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Multivariate Interpolation by Polynomials
and Radial Basis Functions

Robert Schaback

Abstract. In many cases, multivariate interpolation by smooth radial basis functions
converges toward polynomial interpolants, when the basis functions are scaled to be-
come flat. In particular, examples show and this paper proves that interpolation by scaled
Gaussians converges toward the de Boor/Ron “least” polynomial interpolant. To arrive
at this result, a few new tools are necessary. The link between radial basis functions and
multivariate polynomials is provided by “radial polynomials” ‖x − y‖2�2 that already
occur in the seminal paper by C. A. Micchelli of 1986. We study the polynomial spaces
spanned by linear combinations of shifts of radial polynomials and introduce the notion
of a discrete moment basis to define a new well-posed multivariate polynomial inter-
polation process which is of minimal degree and also “least” and “degree-reducing” in
the sense of de Boor and Ron. With these tools at hand, we generalize the de Boor/Ron
interpolation process and show that it occurs as the limit of interpolation by Gaussian
radial basis functions. As a byproduct, we get a stable method for preconditioning the
matrices arising with interpolation by smooth radial basis functions.

1. Introduction

Let ϕ : [0,∞)→ R be a radial basis function that can be written as

ϕ(r) = f (r2) with a smooth function f : R→ R,

and in particular we have in mind the Gaussians and inverse multiquadrics, i.e.,

ϕ(r) = exp(−r2) and ϕ(r) = (1+ r2)β/2, β < 0.

We scale ϕ in such a way that the functions become flat, i.e., we define

ϕc(r) := ϕ(cr) = f (c2r2), c, r ≥ 0,(1)

and since we want to consider small c, we assume that f is analytic around zero.
We fix a set X = {x1, . . . , xN } ⊂ Rd of scattered centers for interpolation, and consider

the behavior of the Lagrange interpolation basis for c → 0. The basis is obtainable as
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the solution (uc
1(x), . . . , uc

M(x)) ∈ RM of the system

M∑
j=1

ϕc(‖xj − xk‖2)u
c
j (x) = ϕc(‖x − xk‖2) for all 1 ≤ k ≤ M.(2)

By a surprising observation of Driscoll and Fornberg [6] and Danzeglocke [5] there are
many cases where the limits of the Lagrange basis functions uc

j (x) for c → 0 exist
and are multivariate polynomials in x . Our first goal is to prove this fact under certain
assumptions on ϕ and X . From a recent paper by Fornberg, Wright, and Larsson [8]
it is known that convergence may depend critically on the geometry of X and certain
properties of ϕ. We study these connections and the final polynomial interpolant to some
extent, but a complete characterization is still missing.

Our investigation of the limit process poses some interesting questions about mul-
tivariate polynomials and geometric properties of scattered data sets. In particular, we
have to study “radial” polynomials of the form ‖x − y‖2�

2 because the matrix entries in
(2) have series expansions

ϕc(‖xj − xk‖2) = f (c‖xj − xk‖2
2) =

∞∑
�=0

f (�)(0)

�!
c�‖xj − xk‖2�

2 ,

while the right-hand side contains

ϕc(‖x − xk‖2) = f (c‖x − xk‖2
2) =

∞∑
�=0

f (�)(0)

�!
c�‖x − xk‖2�

2 .

Thus this paper requires a somewhat nonstandard approach to multivariate interpo-
lation, namely via linear combinations of “radial polynomials.” In particular, we define
two different classes of multivariate polynomial interpolation schemes that can be for-
mulated without taking recourse to limits of radial basis functions. Examples show that
the various methods are actually different. For their analysis, some useful theoretical
notions are introduced, i.e., “discrete moment conditions” and “discrete moment bases.”
To establish the link from interpolation by dilated Gaussians to the de Boor/Ron “least”
polynomial interpolation [2], [3], [4], we generalize the latter and, in particular, introduce
a scaling and relate the theory to reproducing kernel Hilbert spaces. Using the new notion
of a “discrete moment basis” we finally prove that the interpolant of de Boor and Ron is
the limit of radial basis function interpolation using the Gaussian kernel, as the kernel is
dilated to become flat. Finally, we prove that properly scaled discrete moment bases can
be used for preconditioning the systems arising in radial basis function interpolation.

2. Limits of Radial Basis Functions

Because we shall be working with determinants, we fix the numbering of the points in
X now, i.e., we replace the notation X = {x1, . . . , xN } ⊂ Rd by X = (x1, . . . , xM) ∈
(Rd)M . For a second ordered set Y = (y1, . . . , yM) ∈ (Rd)M with the same number M
of points we define the matrix

Ac,X,Y := (ϕc(‖xj − yk‖2))1≤ j,k≤M = ( f (c2‖xj − yk‖2
2))1≤ j,k≤M .
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Note that Ac,X,X is symmetric and has a determinant that is independent of the order
of the points in X . If ϕ is positive definite, the matrices Ac,X,X are positive definite and
hence have a positive determinant for all c > 0.

Since f is analytic around the origin, the matrices Ac,X,Y have a determinant with a
convergent series expansion

det Ac,X,Y =:
∞∑

k=0

c2k pk(X, Y )(3)

for small c, where the functions pk(X, Y ) are polynomials in the points of X and Y .
In particular, they are sums of powers of terms of the form ‖xj − yk‖2

2. They can be
determined by symbolic computation, and we shall give an explicit formula in Section 3
and prove the upper bound 2k for their total degree in Lemma 5. Note that the polynomials
pk(X, X) are independent of the ordering of the points forming the components of
X = (x1, . . . , xM) ∈ (Rd)M .

We define X j := X\{xj }, where xj is deleted and the order of the remaining points
is kept. Furthermore, in the sets X j (x) := (X\{xj }) ∪ {x}, 1 ≤ j ≤ M , the point xj is
replaced by x , keeping the order.

The general structure of Lagrange basis functions is described by a standard technique:

Lemma 1 ([8]). The Lagrange basis functions uc
j (x), 1 ≤ j ≤ M , for interpolation

in X = (x1, . . . , xM) ∈ (Rd)M by a dilated positive definite radial function ϕc have the
form

uc
j (x) := det Ac,X,X j (x)

det Ac,X,X
=
∑∞

k=0 c2k pk(X, X j (x))∑∞
k=0 c2k pk(X, X)

, 1 ≤ j ≤ M.(4)

Proof. The quotient of determinants is in the span of the functions ϕc(‖x − xj‖2),
1 ≤ j ≤ M , and it satisfies uj (xk) = δjk , 1 ≤ j, k ≤ M . Since interpolation is unique,
we are done.

From (4) it is clear that the convergence behavior of the Lagrange basis function
uc

j (x) for c→ 0 crucially depends on the smallest value of k such that the real numbers
pk(X, X) or pk(X, X j (x)) are nonzero. Examples show that this number in turn depends
on the geometry of X , getting large when the set “degenerates” from “general position.”

Definition 1. For X = (x1, . . . , xM) ∈ (Rd)M we define

k0(X) := min
pk (X,X)�=0

k,

κ(d,M) := min
X∈(Rd )M

k0(X),(5)

δ(X) := k0(X)− κ(d,M) ≥ 0.

Then κ(d,M) is the minimal k ≥ 0 such that the multivariate polynomial X �→
pk(X, X) is nontrivial as a function on (Rd)M . An X = (x1, . . . , xM) ∈ (Rd)M is in
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general position with respect to ϕ or nondegenerate if δ(X) = 0, and thus δ(X) can
be called the degeneration order of X . All of these quantities depend on ϕ, while k0(X)
and δ(X) depend on the geometry of X , but not on the numbering of the points. If ϕ
is positive definite, we can conclude that pk0(X)(X, X) > 0 holds for all X . With this
notion, formula (4) immediately yields

Theorem 1 ([8]). If x ∈ Rd and j ∈ {1, . . . ,M} are such that

pk(X, X j (x)) = 0 for all k < k0(X),(6)

then the limit of uc
j (x) for c→ 0 is the value of the polynomial

pk0(X)(X, X j (x))

pk0(X)(X, X)
.(7)

If (6) fails, then the limit is infinite.

In paper [8] of Fornberg et al. there are cases where (6) fails for certain geometries,
e.g., when ϕ is a multiquadric (inverse or not), when the set X consists of five points on
a line in R2 and when the evaluation point x does not lie on that line. The observations
in [8] have led to the conjecture that in the case of dilated Gaussians, convergence takes
place for all point geometries without exception, and we prove this by a slightly stronger
statement, identifying the limit with an interpolation technique that never fails.

Theorem 2. Interpolation with shifted Gaussians always converges to the de Boor/Ron
polynomial interpolant when the Gaussians are dilated.

The proof needs a rather special technique, and thus we postpone it to the penultimate
section, proceeding now with our investigation of convergence in general. Unfortunately,
condition (6) contains an unsymmetric term, and we want to replace it by

(8)

k0(X j (x))≥k0(X), i.e., δ(X j (x))≥δ(X), i.e., pk(X j (x), X j (x))=0 for all k<k0(X).

Then we can extend the results by Fornberg et al. in [6], [8].

Theorem 3. If the degeneration order δ(X) of X is not larger than the degeneration
order δ(X j (x)) of X j (x), then the polynomial limit of the Lagrange basis function uc

j (x)
for c → 0 exists. In particular, convergence takes place when X is in general position
with respect to ϕ.

The proof needs some specific results about positive definite radial basis functions
and their “native” Hilbert spaces. Details can be found in [14] or [15], but we try to be
as explicit as possible here. For X = {x1, . . . , xN } ⊂ Rd , a linear combination

s(x) :=
M∑

j=1

αjϕc(‖x − xj‖2)
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of shifts of a scaled positive definite radial basis function ϕc has the norm

‖s‖2
ϕc

:=
M∑

j=1

M∑
k=1

αjαkϕc(‖xj − xk‖2)

in a “native” Hilbert space associated to ϕc that arises as the completion of the span of
all such functions. If s interpolates values f (xk) on X , this norm takes the form

‖s‖2
ϕc
=

M∑
k=1

αk f (xk),

because the coefficients solve the system

M∑
j=1

αjϕc(‖xj − xk‖2) = f (xk), 1 ≤ k ≤ M.

We now apply this to a Lagrange basis function.

Lemma 2.

‖uc
j‖2
ϕc
= det Ac,X j ,X j

det Ac,X,X
(9)

for 1 ≤ j ≤ M, c > 0.

Proof. If αj is the coefficient of ϕc(‖x − xj‖2) in the representation of uc
j , we have

‖uc
j‖2
ϕc
= αj

by the above argument. Then (9) follows from Cramer’s rule applied to the interpolation
problem with Kronecker data δjk , 1 ≤ k ≤ M , solved by uc

j .

For a fixed X = {x1, . . . , xN } ⊂ Rd and a fixed point x ∈ Rd one can define the
functional

f �→ f (x)−
M∑

j=1

uc
j (x) f (xj )

that takes the pointwise error of interpolation by translates of ϕc. Its Hilbert space norm
turns out to be an explicitly available function PX (x) called the “power function” with
the representations

(10)

P2
X (x)= ϕc(0)− 2

M∑
j=1

uc
j (x)ϕc(‖x − xj‖2)+

M∑
j=1

M∑
k=1

uc
j (x)u

c
k(x)ϕc(‖xj − xk‖2)

= ϕc(0)−
M∑

j=1

uc
j (x)ϕc(‖x−xj‖2).

The second form is somewhat nonstandard. It follows from the first by the Lagrange
interpolation property, and details can be retrieved from [14, p. 92, (4.3.14)].
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Lemma 3. The power function has the representation

P2
X (x) =

det Ac,X∪{x},X∪{x}
det Ac,X,X

.

Proof. By expansion of the numerator, using (4), and the representation (10).

Since PX (x) is the Hilbert norm of the pointwise error functional at x , there is an error
bound of the form ∣∣∣∣∣ f (x)−

M∑
j=1

uc
j (x) f (xj )

∣∣∣∣∣ ≤ PX (x)‖ f ‖ϕc

for all functions f in the native Hilbert space for ϕc. Since zero is the interpolant to uc
j

on X j = X\{xj }, we can specialize this to f = uc
j on X j to get

Lemma 4.

|uc
j (x)| ≤ PX j (x)‖uc

j‖ϕc(11)

for all x ∈ Rd , all c > 0, and all j , 1 ≤ j ≤ M .

To finish the proof of Theorem 3, we assert boundedness of uc
j (x) for c→ 0 and then

use Theorem 1. The above results yield

P2
X j
(xj ) = det Ac,X,X

det Ac,X j ,X j

, ‖uc
j‖2
ϕc
= 1

P2
X j
(xj )

,

and

|uc
j (x)| ≤ PX j (x)‖uc

j‖ϕc ≤
PX j (x)

PX j (xj )
.

With the representation of the power function via determinants we get

(uc
j (x))

2 ≤
P2

X j
(x)

P2
X j
(xj )
= det Ac,X j (x),X j (x)

det Ac,X,X
.(12)

The numerator and denominator of the right-hand side contain sets of M points each. If
we assume (8), we arrive at

(uc
j (x))

2 ≤
∑∞

k=k0(X j (x))
ck pk(X j (x), X j (x))∑∞

k=k0(X)
ck pk(X, X)

<∞

which concludes the proof of Theorem 3.

Remark. The first part of (12) is an interesting bound on Lagrange basis functions in
radial basis function interpolation. If the set X is formed recursively by adding to X the
point xM+1 where PX (x) is maximal (this adds the data location where the worst-case
error occurs), one gets a sequence of Lagrange basis functions that is strictly bounded
by 1 in absolute value. The implications on Lebesgue constants and stability of the
interpolation process should be clear, but cannot be pursued here.
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3. Basic Polynomial Determinants

To derive a formula for the polynomials pk in (3) and to prove upper bounds for their
degree we need the expansion

f (z) =
∞∑

k=0

fk zk(13)

of f around the origin. If ϕ is positive definite, we know by the standard Bernstein–
Widder representation (see [16] for a short summary) that all (−1)k fk are positive.
Furthermore, we use the standard formula for determinants

det(bi j )1≤i, j≤M =
∑
π∈SM

(−1)π
M∏

j=1

bjπ( j),

whereπ varies over all permutations in the symmetric groupSM and (−1)π is the number
of inversions in π . Then

det Ac,X,Y =
∑
π∈SM

(−1)π
M∏

j=1

f (c2‖xj − yπ( j)‖2
2)

=
∑
π∈SM

(−1)π
M∏

j=1

∞∑
m=0

fmc2m‖xj − yπ( j)‖2m
2

=
∑
π∈SM

(−1)π
∞∑
ρ1=0

∞∑
ρ2=0

· · ·
∞∑

ρM=0

M∏
j=1

( fρj c
2ρj‖xj − yπ( j)‖2ρj

2 )

=
∑
π∈SM

(−1)π
∑
ρ∈NM

0

fρc2|ρ|
M∏

j=1

‖xj − yπ( j)‖2ρj

2

=
∑
ρ∈NM

0

fρc2|ρ| ∑
π∈SM

(−1)π
M∏

j=1

‖xj − yπ( j)‖2ρj

2

=
∞∑

k=0

c2k
∑
ρ∈NM

0|ρ|=k

fρdρ(X, Y ),

with multi-index notation

fρ :=
M∏

j=1

fρj ,

dρ(X, Y ) := det(‖xi − yj‖2ρi
2 )1≤i, j≤M ,

pk(X, Y ) =
∑

ρ∈NM
0|ρ|=k

fρdρ(X, Y ).
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To see a bound on the degree, consider |ρ| = k and conclude that

dρ(X, Y ) := det(‖xi − yj‖2ρi
2 )1≤i, j≤M =

∑
π∈SM

(−1)π
M∏

j=1

‖xj − yπ( j)‖2ρj

2

has total degree at most 2|ρ| = 2k. Altogether we have

Lemma 5. The polynomials pk(X, Y ) have maximal degree 2k as polynomials in X
and Y .

Examples show that this bound is sharp in general, but is attained mainly in one-
dimensional cases. Lemma 10 will provide smaller bounds for higher-dimensional sets,
but it requires more tools.

We can also deduce that k0(X) for X ∈ (Rd)M increases with M due to the bound

M ≤
(

2k0(X)+ d

d

)

which follows from

Lemma 6. If pk(X, Y ) is nonzero for some specific sets X, Y with M = #X = #Y ,

then M ≤
(

2k + d

d

)
. In other words, if M >

(
2k + d

d

)
, then pk(X, Y ) = 0 for all

X, Y ∈ (Rd)M .

Proof. If some dρ(X, Y ) is nonzero for X, Y ∈ (Rd)M , there are M linearly indepen-
dent d-variate polynomials of degree at most 2|ρ| = 2k. This proves the first assertion,

because the latter polynomials form a space of dimension

(
2k + d

d

)
. The second asser-

tion is the contrapositive of the first.

Example 1. Let us look at some special cases that we prepared with MAPLE. We
reproduce the results in [8], but we have a somewhat different background and notation.
The one-dimensional case with M = 2 has in general p0(X, X) = 0, p1(X, X) =
−2 f (0) f ′(0)(x2 − x1)

2. Thus κ(1, 2) = 1 and there is no degeneration except coales-
cence. The bound in Lemma 5 turns out to be sharp here. The case M = 3 leads to
κ(1, 3) = 3 with

p3(X, X) = −2 f ′(0)(3 f (0) f ′′(0)− f ′(0)2)(x1 − x2)
2(x1 − x3)

2(x2 − x3)
2.

Geometrically, there is no degeneration except coalescence. The factor 3 f (0) f ′′(0) −
f ′(0)2 could possibly lead to some discussion, but for positive definite ϕ it must be
positive because we know that f (0),− f ′(0), f ′′(0), and p3(X, X) are positive. We
further find κ(1, 4) = 6 with

p6(X, X) = − 4
3 (3 f ′′(0)2 − 5 f ′(0) f ′′′(0))(3 f (0) f ′′(0)− f ′(0)2)

× (x1 − x2)
2(x1 − x3)

2(x1 − x4)
2(x2 − x3)

2(x2 − x4)
2(x3 − x4)

2.
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The general situation seems to be κ(1,M) = M(M − 1)/2 with pκ(1,M) being (up to a
factor) the polynomial that consists of a product of all (xj − xk)

2 for 1 ≤ j < k ≤ M ,
which is of degree 2κ(1,M) = M(M − 1). Thus the maximal degree in Lemma 5 is
actually attained again. Note that the one-dimensional situation also carries over to the
case when X and X j (x) lie on the same line in Rd .

Now let us look at two-dimensional situations. The simplest nontrivial two-dimen-
sional case is for M = 2 when the evaluation is not on the line connecting the points of
X . But from the one-dimensional case we can infer

κ(2, 2) = 1 = k0(X) = k0(X j (x))

and do not run into problems, because we have Theorem 3. In particular, we find

p1(X, X) = −2 f (0) f ′(0)((x1
1 − x1

2)
2 + (x2

1 − x2
2)

2).

Now we look at M = 3 in two dimensions. The general expansion yields κ(2, 3) = 2
with

p2(X, X) = 4 f (0) f ′(0)2(det BX )
2

and BX being the standard 3× 3 matrix for calculation of barycentric coordinates based
on X . Its determinant vanishes iff the points in X are collinear. Thus nondegeneracy of
three-point sets with respect to positive definite radial basis functions is equivalent to the
standard notion of the general position of three points in R2. To look for higher-order
degeneration, we consider three collinear points now, and since everything is invariant
under shifts and orthogonal transformations, we can assume that the data lie on the x-
axis. This boils down to the one-dimensional case, and we get p3(X, X) > 0 with no
further possibility of degeneration. But now we have to look into the first critical case,
i.e., when X is collinear but X j (x) is not. This means that we evaluate the interpolant
off the line defined by X . Theorem 3 does not help here. If we explicitly go back to (6),
we still get convergence if we prove that p2(X, X j (x)) = 0 for all collinear point sets X
and all x ∈ R2. Fortunately, MAPLE calculates

p2(X, X j (x)) = 4 f (0) f ′(0)2(det BX )(det BX j (x))

and thus there are no convergence problems. However, the ratio of the terms p3(X, X j (x))
and p3(X, X) now depends on ϕ.

Now we go for M = 4 in two dimensions and first find κ(2, 4) = 4 from MAPLE, but
it cannot factor the polynomial p4(X, X) properly or write it as a sum of squares. Taking
special cases of three points not on a line, the polynomial p4(X, X) seems to be always
positive except for coalescence. In particular, contrary to expectations, it does not vanish
for four noncollinear points on a circle or a conic. Taking cases of three points on a line,
the polynomial p4(X, X) vanishes iff the fourth point also lies on that line. Thus there
is some experience supporting the conjecture that nondegeneracy of four points in two
dimensions with respect to positive definite functions just means that the points are not
on a line. But if they are on a line, we find k0(X) = 6 due to the one-dimensional case,
and thus p5(X, X) also vanishes. This is confirmed by MAPLE, and we now check the
case where the points of X are on a line but those of X j (x) are not. It turns out that then
(6) holds for k0(X) = 6, and the case does not show divergence.
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The M = 5 situation in R2 has κ(2, 5) = 6. The geometric interpretation of points in
general position with respect to ϕ is unknown, because the zero set of p6(X, X) is hard
to determine in general. If four points are fixed at the corners of the square [0, 1]2, and
if the polynomial 2

3 p6(X, X) is evaluated for inverse multiquadrics with β = −1 as a
function of the remaining point x5 = (ξ, η) ∈ R2, we get the nonnegative polynomial

3ξ 2(1− ξ)2 + 3η2(1− η)2 + (ξ(1− ξ)+ η(1− η))2

which vanishes only at the corners of the square. Thus it can be ruled out that degeneracy
systematically occurs when four or five points are on a circle or three points are on a
line. However, it turns out that p6(X, X) always vanishes if four points are on a line.
If calculated for four points on a line, the next coefficient p7(X, X) vanishes either if
the fifth point also lies on the line, or for β = 0, 2, 3, 7, or for coalescence. The final
degeneration case thus occurs when all five points are on a line, and from one dimension
we then expect k0(X) = 10.

Let us examine the divergence case described by Fornberg et al. in [8]. It occurs when
X consists of five points on a line, while evaluation takes place off that line. The one-
dimensional case teaches us that we should get k0(X) = 10 for five collinear points, and
MAPLE verifies this, at least for the fixed five collinear equidistant points on [0, 1]×{0}.
However, we also find that

p9(X, X1(x)) = −9

8388608
η2(5 f ′(0) f ′′′(0)− 3 f ′′(0)2)

× ( f (0) f ′′(0) f ′′′(0)+ f ′(0) f ′′(0)2 − 2 f ′(0)2 f ′′′(0))

for points x = (ξ, η) ∈ R2. If we put in multiquadrics, i.e., f (t) = (1 + t)β/2, we get
the same result as in [8], which reads

p9(X, X1(x)) = −9

268435456
η2β4(β − 7)(β − 2)2

in our notation, proving that divergence occurs for multiquadrics except for the strange
case β = 7. Another curiosity is that for multiquadrics the value p10(X, X) vanishes
for the conditionally positive definite cases β = 7 and β = 11.790. As expected, this
polynomial is positive for the positive definite cases, e.g., for negative β.

Checking the case where exactly four points of X are on a line, we find that (6) holds
for k0(X) = 7, and thus there is no convergence problem.

4. A Related Class of Polynomial Interpolation Methods

We can ignore the limit process c→ 0 completely if we boldly take (7) to define

uj (x) := pk0(X)(X, X j (x))

pk0(X)(X, X)
(14)

for all 1 ≤ j ≤ M and all x ∈ Rd . The denominator will always be positive if we
start with a positive definite function, and the discussion at the beginning of Section 3
shows that the polynomials pk(X, Y ) will always vanish if either X or Y have two or
more coalescing points. Thus we get Lagrange interpolation polynomials for any kind of
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geometry. The result will be dependent on the function f and its Taylor expansion, and
thus there is a full scale of polynomial interpolation methods which is available without
any limit process. However, it is clear from (7) that polynomial limits of radial basis
function interpolants, if they exist, will usually have the above form. Paper [7] (added
in the refereeing process) by Fornberg and Wright provides a numerical technique and
examples for the multiquadric case. It provides an interesting and completely different
technique, using FFT on the expansion of the interpolant with respect to c in the complex
plane. It will be interesting to study how the polynomial interpolation method of de Boor
and Ron [2], [3], [4] relates to this. However, it uses a different truncation strategy.

Example 2. Let us check how the above technique overcomes the five-point degenera-
tion case in Example 1. If we take the five equidistant points on [0, 1]×{0} and classical
multiquadrics, the Lagrange basis function u0 corresponding to the origin becomes

u0(ξ, η) = 1
3 (ξ − 1)(4ξ − 3)(2ξ − 1)(4ξ − 1)+ 8

21ξη
2(18ξ − 25),

and the second term is missing if we take the Gaussian. For f (t) = log(1 + t) the
additional term is

−2

3339
η2(5195+ 15240ξ − 11424ξ 2 + 1008η2).

There is dependence on f , but no degeneration. We simply ignore p9 and focus on the
quotient of values of p10.

5. Point Sets, Polynomials, and Moments

Our results so far require knowledge and numerical availability of k0(X) and pk0(X)

(X, X j (x)). Section 3 gives a first idea for the evaluation of these quantities, but it still
uses the limit process. It suggests that one looks at polynomials of the form ‖x − y‖2�

2 ,
and we shall use this section to make a fresh start into multivariate polynomials and point
sets. The relation to the earlier sections will turn up later.

Let ¶d
m be the space of all d-variate real-valued polynomials of order m (i.e., of degree

< m), and let X = {x1, . . . , xM} be a fixed set of M points in Rd . With the dimension

Q =
(

m + d − 1

d

)
and a basis p1, . . . , pQ of ¶d

m we can form the Q × M matrices Pm

and the M × M matrices A� with

Pm := (pi (xj ))1≤i≤Q, 1≤ j≤M , A� = ((−1)�‖xj − xk‖2�
2 )1≤ j,k≤M , � ≥ 0,(15)

to provide a very useful notion that is closely related to multivariate divided differences
(see, e.g., de Boor [1], Sauer and Xu [13], Kunkle [9], and Rabut [11]).

Definition 2. A vector α ∈ RM satisfies discrete moment conditions of order m with
respect to X if Pmα = 0 or

M∑
j=1

αj p(xj ) = 0 for all p ∈ ¶d
m

holds. These vectors form a linear subspace MCm(X) := ker Pm of RM for M = #X .
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Note that the definition involves all polynomials of order m, while the following
involves radial polynomials of the form ‖x − xj‖2� for 0 ≤ � < m.

Theorem 4 (Remark 3.1 in Micchelli [10]). A vector α ∈ RM satisfies discrete mo-
ment conditions of order m with respect to X iff

αT A�α = 0(16)

holds for all 0 ≤ � < m.

Note that the condition A�α = 0 would be more restrictive. It will come up later. The
proof of Theorem 4 uses Micchelli’s lemma from [10], which we restate here because
we make frequent use of its proof technique later.

Lemma 7 (Micchelli [10]). If α ∈ RM satisfies discrete moment conditions of order
m, then the numbers αT A�α vanish for all � < m and αT Amα is nonnegative. The latter
quantity vanishes iff α satisfies discrete moment conditions of order m + 1.

Proof. Let us take a vector α ∈ RM satisfying discrete moment conditions of order m,
and pick any � ≤ m to form

(−1)�αT A�α =
M∑

j=1

M∑
k=1

αjαk(‖xj − xk‖2
2)
�

=
M∑

j=1

M∑
k=1

αjαk

∑
�1+�2+�3=�

�!

�1! �2! �3!
‖xj‖2�1

2 (−2(xj , xk))
�2‖xk‖2�3

2

=
M∑

j=1

M∑
k=1

αjαk

∑
�1+�2+�3=�
�2+2�3≥m
�2+2�1≥m

�!

�1! �2! �3!
‖xj‖2�1

2 (−2(xj , xk))
�2‖xk‖2�3

2 .

This value vanishes for � < m, and this also proves one direction of the second statement
if we formulate it for m − 1. For � = m the two inequalities can only hold if �1 = �3.
Thus (−1)� = (−1)�2 , and we can write in multi-index notation

αT A�α =
M∑

j=1

M∑
k=1

αjαk(−1)�‖xj − xk‖2�
2

=
�∑

�2=0
�−�2=:2�1∈2Z

2�2
�!

�1! �2! �1!

M∑
j=1

M∑
k=1

αjαk‖xj‖�−�2‖xk‖�−�2(xj , xk)
�2
2

=
�∑

�2=0
�−�2=:2�1∈2Z

2�2
�!

�1! �2! �1!

M∑
j=1

M∑
k=1

αjαk‖xj‖�−�2‖xk‖�−�2
∑
i ∈Nd

0|i |=�2

(
�2

i

)
xi

j x i
k
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=
�∑

�2=0
�−�2=:2�1∈2Z

2�2
�!

�1! �2! �1!

∑
i ∈Nd

0|i |=�2

(
�2

i

) M∑
j=1

M∑
k=1

αjαk‖xj‖�−�2‖xk‖�−�2 xi
j x i

k

=
�∑

�2=0
�−�2=:2�1∈2Z

2�2
�!

�1! �2! �1!

∑
i ∈Nd

0|i |=�2

(
�2

i

)( M∑
j=1

αj‖xj‖�−�2 xi
j

)2

≥ 0.

If this vanishes, all expressions

M∑
j=1

αj‖xj‖�−�2 xi
j

with 0 ≤ �2 ≤ �, � − �2 ∈ 2Z, i ∈ Nd
0 , |i | = �2 must vanish, and this implies that α

satisfies discrete moment conditions of order �+ 1 = m + 1.

It is now easy to prove Theorem 4. If α satisfies discrete moment conditions up to
order m, Micchelli’s lemma proves that (16) holds. For the converse, assume that (16)
is true for some α ∈ RM and proceed by induction. There is nothing to prove for order
zero, and if we assume that we have the assertion up to order m−1 ≥ 0, then we use it to
conclude that α satisfies discrete moment conditions of order m − 1 because it satisfies
(16) up to � = m − 1. Then we apply Micchelli’s lemma again on the level m − 1, and
since we have αT Am−1α = 0, we conclude that α satisfies discrete moment conditions
of order m.

Discrete moment conditions are useful for degree reduction of linear combinations of
high-degree radial polynomials:

Lemma 8. If a vector α ∈ RM satisfies discrete moment conditions of order m, then
for all 2� ≥ m the polynomials

M∑
k=1

αk‖x − xk‖2�
2

have degree at most 2�− m.

Proof. Assume that α ∈ RM satisfies discrete moment conditions of order m. We look
at

M∑
k=1

αk‖x − xk‖2�
2 =

M∑
k=1

αk

∑
�1+�2+�3=�

‖x‖2�1
2 (−2(x, xk))

�2‖xk‖2�3
2

=
M∑

k=1

αk

∑
�1+�2+�3=�
�2+2�3≥m

�!

�1! �2! �1!
‖x‖2�1

2 (−2(x, xk))
�2‖xk‖2�3

2 ,

and this is of degree at most 2�1 + �2 = 2�− 2�3 − �2 ≤ 2�− m.
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Now we use that the discrete moment spaces for a finite point set X = {x1, . . . , xM} ⊂
Rd form a decreasing sequence

· · · ⊆ MCm+1(X) ⊆ MCm(X) ⊆ · · · ⊆ MC0(X) = RM .(17)

This sequence must stop with some zero space at least at order M , because we can always
separate M points by polynomials of degree M − 1, using properly placed hyperplanes.

Definition 3. For any finite point set X = {x1, . . . , xM} ⊂ Rd there is a unique minimal
natural number µ = µ(X) such that MCµ(X) = {0}. We call µ(X) the discrete moment
order of X .

With this notion, the sequence (17) can be written as

MCµ(X) = {0} �= MCµ−1(X) ⊆ · · · ⊆ MC0(X) = RM .(18)

There is a fundamental observation linked to the discrete moment order.

Theorem 5. Any well-defined linear polynomial interpolation process based on a set
X must work with polynomials of order at least µ(X).

Proof. If the interpolation works with polynomials of order m, the matrix Pm must be
of full rank M . But since MCµ−1 = ker Pµ−1 is not trivial, we have m ≥ µ.

Definition 4. A polynomial interpolation process for a point set X is of minimal order
if it works with polynomials of order at most µ(X).

This notion is considerably weaker than “minimal-degree interpolation” as studied by
Sauer [12] and the notions of “least” interpolation and the “degree-reducing” property
of de Boor and Ron [2], [3], [4].

Remark. Below we shall see a couple of minimal-order polynomial interpolation
processes on X , including the one by de Boor and Ron.

We now go back to where we started from, and relate µ(X) to the quantity k0(X)
defined in (5).

Lemma 9. For all sets X and Y of M points in Rd we have

pk(X, Y ) = 0 for all k with 2k < µ(Y )− 1,

and 2k0(X) ≥ µ(X)− 1.

Proof. Take a vector ρ ∈ ZM
0 and form the matrix

(‖xi − yj‖2ρi
2 )1≤i, j≤M .
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We multiply by a nonzero vector α ∈ MCm for m < µ := µ(Y ) and get

M∑
j=1

αj‖xi − yj‖2ρi
2 =

M∑
j=1

αj

∑
�1+�2+�3=ρi

ρi

�1! �2! �3!
‖xi‖2�1(−2(xT

i yj ))
�2‖yj‖2�3

2

=
ρi∑
�1=0

‖xi‖2�1
∑

�2+�3=ρi−�1
�2+2�3≥m

ρi

�1! �2! �3!

M∑
j=1

αj (−2(xT
i yj ))

�2‖yj‖2�3
2

for all i, 1 ≤ i ≤ M . Since �2 + 2�3 ≥ m means 2ρi − m ≥ 2�1 + �2, this vanishes for
those i where 2ρi < m. Thus the matrix is singular if 2ρi < m for all i or if 2‖ρ‖∞ < m.
Since the polynomials pk(X, Y ) are superpositions of determinants of such matrices
with 2‖ρ‖1 = 2k ≥ 2‖ρ‖∞, all polynomials pk(X, Y ) are zero for 2k < m. The special
case X = Y and the definition of k0(X) imply the second statement.

Lemma 10. The Lagrange basis polynomials of (7) are of degree at most 2k0(X) −
µ(X)+ 1.

Proof. We look at the above argument, but swap the meaning of X and Y there, replacing
X by X j (x) and Y by X . The determinants vanish unless 2‖ρ‖∞ ≥ µ(X)− 1, and the
remaining terms are of degree at most

2�1 + �2 = 2ρi − �2 − 2�3 ≤ 2ρi − (µ(X)− 1)

≤ 2‖ρ‖∞ − µ(X)+ 1 ≤ 2‖ρ‖1 − µ(X)+ 1 ≤ 2k − µ(X)+ 1

for k = k0(X) = ‖ρ‖1.

We note that there is a lot of leeway between the result of Lemma 10 and the actually
observed degrees of the pk0(X)(X, X j (x)). The latter seem to be bounded above by
µ(X)− 1 instead of 2k0(X)− (µ(X)− 1).

Theorem 6. If all expansion coefficients fk of f are nonzero, then

k0(X) =
µ(X)−1∑

j=1

j (dim MCj − dim MCj+1) ≥ µ(X)− 1.(19)

Proof. Let µ = µ(X), m := µ − 1, and take a nonzero vector α ∈ MCm to evaluate
the quadratic form

αT Ac,X,Xα =
∞∑

s=0

c2s fsα
T Asα

=
∞∑

s=m

c2s fsα
T Asα

= c2m fmα
T Amα +

∞∑
s=m+1

c2s fsα
T Asα.
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By Courant’s minimum-maximum principle, this implies that Ac,X,X has at least
dim MCm eigenvalues which decay at least as fast as c2m to zero for c→ 0.

But there are no eigenvalues that decay faster than that. To see this, take, for each
c > 0, a normalized nonzero eigenvector αc such that the smallest eigenvalue

αT
c Ac,X,Xαc =

∞∑
s=0

c2s fsα
T
c Asαc =: λc

decays like c2m or faster. The coefficients αT
c Asαc can increase with s only like

(diam(X))2s , and thus we have a stable limit of the analytic function λc of c with
respect to c → 0. Now we pick a sequence of c’s that converges to zero such that αc

converges to some nonzero normalized vector α. Since the decay is assumed to be like
c2m or faster, we see that necessarily α ∈ MCm . Because of α /∈ MCµ = {0} and since
we assume fm �= 0 the function λc of c cannot decay faster than c2m for c→ 0. Going
back to Courant’s minimum-maximum principle, we now know that Ac,X,X has precisely
dim MCm eigenvalues that decay exactly like c2m to zero for c→ 0.

We can now repeat this argument on the subspace of MCm−1 that is orthogonal to
MCm . For each nonzero vector of this space, the quadratic form decays like c2(m−1),
and there are dim MCm−1 − dim MCm linear independent vectors with this property.
Now we look for arbitrary vectors αc that are orthogonal to the already determined
dim MCm eigenvectors of Ac,X,X with eigenvalues of decay c2m , and we assume that
they provide eigenvalues with fastest possible decay. This decay cannot be of type c2m or
faster due to the assumed orthogonality, which allows passing to the limit. It must thus
be of exact decay c2(m−1). Induction now establishes the fact that for each j, 0 ≤ j ≤ m,
there are dim MCj − dim MCj+1 eigenvalues of Ac,X,X with exact decay like c2 j for
→ 0. Thus the determinant decays exactly like the product of these, and this proves our
assertion.

Note that the above discussion fails to prove that the limiting polynomial interpolation
process coming from a smooth radial basis function is of minimal order in the case of
nonvanishing expansion coefficients. Numerical results by Driscoll and Fornberg [6]
show that nonminimal degrees actually occur if expansion coefficients vanish.

Though k0(X) will exceed µ(X), for instance in one-dimensional situations, there is
plenty of cancellation in the polynomials pk0(X)(X, X j (x)) that we have not accounted for,
so far. On the other hand, we have not found any example with nonvanishing expansion
coefficients where the polynomial limit of a radial basis function interpolation is not of
minimal order.

There is another interesting relation ofµ to the spaces spanned by radial polynomials:

Lemma 11. Define the M-vectors

F�(x) := ((−1)�‖x − xk‖2�
2 )1≤k≤M .

Then the M × M(s + 1) matrix with columns F�(xj ), 1 ≤ j ≤ M , 0 ≤ � ≤ s, has full
rank M if s + 1 ≥ µ, and µ is the smallest possible number with this property.
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Proof. Assume that the matrix does not have full rank M for a fixed s. Then there is a
nonzero vector α ∈ RM such that

αT A� = 0 for all 0 ≤ � ≤ s,

and by Theorem 4 this implies discrete moment conditions of order s+ 1. Thus s+ 1 ≤
µ− 1.

This teaches us that when aiming at interpolation by radial polynomials of the form
‖x − xk‖2�

2 one has to go up to � = µ− 1 to get anywhere. But in view of Theorem 5,
which states a minimal order µ(X) instead of 2µ(X)− 1 in Lemma 11, we have to find
order-reducing linear combinations of radial polynomials which make up a minimal-
order basis of an M-dimensional subspace of polynomials. The following notion does
this and will be very helpful for the rest of the paper.

Definition 5. A discrete moment basis of RM with respect to X is a basis

α1, . . . , αM such that α j ∈ MCtj \MCtj+1

for the decomposition sequence (18) and t1 = 0 ≤ · · · ≤ tM = µ− 1.

Remark. A discrete moment basisα1, . . . , αM of RM can be chosen to be orthonormal,
when starting with αM , spanning the spaces MCµ−1 ⊆ · · · ⊆ M0 = RM one after the
other. But there are other normalizations that make sense, in particular the one that uses
conjugation via A� on MC�\MC�+1, because this matrix is positive definite there due to
Micchelli’s lemma. There is a theoretical and numerical connection of discrete moment
bases to properly pivoted LU factorizations of Vandermonde-type matrices of values
of polynomials (see also the papers [3], [4] of de Boor and Ron and [13] of Sauer and
Xu), but we shall neither go into detail nor require the reader to figure this out before we
proceed.

We now consider the polynomials

vj (x) :=
M∑

i=1

α
j
i ‖x − xi‖2tj , 1 ≤ j ≤ M,(20)

which are of degree at most tj ≤ µ due to Lemma 8 and the definition of the discrete
moment basis. They are low-degree linear combinations of radial polynomials, and their
definition depends crucially on the geometry of X .

Lemma 12. The M × M matrix with entries vj (xk) is nonsingular.

Proof. We multiply this matrix with the nonsingular M × M matrix containing the
discrete moment basis α1, . . . , αM and get a matrix with entries

γjm =
M∑

i=1

M∑
k=1

α
j
i α

m
k ‖xi − xk‖2tj
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for 1 ≤ j,m ≤ M . Consider m > j and use tm ≥ tj to see that γjm = 0 as soon
as tm > tj , because the entries can be written as values of a polynomial of degree
2tj − tj − tm < 0. Thus the matrix is block triangular, and the diagonal blocks consist
of entries α j

i α
m
k ‖xi − xk‖2t with t = tj = tm . But these symmetric submatrices must

be definite due to Lemma 7 and our construction of a discrete moment basis. We even
could have chosen the basis such that the diagonal blocks are unit matrices, if we had
used conjugation with respect to At .

Theorem 7. A polynomial interpolation of minimal order on X is possible using the
functions vj of Lemma 12. These are of order at most µ = µ(X), and thus

(
µ(X)+ d

d

)
≤ M ≤

(
µ(X)+ d − 1

d

)
≤
(

k0(X)+ d

d

)
.

Example 3. Let us look at the special case with M = 4, d = 2, and points

x1 := (0, 0)T , x2 := (1, 0)T , x3 := (0, 1)T , x4 := ( 1
2 , 1)T .

The discrete moment conditions on vectors α ∈ R4 are

4∑
j=1

αj = 0 for all α ∈ MC1,

4∑
j=1

αj = 0, α2 + α4/2 = 0, α3 + α4 = 0 for all α ∈ MC2.

Furthermore, we find MC3 = {0},MC2 = span{α4 := (1,−1,−2, 2)T }, MC0 = R4,
and MC1\MC2 = span{α2 := (1,−1, 0, 0)T ,α3 := (1, 0,−1, 0)T }, such that a discrete
moment basis of R4 can be formed by α1 := (1, 0, 0, 0)T with α2, α3, and α4 together
with t0 = 0 < t1 = t2 = 1 < t3 = 2 = µ − 1. From Theorem 6 we conclude that
k0(X) = 1 · 2 + 2 · 1 = 4. MAPLE confirms this, and the Lagrange basis of the form
(14) comes out to be quadratic for all f that one could start with, but the result depends
on f . For example, the Lagrange basis function for the origin is

1− 2
9 x2+ 8

9 xy− 7
9 x−y for f (t)=e−t , ϕ = Gaussian,

1
37 (37+32xy−35y−10x2−2y2−27x) for f (t)=1/(1+t), ϕ = inverse multiquadric.

The Gaussian case coincides with the de Boor/Ron solution from Section 6 of [3]. The
method based on (20) yields the basis function

1
19 (19− 13x − 17y − 6x2 − 2y2 + 16xy).

Thus we have different methods, but we note that the de Boor/Ron interpolation method
coincides with the limit of interpolation with shifted and scaled Gaussians.
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6. The Method of de Boor and Ron Revisited

The goal of this section is to prove Theorem 2. For this we require at least a scaled
version of the de Boor/Ron technique, and we take the opportunity to rephrase with
slightly increased generality.

For all β ∈ Zd
0 let wβ be a positive real number, and consider the inner product

(p, q)w :=
∑
β∈Zd

0

1

wβ
(Dβ p)(0)(Dβq)(0)

on the space ¶d
∞ of all d-variate polynomials. Such more general inner products have

been considered before, e.g., by T. Sauer. The de Boor/Ron interpolant arises in the
special case wβ = β!.

Now we want to link the theory to radial basis function techniques. If we assume∑
β∈Zd

0

wβ

β!2
<∞

and define the kernel

Kw(x, y) :=
∑
β∈Zd

0

wβ
xβ

β!

yβ

β!
,(21)

all polynomials p ∈ ¶d
∞ are reproduced via

p(x) = (p, Kw(x, ·))w(22)

and this identity carries over to the Hilbert space completion

Hw :=
{

g ∈ C∞(Rd) : g(x) =
∑
β∈Zd

0

(Dβg)(0)
xβ

β!
,
∑
β∈Zd

0

1

wβ
(Dβg)2(0) <∞

}

of the polynomials under the above inner product. The kernel Kw is positive definite
on [−1, 1]d , and larger domains can be treated by scaling. Since polynomials separate
points, it is clear that for all finite sets X = {x1, . . . , xN } ⊂ [−1, 1]d we have linear
independence of the functions Kw(·, xj ), and interpolation in X by the span of these
functions is uniquely possible.

So far, we used standard arguments of radial basis function theory. In the papers of
de Boor and Ron, transition to a polynomial interpolation process is done via truncation,
not via passing to the limit of a scaling. For all functions g fromHw the notation

g[k](x) :=
∑
β∈Zd

0
|β|=k

(Dβg)(0)
xβ

β!

is introduced, while g↓ stands for the nonzero function g[k] with minimal k. For a finite
set X = {x1, . . . , xN } ⊂ [−1, 1]d the spaces

Ew,X := span {Kw(x, ·) : x ∈ X}, Pw,X := span {g↓ : g ∈ Ew,X },
are introduced, and Pw,X is a space of polynomials.
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Theorem 8. Interpolation on X by functions in Pw,X is uniquely possible.

Proof. Assume that there is some nonzero p ∈ Pw,X such that p|X = 0. We take some
nontrivial function gp such that p = gp↓. Then (22) yields orthogonality (p, g)w = 0
for all g ∈ Ew,X , and we have the contradiction

0 = (p, gp)w = (gp↓, gp)w = (gp↓, gp↓)w.
So far, we have followed the proof of de Boor and Ron, but now we want to use a
discrete moment basisα1, . . . , αM to link the process with what we have done in previous
sections. We define functions

vr (y) :=
M∑

j=1

αr
j Kw(xj , y) =

∑
|β|≥tr

wβ
yβ

β!

M∑
j=1

αr
j

xβj
β!
, gr := vr↓, 1 ≤ r ≤ M.(23)

Due to the property of a discrete moment basis we see that not all of the quantities

cβ,r :=
M∑

j=1

αr
j

xβj
β!

for |β| = tr can vanish, because otherwiseαr ∈ MCtr+1. Thus we have the homogeneous
representation

gr (y) = vr↓(y) =
∑
|β|=tr

wβcβ,r
yβ

β!
(24)

and (gr , gs)w = 0 for tr �= ts . The matrix formed by the (gr , gs)w is a positive semidefinite
block-diagonal Gramian. To prove its definiteness, we can focus on a single diagonal
block with t = tr = ts . Collecting the indices r with tr = t into a set It , we assert linear
independence of the functions gr for r ∈ It . For a vanishing linear combination

0 =
∑
r∈It

γr gr (y)

=
∑
r∈It

γr

∑
|β|=t

wβcβ,r
yβ

β!

=
∑
|β|=t

yβ

β!
wβ

∑
r∈It

γr cβ,r

=
∑
|β|=t

yβ

β!
wβ

∑
r∈It

γr

M∑
j=1

αr
j

xβj
β!

=
∑
|β|=t

yβ

β!
wβ

M∑
j=1

(∑
r∈It

γrα
r
j

)
xβj
β!

we conclude that
∑

r∈It
γrα

r is a vector in MCt+1, and this can hold only if the coeffi-
cients are zero. Thus the space Pw,X contains the M linearly independent homogeneous
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polynomials g1, . . . , gM of increasing degrees 0 = t1 ≤ · · · ≤ tM = µ− 1, and the the-
orem is proven. Due to Theorem 5, the order is minimal, as known from the de Boor/Ron
papers.

We now proceed toward proving that the limit of interpolants by Gaussians is equal
to the de Boor/Ron polynomial interpolant. We need something that links kernels of the
form (21) to radial kernels.

Lemma 13. If ϕ is a positive definite analytic radial basis function that can be written
via an analytic function f satisfying (1) and (13), then

f (xT y) =
∑
β∈Zd

0

f |β|(0)
β!

xβ yβ =
∑
β∈Zd

0

f|β|xβ yβ(25)

for all x, y ∈ Rd .

Proof. We use the Bernstein–Widder representation

f (r) =
∫ ∞

0
e−r t dµ(t), r ≥ 0,

to get

(−1) j f ( j)(0) = (−1) j j! f j =
∫ ∞

0
t j dµ(t) ∈ (0,∞) for all j ≥ 0,

and similarly, factoring the exponential in the integral,

Dβ
x f (xT y) = yβ

∫ ∞
0
(−1)|β|t |β|e−t xT y dµ(t)

and

Dβ
x f (xT y)|x=0 = yβ f |β|(0) = yββ! f|β|

where Dβ
x takes derivatives of order β with respect to x . The assertion follows from

putting the result into the power series expansion at zero.

At first sight, the above result is disappointing, because one cannot easily use (25) in
(21), since the coefficients in (25) are alternating. However, a closer look reveals that the
major part of the de Boor/Ron theory does not rely on the signs of the coefficients. It is the
link to positive definite radial basis functions as reproducing kernels that does not work
without further arguments. This has a positive consequence: the generalized de Boor/Ron
approach as given at the start of this section will yield many new cases of positive definite
nonradial interpolants with polynomial truncations that furnish polynomial interpolants
of minimal order in the sense of this paper. On the downside, we cannot expect to find a
direct link between interpolation by general positive definite radial basis functions and
the generalized de Boor/Ron method.
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But for Gaussians, we can add some more work, factoring

exp(−c‖xj − xk‖2
2) = exp(−c‖xj‖2

2) · exp(2cxT
j xk) · exp(−c‖xk‖2

2).

We then rewrite the Lagrange system

M∑
j=1

uc
j (x) exp(−c‖xj − xk‖2

2) = exp(−c‖x − xk‖2
2), 1 ≤ k ≤ M,

in the form
M∑

j=1

zc
j (x) exp(2cxT

j xk) =
M∑

j=1

uc
j (x) exp(−c(‖xj‖2 − ‖x‖2)) exp(2cxT

j xk)

= exp(2cxT xk), 1 ≤ k ≤ M,

with zc
j (x) := uc

j (x) exp(−c(‖xj‖2 − ‖x‖2)), 1 ≤ j ≤ M . Now we can use the tech-
nique of the previous lemma directly, putting in the expansions for the exponential and
working with the kernel Kc(x, y) := exp(2cxt y) in our presentation of the de Boor/Ron
technique, with a slight abuse of notation. This implies that the functions zc

j (x) form a
Lagrange basis for the span of the Kc(xj , x) = exp(2cxt

j x). Any interpolation by scaled
Gaussians can be converted by the above transformation to and from an interpolation
using the kernel Kc.

We now look at what happens if the de Boor/Ron truncation process is carried out on
interpolants defined via Kc. The functions in (24) come out as

gc
r (y) =

∑
|β|=tr

wc
βcβ,r

yβ

β!

=
∑
|β|=tr

(2c)|β|

β!
cβ,r

yβ

β!

= (2c)tr
∑
|β|=tr

1

β!
cβ,r

yβ

β!

= (2c)tr gd B R
r (y),

i.e., they are just scalar multiples of the functions gd B R
r of the de Boor/Ron process. Thus

the polynomial space spanned by truncation of the Kc is independent of c and coincides
with the de Boor/Ron polynomial interpolation space. Note that de Boor and Ron have
already observed that Pw,X is independent of scaling.

We have successfully moved from interpolation by Gaussian radial basis functions to
interpolation by scaled exponentials, and we have seen that the truncation of the latter
is the de Boor/Ron polynomial space. But we now have to investigate the limit of the
interpolants spanned by the scaled exponentials Kc(xj , ·) for c→ 0 to see whether they
converge toward the de Boor/Ron truncation.

We go back to (23) to define functions vc
r as

vc
r (y) :=

M∑
j=1

αr
j Kc(xj , y)
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=
∑
|β|≥tr

(2c)tr

β!

yβ

β!
cβ,r

=
∑
s≥tr

(2c)s
∑
|β|=s

1

β!

yβ

β!
cβ,r ,

hence

lim
c→0

vc
r (y)

(2c)tr
= gd B R

r (y), 1 ≤ r ≤ M.

This means that the space spanned by the Kc(xj , ·) contains a basis that converges toward
a basis of the de Boor/Ron polynomial space for c → ∞. Consequently, the Lagrange
basis for interpolation in the span of the Kc(xj , ·) converges toward a polynomial limit.
This ends the proof of Theorem 2.

7. Preconditioning

The transition from the Gaussian system to the scaled basis vc
r (y)/(2c)tr should be

useful as a preconditioning technique. In general, we show in this section how to use
a discrete moment basis for preconditioning badly conditioned matrices arising from
interpolation by general smooth radial basis functions. This is not yet intended for large-
scale numerical use, but it yields full insight into what is going on for kernels whose
flatness leads to ill-conditioning. It seems to be the first investigation in this direction.

We go back to the beginning of the paper and precondition the matrix Ac,X,X arising
in (2) by a scaled discrete moment basis

c−t1/2α1, . . . , c−tM/2αM(26)

in the following way. If we put the discrete moment basis into an M ×M matrix Bc and
form the positive definite symmetric matrix Z(c) := Bc Ac,X,X BT

c , the matrix entries
will be

zrs(c) :=
M∑

j,k=1

αr
j c−tr /2αs

kc−ts/2ϕc(‖xj − xk‖2), 1 ≤ r, s ≤ M,

=
∞∑

n=0

fncn−tr /2−ts/2
M∑

j,k=1

αr
j α

s
k‖xj − xk‖2n

2

=
∞∑
n=0

2n≥tr+ts

fncn−tr /2−ts/2
M∑

j,k=1

αr
j α

s
k‖xj − xk‖2n

2

with well-defined limits

zrs(0) =
{

f(tr+ts )/2
∑M

j,k=1 α
r
j α

s
k‖xj − xk‖tr+ts

2 , tr + ts even
0, else

}

for c→ 0. The matrix Z(0) is positive semidefinite by construction, and we assert
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Theorem 9. The matrix Z(0) is positive definite if all expansion coefficients are
nonzero.

Proof. We use the proof technique of Theorem 6. The product of all eigenvalues
of Ac,X,X decays with exponent k0(X) as in (19), while the maximum eigenvalue stays
bounded above independent of c. But our matrix transformation performs a multiplication
of the spectral range by c−k0(X), because k0(X) =

∑M
j=1 tj is just another way to write

(19). Thus the smallest eigenvalue of the product must stay away from zero when c→ 0.
But since the matrix Z(0) is well defined, the maximal eigenvalue of the product Z(c)
must be bounded, and Z(0) altogether has a strictly positive spectrum.

Example 4. If we go back to the four points in R2 of Example 3 and scale the discrete
moment basis as in (26) via

Bc :=




1 0 0 0
1/
√

c −1/
√

c 0 0
1/
√

c 0 −1/
√

c 0
1/c −1/c −2/c 2/c


 ,

MAPLE produces a limit matrix

Z(0) :=




1 0 0 1
2

0 2 0 0
0 0 2 0
1
2 0 0 19

4




for Gaussians and

Z(0) :=




1 0 0 − 1
4

0 −1 0 0
0 0 −1 0
− 1

4 0 0 − 19
16




for (negative definite) inverse multiquadrics with β = −1. If we take four equidistant
points on the line [0, 1]× {0}, we find

Z(0) :=




1 0 − 2
9 0

0 2
9 0 − 4

27
− 2

9 0 4
27 0

0 − 4
27 0 40

243


 for Bc :=




1 0 0 0
1/
√

c −1/
√

c 0 0
1/c −2/c 1/c 0

1/c
√

c −3/c
√

c 3/c
√

c −1/c
√

c




in the case of Gaussians. The discrete moment basis now contains divided differences,
and the zero structure is different from the previous case, because we have tj = j − 1,
1 ≤ j ≤ 4, here.
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