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Function Spaces in Lipschitz Domains and
Optimal Rates of Convergence for Sampling

Erich Novak and Hans Triebel

Abstract. Assume that we want to recover f : � → C in the Lr -quasi-norm (0 <
r ≤ ∞) by a linear sampling method

Sn f =
n∑

j=1

f (x j )hj ,

where hj ∈ Lr (�) and x j ∈ � and � ⊂ Rd is an arbitrary bounded Lipschitz domain.
We assume that f is from the unit ball of a Besov space Bs

pq (�) or of a Triebel–Lizorkin

space Fs
pq (�) with parameters such that the space is compactly embedded into C(�).

We prove that the optimal rate of convergence of linear sampling methods is

n−s/d+(1/p−1/r)+ ,

nonlinear methods do not yield a better rate. To prove this we use a result from Wendland
(2001) as well as results concerning the spaces Bs

pq (�) and Fs
pq (�). Actually, it is

another aim of this paper to complement the existing literature about the function spaces
Bs

pq (�) and Fs
pq (�) for bounded Lipschitz domains � ⊂ Rd . In this sense, the paper

is also a continuation of a paper by Triebel (2002).

1. Introduction

Let us start with a question concerning the classical Sobolev spaces W k
p (�)on an arbitrary

bounded (nonempty) Lipschitz domain � ⊂ Rd . Assume that we want to recover f ∈
W k

p (�) in the Lr -norm by a linear sampling method

Sn f =
n∑

j=1

f (x j )hj ,(1.1)

where hj ∈ Lr (�) and x j ∈ �. This makes sense if pk > d, then we have W k
p (�) ↪→

C(�) as a compact embedding. Just now we assume 1 ≤ p ≤ ∞ and 1 ≤ r ≤ ∞, later
we will study much more general spaces. It is natural to consider the worst case error of
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Sn , on the unit ball of W k
p (�), given by

sup{‖ f − Sn f |Lr (�)‖ : ‖ f |W k
p (�)‖ ≤ 1}.(1.2)

We also use the same worst case error for nonlinear sampling methods

Sn f = ϕ( f (x1), f (x2), . . . , f (xn)),(1.3)

where ϕ : Cn → Lr (�) is now an arbitrary mapping. What is the optimal rate of
convergence for linear (1.1) or nonlinear (1.3) sampling methods?

There is a vast literature about this question for � = [0, 1]d and also for the periodic
case, i.e., for the torus. In these cases it is well known (but we do not know who proved
this first) that

inf
Sn

sup{‖ f − Sn f |Lr (�)‖ : ‖ f |W k
p (�)‖ ≤ 1}  n−k/d+(1/p−1/r)+ ,(1.4)

see, e.g., [4] or [9]. This is true if we allow only linear methods and it is also true if
we allow arbitrary nonlinear methods. Hence, in this sense, linear methods are optimal.
To prove the upper bound, the known proofs of (1.4) heavily use the fact that we can
divide� = [0, 1]d into �d equal smaller cubes. Then one can use piecewise polynomial
interpolation to obtain an order optimal method. In this paper we use a result of Wendland
[23] to prove that (1.4) is correct for arbitrary bounded Lipschitz domains. It is interesting
to compare this order with the known order of the approximation numbers. Instead of
(1.1) we now allow methods

Sn f =
n∑

j=1

L j ( f )hj ,(1.5)

where the L j : W k
p (�)→ C are arbitrary continuous linear functionals. It turns out that

the rate of convergence for methods (1.5) “based on general information” is better than
the rate (1.4) of methods “based on standard information (or function values)” if, and
only if,

p < 2 < r.(1.6)

Actually we consider much more general function spaces and, therefore, it is the first
aim of this paper to complement the existing literature about function spaces of type
Bs

pq or Fs
pq for bounded Lipschitz domains � ⊂ Rd , see Triebel [21]. These spaces are

considered as subspaces of D′(�), where we restrict ourselves to

0 < p ≤ ∞, 0 < q ≤ ∞ and s > d

(
1

p
− 1

)
+

(1.7)

(with p <∞ for the F-spaces). Then one has the compact embeddings

Bs
pq(�) ↪→ L1(�) and Fs

pq(�) ↪→ L1(�).(1.8)
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These two scales cover many well-known distinguished spaces such as:

• the (fractional and classical) Sobolev spaces

Fs
p,2(�) = H s

p(�) and Fk
p,2 = W k

p (�) where s > 0, k ∈ N0,(1.9)

and 1 < p <∞;
• the classical Besov spaces

Bs
pq(�), 1 ≤ p <∞, 1 ≤ q ≤ ∞, s > 0;(1.10)

• and the Hölder–Zygmund spaces

Cs(�) = Bs
∞∞(�), s > 0.(1.11)

We define these spaces in Section 2 as restrictions of the corresponding spaces in Rd

to � and discuss afterward the intrinsic characterizations in terms of differences and
derivatives. This might be considered as a continuation of [21]. However, we now stress
those specific assertions needed later on. In Section 3 we restrict (1.7), preferably by

0 < p ≤ ∞, 0 < q ≤ ∞ and s > d/p,(1.12)

(again p <∞ for the F-spaces). Then (1.8) can be strengthened by

Bs
pq(�) ↪→ C(�) and Fs

pq(�) ↪→ C(�),(1.13)

where the embeddings are compact. The target space C(�) can be replaced by the larger
space Lr (�) with 0 < r ≤ ∞. For brevity, let either A = B or A = F (with p <∞ in
the F-case). Of interest is the degree of compactness of the embeddings

id : G1(�) = As
pq(�) ↪→ Lr (�) = G2(�),(1.14)

where p, q , s are restricted by (1.12) and 0 < r ≤ ∞. For this purpose we introduce,
for n ∈ N, the sampling numbers gn and glin

n . Here

gn(id) = inf[sup{‖ f − Sn f |G2(�)‖ : ‖ f |G1(�)‖ ≤ 1}](1.15)

with Sn = ϕn ◦ Nn , where the information map Nn is of the form

Nn : G1(�)→ Cn,

Nn f = ( f (x1), . . . , f (xn)),
(1.16)

with {x j }nj=1 ⊂ �. Since ϕn : Cn → G2(�) we obtain

Sn f = ϕn( f (x1), . . . , f (xn)) ∈ G2(�) with f ∈ G1(�).(1.17)

The infimum in (1.15) is taken over all n-tuples {x j }nj=1 ⊂ � and all ϕn . If in (1.17) only
linear mappings Sn ,

Sn f =
n∑

j=1

f (x j )hj , hj ∈ G2(�), f ∈ G1(�),(1.18)
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are admitted, then the resulting numbers are denoted by glin
n (id). We get

gn(id)  glin
n (id)  n−s/d+(1/p−1/r)+ , n ∈ N.(1.19)

This might be considered as the main result of this paper, Theorem 23. See Remark 24
for further comments. Moreover, we compare these sampling numbers with the approx-
imation numbers an(id) and the entropy numbers en(id) and get, for r ≥ 1,

n−s/d  en(id) � an(id) � gn(id)  n−s/d+(1/p−1/r)+ , n ∈ N,(1.20)

Theorem 26. We clarify for which parameters � in one or both occurrences can be
replaced by . Longer proofs are to be found in Section 4.

2. Function Spaces in Lipschitz Domains

2.1. Basic Notation, Spaces in Rd

We will use standard notation. Let N be the collection of all natural numbers. Let Rd

be the Euclidean d-space, where d ∈ N; put R = R1; whereas C is the complex plane.
Furthermore, a+ = max(a, 0) if a ∈ R.

Let S(Rd) be the Schwartz space of all complex-valued rapidly decreasing, infinitely
differentiable functions on Rd . By S′(Rd)we denote the topological dual, the space of all
tempered distributions on Rd . Furthermore, L p(Rd), with 0 < p ≤ ∞, is the standard
complex quasi-Banach space with respect to Lebesgue measure, quasi-normed by

‖ f |L p(Rd)‖ =
(∫

Rd

| f (x)|p dx

)1/p

(2.1)

with the obvious modification if p = ∞. If ψ ∈ S(Rd), then

ψ̂(ξ) = (Fψ)(ξ) = (2π)−d/2
∫

Rd

e−i xξ ψ(x) dx, x ∈ Rd ,(2.2)

denotes the Fourier transform ofψ . As usual, F−1ψ orψ∨ stands for the inverse Fourier
transform, given by the right-hand side of (2.2) with i in place of −i . Here xξ denotes
the scalar product in Rd . Both F and F−1 are extended to S′(Rd) in the standard way.
Let ψ ∈ S(Rd) with

ψ(x) = 1 if |x | ≤ 1 and ψ(y) = 0 if |y| ≥ 3
2 .(2.3)

We put ψ0 = ψ and

ψj (x) = ψ(2− j x)− ψ(2− j+1x), x ∈ Rd , j ∈ N.(2.4)

Then, since
∞∑

k=0

ψk(x) = 1 for all x ∈ Rd ,(2.5)

the ψk form a dyadic resolution of unity in Rd . Recall that (ψk f̂ )∨ is an entire analytic
function on Rd for any f ∈ S′(Rd). In particular, (ψk f̂ )∨(x) makes sense pointwise.
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Definition 1. Let s ∈ R and 0 < q ≤ ∞.

(i) Let 0 < p ≤ ∞. Then Bs
pq(R

d) is the collection of all f ∈ S′(Rd) such that

‖ f |Bs
pq(R

d)‖ψ =
( ∞∑

j=0

2 jsq‖(ψj f̂ )∨ |L p(Rd)‖q

)1/q

(2.6)

(with the usual modification if q = ∞) is finite.
(ii) Let 0 < p <∞. Then Fs

pq(R
d) is the collection of all f ∈ S′(Rd) such that

‖ f |Fs
pq(R

d)‖ψ =
∥∥∥∥∥
( ∞∑

j=0

2 jsq |(ψj f̂ )(·)|q
)1/q

|L p(Rd)

∥∥∥∥∥(2.7)

(with the usual modification if q = ∞) is finite.

Remark 2. These spaces, including their forerunners and special cases, have a long
history. Systematic treatments have been given in [18], [19], where Chapter 1 in the
latter book is an historically orientated survey. Both Bs

pq(R
d) and Fs

pq(R
d) are quasi-

Banach spaces which are independent of the function ψ according to (2.3), in the sense
of equivalent quasi-norms. This justifies our omission of the subscript ψ in (2.6) and
(2.7) in what follows. If p ≥ 1 and q ≥ 1, then both Bs

pq(R
d) and Fs

pq(R
d) are Banach

spaces.

2.2. Special Cases and Characterizations for Spaces in Rd

We are mainly interested in spaces of type Bs
pq and Fs

pq in bounded Lipschitz domains
where p, q , s are restricted by (1.7) or even by (1.12). To prepare our respective consid-
erations we now have a closer look at some special cases of the above spaces in Rd and
those equivalent (quasi-)norms which will play a role later on.

(i) Let 1 < p <∞ and let k ∈ N. Then

F0
p,2(R

d) = L p(Rd) and Fk
p,2(R

d) = W k
p (R

d),(2.8)

where the latter are the classical Sobolev spaces usually normed by

‖ f |W k
p (R

d)‖ =
∑
|α|≤k

‖Dα f |L p(Rd)‖.(2.9)

This may be found in [18, 2.5.6], and the references given there.

(ii) Let x ∈ Rd , h ∈ Rd , and M ∈ N. Then

(�M+1
h f )(x) = (�1

h�
M
h f )(x) with (�1

h f )(x) = f (x + h)− f (x),(2.10)

are the usual differences in Rd . It is well known that the classical Besov spaces

Bs
pq(R

d) with 1 ≤ p <∞, 1 ≤ q ≤ ∞, s > 0,(2.11)
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can be characterized in many ways in terms of these differences�M
h or in combinations

of some differences and some derivatives. This can be extended to the spaces

Bs
pq(R

d) with 0 < p ≤ ∞, 0 < q ≤ ∞, s > σp = d

(
1

p
− 1

)
+
.(2.12)

We refer to [18, 2.5.12], and [19, 2.6.1]. We restrict ourselves to an example which will
be of some service later on.

Let

0 < p ≤ ∞, 0 < q ≤ ∞, σp < s < M ∈ N, p = max(p, 1).(2.13)

Then f ∈ L p(R
d) belongs to Bs

pq(R
d) if, and only if,

‖ f |Bs
pq(R

d)‖M

= ‖ f |L p(R
d)‖ +

(∫ 1

0
t−sq sup

|h|≤t
‖�M

h f |L p(Rd)‖q dt

t

)1/q

<∞(2.14)

(equivalent quasi-norms).

This is covered by the Theorem and Remark 3 in [18, pp. 110, 113], and by the embedding
theorem, as far as the replacement of

‖ f |L p(Rd)‖ by ‖ f |L1(Rd)‖,

in the case of p < 1, is concerned.

(iii) As a special case of (2.12) we mention the Hölder–Zygmund spaces

Cs(Rd) = Bs
∞∞(R

d), s > 0,(2.15)

which can be characterized according to (2.14) with 0 < s < M ∈ N as the collection
of all f ∈ L∞(Rd) such that

‖ f |Cs(Rd)‖M = ‖ f |L∞(Rd)‖ + sup |h|−s |(�M
h f )(x)| <∞,(2.16)

where the supremum is taken over all x ∈ Rd and over all h ∈ Rd with 0 < |h| ≤ 1.

(iv) In generalization of (2.8) one has

Fs
p,2(R

d) = H s
p(R

d), 1 < p <∞, s ∈ R,(2.17)

where H s
p(R

d) are the (fractional) Sobolev spaces, previously denoted as Bessel potential
spaces. This may be found in [18, 2.5.6], and the references given there.

(v) The question arises whether one has similar characterizations for the spaces
Fs

pq(R
d) with the special cases H s

p(R
d) according to (2.17) as in (2.13), (2.14) for
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the spaces Bs
pq(R

d). There are assertions of this type. We refer to [18, 2.5.10], but we do
not formulate them. However, later on we need characterizations of both the Bs

pq spaces
and of the Fs

pq spaces in terms of the ball means of differences which we are now going
to describe in some detail. Let M ∈ N and let�M

h be the differences according to (2.10).
Then, for 0 < u ≤ ∞,

d M
t,u f (x) =

(
t−d

∫
|h|≤t
|�M

h f (x)|u dh

)1/u

, x ∈ Rd , t > 0,(2.18)

(with the usual modification if u = ∞) are ball means. Then one has the following
characterizations. Let 1 ≤ r ≤ ∞ and let p = max(1, p).

(B) Let

0 < p ≤ ∞, 0 < q ≤ ∞, d

(
1

p
− 1

r

)
+
< s < M ∈ N,(2.19)

and 0 < u ≤ r . Then Bs
pq(R

d) is the collection of all f ∈ Lmax(p,r)(Rd) such that

‖ f |L p(R
d)‖ +

(∫ 1

0
t−sq ‖d M

t,u f |L p(Rd)‖q dt

t

)1/q

<∞(2.20)

(modification if q = ∞) in the sense of equivalent quasi-norms.
(F) Let

0 < p <∞, 0 < q ≤ ∞, d

(
1

min(p, q)
− 1

r

)
+
< s < M ∈ N,(2.21)

and 0 < u ≤ r . Then Fs
pq(R

d) is the collection of all f ∈ Lmax(p,r)(Rd) such that

‖ f |L p(R
d)‖ +

∥∥∥∥(∫ 1

0
t−sq d M

t,u f (·)q dt

t

)1/q ∣∣∣∣L p(Rd)

∥∥∥∥ <∞(2.22)

(modification if q = ∞) in the sense of equivalent quasi-norms.

We refer to [19, 3.5.3], where one finds a proof of this assertion. The replacement of
‖ f |L p(Rd)‖ in [19] by ‖ f |L p(R

d)‖ is immaterial and covered by embedding theorems.

2.3. Spaces in Lipschitz Domains

Let d − 1 ∈ N. Recall that

x ′ ∈ Rd−1 �→ h(x ′) ∈ R(2.23)

is called a Lipschitz function (on Rd−1) if there is a number c > 0 such that

|h(x ′)− h(y′)| ≤ c |x ′ − y′| for all x ′ ∈ Rd−1, y′ ∈ Rd−1.(2.24)
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Definition 3. Let d − 1 ∈ N.

(i) A special Lipschitz domain in Rd is the collection of all points x = (x ′, xd) with
x ′ ∈ Rd−1 such that

h(x ′) < xd <∞,(2.25)

where h(x ′) is a Lipschitz function according to (2.23), (2.24).
(ii) A bounded Lipschitz domain in Rd is a bounded open connected set� in Rd where

∂� can be covered by finitely many open balls Bj in Rd where j = 1, . . . , J ,
centered at ∂� such that

Bj ∩� = Bj ∩�j with j = 1, . . . , J,(2.26)

where �j are rotations of suitable special Lipschitz domains in Rd .

Again we use standard notation. Let 0 < p ≤ ∞. Then L p(�) is the quasi-Banach
space of all complex-valued Lebesgue-measurable functions in � such that

‖ f |L p(�)‖ =
(∫

�

| f (x)|p dx

)1/p

<∞(2.27)

(with the obvious modification if p = ∞). Let D′(�) be the usual space of complex-
valued distributions on �. Let g ∈ S′(Rd). Then we denote by g|� its restriction to �,
hence

g|� ∈ D′(�) : (g|�)(ψ) = g(ψ) for ψ ∈ D(�),(2.28)

where D(�) = C∞0 (�) has the usual meaning as the collection of all complex-valued
infinitely differentiable functions in Rd with compact support in �.

Definition 4. Let � be a bounded Lipschitz domain in Rd . Let s ∈ R, 0 < p ≤ ∞,
0 < q ≤ ∞. Let As

pq stand either for Bs
pq or Fs

pq (with p < ∞ in the F-case). Then
As

pq(�) is the collection of all f ∈ D′(�) such that there is a g ∈ As
pq(R

d) with
g|� = f . Furthermore,

‖ f |As
pq(�)‖ = inf ‖g|As

pq(R
d)‖,(2.29)

where the infimum is taken over all g ∈ As
pq(R

d) such that its restriction g|� to �
coincides in D′(�) with f .

Remark 5. By standard arguments As
pq(�) are quasi-Banach spaces (Banach spaces if

p ≥ 1, q ≥ 1). Spaces of this type, and even more its special cases, have attracted a lot of
attention for decades. As far as the above generality is concerned we refer to [19, Chap. 5]
and to [21] where these spaces are studied in bounded smooth domains and in bounded
Lipschitz domains, respectively. There one also finds many (historical) references. The
above definition can be formalized by introducing the restriction operator re,

re(g) = g|� : S′(Rd)→ D′(�),(2.30)



Function Spaces in Lipschitz Domains 333

generating for all admitted A = B, A = F , and s, p, q, a linear and bounded operator,

re : As
pq(R

d) ↪→ As
pq(�).(2.31)

One of the key problems in this context is the question of whether there is a linear and
bounded extension operator ext such that

ext : As
pq(�) ↪→ As

pq(R
d)(2.32)

with

re ◦ ext = id (identity in As
pq(�)).(2.33)

A satisfactory solution of this problem in the case of Rd
+ and bounded C∞ domains may

be found in [19, 4.5 and 5.1.3]. The final solution of this problem in the case of bounded
Lipschitz domains is due to V. S. Rychkov. He proved in [13] that there is a universal
extension operator of type (2.32), (2.33) for all admitted spaces As

pq(�). In [19, 4.5 and
5.1], [13], and [21, 2.4], one finds many references on this substantial problem.

2.4. Intrinsic Characterizations I

The question arises to which extent the above spaces As
pq(�) in bounded Lipschitz

domains � can be characterized intrinsically. We shift some specific assertions, which
will be needed later on, to Subsection 2.6 and discuss here some cases largely parallel
to Subsection 2.2. As above, � is always a bounded Lipschitz domain in Rd .

(i) Let 1 < p <∞ and let k ∈ N. Then (2.8) has a counterpart in �. This is obvious
for L p(�). As for the classical Sobolev spaces, we define temporarily W k

p (�) as the
collection of all f ∈ L p(�) such that

‖ f |W k
p (�)‖ =

∑
|α|≤k

‖Dα f |L p(�)‖ <∞.(2.34)

Then

W k
p (�) = W k

p (R
d)|�(2.35)

(restriction from Rd to� as above) in the sense of equivalent norms. This is a very classi-
cal famous result. A short proof, further equivalent norms, and, in particular, references,
may be found in [17, 4.2.4, p. 316].

(ii) Several intrinsic descriptions of the spaces

Bs
pq(�) and Fs

pq(�) with s > 0, 1 < p <∞, 1 ≤ q ≤ ∞,(2.36)

in bounded Lipschitz domains �, in terms of respective differences and ball means of
differences, are known. We refer to [17, Theorem 4.4.2(2), p. 324], and to [19, 1.10,
pp. 68–75], where one finds many references, especially to the Russian school, in par-
ticular to G. A. Kaljabin. Here we describe the counterparts of (ii) and (v) in Subsection
2.2. Let �M

h f be the differences as introduced in (2.10) and let, for x ∈ �,

(�M
h,� f )(x) =

{
(�M

h f )(x) if x + lh ∈ � for l = 0, . . . ,M ,

0 otherwise.
(2.37)
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Let σp be as in (2.12),

0 < p ≤ ∞, 0 < q ≤ ∞, σp < s < M ∈ N,(2.38)

and p = max(1, p). Then f ∈ Bs
pq(�) if, and only if, f ∈ L p(�) and

‖ f |L p(�)‖ +
(∫ 1

0
t−sq sup

|h|≤t
‖�M

h,� f |L p(�)‖q dt

t

)1/q

<∞(2.39)

(equivalent quasi-norms).

This has been proved recently by S. Dispa [5]. It extends (2.13), (2.14) from Rd to
bounded Lipschitz domains � in Rd . This also includes the well-known counterpart of
(2.15), (2.16), characterizing the Hölder–Zygmund spaces

Cs(�) = Bs
∞∞(�), s > 0,(2.40)

as the collection of all f ∈ L∞(�) such that, for 0 < s < M ∈ N,

‖ f |Cs(�)‖M = ‖ f |L∞(�)‖ + sup |h|−s |(�M
h,� f )(x)| <∞(2.41)

(equivalent norms) where the supremum is taken over all x ∈ � and all h ∈ Rd with
0 < |h| ≤ 1.

(iii) Next we discuss the counterpart of the characterizations of the B-spaces and the
F-spaces in terms of ball means according to (2.20) and (2.22), respectively. First we
have to adapt the ball means (2.18) to the bounded Lipschitz domain �. Let M ∈ N,
t > 0, x ∈ �. Then

V M(x, t) = {h ∈ Rd : |h| < t and x + τh ∈ � for 0 ≤ τ ≤ M}(2.42)

is the maximal open subset of a ball of radius t , centered at the origin, star-shaped with
respect to the origin, such that x + MV M(x, t) ⊂ �. Then for 0 < u ≤ ∞,

d M,�
t,u f (x) =

(
t−d

∫
h∈V M (x,t)

|(�M
h f )(x)|u dh

)1/u

, x ∈ �, t > 0,(2.43)

(with the usual modification if u = ∞) is the substitute of (2.18). It coincides with [19,
Def. 3.5.2, p. 193] (now for bounded Lipschitz domains). Again let p = max(p, 1).
Then one has the following counterpart of the assertions (B) and (F) in Subsection 2.2.

Proposition 6. Let� be a bounded Lipschitz domain in Rd and let d M,�
t,u f be given by

(2.43).

(B) Let 0 < p ≤ ∞, 0 < q ≤ ∞, 1 ≤ u ≤ r ≤ ∞,

d

(
1

p
− 1

r

)
+
< s < M ∈ N.(2.44)
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Then Bs
pq(�) is the collection of all f ∈ Lmax(p,r)(�) such that

‖ f |L p(�)‖ +
(∫ 1

0
t−sq ‖d M,�

t,u f |L p(�)‖q dt

t

)1/q

<∞(2.45)

in the sense of equivalent quasi-norms (usual modification if q = ∞).
(F) Let 0 < p <∞, 0 < q ≤ ∞, 1 ≤ u ≤ r ≤ ∞,

d

(
1

min(p, q)
− 1

r

)
+
< s < M ∈ N.(2.46)

Then Fs
pq(�) is the collection of all f ∈ Lmax(p,r)(�) such that

‖ f |L p(�)‖ +
∥∥∥∥(∫ 1

0
t−sq(d M,�

t,u f )(·)q dt

t

)1/q ∣∣∣∣L p(�)

∥∥∥∥ <∞(2.47)

in the sense of equivalent quasi-norms (usual modification if q = ∞).

Remark 7. We shift the proof of this proposition to Subsection 4.1. If � is a bounded
C∞ domain in Rd then the above proposition is covered by [19, Theorem 5.2.2, p. 245],
where the above assertion is proved under the slightly more general condition 1 ≤ r ≤ ∞
and 0 < u ≤ r in analogy to (B) and (F) at the end of Subsection 2.2.

2.5. Some Other Distinguished Spaces

There are a few other interesting spaces which are not covered by the scales Bs
pq and Fs

pq
but, nevertheless, fit into the context of this paper. The most distinguished are L1, L∞,
C , and the corresponding smoothness spaces W k

1 , W k
∞, Ck , with k ∈ N built on them.

Here C(Rd) is the naturally normed space of all complex-valued uniformly continuous
bounded functions in Rd . Let k ∈ N. Then

Ck(Rd) = { f ∈ C(Rd) : Dα f ∈ C(Rd), |α| ≤ k},(2.48)

W k
∞(R

d) = { f ∈ L∞(Rd) : Dα f ∈ L∞(Rd), |α| ≤ k},(2.49)

W k
1 (R

d) = { f ∈ L1(Rd) : Dα f ∈ L1(Rd), |α| ≤ k},(2.50)

always naturally normed. Again let� be a bounded Lipschitz domain in Rd . Then C(�),
L∞(�), L1(�), and, for k ∈ N,

Ck(�), W k
∞(�), W k

1 (�),(2.51)

are the obvious, intrinsically normed, counterparts, hence (2.34) for p = 1 and p = ∞
and � in place of Rd in (2.48)–(2.50). On the other hand, there are spaces on � defined
as restrictions of the corresponding spaces on Rd as in Definition 4, and one may ask
whether (2.35) remains valid for p = 1 and p = ∞. But this assertion is covered by
Stein’s extension method [14, VI, §3, Theorem 5 on p. 181], hence (in obvious notation)

W k
1 (�) = W k

1 (R
d)|� and W k

∞(�) = W k
∞(R

d)|�.(2.52)
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Furthermore, according to [18, Prop. 2.5.7, p. 89], and [6, p. 44], we have

B0
1,1(R

d) ↪→ L1(Rd) ↪→ B0
1,∞(R

d)(2.53)

and

B0
∞,1(R

d) ↪→ C(Rd) ↪→ L∞(Rd) ↪→ B0
∞,∞(R

d).(2.54)

This can be extended to derivatives, resulting in

Bk
∞,1(R

d) ↪→ Ck(Rd) ↪→ W k
∞(R

d) ↪→ Bk
∞,∞(R

d)(2.55)

and a similar assertion for p = 1 based on (2.53). Here k ∈ N. These inclusions remain
valid when restricted to �. Together with (2.52) one gets

Bk
1,1(�) ↪→ W k

1 (�) ↪→ Bk
1,∞(�)(2.56)

and

Bk
∞,1(�) ↪→ Ck(�) ↪→ W k

∞(�) ↪→ Bk
∞,∞(�),(2.57)

where k ∈ N.

Remark 8. The asymptotics of the sampling numbers described so far in (1.19) with
(1.14) is independent of q in (1.14). This applies to the corner spaces in (2.56) or (2.57)
and can be extended immediately to the spaces in between. This observation is the main
reason for the above considerations.

2.6. Intrinsic Characterizations II

We adapt the characterizing quasi-norms for the spaces Bs
pq(�) and Fs

pq(�) in Proposi-
tion 6 to our later needs. Again let� be a bounded Lipschitz domain in Rd . Let M ∈ N.
Let PM(Rd) be the space of all complex-valued polynomials in Rd of degree smaller
than M and let PM(�) be the restriction of PM(Rd) to �. Let

{P�,M
j }dimM

j=1 with dimM = dimPM(Rd) = dimPM(�),(2.58)

be an L2(�)-orthonormal basis of real polynomials in PM(�).

Theorem 9. Let � be a bounded connected Lipschitz domain in Rd , let d M,�
t,u f be the

ball means according to (2.43), and let {P�,M
j } be the above polynomial basis.

(B) Let 0 < p ≤ ∞, 0 < q ≤ ∞, 1 ≤ u ≤ r ≤ ∞,

d

(
1

p
− 1

r

)
+
< s < M ∈ N.(2.59)

Then Bs
pq(�) is the collection of all f ∈ Lmax(p,r)(�) such that

‖ f |Bs
pq(�)‖∗u,M =

dimM∑
j=1

∣∣∣∣∫
�

f (x)P�,M
j (x) dx

∣∣∣∣(2.60)

+
(∫ 1

0
t−sq‖d M,�

t,u f |L p(�)‖q dt

t

)1/q

<∞

in the sense of equivalent quasi-norms (usual modification if q = ∞).
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(F) Let 0 < p <∞, 0 < q ≤ ∞, 1 ≤ u ≤ r ≤ ∞,

d

(
1

min(p, q)
− 1

r

)
+
< s < M ∈ N.(2.61)

Then Fs
pq(�) is the collection of all f ∈ Lmax(p,r)(�) such that

‖ f |Fs
pq(�)‖∗u,M =

dimM∑
j=1

∣∣∣∣∫
�

f (x)P�,M
j (x) dx

∣∣∣∣(2.62)

+
∥∥∥∥(∫ 1

0
t−sq(d M,�

t,u f )(·)q dt

t

)1/q ∣∣∣∣L p(�)

∥∥∥∥ <∞
in the sense of equivalent quasi-norms (usual modification if q = ∞).

Remark 10. We shift the proof to Subsection 4.2.

Corollary 11. Let �, d M,�
t,u f with M ∈ N, and the polynomial basis {P�,M

j } be as in
Theorem 9. Let 0 < p ≤ ∞, p = max(p, 1) and let, for f ∈ L p(�),

gf (x) =
dimM∑
j=1

aj P�,M
j (x) with aj =

∫
�

f (x)P�,M
j (x) dx .(2.63)

(B) Then, under the hypotheses of part (B) of Theorem 9,

inf
g∈PM (�)

‖ f − g|Bs
pq(�)‖∗u,M = ‖ f − gf |Bs

pq(�)‖∗u,M(2.64)

=
(∫ 1

0
t−sq‖d M,�

t,u f |L p(�)‖q dt

t

)1/q

.

(F) Then, under the hypotheses of part (F) of Theorem 9,

inf
g∈PM (�)

‖ f − g|Fs
pq(�)‖∗u,M = ‖ f − gf |Fs

pq(�)‖∗u,M(2.65)

=
∥∥∥∥(∫ 1

0
t−sq(d M,�

t,u f )(·)q dt

t

)1/q ∣∣∣∣L p(�)

∥∥∥∥.
Proof. This follows immediately from Theorem 9 and the assumption that {P�,M

j } is
a real orthonormal L2(�)-basis in PM(�).

Remark 12. We need a consequence of Corollary 11 if � is a ball,

ωτ = {x ∈ Rd : |x | < τ }, 0 < τ ≤ 1,(2.66)

of radius τ and the dependence of the constants on τ .

Corollary 13. Let d M,ωτ
t,u f be the means, according to (2.43), with respect to the

balls ωτ .
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(B) Let 0 < p ≤ ∞, 0 < q ≤ ∞, 1 ≤ u ≤ ∞, and

d/p < s < M ∈ N.(2.67)

There is a positive constant c such that, for all τ with 0 < τ ≤ 1 and all
f ∈ Bs

pq(ωτ ),

inf
g∈PM (ωτ )

sup
|x |<τ
| f (x)− g(x)| ≤ cτ s−d/p

(∫ τ

0
t−sq‖d M,ωτ

t,u f |L p(ωτ )‖q dt

t

)1/q

.(2.68)

(F) Let 0 < p <∞, 0 < q ≤ ∞, 1 ≤ u ≤ ∞, and

d/min(p, q) < s < M ∈ N.(2.69)

There is a positive constant c such that, for all τ with 0 < τ ≤ 1 and all
f ∈ Fs

pq(ωτ ),

(2.70)

inf
g∈PM (ωτ )

sup
|x |<τ
| f (x)− g(x)| ≤ cτ s−d/p

∥∥∥∥(∫ τ

0
t−sq(d M,ωτ

t,u f )(·)q dt

t

)1/q ∣∣∣∣L p(ωτ )

∥∥∥∥.
Remark 14. We shift the proof of this homogeneity property to Subsection 4.3. It
comes out that the optimal polynomials are the dilated optimal polynomials according
to (2.63). In particular, they depend linearly on f .

3. Rates of Convergence

3.1. Numbers Measuring Compactness

Again let� be a bounded Lipschitz domain in Rd and let As
pq(�) be the spaces introduced

in Definition 4. We are mainly interested in studying sampling numbers of the compact
embeddings

id : G1(�) = As
pq(�) ↪→ Lr (�) = G2(�)(3.1)

where

0 < p ≤ ∞, 0 < q ≤ ∞, s > d/p and 0 < r ≤ ∞,(3.2)

with p <∞ for the F-spaces. In addition, we wish to compare these numbers with the
well-established approximation numbers an and the entropy numbers en of id given by
(3.1) with (3.2). First we recall the definitions of an and en in their natural context. As
usual, the family of all linear and bounded maps from a complex quasi-Banach space A
into a complex quasi-Banach space B will be denoted by L(A, B). Let UA be the closed
unit ball in A.

Definition 15. Let A and B be two complex quasi-Banach spaces and let T ∈ L(A, B).

(i) Then for all n ∈ N the nth entropy number en(T ) of T is defined as the infimum
over all ε > 0 such that T (UA) can be covered by 2n−1 balls in B of radius ε.
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(ii) Then for all n ∈ N the nth approximation number an(T ) of T is defined by

an(T ) = inf{‖T − R‖ : R ∈ L(A, B), rank R < n},(3.3)

where rank R is the dimension of the range of R.

Remark 16. Both numbers have a long and substantial history and have been studied
in great detail. One may consult [3] (Banach spaces) and [6] (quasi-Banach spaces)
and the (historical) references given there. The latter book deals especially with these
numbers for mappings between function spaces of the above type As

pq(�) in bounded
C∞ domains �. This has been extended in [21] to more general bounded domains �.
In the present paper we are interested in these numbers only in comparison with the
sampling numbers which we are going to define next. Let Cn be the collection of all
n-tuples of complex numbers.

Definition 17. Let� be a bounded Lipschitz domain in Rd and let id be given by (3.1),
(3.2) (with p <∞ for the F-spaces). For {x j }nj=1 ⊂ � we define the information map

Nn : G1(�)→ Cn(3.4)

by

Nn f = ( f (x1), . . . , f (xn)), f ∈ G1(�).(3.5)

For

ϕn : Cn → G2(�) consider Sn = ϕn ◦ Nn.(3.6)

(i) Then for all n ∈ N the nth sampling number gn(id) of id is defined by

gn(id) = inf[sup{‖ f − Sn f |G2(�)‖ : ‖ f |G1(�)‖ ≤ 1}],(3.7)

where the infimum is taken over all n-tuples {x j }nj=1 ⊂ � and all Sn = ϕn ◦ Nn

according to (3.6).
(ii) For all n ∈ N the nth linear sampling number glin

n (id) of id is defined by (3.7),
where only linear mappings Sn = ϕn ◦ Nn ,

Sn f =
n∑

j=1

f (x j )hj , hj ∈ G2(�), f ∈ G1(�),(3.8)

are admitted.

Remark 18. Obviously we have, by (3.6),

Sn f = ϕn( f (x1), . . . , f (xn)) ∈ G2(�) where f ∈ G1(�).(3.9)

Hence one gets by the above definitions and by Definition 15(ii) that

gn(id) ≤ glin
n (id) and an+1(id) ≤ glin

n (id), n ∈ N.(3.10)
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We justify the above definition. Let A and B be two quasi-Banach spaces and let T ∈
L(A, B). Then one gets (essentially as a reformulation of compactness) that

T is compact if, and only if, en(T )→ 0 for n→∞.(3.11)

This applies in particular to id according to (3.1), (3.2), and also to

id : As
pq(�) ↪→ C(�)(3.12)

with (3.2) (p <∞ for the F-spaces). In these cases the asymptotics of the corresponding
entropy numbers is known:

Let id be either (3.1), (3.2) with r ≥ 1 or (3.12). Then

en(id)  n−s/d , n ∈ N.(3.13)

This is covered by [6, Section 3.3, especially Theorem 2 in Subsection 3.3.3, p. 118],
in case of bounded C∞ domains and has been extended in [20, Section 23], and [21]
to arbitrary bounded domains. The incorporation of the target spaces C(�) and L1(�)

is justified by the respective remarks in the above Subsection 2.5. If 0 < r < 1 in the
target space Lr (�), then it follows, by Hölder’s inequality,

en(id) � n−s/d , n ∈ N.(3.14)

But as we shall see later on in Corollary 28 the asymptotics (3.13) extends also to these
cases. In particular, id given by (3.1), (3.2) is always compact. The following observation
will be of crucial importance for us later on.

Proposition 19. Let � be a bounded Lipschitz domain in Rd and let id be given by
(3.1), (3.2) (with p <∞ for the F-spaces). Then, for n ∈ N,

gn(id)  inf[sup{‖ f |G2(�)‖ : ‖ f |G1(�)‖ ≤ 1, f (x j ) = 0}],(3.15)

where the infimum is taken over all sets {x j }nj=1 ⊂ �.

Remark 20. We shift the proof of the proposition to Subsection 4.4. This assertion is
known in the case of Banach spaces. Then (3.15) can be strengthened by

g0
n(id) ≤ gn(id) ≤ 2g0

n(id)(3.16)

denoting temporarily the right-hand side of (3.15) by g0
n(id), see [16, pp. 45 and 58].

This applies in our case to the spaces (3.1) with p ≥ 1, q ≥ 1, r ≥ 1.

3.2. Main Assertions

Recall that a+ = max(a, 0) if a ∈ R. Let Fs
pq(�) and Cs(�) be the spaces introduced in

Definition 4 and (2.40), respectively.
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Proposition 21. Let � be a bounded Lipschitz domain in Rd .

(i) Let

0 < p <∞, 0 < q ≤ ∞, s > d/p, and 0 < r ≤ ∞.(3.17)

Then

glin
n (id : Fs

pq(�) ↪→ Lr (�)) � n−s/d+(1/p−1/r)+ , n ∈ N.(3.18)

(ii) Let s > 0 and 0 < r ≤ ∞. Then

glin
n (id : Cs(�) ↪→ Lr (�)) � n−s/d , n ∈ N.(3.19)

Remark 22. We shift the proof of this crucial proposition to Subsection 4.5. It paves
the way to the proof of our main result which reads as follows.

Theorem 23. Let� be a bounded Lipschitz domain in Rd and let id be given by (3.1),
(3.2). Then

gn(id)  glin
n (id)  n−s/d+(1/p−1/r)+ , n ∈ N.(3.20)

Remark 24. We shift the proof to Subsection 4.6. It is based on Proposition 21.
Special cases of Theorem 23 are known. Most references only study the case � =

[0, 1]d or the periodic case on the torus (from the point of view of the present paper,
there is no major difference between these two cases), an exception is Wendland [23],
who basically studies the cases G1(�) = Ck(�) and G2(�) = L∞(�). We should also
say that so far only Banach spaces were studied, i.e., the case p ≥ 1, q ≥ 1, and r ≥ 1.
As we already said in the Introduction, the proof of the upper bound for � = [0, 1]d

cannot be generalized easily to general bounded Lipschitz domains. Special cases of
Theorem 23 (for Banach spaces and � = [0, 1]d ) are contained in [4], [9], [11], [12],
and [15].

Other spaces are also studied in the literature, again for Banach spaces and only for
the cube: for spaces of functions with dominating mixed derivatives, see [1] and [15],
and for anisotropic Besov spaces, see [7]. Weighted Hilbert spaces and the problem of
tractability were recently studied by [22]. Here the main interest is the question of how
the constants also depend on the dimension d. The given list of papers is far from being
complete, but hopefully useful.

This problem of optimal recovery was also studied for randomized (or Monte Carlo)
methods, again only for special spaces and � = [0, 1]d . It is known that randomized
algorithms are no better than deterministic ones, see [9] and [12]. This is true as long
as we study “standard information,” i.e., methods that are based on function values. To
prove this, we only have to consider the lower bounds. These are based on the “bump
function technique,” as in the proof of Theorem 23. For this proof technique applied
to Monte Carlo methods, see [12, p. 53]. Hence this equivalence of deterministic and
randomized methods holds true in the general case of Theorem 23.

It is very remarkable that algorithms for the quantum computer have a better rate of
convergence if p < r , see [10].
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It is also very interesting that randomized algorithms that are based on arbitrary
linear information (compare with the approximation numbers, or formula (1.5)) can be
essentially smaller than the approximation numbers, see [8].

Furthermore, some other cases, which are not covered by (3.1), (3.2), are of inter-
est. This applies, in particular, to the spaces Ck(�), W k

∞(�), and W k
1 (�) with k ∈ N

according to Subsection 2.5.

Corollary 25. Let � be a bounded Lipschitz domain in Rd . Let 0 < r ≤ ∞, and let

idk,∞ : Ck(�) ↪→ Lr (�) with k ∈ N,(3.21)

id∗k,∞ : W k
∞(�) ↪→ Lr (�) with k ∈ N,(3.22)

idk,1 : W k
1 (�) ↪→ Lr (�) with d < k ∈ N.(3.23)

Then, for n ∈ N,

gn(idk,∞)  gn(id
∗
k,∞)  glin

n (idk,∞)  glin
n (id

∗
k,∞)  n−k/d(3.24)

and

gn(idk,1)  glin
n (idk,1)  n−k/d+(1−1/r)+ .(3.25)

Proof. On the one hand, we have the embeddings (2.56), (2.57). On the other hand,
the sampling numbers in (3.20) do not depend on the index q in (3.1). Then the above
assertions follow from Theorem 23.

3.3. Relations to Approximation Numbers and Entropy Numbers

Let � be a bounded Lipschitz domain in Rd . Let

−∞ < s2 < s1 <∞ and s1 − d/p1 > s2 − d/p2.(3.26)

Then

id : As1
p1q1
(�) ↪→ As2

p2q2
(�)(3.27)

is compact where p1, p2, q1, q2 ∈ (0,∞] (with p1 <∞ and/or p2 <∞ in the case of
the F-spaces). One has

en(id)  n−(s1−s2)/d , n ∈ N,(3.28)

for the respective entropy numbers. This is covered by [20, Sect. 23] (and by [6, Sect. 3.3]
as far as C∞ domains are concerned). Corresponding assertions for approximation num-
bers are more complicated. Nevertheless in the case of bounded C∞ domains, one knows
the respective asymptotics for an(id) with the exception of a few limiting cases. We re-
fer to [6, 3.3.4], and to [2]. According to [21] one can extend these results to bounded
Lipschitz domains.

In our case we have, on the one hand,

As1
p1q1
(�) = As

pq(�), 0 < p ≤ ∞, 0 < q ≤ ∞, s > d/p,(3.29)
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but, on the other hand, according to (2.8) and its restriction to � only

As2
p2q2
(�) = F0

r,2(�) = Lr (�) if 1 < r <∞.(3.30)

Using the inclusions (2.53), (2.54), restricted to�, one can incorporate afterward r = 1,
r = ∞. This explains our restriction to 1 ≤ r ≤ ∞ in the following assertion.

Theorem 26. Let� be a bounded Lipschitz domain in Rd and let id be given by (3.1),
(3.2), now with the additional restriction r ≥ 1. Let an(id), en(id), gn(id), glin

n (id) be as
introduced in Definitions 15 and 17. Then

n−s/d  en(id) � an(id) � gn(id)  glin
n (id)  n−s/d+(1/p−1/r)+(3.31)

where n ∈ N. Furthermore,

en(id)  an(id) if, and only if, r ≤ p,(3.32)

and

an(id)  gn(id) if, and only if,


either 0 < p ≤ r ≤ 2,

or 2 ≤ p ≤ r ≤ ∞,
or 1 ≤ r ≤ p ≤ ∞.

(3.33)

Remark 27. We skip the proof of this result since the needed bounds on approximation
numbers are known. In the case of the entropy numbers en(id) we have the left-hand
side of (3.31) for Lr (�) with r ≥ 1 as the target space and the estimate (3.14) for the
general case where 0 < r ≤ ∞. However, the equivalence can be extended to all cases.
Again we omit the details.

Corollary 28. Let� be a bounded Lipschitz domain in Rd and let id be given by (3.1),
(3.2). Then

en(id)  n−s/d , n ∈ N.(3.34)

Furthermore,

en(id)  gn(id) if, and only if, r ≤ p.(3.35)

4. Proofs

4.1. Proof of Proposition 6

Step 1. Let

‖ f |Fs
pq(�)‖u,M and ‖ f |Fs

pq(R
d)‖u,M(4.1)

be the quasi-norms in (2.47) and (2.22), respectively. Let f ∈ Fs
pq(�). Then by Definition

4 and the equivalent quasi-norm (2.22) there is an element g ∈ Fs
pq(R

d) with g|� = f



344 E. Novak and H. Triebel

such that

‖ f |Fs
pq(�)‖u,M ≤ ‖g|Fs

pq(R
d)‖u,M ≤ c‖ f |Fs

pq(�)‖(4.2)

where c > 0 is independent of f . Similarly for Bs
pq(�).

Step 2. As for the converse we rely on the characterization of Fs
pq(�) in Lipschitz domains

in terms of local means according to [13, Theorem 3.2, p. 251]. As for the kernels of
these local means one may choose the distinguished kernels constructed in [19, 3.3.2,
especially formula (10) on p. 175], which can be estimated from above by

ct−d
∫

h∈V M (x,t)
|�M

h f (x)| dh.(4.3)

Using Hölder’s inequality one can estimate this expression from above by d M,�
t,u f where

one used (for the first and last time) that u ≥ 1. This proves the converse. Similarly for
Bs

pq(�).

4.2. Proof of Theorem 9

Step 1. It follows by (2.62), (2.47), the notation (4.1), and Hölder’s inequality that

‖ f |Fs
pq(�)‖∗u,M � ‖ f |Fs

pq(�)‖u,M .(4.4)

Similarly for Bs
pq(�).

Step 2. We prove the converse of (4.4) by contradiction assuming that there is no positive
constant c such that

‖ f |L p(�)‖ ≤ c‖ f |Fs
pq(�)‖∗u,M .(4.5)

Then there is a sequence of functions { f j }∞j=1 ⊂ Fs
pq(�) such that

1 = ‖ f j |L p(�)‖ > j‖ f j |Fs
pq(�)‖∗u,M , j ∈ N.(4.6)

In particular, { f j } is bounded in Fs
pq(�) and hence precompact in L p(�). The latter

follows from the discussions in Remark 18 extended to s > d(1/p − 1)+ and at the
beginning of Subsection 3.3. We may assume that

f j → f in L p(�), hence ‖ f |L p(�)‖ = 1.(4.7)

By (4.6) the sequence { f j } converges in Fs
pq(�) and

(d M,�
t,u f )(x) = 0 in �,

∫
�

f (x)P�,M
l (x) dx = 0(4.8)

for l = 1, . . . , dimM . Then we also have (d N ,�
t,u f )(x) = 0 for any N � N > M .

Since (2.47) is a characterization, it follows that f ∈ Fσ
pq(�) for any σ ∈ R. By well-

known embedding theorems of type (3.1), (3.2) one has Dα f ∈ C(�) for all α. Hence,
f ∈ C∞(�). We have locally (�M

h f )(x) = 0. By Taylor expansion arguments it follows
that f is locally, and hence globally, in the connected domain�, a polynomial of degree
less than M , hence f ∈ PM(�). Now we obtain by the second part of (4.8) that f = 0.
This contradicts (4.7). Similarly for the B-spaces.
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4.3. Proof of Corollary 13

We prove part (F). The proof of part (B) is the same. Let f ∈ Fs
pq(ωτ ). Then f (τ ·) ∈

Fs
pq(ω) where ω = ω1 is the unit ball. Let g ∈ PM(ωτ ) be such that g(τ ·) ∈ PM(ω) is

the optimal polynomial according to (2.63) and (2.65) for f (τ ·) and � = ω. It follows
by the embedding (3.12) and (2.65) that

sup
|x |<τ
| f (x)− g(x)| = sup

|x |<1
| f (τ x)− g(τ x)|(4.9)

�
∥∥∥∥(∫ 1

0
t−sq(d M,ω

t,u f (τ ·))(·)q dt

t

)1/q ∣∣∣∣L p(ω)

∥∥∥∥.
By (2.43) we have, for |x | < 1 and 0 < t < 1, 0 < τ ≤ 1,

(d M,ω
t,u f (τ ·))(x) =

(
t−d

∫
h∈V M (x,t)

|(�M
h f (τ ·))(x)|u dh

)1/u

(4.10)

=
(
(τ t)−d

∫
τh∈V M (τ x,τ t)

|(�M
τh f )(τ x)|uτ d dh

)1/u

= d M,ωτ
τ t,u f (τ x).

Inserting (4.11) in (4.10) one gets (2.70).

4.4. Proof of Proposition 19

Step 1. We denote the right-hand side of (3.15) by g0
n(id) and prove in this step that

g0
n(id) � gn(id), n ∈ N.(4.11)

Let f 0 be the identically vanishing function in � and let Sεn , for given n ∈ N and given
ε > 0, be a map approximating gn(id) in (3.7) up to ε. In particular,

‖Sεn f 0|G2(�)‖ ≤ gn(id)+ ε.(4.12)

Furthermore,

g0
n(id) ≤ sup ‖ f |G2(�)‖ = sup ‖ f − Sεn f + Sεn f 0|G2(�)‖,(4.13)

where the supremum is taken over all f ∈ G1(�) with ‖ f |G1(�)‖ ≤ 1 and f (x j ) = 0.
Enlarging the supremum on the right-hand side of (4.13) by taking the supremum over
the whole unit ball in G1(�) one gets, by the above assumption and (4.12),

g0
n(id) � gn(id)+ ε, n ∈ N,(4.14)

uniformly in n and ε. This proves (4.11).

Step 2. We prove the converse to (4.11). Let � = {x j }nj=1 ⊂ � be n pairwise different
points. We interpret the information map according to (3.4), (3.5) as the trace operator
tr� ,

tr� = Nn : G1(�)→ Cn, n ∈ N.(4.15)
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It generates a quasi-norm in Cn ,

‖{cj }‖� = inf{‖h |G1(�)‖ : h(x j ) = cj }.(4.16)

We choose as ϕn in (3.6) a respective (nonlinear) bounded extension operator ext� ,

ϕn = ext� : Cn → G1(�) (and hence ↪→ G2(�)),(4.17)

and put

Sn = ext� ◦ tr� = ϕn ◦ Nn.(4.18)

In particular, Sn is a (nonlinear) bounded operator in G1(�). For given ε > 0 we choose
� such that

‖h|G2(�)‖ ≤ g0
n(id)+ ε if ‖h|G1(�)‖ ≤ 1, h(x j ) = 0,(4.19)

for j = 1, . . . , n. Then one has, for

f ∈ G1(�) with ‖ f |G1(�)‖ ≤ 1 and h = f − Sn f,(4.20)

that ‖h|G1(�)‖ � 1 with h(x j ) = 0 and hence

‖ f − Sn f |G2(�)‖ = ‖h|G2(�)‖ � g0
n(id)+ ε.(4.21)

One gets, finally, the converse to (4.11).

4.5. Proof of Proposition 21

Step 1. We begin with a preparation. Let τ > 0 and let {x j }nj=1 ⊂ � be points having
pairwise distance of at least τ such that for some c > 0 the balls B j centered at x j and
of radius cτ cover �. We may assume that c is independent of τ and that n  τ−d . Let
M ∈ N. We specify (3.8) by H. Wendland’s polynomial reproducing map

Sn f =
n∑

j=1

f (x j )hj(4.22)

such that, for all polynomials P ∈ PM(Rd),

(Sn P)(x) = P(x) where x ∈ �.(4.23)

Here hj ∈ L∞(�) are real functions with

n∑
j=1

|hj (x)| ≤ 2, x ∈ �,(4.24)

and

supp hj ⊂ bB j ∩�,(4.25)
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where bB j is a ball centered at x j and of radius bcτ , and b > 1 is a suitably chosen
number. For given M ∈ N there is a number τ0 > 0 such that there are mappings of this
type for all τ with 0 < τ ≤ τ0. We refer to [23].

Step 2. We prove (3.18). The proof of (3.19) is the same. Since

Fs
pq1
(�) ↪→ Fs

pq2
(�) if q1 ≤ q2,(4.26)

we may assume q ≥ p, and by Hölder’s inequality also r ≥ p. Let r < ∞. Let
f ∈ Fs

pq(�) and f̃ ∈ Fs
pq(R

d) with

‖ f̃ |Fs
pq(R

d)‖ ≤ 2‖ f |Fs
pq(�)‖.(4.27)

Let �j = B j ∩ � and �̃j = aB j ∩ � for some a > 1 specified later on. Choosing Sn

according to (4.22) we have, by (4.23) for Pj ∈ PM(Rd),

(4.28)

‖ f − Sn f |Lr (�)‖r ≤
n∑

j=1

‖ f − Pj + Sn Pj − Sn f |Lr (�j )‖r

≤ cτ d
n∑

j=1

(
sup
x∈�j

| f (x)− Pj (x)|r + sup
x∈̃�j

| f (x)− Pj (x)|r
)
,

where the first term comes from f − Pj and where we used (4.24), (4.25) in the second
term assuming that a is chosen sufficiently large. Hence,

‖ f − Sn f |Lr (�)‖r ≤ cτ d
n∑

j=1

sup
x∈aB j

| f̃ (x)− Pj (x)|r .(4.29)

We wish to apply Corollary 13(F) to aB j having radius λ = acτ in place of ωτ . Since
q ≥ p, (2.69) reduces to (2.67). We may choose u = 1 and simplify the notation by
writing d M

t instead of d M,aB j

t,1 . Let Pj in (4.29) be optimal polynomials according to
(2.70). Since q ≥ p and r ≥ p we obtain, by (4.29) and (2.70),

(4.30)

‖ f − Sn f |Lr (�)‖r ≤ c1τ
(s−d/p+d/r)r

n∑
j=1

(∫
aB j

(∫ λ

0
t−sq(d M

t f̃ )(x)q
dt

t

)p/q

dx

)r/p

≤ c1τ
(s−d/p+d/r)r

(
n∑

j=1

∫
aB j

(∫ λ

0
t−sq(d M

t f̃ )(x)q
dt

t

)p/q

dx

)r/p

≤ c2τ
(s−d/p+d/r)r

(∫
Rd

(∫ 1

0
t−sq(d M

t f̃ )(x)q
dt

t

)p/q

dx

)r/p

≤ c3τ
(s−d/p+d/r)r‖ f̃ |Fs

pq(R
d)‖r

≤ c4τ
(s−d/p+d/r)r‖ f |Fs

pq(�)‖r ,
where we used (4.27). Now (3.18) follows from n  τ−d . If r = ∞, then one has to
modify in the usual way.
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4.6. Proof of Theorem 23

Step 1. First we extend Proposition 21 by real interpolation from the F-spaces to the
B-spaces. Let p <∞,

0 < θ < 1, 0 < q0 ≤ ∞, 0 < q1 ≤ ∞, 0 < q ≤ ∞,(4.31)

and

s = (1− θ)s0 + θs1 with s0 �= s1.(4.32)

Let (·, ·)θ,q be the real interpolation method. Then

(Fs0
pq0
(Rd), Fs1

pq1
(Rd))θ,q = Bs

pq(R
d).(4.33)

Details, explanations, and references may be found in [18, 2.4.2, p. 64]. According to
[21, Theorem 2.13], one can extend this assertion to bounded Lipschitz domains, hence

(Fs0
pq0
(�), Fs1

pq1
(�))θ,q = Bs

pq(�).(4.34)

We may assume that the linear operator Sn in (4.22) is the same for Fs0
pq0
(�) and Fs1

pq1
(�),

where s0 and s1 are near to given s. Then it follows by (4.30) and the interpolation property
that

‖ f − Sn f |Lr (�)‖ ≤ cτ s−d/p+d/r‖ f |Bs
pq(�)‖.(4.35)

This can be extended to p = ∞ by the interpolation formula

(Cs0(�), Cs1(�))θ,q = Bs
∞,q(�), s0 �= s1,(4.36)

and (4.30) with Cs(�) in place of Fs
pq(�) according to (3.19). Then one gets, in all cases

(3.1), (3.2),

gn(id) � glin
n (id) � n−s/d+(1/p−1/r)+ , n ∈ N.(4.37)

Step 2. We prove the respective estimate from below, hence

gn(id) � n−s/d+(1/p−1/r)+ , n ∈ N.(4.38)

We begin with a preparation. There is a number c > 0 with the following property. For
any set of points

{x j }2ld

j=1 ⊂ �, l ∈ N,(4.39)

there are points y j ∈ � with j = 1, . . . , 2ld , such that

|y j − xk | ≥ c2−l+1 for all 1 ≤ j, k ≤ 2ld ,(4.40)

and

|y j − ym | ≥ c2−l+1, dist(y j , ∂�) ≥ c2−l+1,(4.41)
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for 1 ≤ j,m ≤ 2ld with j �= m. Let ϕ be a nonnegative C∞ function in Rd with support
in the unit ball and, say, ϕ(0) = 1. Let n = 2ld and

fn(x) =
n∑

k=1

ϕ(c−12l(x − yk)), x ∈ �.(4.42)

Then

‖ fn|Lr (�)‖ = c1, 0 < r ≤ ∞,(4.43)

where c1 > 0 depends on �, r , and c, but not on l and yk . Furthermore, by atomic
arguments, [20, Theorem 13.8, p. 75], or by the localization property for the above
spaces As

pq(R
d) according to [6, 2.3.2, pp. 35–36], it follows that

‖ fn|As
pq(�)‖ ≤ c22ls, l ∈ N,(4.44)

where c2 > 0 is independent of l ∈ N and of the points y j .

Step 3. After these preparations we can prove (4.38). Again let n = 2ld and let yk and
fn be as above. Then we have fn(x j ) = 0 and according to (4.43), (4.44),

‖ fn|Lr (�)‖ = c1 ≥ c32−ls‖ fn |As
pq(�)‖(4.45)

for some c3 > 0 which is independent of n. It follows by Proposition 19 that

gn(id) � n−s/d(4.46)

for n = 2ld and hence for all n ∈ N. This proves (4.38) for r ≤ p. Let p < r ≤ ∞. For
given points x j according to (4.39) we now select one of the above points yk . We assume,
without restriction of generality, say, y1 = 0. The respective substitutes of (4.42)–(4.44)
are now

fn(x) = ϕ(c−12l x), x ∈ �, l ∈ N,(4.47)

‖ fn|Lr (�)‖ = c12−ld/r , 0 < r ≤ ∞,(4.48)

and

‖ fn|As
pq(�)‖ ≤ c22l(s−d/p), l ∈ N.(4.49)

The counterpart of (4.45) is given by

‖ fn|Lr (�)‖ ≥ c32−l(s−d/p+d/r)‖ fn|As
pq(�)‖.(4.50)

This proves (4.38) for p < r ≤ ∞ by the same arguments as above.
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