) − T0

z
+ O

(

1/z2). (A.3)

For simplicity in what follows we assume that the roots μj,0 of M0(z) are simple. It
is clear that V0 cannot be a totally arbitrary potential (a simple parameter counting
confirms this).

The criticality condition amounts to

∫ ξ0

b0

M0(x)(x − ξ0)
2ν+1

√

(x − a0)(x − b0) = 0, (A.4)

which implies that M0(x) has an odd number of zeroes in (b, ξ0).7 Other than this
(unless other critical phenomena occur) M0(x) > 0 on [a, b] and M0(ξ0) > 0.

Now define

P0(z) := M0(x)2(x − ξ0)
4ν+2(x − a0)(x − b0). (A.5)

We will define a first-order ODE for Pε with Cauchy data Pε |ε=0 = P0. Since we
want to preserve the multiplicity of the root at the outpost ξε we must have Ṗε =
(z − ξε)

4ν+1(1 + · · ·) and hence Ṗε must be at least a polynomial of that order;
moreover, since it should also preserve the square of Mε , it must be divisible by Mε .
The simplest choice is to take directly

Ṗε := A−1Mε(z)(z − ξ)4ν+1. (A.6)

The constant A is determined by the requirement that res∞ Ṗ

2
√

P
= Ṫ = 1, namely

res
z=∞

(z − ξ)2ν

2
√

(z − a)(z − b)
= A. (A.7)

7Since degM0 ≥ 1, the assertion on the minimal degree of V follows.
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This determines A as a (rather cumbersome) polynomial in ξ, a, b. Note that since
we have chosen the determination of the squareroot that is positive on the real positive
axis near ∞, then A < 0.

The potential Vε undergoes the evolution according to

Ṗε

2
√

Pε

= V̇ ′
ε(z) − 1

z
+ O

(

z−2). (A.8)

Hence the coefficients of Vε up to degree 2ν will necessarily depend on ε. Only for
the simplest case of ν = 0 can we keep the potential fixed.

The full ODE is thus either (A.6) or – in terms of the position of the zeroes of P –

ξ̇ε = − Ṗ
(4ν+1)
ε (ξ)

(4ν + 2)P
(4ν+2)
ε (ξ)

= −A−1

(4ν + 2)M(ξ)(ξ − a)(ξ − b)
,

ȧ = − Ṗε(a)

P ′(a)
= −A−1

M(a)(ξ − a)(a − b)
,

(A.9)

ḃ = − Ṗε(b)

P ′(b)
= −A−1

M(b)(ξ − b)(b − a)
,

μ̇j = − Ṗ ′
ε(μj )

2P ′′(μj )
.

The theorem of existence for ODE guarantees that the above equation has solution
for ε in a suitable interval around ε = 0 (with P0 as IVP).

The only point we verify in addition is the claim about the behavior of the effective
potential near the outpost ξ , but this is an elementary application of Taylor theorem
since (noting that ϕε(bε) ≡ 0)

ϕε(x) =

=:Tf (ε)
︷ ︸︸ ︷

∫ ξ

b

ϕ′
ε(s)ds +Mε(ξ)

√
(ξ − a)(ξ − b)

2ν + 2
(x − ξ)2ν+2(1 + O(x − ξ)

)

. (A.10)

The derivative of f (ε) at ε = 0 is

ḟ (0) = 1

T0

∫ ξ0

b0

A(x − ξ0)
2ν

√
(x − a0)(x − b0)

dx < 0. (A.11)

This implies that for ε > 0 (T > Tcr = T0) the effective potential is negative in a
small neighborhood of the outpost ξ , with a minimum value that should be fine-tuned
as detailed above.

Appendix B: Construction of the Outer Parametrix for Arbitrary Number
of Cuts

We only sketch the construction since the details would require a good deal of nota-
tion to be set up. We will use the same notation and ideas contained in [2].
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We denote by w double-cover of the z-plane branched at the endpoints of the
support of the equilibrium measure

w2 :=
2g+2
∏

j=1

(z − αj ). (B.1)

This is a hyperelliptic algebraic curve of genus g. We denote by ∞± the two points
above z = ∞ in the usual compactification of the curve, and by p± the two points
projecting to the location of the outpost.8 We denote by ωj the first-kind differentials
normalized along the a-cycles, explicitly

ωj (z) = σj�

z�−1dz

w
, (B.2)

where the summation over repeated indices is understood (and they range from 1 to
g) and σj� is an invertible matrix such that

∮

ak
ωj = δjk .

Using the standard notation for divisors on Riemann surfaces [10], we consider the
unique (up to multiplicative constant) sequence of spinors with the divisor properties

(

ψ(0)
r

)≥ −(r − 1)∞+ + r∞− + K(p+ − p−), r ∈ Z, (B.3)

ψ(0)�
r (p) := ψ(0)

r (p�), (B.4)

where p �→ p� is the holomorphic involution of the hyperelliptic curve. The spinors
(and their starred counterparts) are also sections of the line bundles L, L−1 with char-
acter χ (χ−1 respectively) defined by

χ(γ ) :=
{

e2iπ Aj :=∏j

�=1 eiNε� for γ = aj ,

e2iπ Bj := 1 for γ = bj ,

εj := 2

T

∫ α2j

α2j−1

ρ(x)dx = j -th filling fraction.

(B.5)

These are the generalization to arbitrary genus of the spinorial Baker–Akhiezer
vector used earlier: the characteristics �A, �B ∈ C

g are defined up to integers.
The matrix

Ψr,K := 1√
dz

[

ψr,K(p) iψr,K(p�)

−i˜ψr−1,K(p) ˜ψr−1,K(p�)

] ∣

∣

∣

∣

p=p−1(z)

(B.6)

solves the model RHP with quasi-permutation monodromies on the cuts and on
the gaps (antidiagonal on the cuts, diagonal on the gaps). Here p−1(z) is the point
(z,w+(z)) where w+(z) is the determination of w(z) that behaves like zg+1 at infin-
ity, analytically extended to the complex plane sliced along the support of the equi-
librium measure (i.e. the physical sheet).

8The point ∞+ is characterized by w > 0 as z ∈ R+ near ∞. The point p+ is the point on the Riemann
surface of w obtained by analytic continuation of w on the complex plane slit along (α2j−1, α2j ).
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The spinor
√

dz is defined on the double cover of the hyperelliptic curve (it
has

√
branch-behavior at the Weierstrass points in terms of the local parameter√

z − αj , hence has singularities of type 4
√

z − α when thought of as a spinor on the
plane).

The first column has a zero of order K at z(p+) = ξ0 (the outpost) and the sec-
ond column a pole of order (at most) K . At infinity it behaves as zrσ3 (up to left
multiplicative constants).

The expression in terms of Θ functions is

ϕr,K := Θr
�(p − ∞−)ΘK

� (p − p+)Θ
[A

0

]

(p + r∞− − (r + 1)∞+ + K(p+ − p−))

Θr+1
� (p − ∞+)ΘK

� (p − p−)

h�(p)√
dz

, (B.7)

ψr = ϕr,K(p)

Cr,K

, ˜ψr = ϕr,K(p)

˜Cr,K

, (B.8)

Cr,K = lim
p→∞+

ϕr,K

zr
√

dz
, ˜Cr,K = lim

p→∞−

ϕr,K

zr
√

dz
, (B.9)

h� :=
√

√

√

√

g
∑

j=1

∂zj
Θ�(0)ωj . (B.10)

The notation (rather standard) is lifted from [2] and [11]: the Abel map is understood
when writing points as arguments of Θ and it is based at one of the Weierstrass points
(for example α1) � is an arbitrary odd non-singular half-period. Recall that (pag. 23
of [11]) all such characteristics � are in one-to-one correspondence with partitions of
the Weierstrass points into g − 1 and g + 3 points {αk1, . . . , αkg−1}� {αk1

, . . . , αkg+3
}.

It is to be noted that (pag. 23 of [11])

h�(p)√
dz

=
√

−∂�Θ�(0)σ�g

4
√

∏g−1
�=1 (z − αk�

)

4
√

∏g+3
�=1 (z − αk�

)

(B.11)

and that

Θ
[A

0

]

(p + r∞− − (r + 1)∞+ + K(p+ − p−))h�(p)

Θ�(p − ∞+)
√

dz
= F(z)

4
√

∏2g+2
j=1 (z − αj )

,

(B.12)



260 Constr Approx (2009) 30: 225–263

where F(z) is an analytic function with jump discontinuities on the cuts9 and it is
independent of the choice of �; it is bounded in the finite region of the z-plane and

growing like z
g+1

2 at infinity. Moreover, straightforward computations show that (with
some overall ambiguity of signs)

Θ�(p − ∞±) ∼
p→∞±

∓1

z
∂�Θ�(0)σ�g, (B.13)

h�(p)

Θ�(p − ∞±)
√

dz
−→

p→∞±

(∓∂�Θ�(0)σ�g

)− 1
2 , (B.14)

CK,r = Θr
�(∞+ − ∞−)ΘK

� (∞+ − p+)Θ
[A

0

]

(r(∞− − ∞+) + K(p+ − p−))

(−∂�Θ�σ�g)
r+ 1

2 ΘK
� (∞+ − p−)

,

(B.15)

˜CK,r = (∂�Θ�σ�g)
r+ 1

2 ΘK
� (∞− − p+)Θ

[A
0

]

((r + 1)(∞− − ∞+) + K(p+ − p−))

Θr+1
� (∞− − ∞+)ΘK

� (∞− − p−)
.

(B.16)

The constant Cr,K is simply the normalization so that ψr behaves as zr at ∞+
while ˜Cr,K is chosen so that ˜ψr(p

�) behaves as z−r−1 at ∞+.

Remark B.1 The fact that these formal expressions do not vanish identically follows
from the fact that

Θ

[A
0

]

(

r(∞− − ∞+) + K(p+ − p−)
) �= 0 (B.17)

for arbitrary A ∈ R
g , as these correspond to positive divisors of degree g with g

points in the gaps. This is proved in a more general setting in [Proposition 6.3,
pag. 111 of [11]]. Of course for K = 0 = r the nonvanishing of this expression is
precisely the same that appears in [8] although maybe not clearly stated.

From a point of view of isomonodromic theory, the above theta function is inti-
mately related to the isomonodromic tau function [17], whose vanishing determines
the (non)solvability of a Riemann–Hilbert problem. In this example the RHP is the
model problem for the OPs. If the spectral curve had no real-structure, then in general
it could happen that for exceptional values the problem does not admit a solution (see
[2]).

We conclude this section with a few important remarks and shortcomings of these
formulas:

• the construction of the improved parametrix in Sect. 4 did not use the specific form
of the outer parametrix but just the jet-expansion near the outpost, thus it applies
verbatim to the general case, with the proviso of the next point;

9Of course this is a slightly vague description since we should first stipulate how the fourth-roots have
been defined.
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• the description of the behavior of the roots at the outpost remains generically valid
in this case. However, the direction of approach of the stray zero (in (4.30)) de-
pends on the actual sign of the expressions involved, hence in this general case it
cannot be easily identified10;

• for the Stokes’ values κ ∈ Z + 1
2 there is the potential for the denominators of

formulæ (4.22) to vanish under exceptional circumstances (i.e. for special spec-
tral curves and special values of K). This would make the approximation (4.25)
unbounded in N and hence invalidate it. For the one-cut case as in the main text
it was rather simple to directly verify that the determinants in (4.22) have a suit-
able sign so that the denominators are bounded away from zero, but for the case
of multi-cut solutions a similar computation requires a deep manipulation of Θ

functions and we could not determine a similar property. We suspect that such
property should hold here too on account of the reality conditions of the cuts and
the Jacobian of the spectral curve.

Appendix C: Asymptotics: Long Results

We write the full asymptotics for the first column of ˜Y up to O(N−2γ ):

(

Nγ C
γ

0

)K
ΨκRκ

∣

∣

(1)

= P
(ν)
K (ζ )

(

˜AK + uK det[˜AK,˜AK(0)]
1 + uK det[˜AK(0),˜A′

K(0)]
˜AK(0)

z

− �K−1 det[˜AK,˜BK(0)]
1 + �K−1 det[˜B′

K(0),˜BK(0)]
˜BK(0)

z
+ �K−1

z
˜BK

)

+ P
(ν)
K (ζ )

(

�K−1

z̃
− �K−1

z

)(

˜BK − �K−1 det[˜BK,˜BK(0)]
1 + �K−1 det[˜B′

K(0),˜BK(0)]
˜BK(0)

z

)

− �K−1N
γ C

γ

0 P
(ν)
K−1(ζ )

(

˜BK + uK det[˜BK,˜BK(0)]
1 + uK det[˜AK(0),˜A′

K(0)]
˜AK(0)

z

− �K−1 det[˜BK,˜BK(0)]
1 + �K−1 det[˜B′

K(0),˜BK(0)]
˜BK(0)

z
+ uK

z
˜AK

)

+ O
(

N−2γ
)

. (C.1)

At half-integer κ we have the following leading and subleading behavior:

(

Nγ C
γ

0

)K
ΨκRκ

∣

∣

(1)

	 AK(0)

1 + uK det[AK(0),A′
K(0)]P

(ν)
K (ζ )

10Nor should it be expected to always come from one side. On a heuristic level, the stray zero should come
from the “closest” spectral band, and hence it depends on the location of the outpost.
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− �K−1C
γ

0 Nγ

(

BK(0) + uK det[B′
K(0),BK(0)]

1 + uK det[AK(0),A′
K(0)]AK(0)

+ uKA′
K(0)

)

P
(ν)
K−1(ζ )

+
(

A′
K(0) + uK det[ 1

2 A′′
K(0),AK(0)]

1 + uK det[AK(0),A′
K(0)]AK(0)

)

ζP
(ν)
K (ζ )

C
γ

0 Nγ
+ O

(

N−γ
)

,

(C.2)
(

Nγ C
γ

0

)K
ΨκRκ

∣

∣

(1)

	 − �K−1C
γ

0 Nγ BK(0)

1 + �K−1 det[B′
K(0),BK(0)]P

(ν)
K−1(ζ )

×
(

AK(0) + �K−1B′
K(0) − �K−1

det[A′
K(0),BK(0)] − [z/̃z]1

1 + �K−1 det[B′
K(0),BK(0)]BK(0)

)

P
(ν)
K (ζ )

− �K−1

(

B′
K(0) − �K−1 det[B′′

K(0),BK(0)]
1 + �K−1 det[B′

K(0),BK(0)]BK(0)

)

P
(ν)
K−1(ζ )ζ

+ O
(

N−γ
)

,

for κ = K + 1/2 and κ = K − 1/2, respectively.
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