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Linearization Coefficients of Bessel Polynomials
and Properties of Student t-Distributions

Christian Berg and Christophe Vignat

Abstract. We prove positivity results about linearization and connection coefficients
for Bessel polynomials. The proof is based on a recursion formula and explicit formulas
for the coefficients in special cases. The result implies that the distribution of a finite
convex combination of independent Student t-variables with arbitrary odd degrees of
freedom has a density which is a finite convex combination of certain Student t-densities
with odd degrees of freedom.

1. Introduction

In this paper we consider the Bessel polynomials qn of degree n,

qn(u) =
n∑

k=0

α
(n)
k uk,(1)

where

α
(n)
k =

(
n

k

)
(

2n

k

) 2k

k!
= (−n)k 2k

(−2n)k k!
,(2)

where we have used the Pochhammer symbol (z)n := z(z+1) · · · (z+n−1) for z ∈ C,
n = 0, 1, . . . .

Using hypergeometric functions, see [1], we therefore have

qn(u) = 1 F1(−n;−2n; 2u).(3)

The first examples of these polynomials are

q0(u) = 1, q1(u) = 1+ u, q2(u) = 1+ u + u2

3
.
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16 C. Berg and C. Vignat

They are normalized according to

qn(0) = 1,

and thus differ from the polynomials θn(u) in Grosswald’s monograph [12] by the con-
stant factor (2n)!/n! 2n, i.e.,

θn(u) = (2n)!

n! 2n
qn(u).

The polynomials θn are sometimes called the reverse Bessel polynomials and yn(u) =
unθn(1/u) the ordinary Bessel polynomials. Two-parameter extensions of these poly-
nomials are studied in [12], and we refer to this work concerning references to the vast
literature and the history about Bessel polynomials. For a study of the zeros of the Bessel
polynomials we refer to [5].

For ν > 0 the probability density on R,

fν(x) = Aν
(1+ x2)ν+1/2

, Aν =

(ν + 1

2 )


( 1
2 )
(ν)

,(4)

is called a Student t-density with f = 2ν degrees of freedom. The characteristic function
is given by ∫ ∞

−∞
eixy fν(x) dx = kν(|y|), y ∈ R,(5)

where

kν(u) = 21−ν


(ν)
uνKν(u), u ≥ 0,(6)

and Kν is the modified Bessel function of the second kind, or the Macdonald function,
see [10, 17.34(9)].

If ν = n + 1
2 with n = 0, 1, 2, . . ., then

kν(u) = e−uqn(u), u ≥ 0,(7)

and fν is a Student t-density with 2ν = 2n + 1 degrees of freedom. For ν = 1
2 then fν

is density of a Cauchy distribution. Note that for simplicity we have avoided the usual
scaling of the Student t-distribution.

In this paper, we solve the following three problems:

1. We find explicit expressions for the connection coefficients c(n)k (a) and prove their
nonnegativity for a ∈ [0, 1] in the expansion

qn(au) =
n∑

k=0

c(n)k (a)qk(u).(8)

2. We find explicit expressions for the linearization coefficients β(n)i (a) and prove
their nonnegativity for a ∈ [0, 1] in the expansion

qn(au)qn((1− a)u) =
n∑

i=0

β
(n)
i (a)qn+i (u).(9)
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3. We prove nonnegativity of the linearization coefficients β(n,m)k (a) for a ∈ [0, 1] in
the expansion

qn(au)qm((1− a)u) =
n+m∑

k=n∧m

β
(n,m)
k (a)qk(u).(10)

Note that β(n)i (a) = β
(n,n)
n+i (a) and that (8) is a special case of (10) corresponding to

m = 0 with c(n)k (a) = β(n,0)k (a). Note also that u = 0 in (10) yields

n+m∑
k=n∧m

β
(n,m)
k (a) = 1,

so (10) is a convex combination. Being polynomial identities, (8)–(10) of course hold
for all complex a, u, but as we will see later, the nonnegativity of the coefficients can
only be inferred for 0 ≤ a ≤ 1.

Although (10) is more general than (8), (9), we stress that we give explicit formulas
below for c(n)k (a) and β(n)i (a) from which the nonnegativity is clear. The nonnegativity
of β(n,m)k (a) for the general case can be deduced from the special case m = 0 via a
recursion formula, see Lemma 3.6 below.

Because of (5) and (7) we note that formula (10) is equivalent with the following
identity between Student t-densities

1

a
fn+1/2

(
x

a

)
∗ 1

1− a
fm+1/2

(
x

1− a

)
=

n+m∑
k=n∧m

β
(n,m)
k (a) fk+1/2(x)(11)

for 0 < a < 1 and ∗ is the ordinary convolution of densities.
We shall use (11) to explain directly, why there are no terms qk(u) with k < n ∧ m

appearing in (10) or, equivalently, why there are no terms fk+1/2 with k < n∧m in (11).
The density fn+1/2 has a moment of order p if and only if p ≤ 2n. The odd moments

are zero by symmetry and the even moments are given by

s2p(n) = An+1/2

∫ ∞
−∞

x2p dx

(1+ x2)n+1
= ( 1

2 )p(
1
2 )n−p

( 1
2 )n

, 0 ≤ p ≤ n.(12)

For p ≤ n ∧ m the (2p)th moment of the left-hand side of (11) exists and is given as∫ ∞
−∞

∫ ∞
−∞
(x + y)2p 1

a
fn+1/2

(
x

a

)
1

1− a
fm+1/2

(
y

1− a

)
dx dy

=
2p∑
j=0

(
2p

2 j

)
a2 j (1− a)2p−2 j s2 j (n)s2p−2 j (m).

Assume now that the expression (10) contains a nonzero term β
(n,m)
k0

(a)qk0(u), where
k0 is the smallest index with this property and that k0 < n ∧ m. The corresponding
term β

(n,m)
k0

(a) fk0+1/2 on the right-hand side of (11) does not have a moment of order
2(k0 + 1), but all the other terms fk+1/2 with k > k0 as well as the left-hand side of (11)
have moment of order 2(k0 + 1). This however, contradicts equation (11).
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Our use of the words “linearization coefficients” does not agree completely with the
terminology of [2], which defines the linearization coefficients for a polynomial system
{qn} as the coefficients a(k, n,m), such that

qn(u)qm(u) =
n+m∑
k=0

a(k, n,m)qk(u).

Since, in the Bessel case,

q1(u)
2 = −q0(u)− q1(u)+ 3q2(u),

the linearization coefficients in the proper sense are not nonnegative.
It is interesting to note that in [14] Koornwinder proved that the Laguerre polynomials

L(α)n (u) =
n∑

k=0

(
n + α
n − k

)
(−u)k

k!

satisfy a positivity property like (10), i.e.,

L(α)n (au)L(α)m ((1− a)u) =
n+m∑
k=0

κ
(n,m)
k (a)L(α)k (u),

with κ(n,m)k (a) ≥ 0 for a ∈ [0, 1] provided α ≥ 0.
In this connection it is worth pointing out that there is an easily established relationship

between qn and the Laguerre polynomials with α outside the range of orthogonality for
the Laguerre polynomials, namely,

qn(u) = (−1)n(
2n

n

) L(−2n−1)
n (2u).

The problems discussed have an interesting application in statistics: the Behrens–Fisher
problem consists in testing the equality of the means of two normal populations. Fisher
[7]1 has shown that this test can be performed using the d-statistics defined as

df1, f2,θ = t1 sin θ − t2 cos θ,

where t1 and t2 are two independent Student t-variables with respective degrees of
freedom f1 and f2 and θ ∈ [0, π/2]. Many different results have been obtained on the
behaviour of the d-statistics. Tables of the distribution of df1, f2,θ have been provided in
1938 by Sukhatme [18] at Fisher’s suggestion. In 1956, Fisher and Healy [8] explicited
the distribution of df1, f2,θ as a mixture of Student t-distributions (Student t-distribution
with a random, discrete number of degrees of freedom) for small, odd values of f1 and
f2. This work was extended by Walker and Saw [19] who provided, still in the case of
odd numbers of degrees of freedom, an explicit way of computing the coefficients of the
mixture as solutions of a linear system; however, they did not prove the nonnegativity

1 The collected papers of R. A. Fisher are available at the following address:
http://www.library.adelaide.edu.au/digitised/fisher/
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of these coefficients, claiming only

Extensive numerical investigation indicates also that ηi ≥ 0 for all i ; how-
ever, an analytic proof has not been found.

This conjecture is proved in Theorem 2.4 below. Section 2 of this paper gives the explicit
solutions to Problems 1, 2, and 3, whereas Section 3 is dedicated to their proofs.

To relate the Behrens–Fisher problem to our discussion we note that due to symmetry
df1, f2,θ has the same distribution as t1 sin θ + t2 cos θ , which for θ ∈ ]0, π/2[ is a scaling
of a convex combination of independent Student t-variables.

In this connection we recall a theorem of Ruben, see [16], which can be stated as
follows:

Let X and Y be independent Student t-variables with 2µ (resp., 2ν) degrees
of freedom. For a, b > 0 the variable aX + bY has a density of the form

D(x) =
∫ ∞

a+b

1

t
fµ+ν

(
x

t

)
h(t) dt

for a certain probability density h on ]a + b,∞[, i.e., D is a mixture of
scaled Student t-distributions with 2µ+ 2ν degrees of freedom.

For a short proof see [4, p. 66].
In Section 4 we use the fact that the Student t-distribution is a scale mixture of normal

distributions by an inverse Gamma distribution to prove that Theorem 2.4 is equivalent
to a result about inverse Gamma distributions. This is Theorem 4.1. Such a result has
been observed for small values of the degrees of freedom in [21]. In [9] the coefficients
are claimed to be nonnegative but the paper does not contain any arguments to prove it.

We finally indicate that our results can be extended to rotation invariant N -variate
Student t-distributions.

2. Results

2.1. Solution of Problem 1 and a Stochastic Interpretation

Theorem 2.1. The coefficients c(n)k (a) in (8) are expressed as follows:

c(n)k (a) = ak(1− a)

(
n

k

)
(

2n

2k

) (n−k−1)∧k∑
r=0

(
n + 1

k − r

)(
n − k − 1

r

)
(1− a)r

= ak(1− a)

(
n

k

)(
n + 1

k

)
(

2n

2k

) 2 F1

(−k,−n + k + 1
n − k + 2

; 1− a

)

for 0 ≤ k ≤ n − 1 while c(n)n (a) = an . Hence, they are nonnegative for 0 ≤ a ≤ 1.
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A stochastic interpretation of Theorem 2.1 is obtained as follows: replacing u by |u| and
multiplying equation (8) by exp(−|u|), we get

e−(1−a)|u|e−a|u|qn(a|u|) =
n∑

k=0

c(n)k (a)qk(|u|)e−|u|.(13)

Equation (13) expresses that the convex combination of a Cauchy variable C and an
independent Student t-variable Xn with 2n + 1 degrees of freedom follows a Student
t-distribution with a random number 2 f + 1 of degrees of freedom:

(1− a)C + aXn
d= X f ,

where f is a discrete random variable with integer values in [0, n] such that

Pr{ f = k} = c(n)k (a), 0 ≤ k ≤ n.

2.2. Solution of Problem 2 and a Probabilistic Interpretation

Theorem 2.2. The coefficients β(n)i (a) in (9) are expressed as follows:

β
(n)
i (a) = (4a(1− a))i

(
n!

(2n)!

)2

2−2n (2n − 2i)! (2n + 2i)!

(n − i)! (n + i)!

×
n−i∑
j=0

(
2n + 1

2 j

)(
n − j

i

)
(2a − 1)2 j

= (4a(1− a))i

22n

(−n)i (n + 1
2 )i

i! (−n + 1
2 )i

2 F1

(−n + i,−n − 1
2

1
2

; (2a − 1)2
)
.

Hence they are nonnegative for 0 ≤ a ≤ 1.

A probabilistic interpretation of this result can be formulated as follows.

Corollary 2.3. Let X, Y be independent Student t-variables with 2n + 1 degrees of
freedom. For 0 ≤ a ≤ 1 the distribution of aX+(1−a)Y follows a Student t-distribution
with a random number 2 f + 1 of degrees of freedom distributed according to

Pr{ f = n + i} = β(n)i (a), 0 ≤ i ≤ n.

2.3. Problem 3

Theorem 2.4. The coefficients β(n,m)k (a) in (10) are nonnegative for 0 ≤ a ≤ 1.

We are unable to derive the explicit values of the coefficients β(n,m)k (a). The proof
of the nonnegativity is based on a recurrence formula given in Lemma 3.6 below. The
nonnegativity allows the following probabilistic interpretation.
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Corollary 2.5. Let X, Y be independent Student t-variables with, respectively, 2n+1,
2m + 1 degrees of freedom. For 0 ≤ a ≤ 1 the distribution of aX + (1− a)Y follows a
Student t-distribution with a random number 2 f + 1 of degrees of freedom distributed
according to

Pr{ f = k} = β(n,m)k (a), n ∧ m ≤ k ≤ n + m.

The result of Theorem 2.4 can be extended to yield

Theorem 2.6. For k ≥ 2, let n1, . . . , nk be nonnegative integers and let a1, . . . , ak be
positive real numbers with sum 1. Then

qn1(a1u)qn2(a2u) · · · qnk (aku) =
L∑

j=l

βj qj (u), u ∈ R,(14)

where the coefficients βj are nonnegative with sum 1, l = min(n1, . . . , nk) and L =
n1 + · · · + nk .

3. Proofs

3.1. Generalities about Bessel Polynomials

As a preparation to the proofs we give some recursion formulas for qn . They follow from
corresponding formulas for θn from [12], but they can also be proved directly from the
definitions (1) and (2). The formulas are

qn+1(u) = qn(u)+ u2

4n2 − 1
qn−1(u), n ≥ 1,(15)

q ′n(u) = qn(u)− u

2n − 1
qn−1(u), n ≥ 1.(16)

We can write

un =
n∑

i=0

δ
(n)
i qi (u), n = 0, 1, . . . ,(17)

and δ(n)i is given by a formula due to Carlitz [6], see [12, p. 73] or [19]:

δ
(n)
i =



(n + 1)!

2n

(−1)n−i (2i)!

(n − i)! i! (2i + 1− n)!
for

n − 1

2
≤ i ≤ n,

0 for 0 ≤ i <
n − 1

2
.

(18)

Later we need the following extension of (15).

Lemma 3.1. For 0 ≤ k ≤ n we have

u2kqn−k(u) =
k∑

i=0

γ
(n,k)
i qn+i (u),(19)
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where

γ
(n,k)
i = 22k

(
k

i

)
(n − k + 1

2 )k+i (−n − 1
2 )k−i .(20)

Proof. The lemma is trivial for k = 0 and reduces to the recursion (15) for k = 1
written as

u2qn−1(u) = 22(n − 1
2 )2(qn+1(u)− qn(u)).(21)

We will prove formula (20) by induction in n, so assume it holds for some n and all
0 ≤ k ≤ n. Multiplying the formula of the lemma by u2 we get

u2k+2qn−k(u) =
k∑

i=0

γ
(n,k)
i u2qn+i (u),

hence, by (21),

u2(k+1)qn+1−(k+1)(u) =
k∑

i=0

γ
(n,k)
i 22(n + i + 1

2 )2[qn+i+2(u)− qn+i+1(u)]

= γ
(n,k)
k 22(n + k + 1

2 )2qn+k+2(u)

+
k∑

i=1

22(n + i + 1
2 )[γ

(n,k)
i−1 (n + i − 1

2 )− γ (n,k)i (n + i + 3
2 )]qn+1+i (u)

− γ (n,k)0 22(n + 1
2 )2qn+1(u).

Using the induction hypothesis we easily get

γ
(n,k)
k 22(n + k + 1

2 )2 = 22k+2(n − k + 1
2 )2k+2 = γ (n+1,k+1)

k+1 ,

and

−γ (n,k)0 22(n + 3
2 )(n + 1

2 ) = 22k+2(n − k + 1
2 )k+1(−n − 3

2 )k+1 = γ (n+1,k+1)
0 .

Concerning the coefficient C to qn+1+i (u) above we have

C = 22k+2(n + i + 1
2 )

[(
k

i − 1

)
(n − k + 1

2 )k+i−1(−n − 1
2 )k−i+1(n + i − 1

2 )

−
(

k

i

)
(n − k + 1

2 )k+i (−n − 1
2 )k−i (n + i + 3

2 )

]

= 22k+2(n − k + 1
2 )k+1+i (−n − 1

2 )k−i

×
[(

k

i − 1

)
(−n − 1

2 + k − i)−
(

k

i

)
(n + i + 3

2 )

]

= 22k+2(n − k + 1
2 )k+1+i (−n − 1

2 )k−i

[(
k + 1

i

)
(−n − 3

2 )

]

= 22k+2

(
k + 1

i

)
(n − k + 1

2 )k+1+i (−n − 3
2 )k+1−i = γ (n+1,k+1)

i .
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Remark 3.2. An alternative proof of Lemma 3.1 has kindly been suggested by a ref-
eree: Inserting (1) and (20) in the right-hand side of (19) and changing the order of
summation, one gets

k∑
i=0

γ
(n,k)
i qn+i (u) =

n+k∑
j=0

22k+ j (n − k + 1
2 )k(−n − 1

2 )kn! (2n − j)!

(n − j)! (2n)! j!

× 3 F2

(
−k, n − j/2+ 1

2 , n − j/2+ 1

n − k + 3
2 , n − j + 1

; 1
)

u j .

Applying the Pfaff–Saalschütz identity to the 3 F2, see [1, p. 69], the expression reduces
to

n+k∑
j=2k

(−n + k)j−2k 2 j−2k

(−2n + 2k)j−2k ( j − 2k)!
u j ,

which is the left-hand side of (19).

We stress that Lemma 3.1 is the special case ν = n+ 1
2 of the following recursion for

modified Bessel functions of the second kind.

Lemma 3.3. For all ν > 0 and all nonnegative integers j < ν we have, for u > 0,

uν+ j Kν− j (u) =
j∑

i=0

(−2) j−i

(
j

i

)

(ν + 1)


(ν + 1− ( j − i))
uν+i Kν+i (u)

and

u2 j kν− j (u) =
j∑

i=0

(−1) j−i 22 j

(
j

i

)

(ν + 1)
(ν + i)


(ν + 1− ( j − i)) 
(ν − j)
kν+i (u).

Proof. The second formula follows from the first using formula (6), and the first can be
proved by induction using the following recursion formula for modified Bessel functions
of the second kind, see [20, p. 79],

Kν−1(u) = Kν+1(u)− 2ν

u
Kν(u).

We skip the details.

3.2. Proof of Theorem 2.1

From (1) and (17) we get

qn(au) =
n∑

j=0

α
(n)
j a j

j∑
i=0

δ
( j)
i qi (u) =

n∑
k=0

c(n)k (a)qk(u)(22)
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with

c(n)k (a) =
n∑

j=k

a jα
(n)
j δ

( j)
k

= ak n!

(2n)!

(2k)!

k!

n∧(2k+1)∑
j=k

(−a) j−k (2n − j)! ( j + 1)

(n − j)! ( j − k)! (2k + 1− j)!
.

In particular, c(n)n (a) = an and, for 0 ≤ k ≤ n − 1,

c(n)k (a) = ak n!

(2n)!

(2k)!

k!
p(a),(23)

where

p(a) =
(n−k)∧(k+1)∑

i=0

(−a)i
(2n − k − i)! (k + i + 1)

(n − k − i)! i! (k + 1− i)!
.

Putting a = 1 in (22) we see that c(n)k (1) = 0 for 0 ≤ k ≤ n − 1, so p(1) = 0. By
Taylor’s formula we therefore have

p(a) =
(n−k)∧(k+1)∑

r=1

(−1)r
p(r)(1)

r !
(1− a)r

with

p(r)(1) =
(n−k)∧(k+1)∑

i=r

(−1)i
(2n − k − i)! (k + i + 1)

(n − k − i)! (i − r)! (k + 1− i)!
,

and we only consider 1 ≤ r ≤ (n − k) ∧ (k + 1). To sum this we shift the summation
index by r . For simplicity, we define T := (n − k − r) ∧ (k + 1− r) and get

(−1)r p(r)(1) =
T∑

i=0

(−1)i
(2n − k − r − i)! (k + r + i + 1)

(n − k − r − i)! i! (k + 1− r − i)!
.

We write k+ r +1+ i = (2k+2)− (k+1− r − i) and split the above sum accordingly

(−1)r p(r)(1) = (2k + 2)
T∑

i=0

(−1)i
(2n − k − r − i)!

(n − k − r − i)! i! (k + 1− r − i)!

−
T∑

i=0

(−1)i
(2n − k − r − i)!

(n − k − r − i)! i! (k − r − i)!
.

Note that for nonnegative integers a, b, c with b, c ≤ a we have

b∧c∑
i=0

(−1)i
(a − i)!

(b − i)! (c − i)! i!
= a!

b! c!

b∧c∑
i=0

(−b)i (−c)i
(−a)i i!

= a!

b! c!
2 F1(−b,−c;−a; 1),
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where we use the fact that the sum is an 2 F1 evaluated at 1. Its value is given by the
Chu–Vandermonde formula, see [1], hence

b∧c∑
i=0

(−1)i
(a − i)!

(b − i)! (c − i)! i!
= a! (c − a)b
(−a)bb! c!

.

The two sums above are of this form and we get

(−1)r p(r)(1) = (2n − k − r)!

(n − k − r)! (k + 1− r)!
Q,

where

Q = (2k + 2)
(2k − 2n + 1)n−k−r

(k + r − 2n)n−k−r
− (k + 1− r)

(2k − 2n)n−k−r

(k + r − 2n)n−k−r
.

For r = n − k we have Q = n + 1 and for 1 ≤ r ≤ n − k − 1 we find

Q = (2k − 2n + 1)n−k−r−1

(k + r − 2n)n−k−r
[(2k + 2)(k − r − n)− (k + 1− r)(2k − 2n)]

= 2r(n + 1)
(n + r + 1− k)n−k−r−1

(n + 1)n−k−r
,

where we used (a)n = (−1)n(1− a − n)n twice. In both cases we get

(−1)r p(r)(1) = 2r

(
n + 1

k + 1− r

)
(2n − 2k − 1)!

(n − k − r)!

and, finally,

p(a) =
(n−k)∧(k+1)∑

r=1

(1− a)r
2r

r !

(
n + 1

k + 1− r

)
(2n − 2k − 1)!

(n − k − r)!
.

If we insert this expression for p(a) in (23), we get the formulas of Theorem 2.1.

Remark 3.4. The evaluation above of (−1)r p(r)(1) can be done using generating func-
tions as in [19]. The authors want to thank Mogens Esrom Larsen for the idea to use the
Chu–Vandermonde identity twice.

3.3. Proof of Theorem 2.2

The starting point is the following formula of Macdonald, see [20, 13.71(1)]

Kν(z)Kν(X) = 1

2

∫ ∞
0

exp

[
− s

2
− z2 + X2

2s

]
Kν

(
zX

s

)
ds

s
,(24)

which we will use for ν = n + 1
2 , z = au, X = (1− a)u. Multiplying (24) by

(
21−ν


(ν)

)2

(a(1− a)u2)ν
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and using (6) we find

kν(au)kν((1− a)u)

= 1

2ν
(ν)

∫ ∞
0

exp

[
− s

2
− u2 a2 + (1− a)2

2s

]
sν−1kν

(
a(1− a)u2

s

)
ds.

We now put ν = n + 1
2 and use (7) to get

e−|u|qn(a|u|)qn((1− a)|u|)

= 1

2n+1/2
(n + 1
2 )

∫ ∞
0

exp

[
− s

2
− u2

2s

]
sn−1/2qn

(
a(1− a)u2

s

)
ds.

We next insert the expression (1) for qn under the integral sign. This gives

e−|u|qn(a|u|)qn((1− a)|u|) =
n∑

k=0

α
(n)
k (a(1− a))ku2k 1

2n+1/2
(n + 1
2 )

×
∫ ∞

0
exp

[
− s

2
− u2

2s

]
sn−k−1/2 ds.

Using the following formula, see [10, 3.471(9)] or [20, 6.22(15)],

∫ ∞
0

xν−1 exp

(
−β

x
− γ x

)
dx = 2

(
β

γ

)ν/2
Kν(2

√
βγ )(25)

and again (6), the above is equal to

=
n∑

k=0

α
(n)
k (a(1− a))k

2n−k+1/2
(n − k + 1
2 )

2n+1/2
(n + 1
2 )

e−|u|u2kqn−k(|u|).

Finally, using Pochhammer symbols and skipping absolute values since we are now
dealing with a polynomial identity, we get

qn(au)qn((1− a)u) =
n∑

k=0

α
(n)
k (a(1− a))k

( 1
2 )n−k

2k( 1
2 )n

u2kqn−k(u).(26)

Using the expression for u2kqn−k(u) from Lemma 3.1 and the expression (2) for α(n)k
in (26) we get

qn(au)qn((1− a)u) =
n∑

k=0

(−n)k(
1
2 )n−k

(−2n)k(
1
2 )nk!

(a(1− a))k
k∑

i=0

γ
(n,k)
i qn+i (u)

=
n∑

i=0

qn+i (u)
n∑

k=i

(a(1− a))k
(−n)k(

1
2 )n−k

(−2n)k(
1
2 )nk!

γ
(n,k)
i ,
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hence,

qn(au)qn((1− a)u) =
n∑

i=0

β
(n)
i (a)qn+i (u),

with

β
(n)
i (a) =

n∑
k=i

(a(1− a))k
(−n)k(

1
2 )n−k

(−2n)k(
1
2 )nk!

22k

(
k

i

)
(n − k + 1

2 )k+i (−n − 1
2 )k−i

=
n∑

k=i

(4a(1− a))k
(−n)k(

1
2 )n+i

(−2n)k(
1
2 )ni! (k − i)!

(−n − 1
2 )k−i

= ( 1
2 )n+i

( 1
2 )ni!

(4a(1− a))i
n−i∑
l=0

(4a(1− a))l
(−n)i+l(−n − 1

2 )l

(−2n)i+l l!

= ( 1
2 )n+i (−n)i

( 1
2 )ni!(−2n)i

(4a(1− a))i
n−i∑
l=0

(1− (2a − 1)2)l
(−n + i)l(−n − 1

2 )l

(−2n + i)l l!

= ( 1
2 )n+i (−n)i

( 1
2 )ni!(−2n)i

(4a(1− a))i 2 F1

(−n + i,−n − 1
2

−2n + i
; 1− (2a − 1)2

)
.

To this formula we apply the Pfaff transformation formula

2 F1

(−n, b

c
; 1− z

)
= (c − b)n

(c)n
2 F1

( −n, b

b + 1− n − c
; z
)
,

see [1, (2.3.14), p. 79], and we get

β
(n)
i (a) = (4a(1− a))i

22n

( 1
2 )n+i (

1
2 )n−i

( 1
2 )

2
n

(
n

i

)
2 F1

(−n + i,−n − 1
2

1
2

; (2a − 1)2
)

= (4a(1− a))i

22n

(n + 1
2 )i (−n)i

(−n + 1
2 )i i!

2 F1

(−n + i,−n − 1
2

1
2

; (2a − 1)2
)
,

which is the second expression of Theorem 2.2. The first expression is a simple refor-
mulation of the second.

Remark 3.5. Formula (26) is a consequence of a finite-sum rule for Kn+1/2 given in
[15, Theorem 2.2]. Formula (26) is very similar to a formula of Bateman for Jacobi
polynomials, see formula (2.19) in [13]. Both there and in the present paper, there is
an intimate relation between a formula of this type on the one hand, and an integral
representation and product formula on the other hand.

3.4. Proof of Theorem 2.4

For n,m ≥ 0 and a ∈ R, we can write

qn(au)qm((1− a)u) =
m+n∑
k=0

β
(n,m)
k (a)qk(u)(27)
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for some uniquely determined coefficients since the left-hand side is a polynomial in u
of degree ≤ n + m. Clearly β(n,m)k (a) is a polynomial in a satisfying

β
(n,m)
k (a) = β(m,n)k (1− a).(28)

We shall prove that β(n,m)k (a) ≥ 0 for 0 ≤ a ≤ 1 and that β(n,m)k (a) = 0 if k < n ∧ m,
which will be a consequence of the following recursion formula.

Lemma 3.6. For n,m ≥ 1, we have

1

2k + 1
β
(n,m)
k+1 (a) =

a2

2n − 1
β
(n−1,m)
k (a)+ (1− a)2

2m − 1
β
(n,m−1)
k (a),(29)

where k = 0, 1, . . . ,m + n − 1.
Furthermore, β(n,m)0 (a) = 0.

Proof. Differentiating (27) with respect to u gives

aq ′n(au)qm((1− a)u)+ (1− a)qn(au)q ′m((1− a)u) =
m+n∑
k=1

β
(n,m)
k (a)q ′k(u)

and, using formula (16), we find

a

(
qn(au)− au

2n − 1
qn−1(au)

)
qm((1− a)u)

+ (1− a)qn(au)

(
qm((1− a)u)− (1− a)u

2m − 1
qm−1((1− a)u)

)

=
m+n∑
k=1

β
(n,m)
k (a)

(
qk(u)− u

2k − 1
qk−1(u)

)

and using (27) once more we get

− a2u

2n − 1
qn−1(au)qm((1− a)u)− (1− a)2u

2m − 1
qn(au)qm−1((1− a)u)

= −β(n,m)0 (a)− u
n+m−1∑

k=0

β
(n,m)
k+1 (a)(2k + 1)−1qk(u).

For u = 0 this gives β(n,m)0 (a) = 0 and dividing by −u and equating the coefficients of
qk(u), we get the desired formula.

Now the proof of Theorem 2.4 is easy by induction in k. Let 0 ≤ a ≤ 1. We prove
for fixed k that β(n,m)k (a) ≥ 0 if k ≤ n + m and that β(n,m)k (a) = 0 if k < n ∧ m. This
is true for k = 0 by Lemma 3.6 when n,m ≥ 1, and for n = 0 or m = 0 it follows by
Theorem 2.1 since

β
(n,0)
0 (a) = β(0,n)0 (1− a) = c(n)0 (a) ≥ 0.
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Assume now that the result holds for k = k0 and assume k0+1 ≤ n+m. The nonnegativity
for k = k0 + 1 now follows by Lemma 3.6 when n,m ≥ 1, and when n = 0 or m = 0 it
follows again by Theorem 2.1 that

β
(n,0)
k (a) = β(0,n)k (1− a) = c(n)k (a) ≥ 0.

Finally, if k0 + 1 < n ∧ m, then β(n,m)k0+1 (a) = 0 by Lemma 3.6 because k0 < (n − 1) ∧
(m − 1).

3.5. Proof of Theorem 2.6

By Theorem 2.4 the result holds for k = 2. Assuming it holds for k − 1 ≥ 2 we have

qn1(a1u) · · · qnk−1(ak−1u) =
L ′∑

j=l ′
γj qj ((1− ak)u), u ∈ R,(30)

with l ′ = min(n1, . . . , nk−1), L ′ = n1 + · · · + nk−1, and γj ≥ 0 because we can write

aj u = aj

1− ak
(1− ak)u, j = 1, . . . , k − 1.

If we multiply (21) with qnk (aku) we get

L ′∑
j=l ′

γj qnk (aku)qj ((1− ak)u) =
L ′∑

j=l ′
γj

nk+ j∑
i=nk∧ j

β
(nk , j)
i (ak)qi (u),

and the assertion follows.

4. Inverse Gamma Distribution

Grosswald proved [11] that the Student t-distribution is infinitely divisible. This is a
consequence of the infinite divisibility of the inverse Gamma distribution because of
subordination. It was proved later that the inverse Gamma distribution is a generalized
Gamma convolution in the sense of Thorin, which is stronger than self-decomposability
and in particular stronger than infinite divisibility, see, e.g., Bondesson [4] and the recent
book by Steutel and van Harn [17].

The following density on the half-line is an inverse Gamma density with scale param-
eter 1

4 and shape parameter ν > 0:

Cν exp

(
− 1

4t

)
t−ν−1, t > 0, Cν = 1

22ν
(ν)
.(31)

Let the corresponding probability measure be denoted γ̃ν and let further

gt (x) = 1√
4π t

exp

(
− x2

4t

)
, t > 0, x ∈ R,
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denote the Gaussian semigroup of normal densities (in the normalization of [3]). Then
the mixture

fν(x) =
∫ ∞

0
gt (x) dγ̃ν(t)(32)

is the Student t-density (4) with 2ν degrees of freedom. The corresponding probability
measure is denoted by σν . This formula says that σν is subordinated to the Gaussian
semigroup by an inverse Gamma distribution γ̃ν . Since the Laplace transformation is one-
to-one, it is clear that if two probabilities γ1, γ2 on ]0,∞[ lead to the same subordinated
density ∫ ∞

0
gt (x) dγ1(t) =

∫ ∞
0

gt (x) dγ2(t), x ∈ R,

then γ1 = γ2.
If we denote τa(x) = ax , the distribution τa(σn+1/2) ∗ τ1−a(σm+1/2) is given in (11).

However, note that τa(gt (x) dx) = gta2(x) dx , so

τa(σν) =
∫ ∞

0
gta2(x) dγ̃ν(t) dx,(33)

hence

τa(σν1) ∗ τ1−a(σν2) =
∫ ∞

0

∫ ∞
0
(gta2 dx) ∗ (gs(1−a)2 dx) dγ̃ν1(t) dγ̃ν2(s)

=
∫ ∞

0

∫ ∞
0
(gta2+s(1−a)2 dx) dγ̃ν1(t) dγ̃ν2(s)

=
∫ ∞

0
gu(x) dτa2(γ̃ν1) ∗ τ(1−a)2(γ̃ν2)(u) dx .

Therefore, using (33) we see that for ν1 = n + 1
2 , ν2 = m + 1

2 with n,m = 0, 1, . . .,
formula (11), rewritten as

τa(σn+1/2) ∗ τ1−a(σm+1/2) =
n+m∑

k=n∧m

β
(n,m)
k (a)σk+1/2,

is equivalent to

τa2(γ̃n+1/2) ∗ τ(1−a)2(γ̃m+1/2) =
n+m∑

k=n∧m

β
(n,m)
k (a)γ̃k+1/2.(34)

This shows that Theorem 2.4 is equivalent to the following result about inverse Gamma
distributions.

Theorem 4.1. Let Zn, Zm be independent inverse Gamma variables with scale param-
eters 1

4 and shape parameters n + 1
2 ,m + 1

2 , respectively. For 0 ≤ a ≤ 1 the variable
a2 Zn + (1− a)2 Zm follows an inverse Gamma distribution with scale parameter 1

4 and
random shape parameter k + 1

2 , where k ∈ [n ∧ m, n + m] is distributed according to

Pr{k = j} = β(n,m)j (a), j = n ∧ m, . . . , n + m.
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The theorem has been observed for small values of n and m in Witkovský [21]. It is
also stated in [9], but there is no convincing proof of the positivity of the coefficients
β
(n,m)
j (a).
Theorem 4.1 can be used to extend our results to multivariate Student t-distributions

as follows. A rotation invariant N -variate Student t-probability density is given for
x = (x1, . . . , xN ) ∈ RN by

fN ,ν(x) = AN ,ν(1+ |x|2)−ν−N/2, AN ,ν = 
(ν + N/2)


(ν)(
( 1
2 ))

N
,

where

〈x, y〉 =
N∑

i=1

xi yi , |x| = (〈x, x〉)1/2, x, y ∈ RN .

It is easy to verify that fN ,ν(x) is subordinated to the N -variate Gaussian semigroup

gN ,t (x) = (4π t)−N/2 exp

(
−|x|

2

4t

)
, t > 0, x ∈ RN ,

by the inverse Gamma density (31), i.e.,

fN ,ν(x) =
∫ ∞

0
gN ,t (x) dγ̃ν(t).(35)

Therefore the characteristic function is given by

∫
RN

ei〈x,y〉 fN ,ν(x) dx = kν(|y|)(36)

generalizing (5). In fact,

∫
RN

ei〈x,y〉 fN ,ν(x) dx =
∫ ∞

0

(∫
RN

ei〈x,y〉gN ,t (x) dx
)

dγ̃ν(t)

=
∫ ∞

0
e−t |y|2 dγ̃ν(t)

and the result follows by (25) after substituting t by 1/t .
As a conclusion, Theorems 2.1, 2.2, and 2.4 apply in the multivariate case. For example,

in analogy with (11) we have, for 0 < a < 1,

1

aN
fN ,n+1/2(a

−1x) ∗ 1

(1− a)N
fN ,m+1/2((1− a)−1x) =

n+m∑
k=n∧m

β
(n,m)
k (a) fN ,k+1/2(x).
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