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Greedy-Type Approximation in
Banach Spaces and Applications

V. N. Temlyakov

Abstract. We continue to study the efficiency of approximation and convergence
of greedy-type algorithms in uniformly smooth Banach spaces. Two greedy-type ap-
proximation methods, the Weak Chebyshev Greedy Algorithm (WCGA) and the Weak
Relaxed Greedy Algorithm (WRGA), have been introduced and studied in [24]. These
methods (WCGA and WRGA) are very general approximation methods that work well
in an arbitrary uniformly smooth Banach space X for any dictionary D. It turns out
that these general approximation methods are also very good for specific dictionaries. It
has been observed in [7] that the WCGA and WRGA provide constructive methods in
m-term trigonometric approximation in L p , p ∈ [2,∞), which realize an optimal rate
of m-term approximation for different function classes. In [25] the WCGA and WRGA
have been used in constructing deterministic cubature formulas for a wide variety of
function classes with error estimates similar to those for the Monte Carlo Method. The
WCGA and WRGA can be considered as a constructive deterministic alternative to (or
substitute for) some powerful probabilistic methods. This observation encourages us to
continue a thorough study of the WCGA and WRGA.

In this paper we study modifications of the WCGA and WRGA that are motivated
by numerical applications. In these modifications we are able to perform steps of the
WCGA (or WRGA) approximately with some controlled errors. We prove that the
modified versions of the WCGA and WRGA perform as well as the WCGA and WRGA.

We give two applications of greedy-type algorithms. First, we use them to provide
a constructive proof of optimal estimates for best m-term trigonometric approximation
in the uniform norm. Second, we use them to construct deterministic sets of points
{ξ1, . . . , ξm} ⊂ [0, 1]d with the L p discrepancy less than Cp1/2m−1/2, C is an effective
absolute constant.

1. Introduction

The purpose of this paper is to continue the investigations of nonlinear m-term ap-
proximation. We concentrate here on studying m-term approximation with regard to
redundant dictionaries in Banach spaces. This paper is based on paper [24] which in turn
is a combination of ideas and methods developed for Banach spaces in a fundamental
paper [8], with the approach used in [23] in the case of Hilbert spaces. Papers [8] and
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[23] contain detailed historical remarks and we refer the reader to those papers. Two
greedy-type approximation methods, the Weak Chebyshev Greedy Algorithm (WCGA)
and the Weak Relaxed Greedy Algorithm (WRGA), have been introduced and studied in
[24]. These methods (WCGA and WRGA) are very general approximation methods that
work well in an arbitrary uniformly smooth Banach space X for any dictionary D (see
below). Surprisingly, it turns out that these general approximation methods are also very
good for specific dictionaries. It has been observed in [7] that the WCGA and WRGA
provide constructive methods in m-term trigonometric approximation in L p, p ∈ [2,∞),
which realize an optimal rate of m-term approximation for different function classes.
In [25] the WCGA and WRGA have been used in constructing deterministic cubature
formulas for a wide variety of function classes with error estimates similar to those for
the Monte Carlo Method. It appears that the WCGA and WRGA can be considered as a
constructive deterministic alternative to (or substitute for) some powerful probabilistic
methods. This observation encourages us to continue a thorough study of the WCGA and
WRGA.

In Sections 2 and 3 we study modifications of the WCGA and WRGA that are mo-
tivated by numerical applications. In these modifications we are able to perform steps
of the WCGA (or WRGA) approximately with some controlled errors. We prove that
the modified versions of the WCGA and WRGA perform as well as the WCGA and
WRGA. In Sections 2 and 3 we develop the theory of the Approximate Weak Chebyshev
Greedy Algorithm (AWCGA) and the Approximate Weak Relaxed Greedy Algorithm
(AWRGA) in a general setting: X is an arbitrary uniformly smooth Banach space and
D is any dictionary. We keep the term greedy algorithm in the names of these two ap-
proximation methods for two reasons. First, this term has been used in previous papers
and has become a standard name for procedures like WCGA and WRGA. For more
discussion of the terminology see [26, Remark 1.1, p. 38]. Second, clearly, in the above
general setting the term algorithm cannot be confused with the same term used in a more
restricted sense, say, in computer science. We note that in the case of finite-dimensional
X and finite D the above methods are algorithms in a strict sense.

In Section 4 we use the WCGA and WRGA to build a constructive method for m-term
trigonometric approximation in the uniform norm. It is known that the case of approxi-
mating by m-term trigonometric polynomials in the uniform norm is the most difficult.
We note that in the case of L p-norms with p <∞ the corresponding constructive method
has been provided in [7].

In Section 5 we study a slight modification of the incremental-type algorithm from
[8]. We apply that algorithm to construct deterministic sets of points with small L p

discrepancy and also with small symmetrized L p discrepancy.
Let X be a Banach space with norm ‖ · ‖. We say that a set of elements (functions) D

from X is a dictionary if each g ∈ D has norm less than or equal to one (‖g‖ ≤ 1),

g ∈ D implies −g ∈ D,
and spanD = X . We note that in [24] we required in the definition of a dictionary
normalization of its elements (‖g‖ = 1). However, it is easy to check that the arguments
from [24] work under assumption ‖g‖ ≤ 1 instead of ‖g‖ = 1. In the applications
in Section 5 it will be more convenient for us to have an assumption ‖g‖ ≤ 1 than
normalization of a dictionary.
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In this paper we will study two types of greedy algorithms with regard to D. For an
element f ∈ X we denote by Ff a norming (peak) functional for f :

‖Ff ‖ = 1, Ff ( f ) = ‖ f ‖.
The existence of such a functional is guaranteed by the Hahn–Banach theorem. Let
τ := {tk}∞k=1 be a given sequence of nonnegative numbers tk ≤ 1, k = 1, . . . . We
first define (see [24]) the WCGA that is a generalization for Banach spaces of the Weak
Orthogonal Greedy Algorithm defined and studied in [23] (see also [6] for the Orthogonal
Greedy Algorithm).

Weak Chebyshev Greedy Algorithm (WCGA). We define f c
0 := f c,τ

0 := f . Then
for each m ≥ 1 we inductively define:

(1) ϕc
m := ϕc,τ

m ∈ D is any satisfying

Ff c
m−1
(ϕc

m) ≥ tm sup
g∈D

Ff c
m−1
(g).

(2) Define


m := 
τ
m := span{ϕc

j }mj=1,

and define Gc
m := Gc,τ

m to be the best approximant to f from 
m .
(3) Denote

f c
m := f c,τ

m := f − Gc
m .

We study here the following modification of the WCGA. Let three sequences, τ =
{tk}∞k=1, δ = {δk}∞k=0, η = {ηk}∞k=1, of numbers from [0, 1] be given.

Approximate Weak Chebyshev Greedy Algorithm (AWCGA). We define f0 :=
f τ,δ,η0 := f . Then for each m ≥ 1 we inductively define:

(1) Fm−1 is a functional with properties

‖Fm−1‖ ≤ 1, Fm−1( fm−1) ≥ ‖ fm−1‖(1− δm−1),

and ϕm := ϕτ,δ,ηm ∈ D is any satisfying

Fm−1(ϕm) ≥ tm sup
g∈D

Fm−1(g).

(2) Define


m := span{ϕj }mj=1,

and denote

Em( f ) := inf
ϕ∈
m

‖ f − ϕ‖.

Let Gm ∈ 
m be such that

‖ f − Gm‖ ≤ Em( f )(1+ ηm).
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(3) Denote

fm := f τ,δ,ηm := f − Gm .

The term approximate in this definition means that we use a functional Fm−1 that is an
approximation to the norming (peak) functional Ffm−1 , and also we use an approximant
Gm ∈ 
m which satisfies a weaker assumption than being a best approximant of f from

m . We note that there exists (see [10]) a version of the Approximate Weak Greedy
Algorithm in Hilbert spaces.

The following WRGA has been studied in [24]:

Weak Relaxed Greedy Algorithm (WRGA). We define f r
0 := f r,τ

0 := f and Gr
0 :=

Gr,τ
0 := 0. Then for each m ≥ 1 we inductively define:

(1) ϕr
m := ϕr,τ

m ∈ D is any satisfying

Ff r
m−1
(ϕr

m − Gr
m−1) ≥ tm sup

g∈D
Ff r

m−1
(g − Gr

m−1).

(2) Find 0 ≤ λm ≤ 1 such that

‖ f − ((1− λm)G
r
m−1 + λmϕ

r
m)‖ = inf

0≤λ≤1
‖ f − ((1− λ)Gr

m−1 + λϕr
m)‖

and define

Gr
m := Gr,τ

m := (1− λm)G
r
m−1 + λmϕ

r
m .

(3) Denote

f r
m := f r,τ

m := f − Gr
m .

We will study here the following approximate version of the WRGA:

Approximate Weak Relaxed Greedy Algorithm (AWRGA). We define f ar
0 :=

f ar,τ,δ,η
0 := f and Gar

0 := Gar,τ,δ,η
0 := 0. Then for each m ≥ 1 we inductively de-

fine:

(1) Far
m−1 is a functional with properties

‖Far
m−1‖ ≤ 1, Far

m−1( f ar
m−1) ≥ ‖ f ar

m−1‖(1− δm−1);
ϕar

m := ϕar,τ,δ,η
m ∈ D is any satisfying

Far
m−1(ϕ

ar
m − Gar

m−1) ≥ tm sup
g∈D

Far
m−1(g − Gar

m−1).

(2) Find 0 ≤ λm ≤ 1 such that

‖ f − ((1− λm)G
ar
m−1 + λmϕ

ar
m )‖

≤ min

(
‖ f ar

m−1‖, inf
0≤λ≤1

‖ f − ((1− λ)Gar
m−1 + λϕar

m )‖(1+ ηm)

)

and define

Gar
m := Gar,τ,δ,η

m := (1− λm)G
ar
m−1 + λmϕ

ar
m .
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(3) Denote

f ar
m := f ar,τ,δ,η

m := f − Gar
m .

In Sections 2 and 3 we study the questions of convergence and the rate of convergence
for the two methods of approximation, AWCGA and AWRGA. It is clear that in the
case of AWRGA the assumption that f belongs to the closure of the convex hull of D
is natural. We denote the closure of the convex hull of D by A1(D). It has been proven
in [23] that, in the case of Hilbert space, both algorithms WCGA and WRGA give the
approximation error for the class A1(D) of the order(

1+
m∑

k=1

t2
k

)−1/2

.

We consider here approximation in uniformly smooth Banach spaces. For a Banach
space X we define the modulus of smoothness

ρ(u) := sup
‖x‖=‖y‖=1

( 1
2 (‖x + uy‖ + ‖x − uy‖)− 1).

A uniformly smooth Banach space is one with the property

lim
u→0

ρ(u)/u = 0.

It is easy to see that for any Banach space X its modulus of smoothness ρ(u) is an even
convex function satisfying the inequalities

max(0, u − 1) ≤ ρ(u) ≤ u, u ∈ (0,∞).(1.1)

It has been established in [8] that the approximation error of an algorithm, analogous to
our WRGA with tk = 1, k = 1, 2, . . . , for the classA1(D), can be expressed in terms of
the modulus of smoothness of a Banach space. Namely, if the modulus of smoothness
ρ of X satisfies the inequality ρ(u) ≤ γ uq , q > 1, then the error is of O(m1/q−1). We
proved in [24] that both algorithms WCGA and WRGA provide approximation for the
classA1(D) in a Banach space X with modulus of smoothness ρ(u) ≤ γ uq , 1 < q ≤ 2,
of order (

1+
m∑

k=1

t p
k

)−1/p

, p := q

q − 1
.(1.2)

It also has been proved in [24] that the WCGA converges for any f ∈ X and the WRGA
converges for any f ∈ A1(D) if τ satisfies the condition

∞∑
m=1

tmξm(ρ, τ, θ) = ∞.(1.3)

The sequences {ξm(ρ, τ, θ)} are defined in Definition 2.1 of Section 2. In a particular
case of ρ(u) � uq , 1 < q ≤ 2, relation (1.3) is equivalent to

m∑
k=1

t p
k = ∞, p := q

q − 1
.(1.4)
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In [24] we gave an example which showed that (1.4) is sharp for Banach spaces with
modulus of smoothness of power type q.

It is well-known (see, for instance, [8, Lemma B.1]) that in the case X = L p, 1 ≤
p <∞, we have

ρ(u) ≤
{

u p/p if 1 ≤ p ≤ 2,
(p − 1)u2/2 if 2 ≤ p <∞.(1.5)

It is also known (see [15, p. 63]) that for any X with dim X = ∞ one has

ρ(u) ≥ (1+ u2)1/2 − 1

and for every X , dim X ≥ 2,

ρ(u) ≥ Cu2, C > 0.

This limits the power-type modulus of smoothness of nontrivial Banach spaces to the
case 1 ≤ q ≤ 2.

In Sections 2 and 3 we prove that under some reasonable assumptions on sequences δ
and η the AWCGA and AWRGA are as good as the corresponding WCGA and WRGA.
As an example we formulate here only one result (see Corollary 2.3 in Section 2 below).

Theorem 1.1. Let X be a uniformly smooth Banach space. Assume that τ = {t},
t ∈ (0, 1]. Then for any two sequences δ, η ∈ c0 the corresponding AWCGA converges
for any f ∈ X .

We recall that c0 is the space of all convergent-to-zero sequences.
In Sections 4 and 5 we demonstrate the power of the WCGA and WRGA in classical

areas of harmonic analysis and numerical integration. The first problem concerns the
trigonometric m-term approximation in the uniform norm. Let T (N ) be the subspace of
real trigonometric polynomials of order N and let T be the real trigonometric system

1
2 , sin x, cos x, sin 2x, cos 2x, . . . .

Denote, for f ∈ L p(T),

σm( f, T )p := inf
c1,...,cm ;ϕ1,...,ϕm∈T

∥∥∥∥∥ f −
m∑

j=1

cjϕj

∥∥∥∥∥
p

the best m-term trigonometric approximation of f in the L p-norm. It is clear that one
can get an upper estimate for σ2m+1( f, T )p by approximating f by trigonometric poly-
nomials of order m. Denote

Em( f, T )p := inf
t∈T (m)

‖ f − t‖p.

The first result that indicated an advantage of m-term approximation over approxima-
tion by trigonometric polynomials of order m is due to R. S. Ismagilov [12]

σm(|sin x |, T )∞ ≤ Cεm
−6/5+ε for any ε > 0.(1.6)
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Let us compare it to the well-known result due to de La Vallée Poussin and S. N. Bernstein

Em(|sin x |, T )∞ � m−1.(1.7)

V. E. Maiorov [16] improved estimate (1.6):

σm(|sin x |, T )∞ � m−3/2.(1.8)

Both R. S. Ismagilov [12] and V. E. Maiorov [16] used constructive methods to get their
estimates (1.6) and (1.8). V. E. Maiorov [16] applied a number-theoretical method based
on Gaussian sums. The key point of that technique can be formulated in terms of best
m-term approximation of trigonometric polynomials. Using the Gaussian sums one can
prove (constructively) the estimate

σm(t, T )∞ ≤ C N 3/2m−1‖t‖1, t ∈ T (N ).(1.9)

Denote ∥∥∥∥∥a0/2+
N∑

k=1

(ak cos kx + bk sin kx)

∥∥∥∥∥
A

:= |a0| +
N∑

k=1

(|ak | + |bk |).

We note that, by simple inequality,

‖t‖A ≤ (2N + 1)‖t‖1, t ∈ T (N ),
the estimate (1.9) follows from the estimate

σm(t, T )∞ ≤ C(N 1/2/m)‖t‖A.(1.10)

Thus (1.10) is stronger than (1.9). The following estimate is known (see [5]):

σm(t, T )∞ ≤ Cm−1/2(ln(1+ N/m))1/2‖t‖A.(1.11)

In a way, (1.11) is much stronger than (1.10) and (1.9). However, the existing proof of
(1.11) (see [5]) is not constructive. Estimate (1.11) has been proved in [5] with the help
of a nonconstructive theorem of Gluskin [9]. In Section 4 we give a constructive proof
of (1.11). The key ingredient of that proof is the WCGA (or WRGA). In paper [7] we
already pointed out that the WCGA provides a constructive proof of the estimate

σm(t, T )p ≤ C(p)m−1/2‖t‖A, p ∈ [2,∞).(1.12)

The known proofs (before [7]) of (1.12) were nonconstructive (see the discussion in [7,
Section 5]).

We formulate here a general result from Section 4 (see Theorem 4.6).

Theorem 1.2. Let 
 := {ϕj }∞j=1 be a uniformly bounded orthonormal system defined
on a bounded domain. Assume
 has the (VP) property. Then there exists a constructive
algorithm A(
, N ,m) such that for any ϕ ∈ 
(N ) it provides an m-term
-polynomial
A(
, N ,m)(ϕ) with the following approximation property:

‖ϕ − A(
, N ,m)(ϕ)‖∞ ≤ Cm−1/2(ln(1+ N/m))1/2‖ϕ‖A

with a constant C which may depend on 
.
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The (VP) property is a property that guarantees the existence of a sequence of the de
La Vallée Poussin operators. See Section 4 for precise definition.

In Section 5 we apply greedy-type algorithms to construct points with small discrep-
ancy and small symmetrized discrepancy. Let 1 ≤ p < ∞. We will first define the
L p discrepancy (the L p-star discrepancy) of points {ξ 1, . . . , ξm} ⊂ �d := [0, 1]d . Let
χ[a,b](·) be a characteristic function of the interval [a, b]. Denote, for x, y ∈ �d ,

B(x, y) :=
d∏

j=1

χ[0,xj ](yj ).

Then the L p discrepancy of ξ := {ξ 1, . . . , ξm} ⊂ �d is defined by

D(ξ,m, d)p :=
∥∥∥∥∥
∫
�d

B(x, y) dy − 1

m

m∑
µ=1

B(x, ξµ)

∥∥∥∥∥
L p(�d )

.

We are interested in ξ with small discrepancy. Consider

D(m, d)p := inf
ξ

D(ξ,m, d)p.

The concept of discrepancy is a fundamental concept in numerical integration. There
are many books and survey papers on discrepancy and related topics. We will mention
some of them as a reference for the history of the subject: [14], [1], [18], [2], [20], [25].
For 1 < p <∞ the following relation is known (see [1, p. 5]):

D(m, d)p � m−1(ln m)(d−1)/2(1.13)

with constants in � depending on p and d. The right order of D(m, d)p, p = 1,∞,
for d ≥ 3 is unknown. Recently, driven by possible applications (see [20]) in numerical
integration, the tendancy to control dependence of D(m, d)p on both variables m and d
has appeared. Very interesting results in this direction have been obtained in [11]. They
proved the estimate

D(m, d)∞ ≤ Cd1/2m−1/2(1.14)

with C an absolute constant. It is pointed out in [11] that (1.14) is only an existence
theorem and even a constant C in (1.14) is unknown. Their proof is a probabilistic one.
There are also some other estimates in [11] with explicit constants. We mention one of
them,

D(m, d)∞ ≤ C(d ln d)1/2((ln n)/n)1/2(1.15)

with an explicit constant C . The proof of (1.15) is also probabilistic.
In Section 5 we give constructive proofs of the following two upper estimates:

D(m, d)p ≤ C1 p1/2m−1/2, p ∈ [2,∞),
D(m, d)∞ ≤ C2d3/2(max(ln d, ln m))1/2m−1/2, d,m ≥ 2,

with effective absolute constants C1 and C2. The term constructive proof goes back to
Kronecker who outlined the program of giving constructive proofs of theorems that were
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established as existence theorems. Following the traditions of approximation theory we
understand a constructive proof as a proof that provides a construction of an object and
this construction has a potential of being implemented numerically. For instance, a proof
by contradiction, or a probabilistic proof establishing the existence of an object, is not a
constructive proof for us. In Section 5 we provide a method which consists of maximizing
(approximately) certain functions of d variables at each step. For a given p ∈ [2,∞),
after m steps of this method we obtain a set ξ = {ξ 1, . . . , ξm} ⊂ �d of points with small
L p discrepancy

D(ξ,m, d)p ≤ C1 p1/2m−1/2

with effective absolute constant C1. The above method is a greedy-type algorithm which
is a slight modification of the corresponding procedure from [8]. Here we do not assume
that a dictionary D is symmetric: g ∈ D implies −g ∈ D. To indicate this we will use
the notation D+ for such a dictionary. We do not assume that elements of a dictionary
D+ are normalized (‖g‖ = 1 if g ∈ D+), we only assume that ‖g‖ ≤ 1 if g ∈ D+.
By A1(D+) we denote the closure of the convex hull of D+. Let ε = {εn}∞n=1, εn > 0,
n = 1, 2, . . . .

Incremental Algorithm with Schedule ε (IA(ε)). Let f ∈ A1(D+). Denote f i,ε
0 := f

and Gi,ε
0 := 0. Then for each m ≥ 1 we inductively define:

(1) ϕi,ε
m ∈ D+ is any satisfying

Ff i,ε
m−1
(ϕi,ε

m − f ) ≥ −εm .

(2) Define

Gi,ε
m := (1− 1/m)Gi,ε

m−1 + ϕi,ε
m /m.

(3) Denote

f i,ε
m := f − Gi,ε

m .

Let us make a brief comparison of the above three types of greedy algorithms. The
AWCGA contains a step of finding an approximant Gm ∈ 
m that provides approxima-
tion close to the best approximation. The corresponding steps of the AWRGA and IA(ε)
are simpler: Optimization over λ ∈ [0, 1] in the AWRGA and simple convex combina-
tion in the IA(ε). Next, the AWCGA can be applied to any f ∈ X . The AWRGA can be
applied only to f ∈ A1(D) (in other words, to f such that ‖ f ‖A1(D) ≤ 1). The IA(ε)
can be applied only to f ∈ A1(D+) (‖ f ‖A1(D+) = 1). In some cases (like in Section 5)
a problem itself implies ‖ f ‖A1(D+) = 1. However, if the condition ‖ f ‖A1(D+) = 1 (or
‖ f ‖A1(D) ≤ 1) is not satisfied automatically, then it could be a difficult problem to find
‖ f ‖A1(D+) and even estimate ‖ f ‖A1(D). In such a case we would recommend using the
AWCGA. Clearly, the AWCGA is the only option if ‖ f ‖A1(D) = ∞.

2. Convergence and Rate of Approximation of AWCGA

We begin this section with a known theorem on the convergence of WCGA [24]. In the
formulation of this theorem we need a special sequence which is defined for a given
modulus of smoothness ρ(u) and a given τ = {tk}∞k=1.
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Definition 2.1. Let ρ(u) be an even convex function on (−∞,∞) with the property:
ρ(2) ≥ 1 and

lim
u→0

ρ(u)/u = 0.

For any τ = {tk}∞k=1, 0 < tk ≤ 1, and 0 < θ ≤ 1
2 we define ξm := ξm(ρ, τ, θ) as a

number u satisfying the equation

ρ(u) = θ tmu.(2.1)

Remark 2.1. Assumptions on ρ(u) imply that the function

ε(u) := ρ(u)/u, u �= 0, ε(0) = 0,

is a continuous increasing on [0,∞) function with ε(2) ≥ 1
2 . Thus (2.1) has a unique

solution 0 < ξm ≤ 2.

The following theorem and a corollary have been proved in [24]:

Theorem 2.1. Let X be a uniformly smooth Banach space with the modulus of smooth-
ness ρ(u). Assume that a sequence τ := {tk}∞k=1 satisfies the condition: For any θ > 0
we have

∞∑
m=1

tmξm(ρ, τ, θ) = ∞.(2.2)

Then for any f ∈ X we have

lim
m→∞‖ f c,τ

m ‖ = 0.

Corollary 2.1. Let a Banach space X have modulus of smoothness ρ(u) of power type
1 < q ≤ 2; (ρ(u) ≤ γ uq). Assume that

∞∑
m=1

t p
m = ∞, p = q

q − 1
.(2.3)

Then WCGA converges for any f ∈ X .

We will prove the following theorem for convergence of the AWCGA:

Theorem 2.2. Let X be a uniformly smooth Banach space with the modulus of smooth-
ness ρ(u). Assume that sequences τ , δ, η satisfy the conditions: For any θ > 0 we have

∞∑
m=1

tmξm(ρ, τ, θ) = ∞(2.4)

and

δm = o(tmξm(ρ, τ, θ)) and ηm = o(tmξm(ρ, τ, θ)).(2.5)
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Then for any f ∈ X we have

lim
m→∞‖ f τ,δ,ηm ‖ = 0.

Corollary 2.2. Let a Banach space X have modulus of smoothness ρ(u) of power type
1 < q ≤ 2; (ρ(u) ≤ γ uq). Assume that

∞∑
m=1

t p
m = ∞, p = q

q − 1
,

and

δm = o(t p
m) and ηm = o(t p

m).

Then AWCGA converges for any f ∈ X .

Corollary 2.3. Let X be a uniformly smooth Banach space. Assume that τ = {t},
t ∈ (0, 1]. Then for any two sequences δ, η ∈ c0 the corresponding AWCGA converges
for any f ∈ X .

Lemma 2.1. Let X be a uniformly smooth Banach space with the modulus of smooth-
ness ρ(u). For a finite-dimensional subspace L of X and an elemnt f ∈ X denote

EL( f ) := inf
l∈L
‖ f − l‖.

Assume that an element g ∈ L and a functional F satisfy the following conditions:

0 < ‖ f L‖ ≤ EL( f )(1+ a), f L := f − g, a ∈ [0, 1],(2.6)

F( f L) ≥ ‖ f L‖(1− b), ‖F‖ ≤ 1, b ∈ [0, 1].(2.7)

Then

|F(g)| ≤ inf
v≥0
(a + b + 2ρ(3v‖ f ‖))/v.

Proof. For any λ we have from the definition of ρ(u) that

‖ f L − λg‖ + ‖ f L + λg‖ ≤ 2‖ f L‖
(

1+ ρ
(
λ‖g‖
‖ f L‖

))
.(2.8)

Next, assume |F(g)| = β > 0. Then either F(g) = β or F(−g) = β. We will carry out
the proof under assumption F(g) = β and note that the case F(−g) = β is similar. We
have

‖ f L + λg‖ ≥ F( f L + λg) ≥ ‖ f L‖(1− b)+ λβ(2.9)

and, by (2.8),

‖ f L − λg‖ ≤ ‖ f L‖
(

1+ b + 2ρ

(
3λ‖ f ‖
‖ f L‖

))
− λβ.(2.10)
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On the other hand, for any λ,

‖ f L − λg‖ ≥ EL( f ) ≥ ‖ f L‖(1+ a)−1 ≥ ‖ f L‖(1− a).

Therefore, for any λ,

λβ

‖ f L‖ ≤ a + b + 2ρ

(
3λ‖ f ‖
‖ f L‖

)
.

This proves the lemma.

We will need the following simple lemma (see [24]):

Lemma 2.2. For any bounded linear functional F and any dictionary D we have

sup
g∈D

F(g) = sup
f ∈A1(D)

F( f ).

Lemma 2.3. Let X be a uniformly smooth Banach space with modulus of smoothness
ρ(u). Take a number ε ≥ 0 and two elements f , f ε from X such that

‖ f − f ε‖ ≤ ε
and

f ε/A(ε) ∈ A1(D),
with some number A(ε). Then for the AWCGA with τ , δ, η we have, for m = 1, 2, . . . ,

Em( f ) ≤ ‖ fm−1‖ inf
λ

(
1+ δm−1 − λtm A(ε)−1

(
1− δm−1 − βm−1 + ε

‖ fm−1‖
)

+ 2ρ

(
λ

‖ fm−1‖
))

,

provided ‖ fm−1‖ > 0, where

βm−1 := inf
v≥0
(δm−1 + ηm−1 + 2ρ(3v‖ f ‖))/v.

Proof. We have, for any λ,

‖ fm−1 − λϕm‖ + ‖ fm−1 + λϕm‖ ≤ 2‖ fm−1‖
(

1+ ρ
(

λ

‖ fm−1‖
))

(2.11)

and by (1) from the definition of the AWCGA and Lemma 2.2 we get

Fm−1(ϕm) ≥ tm sup
g∈D

Fm−1(g) = tm sup
ϕ∈A1(D)

Fm−1(ϕ) ≥ tm A(ε)−1 Fm−1( f ε).

By Lemma 2.1 we obtain

Fm−1( f ε) = Fm−1( f + f ε − f ) ≥ Fm−1( f )− ε
= Fm−1( fm−1 + Gm−1)− ε ≥ Fm−1( fm−1)− |Fm−1(Gm−1)| − ε
≥ ‖ fm−1‖(1− δm−1)− βm−1 − ε.
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Thus similarly to (2.9) and (2.10) we get, from (2.11),

Em( f ) ≤ inf
λ
‖ fm−1 − λϕm‖(2.12)

≤ ‖ fm−1‖ inf
λ

(
1+ δm−1 − λtm A(ε)−1

(
1− δm−1 − βm−1 + ε

‖ fm−1‖
)

+ 2ρ

(
λ

‖ fm−1‖
))

,

which proves the lemma.

Proof of Theorem 2.2. The definition of {Em( f )} implies that it is a nonincreasing
sequence. Therefore, we have

lim
m→∞ Em( f ) = α.

We prove that α = 0 by contradiction. Assume to the contrary that α > 0. Then for any
m we have

‖ fm‖ ≥ Em( f ) ≥ α.
We set ε = α/4 and find f ε such that

‖ f − f ε‖ ≤ ε and f ε/A(ε) ∈ A1(D)

with some A(ε). It is clear that limm→∞ βm = 0. We choose M such that for all m ≥ M
we have

δm−1 + (βm−1 + ε)/α ≤ 1
2 .

Then by Lemma 2.3 we get

Em( f ) ≤ ‖ fm−1‖ inf
λ
(1+ δm−1 − λtm A(ε)−1/2+ 2ρ(λ/α)).

Let us specify θ := α/8A(ε) and take λ = αξm(ρ, τ, θ). Then we obtain

Em( f ) ≤ ‖ fm−1‖(1+ δm−1 − 2θ tmξm)

and

‖ fm‖ ≤ ‖ fm−1‖(1+ δm−1 − 2θ tmξm)(1+ ηm).

Using assumption (2.5) we get for big enough m that

(1+ δm−1 − 2θ tmξm)(1+ ηm) ≤ 1− θ tmξm .

The assumption
∞∑

m=1

tmξm = ∞

implies that

‖ fm‖ → 0 as m →∞.
We get a contradiction which proves the theorem.
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We now proceed to study the rate of convergence of the AWCGA. The following
theorem has been proved in [24] for the WCGA:

Theorem 2.3. Let X be a uniformly smooth Banach space with the modulus of smooth-
ness ρ(u) ≤ γ uq , 1 < q ≤ 2. Then for a sequence τ := {tk}∞k=1, tk ≤ 1, k = 1, 2, . . . ,
we have for any f ∈ A1(D) that

‖ f c,τ
m ‖ ≤ C(q, γ )

(
1+

m∑
k=1

t p
k

)−1/p

, p := q

q − 1
,

with a constant C(q, γ ) which may depend only on q and γ .

Remark 2.2. It follows from the proof of Theorem 2.3 in [24] that

C(q, γ ) = (2(4γ )1/(q−1))1/p ≤ Cγ 1/q

with absolute constant C .

We prove here the same rate of convergence for an adaptive AWCGA where adaptive
means that sequences δ and η are determined by the AWCGA applied to a given element
f ∈ A1(D).

Theorem 2.4. Let X be a uniformly smooth Banach space with the modulus of smooth-
ness ρ(u) ≤ γ uq , 1 < q ≤ 2. Let a weakness sequence τ := {tk}∞k=1, tk ≤ 1,
k = 1, 2, . . . , be such that

∞∑
k=1

t p
k = ∞, p = q

q − 1
.

For a given f ∈ A1(D) apply the AWCGA with

δm−1 := t p
m‖ fm−1‖p3−p(16Aq)

−1, m = 1, 2, . . . ,

ηm−1 := t p
m Em−1( f )p3−p(16Aq)

−1, m = 2, . . . ,

where

Aq := 4(8γ )1/(q−1).

Then we have

‖ f τ,δ,ηm ‖ ≤ Cγ 1/q

(
1+

m∑
k=1

t p
k

)−1/p

, p := q

q − 1
,

with absolute constant C .
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Proof. By Lemma 2.3 with ε = 0 and A(ε) = 1 we have for f ∈ A1(D) that

Em( f ) ≤ ‖ fm−1‖ inf
λ

(
1+ δm−1 − λtm(1− δm−1 − βm−1/‖ fm−1‖)(2.13)

+ 2γ

(
λ

‖ fm−1‖
)q)

.

We estimate βm−1 by choosing

v = ‖ fm−1‖1/(q−1)3−p/Aq .

We have

βm−1 ≤ (δm−1 + ηm−1)/v + 2γ 3qvq−1 ≤ ( 1
16 + 1

16 + 1
4 )‖ fm−1‖ = 3

8‖ fm−1‖.
Using δm−1 ≤ 1

16 we get, from (2.13),

Em( f ) ≤ ‖ fm−1‖ inf
λ

(
1+ δm−1 − 9

16λtm + 2γ

(
λ

‖ fm−1‖
)q)

.(2.14)

We choose λ from the equation

1
4λtm = 2γ

(
λ

‖ fm−1‖
)q

which implies that

λ = ‖ fm−1‖q/(q−1)(8γ )−1/(q−1)t1/(q−1)
m = 4t1/(q−1)

m ‖ fm−1‖p/Aq .

With this λ using the notation p := q/(q − 1) we get, from (2.14),

Em( f ) ≤ ‖ fm−1‖(1+ δm−1 − 5
16λtm) ≤ ‖ fm−1‖(1− t p

m‖ fm−1‖p/Aq)

≤ Em−1( f )(1+ t p
m Em−1( f )p/(2Aq))(1− t p

m‖ fm−1‖p/Aq)

≤ Em−1( f )(1− t p
m Em−1( f )p/(2Aq)).

Raising both sides of this inequality to the power p and taking into account the inequality
xr ≤ x for r ≥ 1, 0 ≤ x ≤ 1, we obtain

Em( f )p ≤ Em−1( f )p(1− t p
m Em−1( f )p/(2Aq)).

By Lemma 3.1 from [23] using the estimate ‖ f ‖p ≤ 1 < Aq we get

Em( f )p ≤ 2Aq

(
1+

m∑
n=1

t p
n

)−1

which implies

‖ fm‖ ≤ Cγ 1/q

(
1+

m∑
n=1

t p
n

)−1/p

.

Theorem 2.3 is now proved.
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We discussed above the performance of the AWCGA. The AWCGA is defined in a way
to control relative errors of approximation of norming functional and best approximant
(see the definition of the AWCGA). We now discuss a modification of the AWCGA
with control of absolute errors of approximation. Let three sequences, τ = {tk}∞k=1,
ε = {εk}∞k=0, α = {αk}∞k=1, of numbers from [0, 1] be given.

Approximate Weak Chebyshev Greedy Algorithm (a) (AWCGA(a)). We define
f0 := f τ,ε,α0 := f . Then for each m ≥ 1 we inductively define:

(1) Fm−1 is a functional with properties

‖Fm−1‖ ≤ 1, Fm−1( fm−1) ≥ ‖ fm−1‖ − εm−1,

and ϕm := ϕτ,ε,αm ∈ D is any satisfying

Fm−1(ϕm) ≥ tm sup
g∈D

Fm−1(g).

(2) Define


m := span{ϕj }mj=1,

and denote

Em( f ) := inf
ϕ∈
m

‖ f − ϕ‖.
Let Gm ∈ 
m be such that

‖ f − Gm‖ ≤ Em( f )+ αm .

(3) Denote

fm := f τ,ε,αm := f − Gm .

The following analog of Theorem 2.2 holds for the AWCGA(a):

Theorem 2.5. Let X be a uniformly smooth Banach space with the modulus of smooth-
ness ρ(u). Assume that sequences τ , ε, α satisfy the conditions: For any θ > 0 we have

∞∑
m=1

tmξm(ρ, τ, θ) = ∞

and
∞∑

m=1

εm <∞ and
∞∑

m=1

αm <∞.

Then for any f ∈ X we have

lim
m→∞‖ f τ,ε,αm ‖ = 0.

The proof of this theorem is similar to the proof of Theorem 2.2. We will not present
this proof here and remark that the only new ingredient of the proof of Theorem 2.5 is
the following simple lemma:
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Lemma 2.4. Let

∞∑
m=1

γm = ∞,
∞∑

m=1

αm <∞, αm, γm ∈ [0, 1].

Assume that a nonnegative sequence {xk}∞k=0 satisfies the relation

xm ≤ xm−1(1− γm)+ αm, m = 1, 2, . . . .

Then

lim
m→∞ xm = 0.

3. Convergence and Rate of Approximation of the AWRGA

The following two theorems on the WRGA have been proved in [24]:

Theorem 3.1. Let X be a uniformly smooth Banach space with the modulus of smooth-
ness ρ(u). Assume that a sequence τ := {tk}∞k=1 satisfies the condition: For any θ > 0
we have

∞∑
m=1

tmξm(ρ, τ, θ) = ∞.

Then for any f ∈ A1(D) we have

lim
m→∞‖ f r,τ

m ‖ = 0.

Theorem 3.2. Let X be a uniformly smooth Banach space with the modulus of smooth-
ness ρ(u) ≤ γ uq , 1 < q ≤ 2. Then for a sequence τ := {tk}∞k=1, tk ≤ 1, k = 1, 2, . . . ,
we have for any f ∈ A1(D) that

‖ f r,τ
m ‖ ≤ C1(q, γ )

(
1+

m∑
k=1

t p
k

)−1/p

, p := q

q − 1
,

with a constant C1(q, γ ) which may depend only on q and γ .

Remark 3.1. It follows from the proof of Theorem 3.2 in [24] that

C1(q, γ ) ≤ Cγ 1/q

with absolute constant C .

We prove here analogs of Theorems 2.2 and 2.4 for the AWRGA.
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Theorem 3.3. Let X be a uniformly smooth Banach space with the modulus of smooth-
ness ρ(u). Assume that sequences τ , δ, η satisfy the conditions: For any θ > 0 we have

∞∑
m=1

tmξm(ρ, τ, θ) = ∞(3.1)

and

δm = o(tmξm(ρ, τ, θ)) and ηm = o(tmξm(ρ, τ, θ)).(3.2)

Then for any f ∈ A1(D) we have

lim
m→∞‖ f ar,τ,δ,η

m ‖ = 0.

Corollary 3.1. In the particular case of τ = {t}, t > 0, assumption (3.1) is satisfied
and assumption (3.2) takes a form δm = o(1) and ηm = o(1). Thus in the case τ = {t},
t > 0, the AWRGA converges for each f ∈ A1(D) if δ, η ∈ c0.

Lemma 3.1. Let X be a uniformly smooth Banach space with modulus of smoothness
ρ(u). Then for any f ∈ A1(D) we have, for m = 1, 2, . . . ,

‖ f ar
m ‖ ≤ ‖ f ar

m−1‖ inf
0≤λ≤1

(
1+ δm−1 − λtm(1− δm−1)+ 2ρ

(
2λ

‖ f ar
m−1‖

))
(1+ ηm).

Proof. We have

f ar
m := f − ((1− λm)G

ar
m−1 + λmϕ

ar
m ) = f ar

m−1 − λm(ϕ
ar
m − Gar

m−1)

and

‖ f ar
m ‖ ≤ inf

0≤λ≤1
‖ f ar

m−1 − λ(ϕar
m − Gar

m−1)‖(1+ ηm).

Similarly to (2.11) we have, for any λ,

‖ f ar
m−1 − λ(ϕar

m − Gar
m−1)‖ + ‖ f ar

m−1 + λ(ϕar
m − Gar

m−1)‖(3.3)

≤ 2‖ f ar
m−1‖

(
1+ ρ

(
λ‖ϕar

m − Gar
m−1‖

‖ f ar
m−1‖

))
.

Next we get, for λ ≥ 0,

‖ f ar
m−1 + λ(ϕar

m − Gar
m−1)‖ ≥ Far

m−1( f ar
m−1 + λ(ϕar

m − Gar
m−1))

≥ ‖ f ar
m−1‖(1− δm−1)+ λFar

m−1(ϕ
ar
m − Gar

m−1)

≥ ‖ f ar
m−1‖(1− δm−1)+ λtm sup

g∈D
Far

m−1(g − Gar
m−1).

Using Lemma 2.2 we continue

= ‖ f ar
m−1‖(1− δm−1)+ λtm sup

ϕ∈A1(D)
Far

m−1(ϕ − Gar
m−1)

≥ ‖ f ar
m−1‖(1− δm−1)+ λtm‖ f ar

m−1‖(1− δm−1).
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Therefore, by a trivial estimate ‖ϕar
m − Gar

m−1‖ ≤ 2 we obtain, from (3.3),

‖ f ar
m−1 − λ(ϕar

m − Gar
m−1)‖(3.4)

≤ ‖ f ar
m−1‖

(
1+ δm−1 − λtm(1− δm−1)+ 2ρ

(
2λ

‖ f ar
m−1‖

))
,

which proves Lemma 3.1.

Proof of Theorem 3.3. By the definition the sequence {‖ f ar
m ‖} is nonincreasing. Let

lim
m→∞‖ f ar

m ‖ = α.

Similarly to the proof of Theorem 2.2 we will use the contradiction argument. Assuming
α > 0 we get, from Lemma 3.1 for big enough m,

‖ f ar
m ‖ ≤ ‖ f ar

m−1‖ inf
0≤λ≤1

(
1+ δm−1 − λtm/2+ 2ρ

(
2λ

‖ f ar
m−1‖

))
(1+ ηm).(3.5)

Specifying θ = α/16 and taking λ = αξm(ρ, τ, θ)/2 we obtain, from (3.5),

‖ f ar
m ‖ ≤ ‖ f ar

m−1‖(1+ δm−1 − 2θ tmξm)(1+ ηm).(3.6)

The remaining part of the proof repeats the arguments from the proof of Theorem 2.2.

Theorem 3.4. Let X be a uniformly smooth Banach space with the modulus of smooth-
ness ρ(u) ≤ γ uq , 1 < q ≤ 2. Let a weakness sequence τ := {tk}∞k=1, tk ≤ 1,
k = 1, 2, . . . , be such that

∞∑
k=1

t p
k = ∞, p = q

q − 1
.

For a given f ∈ A1(D) apply the AWRGA with

δm−1 = ηm := t p
m‖ f ar

m−1‖p(2Bq)
−1, m = 1, 2, . . . ,

where

Bq := 8(8γ )1/(q−1)2p.

Then we have

‖ f ar,τ,δ,η
m ‖ ≤ Cγ 1/q

(
1+

m∑
k=1

t p
k

)−1/p

, p := q

q − 1
,

with absolute constant C .
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Proof. Using that δm−1 ≤ 1
2 we get, by Lemma 3.1,

‖ f ar
m ‖ ≤ ‖ f ar

m−1‖ inf
0≤λ≤1

(
1+ δm−1 − λtm/2+ 2γ

(
2λ

‖ f ar
m−1‖

)q)
(1+ ηm).

Choosing λ from the equation

λtm/4 = 2γ

(
2λ

‖ f ar
m−1‖

)q

we find

λ = (8γ )−1/(q−1)2−pt1/(q−1)
m ‖ f ar

m−1‖p < 1

and

‖ f ar
m ‖ ≤ ‖ f ar

m−1‖(1+ δm−1 − 2t p
m‖ f ar

m−1‖p/Bq)(1+ ηm).

Using the definition of δm−1, ηm , and Bq we obtain

‖ f ar
m ‖ ≤ ‖ f ar

m−1‖(1− t p
m‖ f ar

m−1‖p/Bq)

and complete the proof in the same way as in the proof of Theorem 2.4.

Let us compare Theorem 3.3 with Theorem 3.4 from [8] (see Theorem 3.5 below). We
recall some definitions from [8]. An incremental sequence is any sequence a1, a2, . . . of
X so that a1 ∈ D and for each n ≥ 1 there are some gn ∈ D and λn ∈ [0, 1] so that

an = (1− λn)an−1 + λngn (a0 = 0).

We say that an incremental sequence a1, a2, . . . is ε-greedy (with respect to f ) if (a0 = 0),

‖ f − an‖ < inf
λ∈[0,1];g∈D

‖ f − ((1− λ)an−1 + λg)‖ + εn, n = 1, 2, . . . .(3.7)

Theorem 3.5 [8]. Let X be a uniformly smooth Banach space, and let ε = {εn}∞n=1 be
such that

∞∑
n=1

εn <∞.(3.8)

Then any ε-greedy (with respect to f ) incremental sequence {an}∞n=1 converges to f .

In order to find a sequence {an} satisfying (3.7) one should solve a sequence of
optimization problems:

inf
λ∈[0,1];g∈D

‖ f − ((1− λ)an−1 + λg)‖ + εn, n = 1, 2, . . . ,(3.9)

within accuracy εn satisfying (3.8). It is clear that the most difficult part of (3.9) is an
optimization over g ∈ D. The most important advantage of the WRGA and AWRGA is
that they provide a way of obtaining a good element ϕr

m (or ϕar
m ) from the dictionary by
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checking much weaker condition that being optimal within accuracy εn . In the AWRGA
the way of obtaining a ϕar

m consists of two steps: First, we find an approximation of
the norming (peak) functional of the residual f ar

m−1 with high accuracy (Far
m−1( f ar

m−1) ≥
‖ f ar

m−1‖(1− δm−1)); second, we look for ϕar
m satisfying a very weak (compared to being

optimal) condition

Far
m−1(ϕ

ar
m − Gar

m−1) ≥ tm sup
g∈D

Far
m−1(g − Gar

m−1).

Another place in the AWRGA where we need high accuracy is the optimization over
λ ∈ [0, 1]. Clearly, the above two tasks with high accuracy are much easier than the
above selection of a dictionary element ϕar

m .

4. Constructive Nonlinear Trigonometric m-Term Approximation

We describe the approximation method in detail in the univariate case. Consider the real
L p(T) space with

‖ f ‖p :=
(

1

π

∫
T

| f (x)|pdx

)1/p

, 1 ≤ p <∞,

‖ f ‖∞ := max
x∈T
| f (x)|, f -continuous.

Let 1 ≤ p <∞. Denote Tp the real trigonometric system normalized in L p,

2−1/p, cp sin x, cp cos x, . . . ,

where

cp =
(

1

π

∫
T

|sin x |p dx

)−1/p

.

It is clear that C1 ≤ cp ≤ C2 with two absolute constants C1 and C2. Let T (N ) denote
the set of trigonometric polynomials of order N .

We discuss first a simpler construction based on the particular case of p = 4 in order
to illustrate the idea of the construction. For a trigonometric polynomial

t (x) = a0/2+
N∑

k=1

(ak cos kx + bk sin kx)

denote

‖t‖A := |a0| +
N∑

k=1

(|ak | + |bk |).

Then, by Theorems 2.3 (or 2.4) and 3.2 (or 3.4), each of the algorithms WCGA (or
AWCGA), WRGA (or AWRGA) with τ = { 12 }, q = 2 provide a constructive way
of approximation in the L4-norm: For any t ∈ T (N ) we get an m-term trigonometric
polynomial Gm(t) ∈ T (N ) such that

‖t − Gm(t)‖4 ≤ C ′1m−1/2‖t‖A(4.1)
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with absolute constant C1. By the Nikol’skii inequality this implies

‖t − Gm(t)‖∞ ≤ C2 N 1/4m−1/2‖t‖A(4.2)

with absolute constant C2.
We will build our constructive approximation operators Ak(N ,m) inductively from

level k = 1 up to an arbitrary level k. We begin with the level k = 1. We set, for
t ∈ T (N ),

A1(N ,m)(t) := Gm(t).

Then (4.2) implies, for m ≤ N ,

‖t − A1(N ,m)(t)‖∞ ≤ C2 N 1/4m−1/2‖t‖A ≤ A1 N 1/4(N/m)1/2m−1/2‖t‖A.(4.3)

We continue the construction inductively. Suppose we have built operators Ak(N ,m),
such that for any t ∈ T (N ),

‖t − Ak(N ,m)(t)‖∞ ≤ Ak N 2−k−1
(N/m)1/2m−1/2‖t‖A.(4.4)

We will build operators Ak+1(N ,m) and will control the constant Ak+1. We will carry
on the construction for even numbers m.

Step 1. Let t ∈ T (N ). We approximate t using (4.1),

‖t − Gm/2(t)‖4 ≤ C1m−1/2‖t‖A.

Denote

h := (t − Gm/2(t))/‖t − Gm/2(t)‖4.

Step 2. Take a positive number D and decompose

h = hD + hD, hD(x) :=
{

h(x) if |h(x)| ≤ D,
0 otherwise.

We need the following simple well-known lemma:

Lemma 4.1. Assume p ∈ [2,∞) and ‖ f ‖p = 1. Then

‖ fD‖∞ ≤ D and ‖ f D‖2 ≤ D1−p/2.

By Lemma 4.1 with p = 4 we get

‖hD‖∞ ≤ D and ‖hD‖2 ≤ D−1.

We would like to work with trigonometric polynomials instead of working with hD and
hD . Let VN be the de La Vallée Poussin operator. Consider VN (hD) and VN (hD). We
have

h = VN (h) = VN (hD)+ VN (h
D)
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and

‖VN (hD)‖∞ ≤ 3D, ‖VN (h
D)‖2 ≤ D−1, ‖VN (h

D)‖A ≤ 2N 1/2 D−1.

Step 3. We approximate VN (hD) ∈ T (2N ) using operators from level k. By (4.4) we
have

‖VN (h
D)− Ak(2N ,m/2)(VN (h

D))‖∞ ≤ Ak(2N )2
−k−1

3(N/m)1/2m−1/2‖VN (h
D)‖A.

For t ∈ T (N ) define

Ak+1(N ,m, D)(t) := Gm/2(t)+ ‖t − Gm/2(t)‖4 Ak(2N ,m/2)(VN (h
D)).

Taking into account that h ∈ T (N ) we get

t − Ak+1(N ,m, D)(t) = h‖t − Gm/2(t)‖4 − ‖t − Gm/2(t)‖4 Ak(2N ,m/2)(VN (h
D))

= ‖t − Gm/2(t)‖4(h − Ak(2N ,m/2)(VN (h
D)))

= ‖t − Gm/2(t)‖4(VN (hD)+ VN (h
D)

− Ak(2N ,m/2)(VN (h
D))).

Therefore,

‖t − Ak+1(N ,m, D)(t)‖∞(4.5)

≤ ‖t − Gm/2(t)‖4(3D + Ak(2N )2
−k−1

6(N/m)1/2m−1/2 N 1/2 D−1)

≤ (3D + Ak(2N )2
−k−1

6(N/m)D−1)C1m−1/2‖t‖A.

Step 4. Choose

D = D(N ,m, k) := (2Ak(2N )2
−k−1
(N/m))1/2.

By (4.5) we obtain

‖t − Ak+1(N ,m, D)(t)‖∞ ≤ A′k+1 N 2−k−2
(N/m)1/2m−1/2‖t‖A(4.6)

with

A′k+1 := 6C121/222−k−2
A1/2

k ≤ C3 A1/2
k .(4.7)

We recall that we have proved (4.6) with the constant A′k+1 from (4.7) under assumption
that m is an even number. We complete the construction by setting

Ak+1(N ,m) := Ak+1(N , 2[m/2], D(N , 2[m/2], k)), m ≥ 2.

Clearly (4.6) implies

‖t − Ak+1(N ,m, D)(t)‖∞ ≤ Ak+1 N 2−k−2
(N/m)1/2m−1/2‖t‖A(4.8)

for all m with Ak+1 = 2A′k+1. Relation (4.7) combined with A1 = C2 (see (4.3)) implies
that Ak ≤ C4 for all k.
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Let N be given. Choose k satisfying 2k+1 ≥ ln N . Then (4.4) gives, for any t ∈ T (N ),
the estimate

‖t − Ak(N ,m)(t)‖∞ ≤ C5(N
1/2/m)‖t‖A(4.9)

for any m.
We now proceed to a more elaborate construction that gives the following estimate:

Theorem 4.1. There exists a constructive method A(N ,m) such that, for any t ∈
T (N ), it provides an m-term trigonometric polynomial A(N ,m)(t) with the following
approximation property:

‖t − A(N ,m)(t)‖∞ ≤ Cm−1/2(ln(1+ N/m))1/2‖t‖A(4.10)

with an absolute constant C .

Proof. We will construct an analog of the sequence of operators {Ak(N ,m)} con-
structed above. A new ingredient of this construction is the following. We will now
approximate t in the L p-norm, p ∈ [4,∞), instead of the L4-norm and will optimize
over p.

Let N and m be given and let t ∈ T (N ). We use either the WCGA (AWCGA) or the
WRGA (AWRGA) with τ = { 12 }, q = 2, DN = Tp ∩ T (N ) to approximate t by an
m-term trigonometric polynomial in the L p-norm, p ∈ [4,∞). By Theorems 2.3 (2.4)
or 3.2 (3.4), with X = T (N )p where T (N )p is the T (N ) equipped with the L p-norm,
we get

‖t − G p
m(t)‖p ≤ C6C(2, γ )m−1/2‖t‖A.(4.11)

Let us estimate the constant C(2, γ ). By (1.5) we obtain γ = (p−1)/2. Thus by Remark
2.2 or Remark 3.1 we get

C6C(2, γ ) ≤ C7 p1/2.(4.12)

We define the level k = 1 algorithms A1
p(N ,m) by

A1
p(N ,m)(t) = G p

m(t), t ∈ T (N ).(4.13)

We note that by construction A1
p(N ,m)(t) ∈ T (N ). By the Nikol’skii inequality we get,

from (4.11)–(4.13),

‖t − A1
p(N ,m)(t)‖∞ ≤ C8 p1/2 N 1/pm−1/2‖t‖A(4.14)

≤ C8 p1/2 N 1/4(N/m)1/(p−2)m−1/2‖t‖A, m ≤ N .

We note here that taking pN := ln N we get, from the first inequality in (4.14),

‖t − A1
p(N ,m)(t)‖∞ ≤ C(ln N )1/2m−1/2‖t‖A(4.15)

with an absolute constant C . Thus the rest of the proof will be devoted to replacing ln N
by ln(1+ N/m) in (4.15).
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As in the case p = 4 we continue the construction by induction. Suppose we have
built operators Ak

p(N ,m) such that, for any t ∈ T (N ), p ∈ [4,∞),

‖t − Ak
p(N ,m)‖∞ ≤ Ap

k N 2−k−1
(N/m)1/(p−2)m−1/2‖t‖A.(4.16)

We will make steps similar to those from above.

Step 1. Let t ∈ T (N ) and let m be an even number. We approximate t using (4.11),
(4.12),

‖t − G p
m/2(t)‖p ≤ C9 p1/2m−1/2‖t‖A.(4.17)

Denote

h[p] := (t − G p
m/2(t))/‖t − G p

m/2(t)‖p.

Step 2. Take a positive number D and decompose

h[p] = hD[p]+ hD[p].

By Lemma 4.1 we get

‖hD[p]‖∞ ≤ D and ‖hD[p]‖2 ≤ D1−p/2

and, therefore,

‖VN (hD[p])‖∞ ≤ 3D, ‖VN (h
D[p])‖2 ≤ D1−p/2,

‖VN (h
D[p])‖A ≤ 2N 1/2 D1−p/2.

Step 3. We approximate VN (hD) ∈ T (2N ) using operators from level k. By (4.16) we
have

‖VN (h
D[p])− Ak

p(2N ,m/2)(VN (h
D[p]))‖∞

≤ Ap
k (2N )2

−k−1
(4N/m)1/(p−2)21/2m−1/2‖VN (h

D)‖A.

For t ∈ T (N ) define

Ak+1
p (N ,m, D)(t) := G p

m/2(t)+ ‖t − G p
m/2(t)‖p Ak

p(2N ,m/2)(VN (h
D[p])).

Similarly to the case p = 4 (see (4.5)) we get

‖t − Ak+1
p (N ,m, D)(t)‖∞(4.18)

≤ ‖t − G p
m/2(t)‖p(3D + Ap

k (2N )2
−k−1

6(N/m)p/(2(p−2))D1−p/2).

Step 4. Choose

Dp = Dp(N ,m, k) := (2Ap
k (2N )2

−k−1
(N/m)p/(2(p−2)))2/p.

By (4.17) we obtain from (4.18) for even m,

‖t − Ak+1
p (N ,m, Dp)(t)‖∞ ≤ Ap,1

k+1 N 2−k−2
(N/m)1/(p−2)m−1/2‖t‖A(4.19)
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with

Ap,1
k+1 ≤ C10 p1/2(Ap

k )
2/p, Ap

1 ≤ C11 p1/2.(4.20)

We note that (4.20) implies

Ap
k ≤ C12 p p/(2(p−2)).(4.21)

We set

Ak+1
p (N ,m) := Ak+1

p (N , 2[m/2], Dp(N , 2[m/2], k))

and obtain (4.16) with k replaced by k + 1 and a constant Ap
k+1 = 2Ap,1

k+1.
Let N and m be given. First we choose k satisfying 2k+1 ≥ ln N . Next we choose

p = 2+ ln(1+ N/m). Then (4.16) and (4.21) give, for any t ∈ T (N ), the estimate

‖t − Ak
p(N ,m)(t)‖∞ ≤ C13m−1/2(ln(1+ N/m))1/2‖t‖A(4.22)

for any m. This completes the proof of Theorem 4.1.

The same technique can also be used in the multivariate case. Let L p(T
d) be the real

Banach space with

‖ f ‖p :=
(

1

πd

∫
Td

| f (x)|p dx

)1/p

, 1 ≤ p <∞,

‖ f ‖∞ := max
x∈Td
| f (x)|, f -continuous.

Denote T d := T × · · · × T (d times) the real multivariate trigonometric system. Let
N = (N1, . . . , Nd). Denote T (N) the space of trigonometric polynomials with degree
Nj in the variable xj , j = 1, . . . , d. Let v(N) be the dimension of T (N). We formulate a
generalization of Theorem 4.1 for the d-dimensional case and note that the proof repeats
the proof of Theorem 4.1.

Theorem 4.2. There exists a constructive method A(N,m) such that, for any t ∈
T (N), it provides an m-term trigonometric polynomial A(N,m)(t) with the following
approximation property:

‖t − A(N,m)(t)‖∞ ≤ C(d)m−1/2(ln(1+ v(N)/m))1/2‖t‖A(4.23)

with a constant C(d) which may depend on d .

This theorem can be applied to studying an m-term trigonometric approximation of
function classes. We will consider here some examples. In paper [5] the following two
types of function classes were studied from the point of view of best m-term trigonometric
approximation. We begin with the first class. For 0 < α < ∞ and 0 < q ≤ ∞, let Fαq
denote the class of those functions in L1(T

d) such that

| f |Fα
q

:=
(∑

k∈Zd

(max(1, |k1|, . . . , |kd |)αq(| f̂ (k)|q)
)1/q

≤ 1.

The following theorem has been proved in [5]:
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Theorem 4.3. If α > 0 and λ := α/d + 1/q − 1
2 , then for all 1 ≤ p ≤ ∞ and all

0 < q ≤ ∞,

C1m−λ ≤ σm(Fαq , T d)p ≤ C2m−λ, α > d(1− 1/q)+,

with C1,C2 > 0 constants depending only on d, α, q.

The second class is defined as follows. Let α > 0, 0 < τ, s ≤ ∞, and Bαs (Lτ ) denote
the class of functions such that there exist trigonometric polynomials Tn of coordinate
degree 2n with the properties

f =
∞∑

n=0

Tn, ‖{2nα‖Tn‖τ }∞n=0‖�s (Z) ≤ 1.

The following theorem has been proved in [5] for these classes:

Theorem 4.4. Let 1 ≤ p ≤ ∞, 0 < τ, s ≤ ∞, and define

α(p, τ ) :=
{

d(1/τ − 1/p)+, 0 < τ ≤ p ≤ 2 and 1 ≤ p ≤ τ ≤ ∞,
max(d/τ, d/2), otherwise.

Then for α > α(p, τ ), we have

C1m−µ ≤ σ(Bαs (Lτ ), T d)p ≤ C2m−µ, µ := α/d − (1/τ −max(1/p, 1
2 ))+,

with C1,C2 depending only on α, p, τ , and d .

It was proved in [21] that in the case 1 ≤ p ≤ 2 the rate of best m-term approximation
in Theorem 4.3 can be realized by the Thresholding Greedy Algorithm Gm(·, T d), that
is, by a constructive method. It is well-known that for approximation by trigonometric
polynomials of degree m1/d in each variable one has

Em(B
α
s (Lτ ), T d)p := sup

f ∈Bαs (Lτ )
Em( f, T d)p � m−α/d+(1/τ−1/p)+(4.24)

provided α/d − (1/τ − 1/p)+ > 0. Comparing (4.24) with Theorem 4.4 we conclude
that in the case 0 ≤ τ ≤ p ≤ 2 or 1 ≤ p ≤ τ ≤ ∞ the rate of σm(Bαs (Lτ ), T d)p can be
realized by approximation by trigonometric polynomials of degree m1/d in each variable.
Thus in the case 0 ≤ τ ≤ p ≤ 2 or 1 ≤ p ≤ τ ≤ ∞ there is a simple constructive method
that realizes σm(Bαs (Lτ ), T d)p. The remaining case is 1 ≤ τ < p ≤ ∞, 2 < p ≤ ∞. In
a subcase of the remaining case when p <∞ it has been shown in [7] that the WCGA
(or WRGA) can be used to build a constructive method of realizing σm(Bαs (Lτ ), T d)p.
This was done in the following way. In [5] the only nonconstructive step of the proof of
Theorems 4.3 and 4.4 in the case 2 < p ≤ ∞ was hidden in the following inequality
(see [5, Corollary 5.1]):

σm(A1(T d
n ), T d)∞ ≤ Cm−1/2

(
1+ ln+

nd

m

)1/2

,(4.25)

where T d
n denotes the subsystem of the trigonometric system T d which forms a basis

for the space of trigonometric polynomials of coordinate degree n. The inequality (4.25)
was proved in [5] with the help of the following Gluskin theorem [9].



284 V. N. Temlyakov

Theorem 4.5. There exist absolute constants C1 and 0 < δ < 1 such that for any
finite collection V of M vectors from the unit Euclidean ball B N

2 of RN , there is a vector
z ∈ RN with |zi | = 0, 1, i = 1, . . . , N , ‖z‖�N

1
≥ δN , and

max
v∈V
|〈v, z〉| ≤ C1

(
1+ ln+

M

N

)1/2

.

It was pointed out in [7] that in the case 2 < p < ∞ the WCGA with the weakness
sequence {t}, t ∈ (0, 1], provides a constructive way to get an analog of (4.25). This
follows immediately from Theorem 2.3: For f ∈ A1(T d

n ) we have

‖ f c,t
m ‖p ≤ C(p, t)m−1/2, 2 ≤ p <∞.(4.26)

Thus the only nonconstructive step in the proof of upper estimates in Theorems 4.3 and
4.4 was made constructive for p <∞.

In the same way as in [7] one can use Theorem 4.2 instead of (4.26) to make the proofs
of Theorems 4.3 and 4.4 [5] constructive in the case p = ∞. Therefore, we now have
constructive proofs of Theorems 4.3 and 4.4 in all cases. It is interesting to compare this
situation with the situation on finding a constructive proof for Kolmogorov’s widths of
the above function classes. We will make a comment only on classes Bαs (Lτ ) in the case
τ = 2, p = ∞. We recall the definition of the Kolmogorov width

dm(F, X) := inf
ϕ1,...,ϕm

sup
f ∈F

inf
c1,...,cm

∥∥∥∥∥ f −
m∑

j=1

cjϕj

∥∥∥∥∥ .
By Kashin’s [13] result

dm(B
α
s (L2), L∞) � m−α/d , α > d/2.(4.27)

Estimate (4.27) is only an existence theorem and it is an interesting open problem to find
a constructive proof (constuct ϕ1, . . . , ϕm) of (4.27).

One can check that the proof of Theorem 4.1 works in the following more general
situation. Let 
 := {ϕj }∞j=1 be a uniformly bounded orthonormal system defined on a
bounded domain. Denote


(N ) := span{ϕ1, . . . , ϕN }

and assume that the system 
 admits a sequence of the de La Vallée Poussin operators:

(VP) There exist two positive constants K1 and K2 such that for any N there is an
operator V


N with the properties

V

N (ϕj ) = λN , jϕj ,

λN , j = 1 for j ∈ [1, N ], λN , j = 0 for j > K1 N ,

‖V

N ‖L p→L p ≤ K2 for 1 ≤ p ≤ ∞ and all N .(4.28)
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For a system
 having the (VP) property we can easily derive from (4.28) and the uniform
boundedness of 
 that

‖V

N ‖L2→L∞ ≤ C N 1/2.

By the interpolation theory of operators we get, from here and from (4.28) with p = ∞,
that

‖V

N ‖L p→L∞ ≤ C N 1/p, p ∈ (2,∞).

The last inequality implies the Nikol’skii inequality

‖ϕ‖∞ ≤ C N 1/p‖ϕ‖p, ϕ ∈ 
(N ), p ∈ (2,∞).

Thus 
 has all the properties needed in the proof of Theorem 4.1. Therefore, we have
the following generalization of Theorem 4.1. Denote∥∥∥∥∥

N∑
j=1

cjϕj

∥∥∥∥∥
A

:=
N∑

j=1

|cj |.

Theorem 4.6. Let 
 := {ϕj }∞j=1 be a uniformly bounded orthonormal system defined
on a bounded domain. Assume
 has the (VP) property. Then there exists a constructive
method A(
, N ,m) such that for any ϕ ∈ 
(N ) it provides an m-term 
-polynomial
A(
, N ,m)(ϕ) with the following approximation property:

‖ϕ − A(
, N ,m)(ϕ)‖∞ ≤ Cm−1/2(ln(1+ N/m))1/2‖ϕ‖A

with a constant C which may depend on 
.

We note that the decomposition technique used in the proof of Theorem 4.1 is a
standard tool in the interpolation of operators. The idea of combining the decomposi-
tion technique with an inductive way of constructing approximations is also known in
approximation theory. For instance, it has been used recently in [3].

5. The Discrepancy Estimates

Let 1 ≤ p <∞. We recall the definition of the L p discrepancy (the L p-star discrepancy)
of points {ξ 1, . . . , ξm} ⊂ �d := [0, 1]d . Let χ[a,b](·) be a characteristic function of the
interval [a, b]. Denote, for x, y ∈ �d ,

B(x, y) :=
d∏

j=1

χ[0,xj ](yj ).

Then the L p discrepancy of ξ := {ξ 1, . . . , ξm} ⊂ �d is defined by

D(ξ,m, d)p :=
∥∥∥∥∥
∫
�d

B(x, y) dy − 1

m

m∑
µ=1

B(x, ξµ)

∥∥∥∥∥
L p(�d )

.
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It will be convenient for us to study a slight modification of D(ξ,m, d)p. For a, t ∈ [0, 1]
denote

H(a, t) := χ[0,a](t)− χ[a,1](t),

and, for x, y ∈ �d ,

H(x, y) :=
d∏

j=1

H(xj , yj ).

We define the symmetrized L p discrepancy by

Ds(ξ,m, d)p :=
∥∥∥∥∥
∫
�d

H(x, y) dy − 1

m

m∑
µ=1

H(x, ξµ)

∥∥∥∥∥
L p(�d )

.

The L∞ discrepancies D(ξ,m, d)∞ and Ds(ξ,m, d)∞ are defined in the same way with
the L p-norm replaced by the L∞-norm.

Using the identity

χ[0,xj ](yj ) = 1
2 (H(1, yj )+ H(xj , yj ))

we get a simple inequality

D(ξ,m, d)∞ ≤ Ds(ξ,m, d)∞.(5.1)

We are interested in ξ with small discrepancy. Consider

D(m, d)p := inf
ξ

D(ξ,m, d)p, Ds(m, d)p := inf
ξ

Ds(ξ,m, d)p.

For 1 < p <∞ the following relation is known (see [1, p. 5]):

D(m, d)p � m−1(ln m)(d−1)/2(5.2)

with constants in � depending on p and d. The right order of D(m, d)p, p = 1,∞, for
d ≥ 3 is unknown. As we mentioned in the Introduction the following estimate has been
obtained in [11]:

D(m, d)∞ ≤ Cd1/2m−1/2.(5.3)

It is pointed out in [11] that (5.3) is only an existence theorem and even a constant C in
(5.3) is unknown. Their proof is a probabilistic one. There are also some other estimates
in [11] with explicit constants. We mention one of them

D(m, d)∞ ≤ C(d ln d)1/2((ln n)/n)1/2(5.4)

with an explicit constant C . The proof of (5.4) is also probabilistic.
In this section we apply greedy-type algorithms to obtain upper estimates of D(m, d)p,

1 ≤ p ≤ ∞, in a style of (5.3) and (5.4). The important feature of our proof is that it is
deterministic and, moreover, it is constructive. Formally, the optimization problem

D(m, d)p = inf
ξ

D(ξ,m, d)p
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is deterministic: One needs to minimize over {ξ 1, . . . , ξm} ⊂ �d . However, minimization
by itself does not provide any upper estimate. It is known (see [4]) that simultaneous
optimization over many parameters ({ξ 1, . . . , ξm} in our case) is a very difficult problem.
We note that

D(m, d)p = σ e
m(J,B)p := inf

g1,...,gm∈B

∥∥∥∥∥J (·)− 1

m

m∑
µ=1

gµ

∥∥∥∥∥
L p(�d )

where

J (x) =
∫
�d

B(x, y) dy

and

B = {B(x, y), y ∈ �d}.
It has been proved in [4] that if an algorithm finds best m-term approximation for each
f ∈ RN for every dictionary D with the number of elements of order N k , k ≥ 1, then
this algorithm solves an N P-hard problem. Thus, in nonlinear m-term approximation
we look for methods (algorithms) which provide approximation close to best m-term ap-
proximation and at each step solve an optimization problem over only one parameter (ξµ

in our case). In this section we will provide such an algorithm for estimating σ e
m(J,B)p.

We call this algorithm “constructive” because it provides an explicit construction with
feasible one-parameter optimization steps.

We proceed to the construction. In this section we do not assume that a dictionary D
is symmetric: g ∈ D implies −g ∈ D. To indicate this we will use the notation D+ for
such a dictionary. We do not assume that elements of a dictionary D+ are normalized
(‖g‖ = 1 if g ∈ D+) and assume only that ‖g‖ ≤ 1 if g ∈ D+. By A1(D+) we denote
the closure of the convex hull ofD+. We will use in our construction the IA(ε) which is a
slight modification of the corresponding procedure from [8]. One can find results on the
application of incremental algorithms in neural networks in [17]. For convenience we
repeat here the definition of the IA(ε) from the Introduction. Let ε = {εn}∞n=1, εn > 0,
n = 1, 2, . . . .

Incremental Algorithm with Schedule ε (IA(ε)). Let f ∈ A1(D+). Denote f i,ε
0 := f

and Gi,ε
0 := 0. Then for each m ≥ 1 we inductively define:

(1) ϕi,ε
m ∈ D+ is any satisfying

Ff i,ε
m−1
(ϕi,ε

m − f ) ≥ −εm .

(2) Define

Gi,ε
m := (1− 1/m)Gi,ε

m−1 + ϕi,ε
m /m.

(3) Denote

f i,ε
m := f − Gi,ε

m .
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We note that similarly to Lemma 2.2 we have, for any bounded linear functional F
and any D+,

sup
g∈D+

F(g) = sup
f ∈A1(D+)

F( f ).(5.5)

Therefore, for any F and any f ∈ A1(D+),

sup
g∈D+

F(g) ≥ F( f ).

This guarantees the existence of ϕi,ε
m .

Theorem 5.1. Let X be a uniformly smooth Banach space with the modulus of smooth-
ness ρ(u) ≤ γ uq , 1 < q ≤ 2. Define

εn := K1γ
1/qn−1/w, w = q

q − 1
, n = 1, 2, . . . .

Then for any f ∈ A1(D+) we have

‖ f i,ε
m ‖ ≤ C(K1)γ

1/qm−1/w, m = 1, 2 . . . .

Proof. We will use the abbreviated notation fm := f i,ε
m , ϕm := ϕi,ε

m , Gm := Gi,ε
m .

Representing

fm = fm−1 − (ϕm − Gm−1)/m

we get immedietly the trivial estimate

‖ fm‖ ≤ ‖ fm−1‖ + 2/m.(5.6)

Representing

fm = (1− 1/m) fm−1 − (ϕm − f )/m(5.7)

= (1− 1/m)( fm−1 − (ϕm − f )/(m − 1))

we obtain, in a way similar to (2.10) or (3.4),

‖ fm−1 − (ϕm − f )/(m − 1)‖ ≤ ‖ fm−1‖(1+ 2ρ(2((m − 1)‖ fm−1‖)−1))(5.8)

+ εm(m − 1)−1.

Using the definition of εm and the assumption ρ(u) ≤ γ uq we make the following
observation. There exists a constant C(K1) such that if

‖ fm−1‖ ≥ C(K1)γ
1/q(m − 1)−1/w,(5.9)

then

2ρ(2((m − 1)‖ fm−1‖)−1)+ εm((m − 1)‖ fm−1‖)−1 ≤ 1/(4m)(5.10)

and, therefore, by (5.7) and (5.8),

‖ fm‖ ≤ (1− 3/(4m))‖ fm−1‖.(5.11)

The following lemma is known ([22]):
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Lemma 5.1. Let three positive numbers α < γ ≤ 1, A > 1 be given and let a sequence
of positive numbers 1 ≥ a1 ≥ a2 ≥ · · · satisfy the condition: If for some ν ∈ N we have

aν ≥ Aν−α

then

aν+1 ≤ aν(1− γ /ν).
Then there exists B = AC(α, γ ) such that for all n = 1, 2, . . . we have

an ≤ Bn−α.

Remark 5.1. It is easy to check that the proof of Lemma 5.1 from [22] works if we
replace the assumption am ≤ am−1 by

am ≤ am−1 + C(m − 1)−α.

Taking into account (5.6) we apply Lemma 5.1 and Remark 5.1 to the sequence
an = ‖ fn‖, n = 1, 2, . . . , with α = 1/w, γ = 3

4 , and complete the proof of
Theorem 5.1.

Corollary 5.1. We apply Theorem 5.1 for X = L p(�d), p ∈ [2,∞),D+ = {H(x, y),
y ∈ �d}, f = J s(x), where

J s(x) =
∫
�d

H(x, y) dy ∈ A1(D+).

Using (1.5) we get by Theorem 5.1 a constructive set ξ 1, . . . , ξm such that

Ds(ξ,m, d)p = ‖(J s)i,εm ‖L p(�d ) ≤ Cp1/2m−1/2

with absolute constant C .

Corollary 5.2. We apply Theorem 5.1 for X = L p(�d), p ∈ [2,∞), D+ = {B(x, y),
y ∈ �d}, f = J (x), where

J (x) =
∫
�d

B(x, y) dy ∈ A1(D+).

Using (1.5) we get by Theorem 5.1 a constructive set ξ 1, . . . , ξm such that

D(ξ,m, d)p = ‖J i,ε
m ‖L p(�d ) ≤ Cp1/2m−1/2

with absolute constant C .
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Corollary 5.3. We apply Theorem 5.1 for X = L p(�d), p ∈ [2,∞),D+ = {B(x, y)/
‖B(·, y)‖L p(�d ), y ∈ �d}, f = J (x). Using (1.5) we get by Theorem 5.1 a constructive
set ξ 1, . . . , ξm such that∥∥∥∥∥

∫
�d

B(x, y) dy − 1

m

m∑
µ=1

(
p

p + 1

)d
(

d∏
j=1

(1− ξµj )−1/p

)
B(x, ξµ)

∥∥∥∥∥
L p(�d )

≤ C

(
p

p + 1

)d

p1/2m−1/2

with absolute constant C .

We note that in the case X = L p(�d), p ∈ [2,∞), D+ = {H(x, y), x ∈ �d},
f = J s(y), the implementation of the IA(ε) is a sequence of maximization steps when
we maximize functions of d variables. An important advantage of the L p spaces is a
simple and explicit form of the norming functional Ff of a function f ∈ L p(�d). The
Ff acts as (for real L p spaces)

Ff (g) =
∫
�d

‖ f ‖1−p
p | f |p−2 f g dy.

Thus the IA(ε) should find at a step m an approximate solution to the following opti-
mization problem (over y ∈ �d ):∫

�d

| f i,ε
m−1(x)|p−2 f i,ε

m−1(x)H(x, y) dx → max.

Let us discuss a possible application of the AWRGA instead of the IA(ε). An obvious
change is that instead of the cubature formula

1

m

m∑
µ=1

H(x, ξµ)

in the case of IA(ε) we have a cubature formula

m∑
µ=1

wm
µ H(x, ξµ),

m∑
µ=1

|wm
µ | ≤ 1,

in the case of the AWRGA. This is a disadvantage of the AWRGA. An advantage of the
AWRGA is that we are more flexible in selecting an element ϕar

m :

Far
m−1(ϕ

ar
m − Gar

m−1) ≥ tm sup
g∈D

Far
m−1(g − Gar

m−1)

than an element ϕi,ε
m :

Ff i,ε
m−1
(ϕi,ε

m − f ) ≥ −εm .

We will now derive an estimate for D(m, d)∞ from Corollary 5.2.
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Proposition 5.1. For any m there exists a constructive set ξ = {ξ 1, . . . , ξm} ⊂ �d

such that

D(ξ,m, d)∞ ≤ Cd3/2(max(ln d, ln m))1/2m−1/2, d,m ≥ 2,(5.12)

with effective absolute constant C .

Proof. We use the inequality from [19],

D(ξ,m, d)∞ ≤ c(d, p)d(3d + 4)D(ξ,m, d)p/(p+d)
p(5.13)

and the estimate for c(d, p) from [11],

c(d, p) ≤ 31/3d−1+2/(1+p/d).(5.14)

Specifying p = d max(ln d, ln m) and using Corollary 5.2 we get (5.12) from (5.13) and
(5.14).
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