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Coefficients of Orthogonal Polynomials on the Unit
Circle and Higher-Order Szegő Theorems

Leonid Golinskii and Andrej Zlatoš

Abstract. Let µ be a nontrivial probability measure on the unit circle ∂D, w the
density of its absolutely continuous part, αn its Verblunsky coefficients, and �n its
monic orthogonal polynomials. In this paper we compute the coefficients of �n in
terms of the αn . If the function logw is in L1(dθ), we do the same for its Fourier

coefficients. As an application we prove that if αn ∈ 
4 and if Q(z) ≡
∑N

m=0 qm zm is a

polynomial, then with Q̄(z) ≡
∑N

m=0 q̄m zm and S the left-shift operator on sequences
we have

|Q(eiθ )|2 logw(θ) ∈ L1(dθ) ⇔ {Q̄(S)α}n ∈ 
2.

We also study relative ratio asymptotics of the reversed polynomials�∗n+1(µ)/�
∗
n(µ)−

�∗n+1(ν)/�
∗
n(ν) and provide a necessary and sufficient condition in terms of the

Verblunsky coefficients of the measures µ and ν for this difference to converge to
zero uniformly on compact subsets of D.

1. Introduction

In the present paper we study certain aspects of the theory of orthogonal polynomials on
the unit circle (OPUC). For background information on the subject we refer the reader
to the texts [6], [18], [19], [22]. Throughout, dµ will be a nontrivial (i.e., with infinite
support) probability measure on the unit circle ∂D in C, identified with the interval
[0, 2π) via the map θ �→ eiθ . We will write

dµ(θ) = w(θ) dθ

2π
+ dµsing(θ),

with dθ the Lebesgue measure on [0, 2π) and dµsing the singular part of dµ.
One usually denotes by

�n(z) = κn,nzn + κn,n−1zn−1 + · · · + κn,1z + κn,0(1.1)

the monic (i.e., κn,n = 1) orthogonal polynomials for µ (with n ≥ 0). It is standard to
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define the reversed polynomials by

�∗n(z) = λn,nzn + λn,n−1zn−1 + · · · + λn,1z + λn,0

≡ κ̄n,0zn + κ̄n,1zn−1 + · · · + κ̄n,n−1z + κ̄n,n,

and let κn,m = λn,m = 0 whenever m > n. We have �0 ≡ �∗0 ≡ 1 and for n ≥ 0 the
recurrence relations

�n+1(z) = z�n(z)− ᾱn�
∗
n(z),(1.2)

�∗n+1(z) = �∗n(z)− αnz�n(z),(1.3)

with αn ∈ D the Verblunsky coefficients of µ. A fundamental result of Verblunsky [23]
says that there is a one-to-one correspondence between nontrivial probability measures
µ on ∂D and sequences {αn}n≥0 ∈ DZ+0 . If we set �n ≡ 0 and �∗n ≡ 1 for n ≤ −1, and

α−1 ≡ −1, αn ≡ 0 (n ≤ −2),

then (1.2), (1.3) hold for all n ∈ Z. We accordingly let κn,m = 0 and λn,m = δm,0 when
n < 0 and m ≥ 0.

Probably the most famous OPUC result is Szegő’s Theorem. In the form proved by
Verblunsky [23] it says that αn ∈ 
2(Z+0 ) if and only if logw(θ) ∈ L1(dθ). More
precisely, the sum rule

∞∑
n=0

log(1− |αn|2) =
∫

log(w(θ))
dθ

2π
(1.4)

holds. Note that both sides of (1.4) are indeed nonpositive since |αn| < 1 and by Jensen’s
inequality,

∫
log(w(θ)) dθ/2π ≤ log(

∫
w(θ) dθ/2π) ≤ log(µ(∂D)) = 0, but they can

simultaneously be −∞. Recently the area of sum rules, for orthogonal polynomials as
well as Schrödinger operators, saw a rapid development starting with papers by Deift
and Killip [2] and Killip and Simon [9], which were followed by many others (e.g., [3],
[10], [11], [12], [15], [17], [21], [24], [25]).

If αn ∈ 
2, one defines the Szegő function

D(z) ≡ exp

(∫
eiθ + z

eiθ − z
logw(θ)

dθ

4π

)

which is analytic in D. Szegő’s theorem in its full extent also shows that then

�∗n
‖�∗n‖L2(dµ)

→ D−1(1.5)

uniformly on compact subsets of D. We have

‖�∗n‖L2(dµ) =
n−1∏
k=0

(1− |αk |)1/2 =
n−1∏
k=0

ρk,(1.6)
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where ρk ≡
√

1− |αk |2 (see (1.5.13) in [18]), and so if we define dm by

D(z)−1 ≡
(∏

k≥0

ρk

)−1

(1+ d1z + d2z2 + · · ·),(1.7)

then

dm = lim
n→∞ λn,m .(1.8)

The first contribution of this paper is the following expression of the coefficients κn,m ,
λn,m , and dm in terms of the αk . To the best of our knowledge (and to our surprise), this
result is new despite the long history and classical nature of the subject!

Theorem 1.1. For m ≥ 1,

κ̄n,n−m = λn,m =
∑
∑ j

1
al=m

j,al≥1

∑
k1<n

k2<k1−a1
· · ·

kj<kj−1−aj−1

αk1 ᾱk1−a1 . . . αkj ᾱkj−aj .(1.9)

If αk ∈ 
2, then also

dm =
∑
∑ j

1
al=m

j,al≥1

∑
k2< k1−a1
· · ·

kj< kj−1−aj−1

αk1 ᾱk1−a1 . . . αkj ᾱkj−aj .(1.10)

Remarks. 1. In the above sums [a1, a2, . . . , aj ] runs through all 2m−1 ordered partitions
of m, and ki ∈ Z.

2. Our choice of αn for negative n shows that the condition “−1 ≤ kj − aj ” can be
added under the second sum in (1.9) (which is actually finite) and (1.10). For instance, if
m = n, then the sum in (1.9) has a single nonzero term with j = 1, a1 = n, k1 = n − 1,
and so κn,0 = −ᾱn−1. This can be seen from (1.2) and �∗n(0) = 1 as well.

3. Notice that for each partition [al]
j
l=1 with

∑ j
1 al = m, the second sum in (1.10)

converges when αk ∈ 
2. This is because then αk ᾱk−a ∈ 
1 for any fixed a, and so

|dm | ≤
∑
∑ j

1
al=m

j,al≥1

j∏
l=1

(∑
k

|αk ᾱk−al |
)
.

4. It might seem that the above formulas give the same values for dµ and the corre-
sponding family of Aleksandrov measures dµλ with |λ| = 1 and Verblunsky coefficients
αn(µλ) = λαn(µ) (n ≥ 0). This is, however, not the case as α−1(µλ) = −1 �= −λ if
λ �= 1.

Next, we describe an application of Theorem 1.1 that actually motivated our work. It
involves the computation of Taylor coefficients of log D. These are interesting primarily
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because they coincide with Fourier coefficients of logw. Indeed,

1

2

eiθ + z

eiθ − z
= 1

2 + e−iθ z + e−2iθ z2 + · · · ,(1.11)

and the definition of D shows that

log D(z) = 1
2w0 + w1z + w2z2 + · · · ,

where wm are defined by

wm ≡
∫

e−imθ logw(θ)
dθ

2π
= w̄−m .(1.12)

We know from (1.4) that

w0 =
∑
k≥0

log(1− |αk |2) = 2
∑
k≥0

log ρk(1.13)

and the methods from [21] can be used to compute the first few of the otherwm . However,
the corresponding computations become very complicated with increasing m (already
at m = 4 they are close to intractable; [21] only deals with m ≤ 2). Our method will
providewm for all m, although the resulting formulas will obviously not be simple. That
is why we postpone the exact expressions to Theorem 2.4 below and state the result here
in the following form that is sufficient for our first application, Theorem 1.4 (see also
Lemma 3.1 that contains a similar formula for Taylor coefficients of log�∗n).

Theorem 1.2. If αk ∈ 
2, then

wm = αm−1 −
∑
k≥0

αk+m ᾱk + Rm(µ)(1.14)

with

|Rm(µ)| ≤ Cm

(
m−1∑
k=0

|αk |2 +
∞∑

k=m

|αk |4
)
.(1.15)

Remark. We note that (1.14) will be obtained from (1.10) by means of expanding
log(1+ d1z + d2z2 + · · ·) into its Taylor series. This is a remarkable fact since the sum
in (1.10) is m-fold infinite and one might expect this method to only add another degree
of difficulty. Nevertheless, after appropriate combinatorial manipulations it will turn out
that the sum in (1.14) (as well as the one in the exact form (2.12)) has only a single
infinite index!

The situation when one is interested in Taylor coefficients of the logarithm of a function
analytic at the origin is not unusual. For instance, if the characteristic function ϕ of a
probability distribution σ is analytic at the origin, then so is logϕ, and a formula for
the Taylor coefficients of the latter function in terms of the moments of σ is available
(see, e.g., Malyshev and Minlos [14, Chap. 2, formula (6)]). These Taylor coefficients
are known as semi-invariants and computations involving them are often much simpler
than those involving the moments of σ .
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The first application of the knowledge of wm we present in this paper aims at the
following conjecture of Simon [18] that is a higher-order generalization of (1.4). Here
S is the left-shift operator on sequences

S(x0, x1, . . .) = (x1, x2, . . .).(1.16)

Conjecture 1.3. For distinct {θm}lm=1 in [0, 2π) and nm positive integers, define N ≡∑l
m=1 nm , n ≡ 1+maxm nm , and

Q(z)≡
l∏

m=1

(z−eiθm )nm =
N∑

m=0

qm zm and Q̄(z) ≡
l∏

m=1

(z−e−iθm )nm =
N∑

m=0

q̄m zm,

so that

Q̄(S) =
N∑

m=0

q̄m Sm .

Then

|Q(eiθ )|2 logw(θ) ∈ L1(dθ) ⇔ {Q̄(S)α}k ∈ 
2 and αk ∈ 
2n.(1.17)

For N = 0 this is just (1.4). For N = 1 the conjecture was proved by Simon (Theorem
2.8.1 in [18]) and for N = 2 by Simon and Zlatoš [21]. It remains open for N ≥ 3
although Denisov and Kupin [4], mimicking the work of Nazarov, Peherstorfer, Volberg,
and Yuditskii [15] on Jacobi matrices, showed that for each Q there indeed is a condition
in terms of finiteness of a sum involving the αk that is equivalent to the left-hand side of
(1.17). Unfortunately, this sum is far from transparent and its relation to the right-hand
side of (1.17) is unclear.

Our contribution in this direction is the following higher-order Szegő theorem in 
4

which shows that Conjecture 1.3 holds if we a priori assume αk ∈ 
4.

Theorem 1.4. Assume that αk ∈ 
4, and for q0, q1, . . . , qN ∈ C define

Q(z) ≡
N∑

m=0

qm zm and Q̄(S) =
N∑

m=0

q̄m Sm .

Then

|Q(eiθ )|2 logw(θ) ∈ L1(dθ) ⇔ {Q̄(S)α}k ∈ 
2.(1.18)

Remark. Of course, the most interesting is the case from Conjecture 1.3 when all
zeros of Q are on the unit circle, because the validity of the left-hand side of (1.18) only
depends on them.

Moreover, we provide in Theorem 3.3 an exact formula for the value of

Z Q(µ) ≡
∫
|Q(eiθ )|2 logw(θ)

dθ

4π
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in terms of the αn . Since Z Q is an entropy [9], [18], it is upper semicontinuous with
respect to weak convergence of measures, and so Z Q(µ) ≥ lim supn Z Q(µn) with µn

the Bernstein–Szegő approximations ofµ having Verblunsky coefficients {α0, . . . , αn, 0,
0, . . .}. We show in Proposition 3.4 that, in fact, we always have Z Q(µ) = limn Z Q(µn),
including the case when both sides are−∞ (they cannot be+∞ as each Z Q is bounded
above; see Section 3).

Finally, we apply our method to the computation of the relative ratio asymptotics
�∗n+1(µ)/�

∗
n(µ)−�∗n+1(ν)/�

∗
n(ν)where�∗n(µ) and�∗n(ν) are the reversed polynomials

of measures µ and ν, respectively.

Theorem 1.5. Let µ and ν be two nontrivial probability measures on ∂D. Let {αn(µ)}
and {αn(ν)}, respectively, be their Verblunsky coefficients and let �∗n(µ) and �∗n(ν),
respectively, be their reversed monic orthogonal polynomials. Then

�∗n+1(µ)

�∗n(µ)
− �

∗
n+1(ν)

�∗n(ν)
→ 0,(1.19)

uniformly on compact subsets of D as n→∞ if and only if, for any 
 ≥ 1,

lim
n→∞[αn(µ)ᾱn−
(µ)− αn(ν)ᾱn−
(ν)] = 0.(1.20)

As a corollary of Theorem 1.5, we provide a simple new proof of the results of
Khrushchev [8] and Barrios and López [1] on ratio asymptotics�∗n+1/�

∗
n as n→∞ of

the reversed polynomials (Theorem 4.1), as well as their generalization (Theorem 4.2).
Note that since �∗n(z) = zn�n(1/z̄), ratio asymptotics of the �∗n inside D immediately
give those of the �n outside D̄.

The paper is organized as follows. Section 2 computes the Taylor coefficients of
�∗n and log D in terms of the Verblunsky coefficients and proves Theorems 1.1 and
1.2. Section 3 introduces the step-by-step sum rules (see [9], [20], [21]) and proves
Theorem 1.4. Section 4 proves Theorem 1.5.

2. Coefficients of �∗n(z) and log D(z) in Terms of Verblunsky Coefficients

We start with the proof of our first result, Theorem 1.1.

Proof of Theorem 1.1. From (1.2) we have, for n ∈ Z and m ≥ 0,

κn+1,m = κn,m−1 − ᾱnλn,m

with the convention κn,−1 ≡ 0. Substituting this repeatedly into a similar equality ob-
tained from (1.3) we get, for m ≥ 1,

λn+1,m = λn,m − αnκn,m−1

= λn,m + αnᾱn−1λn−1,m−1 − αnκn−1,m−2

= · · ·

= λn,m +
m−1∑
a=1

αnᾱn−aλn−a,m−a + αnᾱn−m,
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where in the last equality we have used κn−m,−1 = 0 and λn−m,0 = 1. If we now iterate
this and note that λm−l,m = 0 for m ≥ 1 and l > 0, we have

λn+1,m =
∑
k≤n

m−1∑
a=1

αk ᾱk−aλk−a,m−a +
∑
k≤n

αk ᾱk−m(2.1)

=
∑
k≤n

m−1∑
a=1

βk,aλk−a,m−a +
∑
k≤n

βk,m

with βk,a ≡ αk ᾱk−a . Of course, terms with k < 0 are zero.
We will prove (1.9) by induction on n. If n ≤ 0 and m ≥ 1, then it obviously holds as

in that case both sides are zero. Assume therefore that (1.9) holds up to some n and all
m ≥ 1. Then (2.1) gives

λn+1,m =
∑
k≤n

m−1∑
a=1

βk,a

∑
∑ j

1
al=m−a

j,al≥1

∑
k1<k−a

k2<k1−a1
· · ·

kj<kj−1−aj−1

βk1,a1 . . . βkj ,aj +
∑
k≤n

βk,m

=
∑
∑ j

0
al=m

j,al≥1

∑
k0< n+1

k1< k0−a0
· · ·

kj< kj−1−aj−1

βk0,a0 . . . βkj ,aj +
∑

k0<n+1

βk0,m

=
∑
∑ j

0
al=m

j≥0
al≥1

∑
k0<n+1

k1<k0−a0
· · ·

kj<kj−1−aj−1

βk0,a0 . . . βkj ,aj

with k0 ≡ k and a0 ≡ a. But this is (1.9) for n + 1 in place of n. Thus (1.9) is proved,
and (1.10) follows from (1.8).

Our next aim is to compute the Taylor coefficients of log D. We will again assume
αk ∈ 
2 so that D is well defined. By (1.7) we have, for z close to 0,

log

(∏
k≥0

ρk

)
− log D(z) =

∑
j≥1

(−1) j−1

j
(d1z + d2z2 + · · ·) j ,

and so wm is the negative of the mth Taylor coefficient of the right-hand side when
m ≥ 1. That is,

wm =
∑
∑ j

1
b
=m

j,b
≥1

(−1) j

j

j∏

=1

db
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=
∑
∑ j

1
b
=m

j,b
≥1

(−1) j

j

j∏

=1




∑
∑p

1
al=b


p,al≥1

∑
k2<k1−a1
· · ·

kp<kp−1−ap−1

βk1,a1 . . . βkp,ap




(2.2)

=
∑

{(k1,a1),...,(ki ,ai )}∈Mm

βk1,a1 . . . βki ,ai

i∑
j=1

(−1) j

j
Nj ({(k1, a1), . . . , (ki , ai )})(2.3)

with Mm and Nj defined below.
Before stating the definitions, let us first describe how (2.3) was obtained from (2.2).

We multiply out the brackets in (2.2) to get a sum of products βk1,a1 . . . βki ,ai (with
coefficients), and then collect terms with identical products (only differing by a per-
mutation). The coefficient at each product βk1,a1 . . . βki ,ai obtained in this way will then
equal the last sum in (2.3). For example, the productβ3,1β

2
1,1 appears in (2.2) for m = 3 as

((−1)3/3)(β3,1)(β1,1)(β1,1), ((−1)3/3)(β1,1)(β3,1)(β1,1), ((−1)3/3)(β1,1)(β1,1)(β3,1),
((−1)2/2)(β3,1β1,1)(β1,1), and ((−1)2/2)(β1,1)(β3,1β1,1). The first three come from
j = 3 and b1 = b2 = b3 = 1 in (2.2), the fourth from j = 2, b1 = 2, b2 = 1,
and the fifth from j = 2, b1 = 1, b2 = 2. Therefore the coefficient at β3,1β

2
1,1 in (2.3)

has to be ((−1)3/3)3+ ((−1)2/2)2 = 0.
It is obvious that the products that appear in (2.3) must satisfy i, al ≥ 1 and

∑i
1 al = m,

because the sum of the al’s in any term of the 
th bracket of (2.2) equals b
. The set
Mm will therefore reflect this condition. The question now is: Given any collection (i.e.,
set with repetitions; see below) of couples P = {(k1, a1), . . . , (ki , ai )} ∈ Mm , in how
many ways can the corresponding product βk1,a1 . . . βki ,ai be obtained by multiplying out
j ≥ 1 brackets in (2.2)? If this number is denoted N ′j (P), then the correct coefficient at

βk1,a1 . . . βki ,ai in (2.3) is
∑i

j=1((−1) j/j)N ′j (P). Hence, to obtain (2.2) = (2.3), we are
left with showing that Nj (P), defined below, equals N ′j (P).

We will call a collection an unordered list of elements, some of which can be identical
(i.e., a collection is a set that can contain multiple identical elements, a hat with multi-
colored balls). Such identical elements are considered indistinguishable. A j-tuple will
be an ordered list of j elements. Collections will be denoted by {. . .}, j-tuples by [. . .].
Below we will consider collections and j-tuples whose elements are couples (k, a) with
k ∈ Z, a ∈ N. For instance, {(3, 1), (1, 1), (1, 1)} is a collection ({(1, 1), (1, 1), (3, 1)} is
the same one) and [(3, 1), (1, 1), (1, 1)], [(1, 1), (3, 1), (1, 1)], [(1, 1), (1, 1), (3, 1)] are
three distinct triples. Finally, the union of collections is the collection obtained by joining
their lists of elements, for instance, {(3, 1), (1, 1)} ∪ {(1, 1)} = {(3, 1), (1, 1), (1, 1)}.

Definition 2.1. Let Mm be the set of all distinct collections P = {(k1, a1), . . . , (ki , ai )}
with i ≥ 1, kl ∈ Z, and al ≥ 1 such that

∑i
1 al = m. We let

β(P) ≡ βk1,a1 . . . βki ,ai = αk1 ᾱk1−a1 . . . αki ᾱki−ai .(2.4)

We say that a collection P = {(k1, a1), . . . , (ki , ai )} is linear if ku < kv − av or
kv < ku − au whenever u �= v. In particular, ku �= kv when u �= v, which means that a
linear collection P cannot contain two identical couples, and thus it is just a set.
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If P ∈ Mm and j ≥ 1, then Nj (P) is the number of distinct j-tuplesP = [P1, . . . , Pj ]
such that each P
 is a nonempty linear collection and

⋃ j

=1 P
 = P . We will call each

such P an admissible division of P .

For instance, if P = {(3, 1), (1, 1), (1, 1)} (corresponding to β3,1β
2
1,1 above), then the

admissible divisions are [{(3, 1)}, {(1, 1)}, {(1, 1)}], [{(1, 1)}, {(3, 1)}, {(1, 1)}],
[{(1, 1)}, {(1, 1)}, {(3, 1)}] (with j = 3) and [{(3, 1), (1, 1)}, {(1, 1)}], [{(1, 1)},
{(3, 1), (1, 1)}] (with j = 2). Hence in this case N3(P) = 3, N2(P) = 2, N1(P) = 0
and the last sum in (2.3) is indeed ((−1)3/3)3+ ((−1)2/2)2 = 0.

To finish the proof of (2.2) = (2.3) we need to show that Nj (P) = N ′j (P) for any
P ∈ Mm (as we did for P = {(3, 1), (1, 1), (1, 1)}), where N ′j (P) is the number of
times the product β(P) = βk1,a1 . . . βki ,ai is obtained by multiplying out j brackets in
(2.2). The desired equality follows from realizing that the collection P
 in the definition
(
 = 1, . . . , j) corresponds to the “subproduct” of β(P) coming from the 
th bracket in
(2.2) (which is why theP’s must be ordered, as well as why P
 must be linear). With this
identification in mind, it is easy to see that each admissible division [P1, . . . , Pj ] of P
corresponds to precisely one way of obtaining β(P) in (2.3) from (2.2) by multiplying
j subproducts (from j brackets) corresponding to P1, . . . , Pj (with b
 being the sum of
the al for which (kl , al) ∈ P
), and vice versa.

Hence we have obtained an explicit expression for wm . We will now simplify it
considerably by showing that coefficients at many β(P) in (2.3) are actually zero, as
was the case for β3,1β

2
1,1 (see Lemma 2.3 below).

We say that K ∈ Z is a cut of P = {(k1, a1), . . . , (ki , ai )} ∈ Mm if kl �= K for all l, if
minl{kl} < K < maxl{kl}, and if for any u, v with ku < K < kv we have ku < kv − av .
For instance, P = {(3, 1), (1, 1), (1, 1)} has one cut K = 2. Our interest here will be
mainly in “cuttless” collections as is demonstrated by the following two lemmas.

Lemma 2.2. If P ∈ Mm has no cut, then

max
l
{kl} −min

l
{kl − al} ≤ m.(2.5)

Proof. Consider the union of intervals I ≡⋃l [kl−al , kl] ⊂ R, with |I | ≤∑l al = m.
If P has no cut, then I is an interval (and vice versa) because otherwise the minimum of
any component, except for the bottom one, were a cut. But then we obviously have

I =
[

min
l
{kl − al},max

l
{kl}

]
proving (2.5).

Let |P| be the number of elements of a collection P , counting identical elements as
many times as they are included in P . For instance, |{(3, 1), (1, 1), (1, 1)}| = 3.

Lemma 2.3. If P ∈ Mm has a cut, then

|P|∑
j=1

(−1) j

j
Nj (P) = 0.(2.6)
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Proof. Fix P = {(k1, a1), . . . , (ki , ai )} ∈ Mm that has a cut K . First notice that if �
is the set of all admissible divisions P = [P1, . . . , PjP ] of P , then (2.6) is equivalent to

∑
P∈�

(−1) jP

jP
= 0.(2.7)

For each P let C(P) be the collection (not a union!) of up to 2 jP nonempty sets that
we obtain by splitting each P
 at K . That is, we define

P±
 ≡ {(kl , al) ∈ P
 | ±(kl − K ) > 0},
so that P
 = P+
 ∪ P−
 , and then let C(P) be the collection of those P±
 that are not
empty. Notice that the P±
 are indeed sets and they are linear—both because the same is
true for P
.

Hence C defines an equivalence relation on � by P ∼ P ′ iff C(P) = C(P ′). We will
show that the part of the sum in (2.7) corresponding to any equivalence class is zero.
That is, we will prove ∑

C(P)=C0

(−1) jP

jP
= 0(2.8)

for any C0 such that C(P) = C0 for some P ∈ �.
Let us fix any such C0. Then C0 is a collection of nonempty linear sets Q1, . . . , Qq

and R1, . . . , Rr whose union (as a union of collections) is P , such that if (kl , al) ∈ Qu ,
then kl < K , and if (kl , al) ∈ Ru , then kl > K . That is, the Qu are the nonempty P−

and the Rv are the nonempty P+
 . Let q ≤ r , since the case q ≥ r is identical.

Assume first that these sets are all distinct. Then for every 0 ≤ s ≤ q there are(
q

s

)(
r

s

)
s! (q + r − s)! admissible divisionsP of P withC(P) = C0 and jP = q+r−s.

These are created by choosing s sets from Q1, . . . , Qq and s from R1, . . . , Rr , taking all
s! pairings of the selected Q’s with the selected R’s, and then all (q+r−s)! orderings of
thus created q+r−s sets (unions of the paired couples Qu∪Rv together with the unpaired
Q’s and R’s)—the P
’s. Since all the original sets were distinct, this construction gives
no repetitions. Notice also that any P
 = Qu ∪ Rv is linear because so are Qu and Rv
and K is a cut for P . This shows that the left-hand side of (2.8) equals

q∑
s=0

(−1)q+r−s

q + r − s

(
q

s

)(
r

s

)
s! (q+r−s)! = (−1)q+r (q+r−1)!

q∑
s=0

(−1)s

(
q

s

)(
r

s

)
(

q+r−1

s

) = 0.

The last equality follows from Lerch’s identity [13] (also in [7, p. 61])

q∑
s=0

(−1)s

(
q

s

)(
r

s

)
(

p

s

) =

(
p − r

q

)
(

p

q

)

which holds whenever p ≥ q.
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If now some Q’s and/or some R’s are identical, then in the above sum every P with
C(P) = C0 is counted the same number of times T , which equals the product of the
factorials of the numbers of identical sets. This is because there are T permutations of
the Q’s and R’s that fix the classes of identical sets, and hence when we perform the
above algorithm to obtain all admissible P’s with C(P) = C0, each such P will be
obtained T times. Therefore, the left-hand side of (2.8) equals

1

T

q∑
s=0

(−1)q+r−s

q + r − s

(
q

s

)(
r

s

)
s! (q + r − s)! = 0.

This proves (2.8), and (2.7) follows by summing over all C0.

Hence the only terms that matter in (2.3) are those with no cuts (which is the main
point of this section). Moreover, it is obvious that β(P) = 0 when some kl − al ≤ −2.
Therefore, we define ω(P) ≡ maxl{kl | (kl , al) ∈ P}, δ(P) ≡ minl{kl − al | (kl , al) ∈
P},

N (P) ≡
|P|∑
j=1

(−1) j

j
Nj (P),(2.9)

and, for 0 ≤ n ≤ ∞,

Mn
m ≡ {P ∈ Mm | P has no cuts and 0 ≤ ω(P) ≤ n}.(2.10)

If now P ∈ Mm\M∞m , then either P has a cut and so N (P) = 0, or ω(P) ≤ −1 and
then β(P) = 0 because δ(P) ≤ −2. This means that the sum in (2.3) only needs to be
taken over M∞m . Before formally stating this fact, we remark that

Mn
m = {P + k | P ∈ M0

m and 0 ≤ k ≤ n},(2.11)

where P + k ≡ {(kl + k, al) | (kl , al) ∈ P}. Also notice that N (P + k) = N (P) by
definition, P − ω(P) ∈ M0

m for any P ∈ M∞m , and M0
m is a finite set by Lemma 2.2. In

this light the following result is an immediate consequence of (2.3) and Lemma 2.3.

Theorem 2.4. If αk ∈ 
2, then, for m ≥ 1,

wm =
∑

P∈M∞m

N (P)β(P) =
∑

P∈M0
m

N (P)
∞∑

k=0

β(P + k).(2.12)

Remark. The second form of wm in (2.12) shows that for m �= 0, the mth Fourier
coefficient of logw(θ) (and so the mth Taylor coefficient of log D(z)) can be expressed
as a sum over a single infinite index of products involving only “nearby” αk’s.

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. If

M ′m ≡ {P ∈ M∞m | |P| = 1},
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then (2.12) can be written as

wm =
( ∑

P∈M ′m

+
∑

P∈M∞m \M ′m

)
N (P)β(P).(2.13)

Note that the sum in (1.14) together with αm−1 = −αm−1α−1 is just the first sum in
(2.13), and so Rm(µ) is the second sum in (2.13). It remains to prove (1.15).

Since each Nj (P) is bounded by a constant only depending on m,

|Rm(µ)| ≤ Cm

∑
P∈M∞m \M ′m

|β(P)|.

For any P ∈ M∞m \M ′m , let i ≡ |P| ≥ 2. If δ(P) ≤ −2, then β(P) = 0. If δ(P) = −1,
then, by Lemma 2.2,

|β(P)| ≤
i∏

l=1

|αkl | ≤
m−1∑
j=0

|αj |i ≤
m−1∑
j=0

|αj |2.

And if δ(P) ≥ 0, then

|β(P)| ≤
i∑

l=1

(|αkl |2i + |ᾱkl−al |2i ) ≤ m
δ(P)+m∑
j=δ(P)

|αj |2i ≤ m
δ(P)+m∑
j=δ(P)

|αj |4.

Since each P ∈ M∞m has no cuts, the number of P ∈ M∞m with any given δ(P) is a finite
constant only depending on m. Hence (1.15) follows and the proof is complete.

We write here explicitly the first three w’s from (2.12). Recall that α−1 = −1, α−2 =
α−3 = · · · = 0, and ρk =

√
1− |αk |2,

w1 = −
∑

k

αk ᾱk−1,

w2 = −
∑

k

αk ᾱk−2ρ
2
k−1 + 1

2

∑
k

α2
k ᾱ

2
k−1,

w3 = −
∑

k

αk ᾱk−3ρ
2
k−1ρ

2
k−2 +

∑
k

α2
k ᾱk−1ᾱk−2ρ

2
k−1

+
∑

k

αkαk−1ᾱ
2
k−2ρ

2
k−1 − 1

3

∑
k

α3
k ᾱ

3
k−1.

Finally, we note that all Taylor coefficients of log(D(z)/D(0)) verify the claim of the
remark after Theorem 2.4. It turns out that this is essentially the only such function of
the form F(D(z)/D(0)).

Proposition 2.5. Assume that F is analytic on a neighborhood of 1 and each Taylor
coefficient hm of H(z) = F(D(z)/D(0)) is, as a function of {αk} ∈ 
2, a sum of products
of the αk’s such that if αk and αl both appear in the same product, then |k − l| ≤ cF,m

for some cF,m <∞. It follows that H(z) = a + b log(D(z)/D(0)) for some a, b ∈ C.
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Proof. Define G(z) = F(ez) so that G is analytic on a neighborhood of 0 (with Taylor
coefficients gm) and H(z) = G(log(D(z)/D(0))). The fact that log(D(z)/D(0)) =∑

m≥1wm zm satisfies the proposition shows that when gm is the first nonzero coefficient
with m ≥ 2, then hm does not satisfy the required condition because hm = g1wm+gmw

m
1 .

Therefore G(z) = a + bz for some a, b.

3. A Higher-Order Szegő Theorem

In this section we will prove Theorem 1.4. We will do this by first deriving sum rules
à la Denisov and Kupin [4] that provide us with a necessary and sufficient condition for
the left-hand side (1.18) to hold. The difference between our Theorem 3.3 below and [4]
is that in [4] this condition is expressed in terms of traces of powers of the CMV matrix
(see, e.g., [18]), which is less explicit than the form we obtain here (although, obviously,
the two conditions have to be equivalent). This, together with Theorem 2.4, will suffice
to yield Theorem 1.4.

We start by introducing some notation. The Carathéodory and Schur functions, F :
D→ iC− and f : D→ D, for dµ are defined by

F(z) ≡
∫

eiθ + z

eiθ − z
dµ(θ) ≡ 1+ z f (z)

1− z f (z)
.

It is a result of Geronimus [5] that the Verblunsky coefficients of µ coincide with the
Schur parameters of f defined inductively by the Schur algorithm

f (z) = α0 + z f1(z)

1+ zᾱ0 f1(z)
.(3.1)

Here (3.1) defines α0 ∈ D and f1 : D → D, and iteration then yields α1, α2, . . . and
f2, f3, . . .. Note that f (0) = α0 and, by induction, the mth Taylor coefficient of f only
depends on α0, . . . , αm .

In the following we will write �∗n(µ, z) and D(µ, z) for the reversed polynomials
and the Szegő function. Accordingly, we will write wm(µ) for the Taylor coefficients of
log D(µ, z), and we will also let

−log�∗n(µ, z) ≡
∑
m≥1

wn,m(µ)z
m .

We will now fix a measure µ and denote its Verblunsky coefficients αk . For the sake
of transparency, we will include α−1 = −1 at the beginning of the sequence of the
coefficients, so that these will be {−1, α0, α1, . . .}. We let µn be the nth Bernstein–
Szegő approximation of µ, with Verblunsky coefficients {−1, α0, α1, . . . , αn, 0, 0, . . .},
and µ(n) = w(n)(θ) dθ/2π + dµ(n)sing the measure with Verblunsky coefficients
{−1, αn, αn+1, . . .}.

In Section 2.9 of [18], Simon defines the relative Szegő function

(δD)(µ, z) ≡ 1− ᾱ0 f (z)

ρ0

1− z f1(z)

1− z f (z)
(3.2)
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with f, f1 from (3.1). Its advantage is that, unlike D, it is defined for any µ. If w(θ) is
positive almost everywhere, then so is w(1)(θ), and

log
w(θ)

w(1)(θ)
∈ L p[0, 2π), p <∞,(3.3)

with

(δD)(µ, z) = exp

(∫
eiθ + z

eiθ − z
log

(
w(θ)

w(1)(θ)

)
dθ

4π

)
(3.4)

(see Theorem 2.9.3 in [18]). Obviously, in the case αk ∈ 
2, we have

(δD)(µ, z) = D(µ, z)

D(µ(1), z)
(3.5)

which explains the name. We define the Fourier coefficients of log(w(θ)/w(1)(θ)) to be
δwm(µ) so that from (3.4) and (1.11) we obtain

log(δD)(µ, z) = 1
2δw0(µ)+ δw1(µ)z + δw2(µ)z

2 + · · · .(3.6)

In particular,

δw0(µ) = 2 log ρ0(3.7)

by (3.2) and f (0) = α0, and δw−m(µ) = δwm(µ). In the case αk ∈ 
2 we have, by (3.5),

δwm(µ) = wm(µ)− wm(µ
(1)).(3.8)

Finally, we define N (P) by (2.9), β(P) by (2.4), and let β(n)(P) be defined as
β(P), but with α−1, α0, . . . , αn−2 replaced by zeros and αn−1 replaced by −1. That
is, β(n)(P) equals β(P − n) for the measure µ(n). For instance, β(2)({(3, 1), (1, 1)}) =
α3ᾱ2(−1)0̄ = 0,which isβ({(1, 1), (−1, 1)}) for the measureµ(2) with Verblunsky coef-
ficients {−1, α2, α3, . . .}. In particular, (2.12) for the measureµ(n) and N (P−n) = N (P)
imply

wm(µ
(n)) =

∑
P∈M∞m

N (P)β(n)(P)(3.9)

whenever αk ∈ 
2. Notice also that, by Lemma 2.2,

β(n)(P) = β(P)(3.10)

when P ∈ M∞m and ω(P) ≥ m + n. Since we have fixed the αk’s, it will be more
transparent to use the notation β(P), β(n)(P) rather than β(µ, P), β(µ(n), P − n).

Next we show that Theorem 2.4 easily extends to D(µn), �∗n(µ), and δD(µ).

Lemma 3.1. For m ≥ 1 and any µ we have

wm(µn) =
∑

P∈Mn
m

N (P)β(P) = wn+1,m(µ),(3.11)

δwm(µ) =
∑

P∈M∞m

N (P)[β(P)− β(1)(P)].(3.12)
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Proof. The first equality in (3.11) is nothing but (2.12) for the measure µn instead of
µ. Then (1.3), (1.5), and (1.6) show that

log�∗n+1(µ, z) = log�∗n+1(µn, z) =
n∑

k=0

log ρk − log D(µn, z),

since�∗n+1(µn, z) = ‖�∗n+1(µn, z)‖L2(dµ)D−1(µn, z), and so wn+1,m(µ) = wm(µn) for
m ≥ 1.

By (3.2), the mth Taylor coefficient of δD(µ, z) (and so of log δD(µ, z), too) only
depends on α0, the the first m Taylor coefficients of f and the first m − 1 of f1. That is,
δwm(µ) is a function of α0, . . . , αm only (see (1.3.48) in [18]). This means that for any
n ≥ m we have

δwm(µ) = δwm(µn) = wm(µn)− wm((µn)
(1)) =

∑
P∈Mn

m

N (P)[β(P)− β(1)(P)],

where the second equality is (3.8) for µn and the third follows from (3.11) and (3.9). But
the last sum equals the right-hand side of (3.12) because (3.10) shows that β(1)(P) =
β(P) when P ∈ M∞m \Mn

m .

After this preparation we are ready to provide a characterization of sequences of
Verblunsky coefficients corresponding to measures µ for which logw(θ) is integrable
with respect to some polynomial weight |Q(eiθ )|2. We let Q(z) ≡ ∑N

m=0 qm zm and
define pm by

|Q(z)|2 =
N∑

m=−N

pm zm = p0 +
N∑

m=1

2 Re(pm zm) for |z| = 1,

(note that pm = qN q̄N−m + · · · + qmq̄0 = p̄−m). With the convention log 0 = −∞ we
set

Z Q(µ) ≡
∫
|Q(eiθ )|2 logw(θ)

dθ

4π
,(3.13)

which is defined for anyµbut can be−∞. This is because, with log± x≡max{± log x, 0},∫
|Q(eiθ )|2 log+w(θ)

dθ

4π
≤ ‖Q‖2

∞

∫
w(θ)

dθ

4π
≤ ‖Q‖

2
∞

4π
,(3.14)

but the integral of log−w(θ) can be infinite, for instance, when w(θ) = 0 on a set of
positive measure. It is more common to let Z Q be the negative of (3.13), so that it is
bounded from below rather than above, but our definition will be more convenient here.
Note also that by (3.3) with p = 1 subsequently applied to µ(n), n ≥ 0, in place of µ,
we have either Z Q(µ

(n)) = −∞ for all n ≥ 0 or Z Q(µ
(n)) > −∞ for all n ≥ 0.

Before determining the condition for Z Q(µ) > −∞, we prove the following step-by-
step sum rule.

Lemma 3.2. For any µ,

Z Q(µ) = p0 log ρ0 +
N∑

m=1

Re

(
p̄m

∑
P∈M∞m

N (P)[β(P)− β(1)(P)]
)
+ Z Q(µ

(1)).(3.15)
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Proof. The sum on the right-hand side of (3.15) is always finite since it has only finitely
many nonzero elements and so (3.15) holds if both Z Q terms are−∞. If both are finite,
then (3.3) holds and so

∫
|Q(eiθ )|2 log

(
w(θ)

w(1)(θ)

)
dθ

4π
= 1

2 p0δw0(µ)+
N∑

m=1

Re( p̄mδwm(µ))

together with (3.7) and (3.12) gives (3.15).

Theorem 3.3. For any µ and Q,

Z Q(µ) =
∞∑

k=0

Re

(
p0 log ρk +

N∑
m=1

p̄m

∑
P∈M0

m

N (P)β(P + k)

)
.(3.16)

Remark. This shows that Z Q(µ) is finite if and only if the above sum converges.

Proof. Since (1.12) and (3.13) give

Z Q(µn) = 1
2 p0w0(µn)+

N∑
m=1

Re( p̄mwm(µn)),(3.17)

it follows from (1.13) and (3.11) that

Z Q(µn) =
n∑

k=0

p0 log ρk +
N∑

m=1

Re

(
p̄m

∑
P∈Mn

m

N (P)β(P)

)
.(3.18)

Hence by (2.12) and N (P) = N (P − ω(P)), the claim is equivalent to Z Q(µ) =
limn→∞ Z Q(µn).

It is well known that Z Q is an entropy and therefore upper semicontinuous in µ with
respect to weak convergence of measures (see Section 2.3 in [18]). In particular, since
µn ⇀ µ, we obtain

Z Q(µ) ≥ lim sup
n→∞

Z Q(µn).

Thus we are left with proving

Z Q(µ) ≤ lim inf
n→∞ Z Q(µn).(3.19)

This is obviously true if Z Q(µ) = −∞, so assume that Z Q(µ
(n)) > −∞ for all n ≥ 0.

Then w(θ) > 0 for a.e. θ and by Rakhmanov’s theorem, αn → 0 as n→∞.
The step-by-step sum rule (3.15) for µ(n) in place of µ reads

Z Q(µ
(n)) = p0 log ρn+

N∑
m=1

Re

(
p̄m

∑
P∈M∞m

N (P)[β(n)(P)− β(n+1)(P)]

)
+Z Q(µ

(n+1)),
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and therefore we can iterate it and cancel the terms in the telescoping sum to obtain

Z Q(µ) = p0

n∑
k=0

log ρk +
N∑

m=1

Re

(
p̄m

∑
P∈M∞m

N (P)[β(P)− β(n+1)(P)]

)
+ Z Q(µ

(n+1)).

Using µ(n) ⇀ dθ/2π (since αn → 0), Z Q(dθ/2π) = 0, and upper semicontinuity of
Z Q , we obtain

Z Q(µ) ≤ lim inf
n→∞

[
p0

n∑
k=0

log ρk +
N∑

m=1

Re

(
p̄m

∑
P∈M∞m

N (P)[β(P)− β(n+1)(P)]

)]
.

We claim that the quantity inside the lim inf differs by o(1) from (3.18) (in which case
(3.19) holds and we are done). Indeed, the difference of these two is at most

N∑
m=1

|pm |
( ∑

P∈Mn+m
m \Mn

m

|N (P)||β(P)− β(n+1)(P)|
)

by (3.10) and the fact that β(n+1)(P) = 0 when P ∈ Mn
m . This sum has a uniformly

bounded number of terms for all n, both pm and N (P) are also bounded by a constant
not depending on n (only on N and Q), and

lim
n→∞ sup

P∈Mn+m
m \Mn

m

{|β(P)| + |β(n+1)(P)|} = 0

since αn → 0.

We have thus expressed Z Q(µ) as an infinite sum in terms of the Verblunsky coeffi-
cients of µ. We can now apply Theorem 1.2 to prove Theorem 1.4.

Proof of Theorem 1.4. The left-hand side of (1.18) is equivalent to Z Q(µ) > −∞.
By Theorem 3.3, this happens precisely when limn→∞ (3.17) > −∞. But

1
2 p0w0(µn) = p0

n∑
k=0

log ρk = − 1
2 p0

n∑
k=0

(|αk |2 + O(|αk |4)),

and by Theorem 1.2 applied to µn , the sum in (3.17) is equal to

N∑
m=1

Re

(
p̄m

(
Rm(µn)−

∑
k≤n−m

αk+m ᾱk

))
.

The estimate (1.15) and the hypothesis show that Rm(µn) and
∑n

k=0 O(|αk |4) are uni-
formly bounded in n, so it only remains to show that {Q̄(S)α}k ∈ 
2 is equivalent
to

−
[

1
2 p0

∑
k≤n

|αk |2 +
N∑

m=1

Re

(
p̄m

∑
k≤n−m

αk+m ᾱk

)]
(3.20)
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being uniformly bounded in n. We write∑
k≤n

|{Q̄(S)α}k |2 =
∑
k≤n

|q̄Nαk+N + · · · + q̄0αk |2

= (|qN |2 + · · · + |q0|2)
∑
k≤n

|αk |2

+
N∑

m=1

2 Re

(
(q̄N qN−m + · · · + q̄mq0)

∑
k≤n

αk+m ᾱk

)
+ O(1)

= p0

∑
k≤n

|αk |2 +
N∑

m=1

2 Re

(
p̄m

∑
k≤n−m

αk+m ᾱk

)
+ O(1)

In the second equality the remainder O(1) is bounded by a constant independent of n
because it is a sum of a bounded number of terms involving only αk with k ≤ N or
|k − n| ≤ N . And the last equality holds because pm = qN q̄N−m + · · · + qmq̄0 and∑n

k=n−m+1 αk+m ᾱk is uniformly bounded in n and so O(1). Hence {Q̄(S)α}k ∈ 
2 if and
only if (3.20) is uniformly bounded in n.

Recall that in the proof of Theorem 3.3 we have showed Z Q(µ) = limn→∞ Z Q(µn).
Here is a generalization of this fact.

Proposition 3.4. If f = gQ with g ∈ C(∂D) a positive function and Q a polynomial,
then, for any µ,

Z f (µ) = lim
n→∞ Z f (µn).(3.21)

Proof. We again have Z f (µ) ≥ lim supn Z f (µn) because Z f is upper semicontinuous
as well [18]. Let gε be a polynomial such that g2 ≤ |gε|2 ≤ g2 + ε on ∂D. Such a
polynomial exists because the functions h(z) =∑K

k=−K ck zk are dense in C(∂D) (by the
complex Stone–Weierstrass theorem) and the polynomial zK h(z) satisfies |zK h(z)| =
|h(z)| for |z| = 1. Then limε→0 ZgεQ(µ) = Z f (µ) because g is bounded away from 0,
and

Z f (µn) ≥ ZgεQ(µn)− ε

4π
‖Q‖2

∞

by (3.14). Since gεQ is a polynomial, the proof of Theorem 3.3 shows limn ZgεQ(µn) =
ZgεQ(µ), and we obtain lim infn Z f (µn) ≥ Z f (µ) by taking ε→ 0.

It is an interesting open question whether this result holds for any f , not just such that
they vanish at only finitely many points of ∂D and to an even degree.

4. Relative Ratio Asymptotics

In this section we provide another application of our methods. We prove Theorem 1.5
and give a simple proof of a result, in part due to Khrushchev [8] and in part to Barrios
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and López [1], on ratio asymptotics �∗n+1/�
∗
n as n → ∞ of the reversed polynomials

(see also [19, Sec. 9.5]). We also give a generalization of this result.

Proof of Theorem 1.5. Let us define

�n(µ, ν) ≡
�∗n+1(µ)/�

∗
n(µ)

�∗n+1(ν)/�
∗
n(ν)

, log�n(µ, ν) ≡
∑
m≥1

ωn,m(µ, ν)z
m,

(recall that �∗n(µ, 0) = 1). It follows from |�n(µ, z)| ≤ |�∗n(µ, z)| for z ∈ D (see
(1.7.1) in [18]) and from

�∗n+1

�∗n
= 1− αnz

�n

�∗n
(4.1)

(see (1.3)) that the ratio �∗n+1/�
∗
n is bounded away from 0 and ∞ on any compact

K ⊂ D. Hence (1.19) is equivalent to �n(µ, ν)→ 1 as n→∞ uniformly on compact
subsets of D, which in turn is equivalent to ωn,m → 0 as n→∞ for each m ≥ 1.

Now

log�n(µ, ν) = log�∗n+1(µ)− log�∗n(µ)− log�∗n+1(ν)+ log�∗n(ν),

and so, by (3.11) and (2.11),

ωn,m(µ, ν) =
∑

P∈M0
m

N (P)(β(ν, P + n)− β(µ, P + n))(4.2)

for m ≥ 1. If (1.20) holds, then, obviously, β(ν, P + n) − β(µ, P + n)→ 0 for each
P ∈ M0

m , that is, ωn,m(µ, ν)→ 0 as n→∞.
Assume now that ωn,m(µ, ν) → 0 as n → ∞. When m = 1, then M0

m = {{(0, 1)}}
and (4.2) equals just αn(µ)ᾱn−1(µ)− αn(ν)ᾱn−1(ν). Hence (1.20) holds for 
 = 1. We
proceed by induction, so assume (1.20) holds for 
 = 1, . . . ,m − 1. If P ∈ M0

m and
|P| ≥ 2, then by the induction hypothesis β(ν, P + n) − β(µ, P + n) → 0 (because
max{al | (kl , al) ∈ P} ≤ m − 1). Since (4.2) converges to 0 and the only element
of M0

m with |P| = 1 is P = {(0,m)} (in which case N (P) = −1), it follows that
β(ν, {(n,m)})− β(µ, {(n,m)})→ 0 as well. But this is (1.20) for 
 = m.

For any a ∈ [0, 1] we define

Ga(z) ≡ 1
2 (1+ z +

√
(1− z)2 + 4a2z),

with the usual branch of the square root (in particular, G0 ≡ 1). We then have

Theorem 4.1 ([8] and [1]). Let µ be a nontrivial probability measure on ∂D. Then

�n(µ) ≡
�∗n+1

�∗n
(4.3)

converges uniformly on compact subsets of D as n → ∞ if and only if for each 
 ≥ 1
there is c
 ∈ D such that

lim
n→∞αnᾱn−
 = c
.(4.4)
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Moreover, if (4.4) holds for all 
 ≥ 1, then c
 = a2λ
 for some a ∈ [0, 1] and |λ| = 1
and

lim
n→∞�n(µ; z) = Ga(λz).

Remarks. 1. In particular, limn �n(µ) = 1 precisely when all c
 = 0. In this case
(4.4) is called the Máté–Nevai condition. Accordingly, one might call (1.20) the relative
Máté–Nevai condition.

2. Barrios and López consider the case a > 0 and their result also involves ratio
asymptotics for z outside the unit circle.

Proof. Equivalence of the convergence of (4.3) and (4.4) is proved in the same way as
Theorem 1.5. The only difference is that now with

log�n(µ) ≡
∑
m≥1

ωn,m(µ)z
m

equation (4.2) reads

ωn,m(µ) = −
∑

P∈M0
m

N (P)β(µ, P + n),(4.5)

and “β(ν, P+n)−β(µ, P+n)→ 0” and “ωn,m(µ, ν)→ 0” are replaced by “β(µ, P+
n) converges” and “ωn,m(µ) converges”, respectively, in the argument (we actually have
β(µ, P + n)→ ca1 . . . cai when P = {(k1, a1), . . . , (ki , ai )}). Note that the proof also
shows that limn �n(µ) = 1 ≡ G0 precisely when all c
 = 0 (and so a = 0).

Hence assume (4.4) holds with not all c
 = 0. It is obvious that if c1 = 0, then the
existence of the limit c
 implies c
 = 0 for all 
. Thus we must have c1 = a2λ for some a ∈
(0, 1] and |λ| = 1. In particular, lim infn |αn| > 0. But then |αn+3||αn+2|−|αn+1||αn| → 0
and |αn+3||αn+1| − |αn+2||αn| → 0 (both by (4.4)) give |αn+2| − |αn+1| → 0, which
together with |αn+2||αn+1| → a2 gives |αn| → a. This and (4.4) imply αn+1α

−1
n → λ,

and then αnα
−1
n−
→ λ
 so that c
 = a2λ
 for all 
.

It remains to prove that in the case a �= 0 the limit G(z) of (4.3) is Ga(λz). Let ν be the
measure with Verblunsky coefficients αn(ν) ≡ aλn if 0 < a < 1 and αn(ν) ≡ anλ

n with
an ↑ 1 if a = 1. Then Theorem 1.5 applies and so the limit function of �∗n+1(ν)/�

∗
n(ν)

is also G(z). By (4.1) we know that the limit H(z) of αn(ν)�n(ν)/�
∗
n(ν)must also exist

and

G = 1− zH.(4.6)

From (1.2) we have

λzαn(ν)
�n(ν)

�∗n(ν)
= λαn(ν)

�n+1(ν)

�∗n(ν)
+ a2λ = αn+1(ν)

�n+1(ν)

�∗n+1(ν)

�∗n+1(ν)

�∗n(ν)
+ a2λ.

Therefore, λzH = H G + a2λ. We substitute H(G − λz) = −a2λ into (4.6) multiplied
by G − λz to obtain G2− (1+ λz)G + (1− a2)λz = 0. Using G(0) = 1, it follows that
G(z) = Ga(λz).
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We conclude with using (4.5) to obtain the following generalization of Theorem 4.1.

Theorem 4.2. Letµbe a nontrivial probability measure on ∂D, let { jn}be an increasing
sequence of integers, and let k ′ ∈ Z∪ {∞}. Then�k+ jn (µ) from (4.3) converges for any
k < k ′ uniformly on compact subsets of D as n →∞ if and only if for each 
 ≥ 1 and
k < k ′ there is ck,
 ∈ D such that

lim
n→∞αk+ jn ᾱk+ jn−
 = ck,
.(4.7)

Remark. For the special case jn = np with p ≥ 1 see [19, Theorem 9.5.10].

Proof. We again follow the lines of the two previous proofs. In one direction we have
that the existence of all the ck,
 with k < k ′ gives the convergence of β(µ, P + k + jn)
for any P ∈⋃m M0

m and k < k ′ as n→∞ (note that if (kl , al) ∈ P ∈ M0
m , then kl ≤ 0).

This in turn gives the convergence of ωk+ jn ,m(µ) for any k < k ′ and m by (4.5), and thus
that of �k+ jn (µ) for k < k ′.

In the opposite direction, the reverse of this argument and induction on 
, as in the
proof of Theorem 1.5, shows that the convergence of �k+ jn (µ) for any k < k ′ implies
(4.7). This again uses the fact that if (kl , al) ∈ P ∈ M0

m , then kl ≤ 0.

Acknowledgment. The work of the first author was supported in part by INTAS Re-
search Network NeCCA 03-51-6637.

References
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