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Locally Supported, Piecewise Polynomial Biorthogonal
Wavelets on Nonuniform Meshes

Rob Stevenson

Abstract. In this paper, biorthogonal wavelets are constructed on nonuniform meshes.
Both primal and dual wavelets are locally supported, continuous piecewise polynomials.
The wavelets generate Riesz bases for the Sobolev spaces Hs for |s| < 3

2 . The wavelets
at the primal side span standard Lagrange finite element spaces.

1. Introduction

This paper is concerned with the construction of locally supported biorthogonal wavelets
on nonuniform meshes. We consider meshes that are generated by uniform refinements
starting from an arbitrary initial triangulation of some domain � ⊂ R

n . In the wavelet
literature this is also referred to as a semiregular setting [12].

The wavelets at the primal side will span standard Lagrange (C0) finite element spaces,
with or without essential boundary conditions of, in principal, any order and with any
number of vanishing moments. For any |s| < 3

2 , after a proper scaling, the infinite union
of the wavelets is a Riesz basis for the Sobolev space H s(�) (or for the corresponding
space from a modified scale incorporating essential boundary conditions). The wavelet
construction directly extends to Lipschitz’ manifolds consisting of patches, where each
patch can be described by a parametrization with a constant Jacobian determinant.

The wavelets satisfy all conditions to use them as ingredients in various wavelet-based
algorithms for solving operator equations. For an overview of such algorithms, see [8]
and [3]. Key aspects include optimal preconditioning, matrix compression, and adaptive
schemes.

An alternative approach to construct wavelet bases on domains or manifolds that
cannot be fitted with a uniform grid structure, is to write them as a disjoint union of
parametric images of a unit cube, map wavelets living on the cube to the subdomains
using the parametrizations, and finally stitch them together. Such constructions yielding
wavelet bases suitable for solving operator equations can be found in [9], [1], [10].
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This work can be viewed as a continuation of [11]. A novel aspect is that in the
present paper the dual wavelets are also locally supported. As a consequence, the field
of applications is extended to all “classical” wavelet applications as signal analysis and
image compression.

Another remarkable aspect is that the dual wavelets will be continuous piecewise
polynomials. This allows the application of simple standard quadrature formulas for
computing wavelet coefficients. Wavelet constructions, also of higher regularity, where
the dual functions are piecewise polynomials were discussed earlier in [13], [14], [15].
These constructions concern shift-invariant settings in one or, in [14], two dimensions.
In [13], [14] extensions are discussed to uniform meshes on bounded domains �. Yet,
there the property of polynomial reproduction is lost, which means that the wavelets can
only be shown to generate a Riesz basis for L2(�) and, furthermore, that wavelets near
the boundary do not have cancellation properties.

Our construction distinguishes from most other wavelet constructions on nonuniform
meshes (“second generation wavelets”) in the sense that, as in the shift-invariant case
(“first generation wavelets”), the wavelets are proven to generate Riesz bases for a scale
of Sobolev spaces. In this respect, note that any compression algorithm based on deleting
small wavelet coefficients can only be meaningful when there is some notion of stability.

Locally supported biorthogonal wavelets where the primal spaces are finite element
spaces with respect to semiregular meshes were also constructed in [5]. Yet, that con-
struction applies to one case of P1 elements in two dimensions, and it yields wavelets
with one vanishing moment. These wavelets generate a Riesz basis for H s(�) or H s

0 (�)

when s ∈ (−s̃, 3
2 )with s̃ ≈ 0.114. The dual wavelets are given as solutions of refinement

equations and are not piecewise polynomials. Compared to P1 wavelets that will be con-
structed in this paper, an advantage of the wavelets from [5] is that their implementation
is easier and that they have a smaller support. On the other hand, the P1 wavelets from
this paper have four vanishing moments.

This paper is organized as follows: In Section 2, we recall the theory concerning
stability of biorthogonal space decompositions, which originates from [7]. To construct
bases for the subspaces that make up these space decompositions, that is, the wavelets,
we follow the construction known as that of the “stable completions” [2], which is related
to the “lifting scheme” [17]. We give a new and short proof of stability of these bases,
which is not based on matrix arguments and, therefore, which is fully separated from
issues related to implementation.

In Section 3.1 we reduce the whole construction of biorthogonal bases on nonuniform
meshes to a construction on a reference element. We give general criteria for local
biorthogonal bases to give rise to global biorthogonal continuous scaling functions and
wavelets, all with supports that are restricted to a uniform bounded number of mesh-cells.
Necessarily, these global functions depend on the (local) topology of the mesh. Yet, this
dependence will be explicitly given.

In Sections 3.2–3.5 we give four concrete realizations of biorthogonal bases on nonuni-
form meshes. With n denoting the space dimension and d − 1, d̃ − 1 being the degrees
of polynomial exactness at primal and dual sides, these examples are characterized by
(n, d, d̃) = (1, 2, 4), (1, 5, 4), (2, 2, 4), and (2, 5, 4). Although in two dimensions, the
constructions are rather complex, we show how the wavelet and inverse wavelets trans-
form can be implemented at relatively low cost.



Locally Supported Biorthogonal Wavelets on Nonuniform Meshes 479

2. General Mechanism to Construct Stable Wavelet Bases

Let H be a separable Hilbert space with scalar product 〈 , 〉 and norm ‖ ‖. Let � be
some countable collection of functions in H .

We start by recalling some convenient compact notations that, for example, can be
found in [8]. Let us formally view � as a column vector. Then, for a column vector
c = (cσ )σ∈� of scalars, cT� := ∑σ∈� cσ σ is a natural notation. We always consider
the spaces of scalar vectors as being equipped with the 
2-norm and, consequently, the
spaces of possibly infinite matrices as being equipped with the corresponding operator
norm. For x ∈ H , with 〈�, x〉 and 〈x, �〉, we will mean the column- and row-vectors
with coefficients 〈σ, x〉 and 〈x, σ 〉, σ ∈ �. More generally, when �̂ is another countable
collection in H , with 〈�, �̂〉 is meant the matrix (〈σ, σ̂ 〉)σ∈�,σ̂∈�̂ .

With these notations, a collection � is called a Riesz system when

‖cT�‖ =∼ ‖c‖,(2.1)

and � is called a Riesz basis when it is, in addition, a basis for H . Two collections �

and �̃ are called biorthogonal or �̃ is dual to � or vice versa, when

〈�, �̃〉 = id.(2.2)

Part (a) of the following lemma will be used in the forthcoming Theorem 2.3 concern-
ing stability of biorthogonal space decompositions, whereas part (b) will be applied to
construct Riesz bases for the subspaces that make up these space decompositions.

Lemma 2.1. Let V and Ṽ be closed subspaces of H .

(a) The following statements are equivalent:
(i) There exist Riesz bases � and �̃ for V and Ṽ such that 〈�, �̃〉 is bounded

invertible.
(ii)

inf
0=ṽ∈Ṽ

sup
0=v∈V

|〈ṽ, v〉|
‖ṽ‖‖v‖ > 0,(2.3)

and for any v ∈ V there holds sup0=ṽ∈Ṽ
|〈ṽ,v〉|
‖ṽ‖‖v‖ > 0.

(iii) There exists a (unique) bounded projector Q : H → H with Im Q = V
and Im(id − Q) = Ṽ ⊥.

(iv) To any Riesz basis for Ṽ there corresponds a unique dual collection in V .
Moreover, this collection is a Riesz basis for V .

(b) Let any of the equivalent conditions (i)–(iv) from (a) be satisfied. Let X, W be
subspaces of H such that X = W + V and

cos∠(W, V ) := sup
0=w∈W,0=v∈V

|〈w, v〉|
‖w‖‖v‖ < 1.(2.4)

Then (id − Q)|W : W → X ∩ Ṽ ⊥ is bounded invertible, see Figure 1.
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Fig. 1. Illustration for Lemma 2.1(b). H and X are represented by R3 and the plane x = 0, respectively. Ṽ
is contained in the plane z = 0.

Proof. (a) (i) → (ii): This follows easily by expressing v and ṽ in terms of the Riesz
bases from (i).

(ii) → (iii): For this part we refer to [11, Theorem 2.1(a)].
(iii) → (iv): Let �̃ be a Riesz basis for Ṽ . Let Ṽ ′ be the dual space of Ṽ equipped with

the operator norm. In [6] it was proved that there exists a Riesz basis �̃′ for Ṽ ′ which is
dual to �̃, here in the sense that �̃′(�̃) := (σ̃ ′(σ̃ ))σ̃ ′∈�̃′,σ̃∈�̃ = id.

Let R̃ : Ṽ ′ → Ṽ be the Riesz map, i.e., 〈ṽ, R̃ f̃ 〉 = f̃ (ṽ) for all f̃ ∈ Ṽ ′, ṽ ∈ Ṽ , and
let Q be the projector onto V from (iii). From

〈�̃, Q R̃�̃′〉 = 〈�̃, R̃�̃′〉 = �̃′(�̃),

we see that �̃ and Q R̃�̃′ are biorthogonal systems. Since R̃ is an isomorphism, we may
conclude that Q R̃�̃′ is a Riesz basis for V when Q|Ṽ : Ṽ → V is a homeomorphism.

For ṽ ∈ Ṽ , there holds ‖Qṽ‖ ≥ |〈Qṽ, ṽ〉|/‖ṽ‖ = ‖ṽ‖. Since Ṽ is closed, this property
of Q and its boundedness show that Im(Q|Ṽ ) is closed. Now suppose that Im(Q|Ṽ ) = V ,
then there would be a 0 = v ∈ V , such that

0 = 〈Qṽ, v〉 = 〈ṽ, Q∗v〉 (ṽ ∈ Ṽ ).(2.5)

One easily verifies that Im Q∗ = Ṽ and Im(id − Q∗) = V ⊥. The first property to-
gether with (2.5) shows that Q∗v = 0, whereas the second property gives ‖Q∗v‖ ≥
|〈Q∗v, v〉|/‖v‖ = ‖v‖, which contradicts v = 0. We conclude that, indeed, Q|Ṽ : Ṽ →
V is a homeomorphism.

There remains to show that there is only one collection in V that is dual to �̃. Suppose
this is wrong. Then there would be a 0 = v ∈ V such that 〈v, �̃〉 = 0 and thus 〈v, ṽ〉 = 0
for all ṽ ∈ Ṽ . Since Q|Ṽ : Ṽ → V is a homeomorphism there exists a 0 = ỹ ∈ Ṽ with
Qỹ = v. From Im(id − Q) = Ṽ ⊥, we get 〈ỹ, ṽ〉 = 0 for all ṽ ∈ Ṽ , contradicting ỹ = 0.

(iv) → (i): Any separable Hilbert space has an orthonormal basis. Starting with such
a basis for Ṽ and applying (iv) shows (i), where 〈�, �̃〉 is even the identity matrix.
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(b) Write x ∈ X as x = w + v where w ∈ W , v ∈ V . Formula (2.4) shows that this
decomposition is unique and that ‖x‖2 =∼ ‖w‖2 + ‖v‖2. Taking x ∈ X ∩ Ṽ ⊥, we have
Qx = 0 and so v = Qv = −Qw, i.e., x = (id − Q)w and ‖x‖2 =∼ ‖w‖2 + ‖Qw‖2 =∼
‖w‖2.

Remarks 2.2.
(a) Since (i) is symmetric in V and Ṽ , so are (ii)–(iv), i.e., the roles of V and Ṽ may

everywhere be interchanged. In that case, as was already mentioned in the proof, the
projector from (iii) is nothing other than Q∗. Pairs of spaces V , Ṽ that satisfy any, and
thus all, of (i)–(iv) will be said to satisfy the maximum angle condition.

(b) Estimate (2.4) is known as the strengthened Cauchy–Schwarz inequality. Pairs of
spaces W , V that satisfy (2.4) will be said to satisfy the minimum angle condition.

(c) If �, �̃ are Riesz bases for V and Ṽ such that 〈�, �̃〉 is bounded invertible, then
the projector Q from (iii) can be computed by

Qx = 〈x, �̃〉〈�, �̃〉−1�,

and, similarly, Q∗y = 〈y, �〉〈�̃,�〉−1�̃.
(d) Below we will apply Lemma 2.1 to an infinite sequence of pairs of closed subspaces

V , Ṽ of some Hilbert space H , together with corresponding sequences of spaces X and
W . We will be interested in results that hold uniformly over these sequences. The proof of
the lemma shows that if we replace in (i), (iii), and (b) “bounded” by “uniformly bounded,”
and the conditions for being a Riesz system or satisfying (2.3) or (2.4) by corresponding
conditions that hold uniformly over the sequences, then the resulting lemma remains
valid. In this respect, we will speak about uniform Riesz systems, uniform Riesz bases,
and uniform maximum or minimum angle conditions.

In the following, letHs for s ∈ R or |s| ≤ t denote a scale of Sobolev spaces, possibly
incorporating essential boundary conditions, on an n-dimensional domain or sufficiently
smooth manifold. We will denote H0 also as L2, and when s < 0 the space Hs is
understood to be the dual of H−s . From now on, the role of the general Hilbert space
H will be played by L2, and so ( )∗ will mean an adjoint with respect to the L2-scalar
product, and ⊥ denotes orthogonality with respect to this scalar product.

Theorem 2.3 (Biorthogonal Space Decompositions). Let V0 ⊂ V1 ⊂ V2 ⊂ · · · and
Ṽ0 ⊂ Ṽ1 ⊂ Ṽ2 ⊂ · · · be sequences of nested closed subspaces of L2, and let ρ > 1 be
some constant, that in applications will be the refinement factor.

Assume that (Vj , Ṽj )j satisfies the uniform maximum L2-angle condition. Let (Qj )

be the sequence of uniformly bounded projectors Qj : L2 → L2 with Im Qj = Vj and
Im(id − Qj ) = Ṽ ⊥

j from Lemma 2.1(a)(iii).
Assume that there exist 0 < γ < d such that

inf
vj ∈Vj

‖v − vj‖L2
<∼ ρ−s j‖v‖Hs (v ∈ Hs, 0 ≤ s ≤ d)(J)

(direct or Jackson estimate), and

‖vj‖Hs
<∼ ρs j‖vj‖L2 (vj ∈ Vj , 0 ≤ s < γ ) (inverse or Bernstein estimate),(B)
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and that analogous assumptions ˜(J) and ˜(B) with constants 0 < γ̃ < d̃ hold for
(Ṽj ).

Then, with Q−1 := 0, one has∥∥∥∥∥
∞∑

j=0

wj

∥∥∥∥∥
2

Hs

<∼
∞∑

j=0

ρ2s j‖wj‖2
L2

(wj ∈ Im(Qj − Qj−1), s ∈ (−d̃, γ ))(2.6)

and
∞∑

j=0

ρ2s j‖(Qj − Qj−1)v‖2
L2

<∼ ‖v‖2
Hs (v ∈ Hs, s ∈ (−γ̃ , d)).(2.7)

For s ∈ (−γ̃ , γ ), the mappings (wj ) �→∑∞
j=0 wj and v �→ ((Qj − Qj−1)v), which are

bounded in the sense of (2.6) and (2.7), are each others’ inverse.
Analogous results are valid with (Qj ) replaced by (Q∗

j ) and with interchanged roles

of (γ, d) and (γ̃ , d̃).

Remark 2.4. An earlier theorem, demonstrating stability of biorthogonal space de-
compositions in an even more general context, can be found in [7]. See also [8], [3] and
the references cited there, for example, for generalizations to Besov norms. A proof of
the theorem in its present form can be found in [11, Theorem 2.1].

The essential point of the present formulation is that explicit knowledge of some
biorthogonal bases for Vj and Ṽj is not assumed. In [11] the conditions of Theorem 2.3
were verified for both (Vj ) and (Ṽj ) being sequences of standard finite element spaces.

In the remainder of this section, we will assume that we are in the situation as indicated
in Theorem 2.3. The nesting Ṽj ⊂ Ṽj+1 gives Q∗

j = Q∗
j+1 Q∗

j or Qj = Qj Qj+1, from
which we deduce that

Im(Qj+1 − Qj ) = Vj+1 ∩ Ṽ ⊥
j .

A direct consequence of Theorem 2.3 is that if we have uniform L2-Riesz bases �j for
the spaces Vj+1 ∩ Ṽ ⊥

j , and an L2-Riesz basis �0 for V0, then, for s ∈ (−γ̃ , γ ),

�0 ∪
∞⋃

j=0

ρ−s j�j

is a Riesz basis forHs . The elements of the �j are called wavelets.

Remark 2.5. Since, in particular, � := �0 ∪ ⋃j �j is a Riesz basis for L2, an appli-

cation of Lemma 2.1(a) with “V ” = “Ṽ ” = “H” = L2 shows that there exists a unique
dual collection �̃ := �̃0 ∪ ⋃j �̃j in L2 which, moreover, is a Riesz basis for L2. Ex-

ploiting biorthogonality shows that the �̃j are uniform L2-Riesz bases for the spaces
Ṽj ∩ V ⊥

j−1 and that �̃0 is an L2-Riesz basis for Ṽ0. From Theorem 2.3 we conclude that

for s ∈ (−γ, γ̃ ), �̃0 ∪ ⋃j ρ
−s j �̃j is a Riesz basis for Hs . The elements of the �̃j are

called dual wavelets.
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For s ∈ (−γ̃ , γ ) and v ∈ Hs , the unique expansion of v in terms of � is given by

v = 〈v, �̃〉�.(2.8)

Remark 2.6. The fact that the dual sequence (Ṽj ) satisfies a Jackson estimate is closely
related to the fact that integration of a resulting biorthogonal wavelet against a smooth
function produces something that is small. Indeed, for simplicity, restricting ourselves to
the domain case (for the manifold case, see, e.g., [11, Prop. 4.7]), the Jackson estimate ˜(J)
is usually enforced by demanding that Ṽj contains all piecewise polynomials up to degree
d̃−1 satisfying some global smoothness conditions with respect to a quasi-uniform mesh
with mesh-size ∼ ρ− j . Now the fact that ψj ∈ �j satisfies ψj ⊥L2 Ṽj shows that, for
smooth v, there holds 〈v,ψj 〉L2 = 〈v − p, ψj 〉L2 where p is a Taylor polynomial of v
of order d̃ − 1 around some point in supp ψj . Assuming that diam(supp ψj )

=∼ ρ− j , by
estimating the remainder term we find that

|〈v,ψj 〉L2 | <∼ ρ−(d̃+n/2) j‖v‖W ∞,d̃ (supp ψj )
,

which property of the wavelets is referred to as the cancellation property of order d̃.
Obviously, when also diam(suppψ̃j )

=∼ ρ− j , the dual wavelets have the cancellation
property of order d . The wavelets and dual wavelets we are going to construct will
satisfy an even slightly stronger condition on their supports (see Definition 2.7). The
cancellation property of the wavelets (or dual wavelets) is essential for finding sparse
approximate wavelet representations of operators (or functions).

Usually, it is not a problem to equip V0 with some L2-Riesz basis �0. Below we
discuss the construction of the wavelets. Suppose that we can identify:

• uniform L2-Riesz bases �j ∪ �j for Vj+1 and �̃j for Ṽj with 〈�j , �̃j 〉L2 = id.

Then with Wj := clL2 span�j , Zj := clL2 span�j , we have:

• Vj+1 = Wj + Zj ;
• (Zj , Ṽj )j satisfies the uniform maximum L2-angle condition; and
• (Wj , Zj )j satisfies the uniform minimum L2-angle condition.

Lemma 2.1 now shows that there exist unique uniformly L2-bounded projectors Pj with
Im Pj = Zj and Im(id − Pj ) = Ṽ ⊥

j where, moreover, (id − Pj )|Wj
: Wj → Vj+1 ∩ Ṽ ⊥

j

is invertible, with a uniformly L2-bounded inverse. We conclude that these (id − Pj )|Wj

map uniform L2-Riesz bases to uniform L2-Riesz bases, and thus that

�j := (id − Pj )�j(2.9)

are uniform L2-Riesz bases for the spaces Vj+1 ∩ Ṽ ⊥
j . From Remark 2.2(c) we learn that

�j = �j − 〈�j , �̃j 〉L2�j .(2.10)

Note that these wavelets �j depend on Vj+1, Ṽj , Zj , and �j but, as follows from (2.9),
not on the choice of the bases �j and �̃j for Zj and Ṽj .

In view of applications, we will be mainly interested in wavelets that are uniformly
local in the following sense:
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Definition 2.7. Let (�j )j∈N be a sequence of collections of functions. We will call the
(functions from) �j uniformly local when

diam(supp σj )
<∼ ρ− j and sup

α∈Zn
#{σj ∈ �j : supp σj ∩ ρ− j (α + [0, 1]n)} <∼ 1.

Having two sequences �j , �̂j of collections of uniformly local functions, matrices
Aj indexed with �j , �̂j will be called uniformly local when (Aj )σj ,σ̂j = 0 when
dist(supp σj , supp σ̂j )

>∼ ρ− j .
Note that such matrices Aj are uniformly sparse and, furthermore, that functions

from the collections Aj �̂j are uniformly local. A particular instance of uniformly local
matrices is given by 〈�j , �̂j 〉L2 .

From the above definition and its consequences we learn that if the �j , �̃j , and �j

are uniformly local, then the collections of wavelets resulting from (2.10) are uniformly
local.

Remark 2.8. For Zj := span�j = Vj , the wavelet construction (2.9)/(2.10) is known
as the construction via “stable completions” [2], which is related to the so-called “lifting
scheme” [17]. Our derivation of the fact that the �j are uniform L2-Riesz systems is
new in the sense that it is not based on matrix arguments, which means that it is fully
separated from issues related to the implementation.

With Zj = Vj , �j is a basis for Vj , and so the conditions for getting uniformly local
wavelets we derived now read as assuming that we have uniformly local, biorthogonal
L2-Riesz bases for the spaces Vj and Ṽj at our disposal. In practice, this condition is
much more restrictive than assuming 〈�j , �̃j 〉L2 = id for some uniform L2-Riesz system
�j ⊂ Vj+1, which lead us in [11] to consider the generalization Zj = Vj , which suffices
for all applications for which uniformly local dual wavelets are not needed. Examples of
such applications are wavelet-based algorithms for solving operator equations (see [8]).
On the other hand, for “classical” wavelet applications, like signal analysis and image
compression, having uniformly local dual wavelets is essential.

In many applications, one needs to switch from a representation of a function v ∈ VJ

with respect to the “multi-scale basis” �0 ∪ ⋃J−1
j=0 �j , to a representation with respect

to some “single-scale” basis �J .
Since Vj+1 = Vj ⊕ (Vj+1 ∩ Ṽ ⊥

j ), there exist matrices Mj,0 and Mj,1 such that �T
j =

�T
j+1Mj,0 and �T

j = �T
j+1Mj,1, and

Mj = [Mj,0 Mj,1]

is invertible. Writing v ∈ VJ in both forms cT
0 �0 +∑J−1

j=0 dT
j �

T
j and cT

J �J , the basis
transformation TJ mapping the “multi-scale coefficients” (cT

0 ,dT
0 , . . . ,dT

J−1)
T to the

“single-scale coefficients” cJ , satisfies

TJ = [MJ−1,0TJ−1 MJ−1,1] = MJ−1

[
TJ−1 0

0 id

]
,(2.11)
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and T0 = id. So, assuming a geometrical increase of dim VJ as a function of J , we see
that TJ can be performed in O(dim VJ ) operations when the Mj are uniformly sparse.

Writing �T
j = �T

j+1Nj,0, �T
j = �T

j+1Rj,1, �̃T
j = �̃T

j+1M̃j,0 for some matrices Nj,0,

Rj,1, and M̃j,0, we infer that (2.10) is equivalent to

Mj,1 = (id − Nj,0M̃∗
j,0〈�j+1, �̃j+1〉T

L2
)Rj,1.

We conclude that the Mj are uniformly sparse whenever this holds for Mj,0, Nj,0, M̃j,0,
〈�j+1, �̃j+1〉L2 , and Rj,1.

Formula (2.11) shows that if one also needs an implementation of optimal complexity
of T−1

J , mapping the “single-scale coefficients” to the “multi-scale coefficients,” then it
is necessary that also the M−1

j are uniformly sparse. Only under special circumstances,

the inverse of a sparse matrix is again sparse, and with the construction (2.10), M−1
j will

generally be a densely populated matrix.
In the wavelet literature, T−1

J and TJ are called the wavelet transform and inverse
wavelet transform, respectively.

From now on we will focus on the special case Zj = Vj . In this case, �j is a basis
for Vj , and we take �j = �j , so that Nj,0 = Mj,0 and 〈�j , �̃j 〉L2 = id. It holds that
Mj,0 = 〈�̃j+1,�j 〉L2 , M̃j,0 = 〈�j+1, �̃j 〉L2 , and Rj,1 = 〈�̃j+1, �j 〉L2 , meaning that
these matrices are uniformly local, and so in particular indeed are uniformly sparse,
when the collections �j , �̃j , and �j are uniformly local.

Furthermore, we now get

Mj = [Mj,0 Rj,1]

[
id −M̃∗

j,0Rj,1

0 id

]
,(2.12)

and we conclude that the M−1
j are uniformly local, and thus uniformly sparse, under the

additional condition that the initial supplements �j are selected such that:

• the basis transformations [Mj,0 Rj,1]−1 from �j+1 to �j ∪�j are uniformly local.

A closely related additional advantage of having a uniformly local M−1
j is that uni-

formly local dual wavelets become available: In Remark 2.5 the set of dual wavelets �̃j

was defined as the unique collection in Ṽj+1 ∩ V ⊥
j that is dual to �j . From [�T

j �T
j ] =

�T
j+1Mj and 〈MT

j �j+1, (M̄j )
−1�̃j+1〉L2 = id, we infer that

[�̃T
j �̃T

j ] = �̃T
j+1(M

∗
j )

−1.

We conclude that the �̃j are uniformly local when the bases �̃j+1 and the matrices M−1
j

are uniformly local.

3. Biorthogonal Scaling Functions on Nonuniform Meshes

In the remainder of this paper we will construct biorthogonal, uniformly local, uniform
L2-Riesz bases �j , �̃j for spaces Vj , Ṽj on some domain � ⊂ R

n , that are nested
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as function of j , and that, with ρ = 2, satisfy Bernstein estimates with γ = γ̃ = 3
2

and Jackson estimates for certain values d, d̃ > 3
2 . By Lemma 2.1(a), the fact that

such biorthogonal bases are available implies that (Vj , Ṽj )j also satisfies the uniform
maximum L2-angle condition and, thus, that all the conditions of Theorem 2.3 are
satisfied.

Furthermore, we will construct uniformly local collections�j (the initial completions),
such that �j ∪�j are uniform L2-Riesz bases for the spaces Vj+1 and such that the basis
transformations from �j+1 to �j ∪ �j are uniformly local.

From the previous section we learn then that both the wavelet collections

�j := �j − 〈�j , �̃j 〉L2�j ,

and their dual collections �̃j are uniformly local, uniform L2-Riesz bases for the spaces
Vj+1 ∩ Ṽ ⊥

j and Ṽj+1 ∩ V ⊥
j , respectively, and that for |s| < 3

2 , both �0 ∪⋃∞
j=0 2−s j�j

and �̃0 ∪⋃∞
j=0 2−s j �̃j are a Riesz bases for H s(�) (or, for the corresponding space

from a modified scale incorporating essential boundary conditions, see Remark 3.7).

That is, in contrast to our earlier joint paper with W. Dahmen ([11]), here we obtain
wavelets for which their duals are also uniformly local, at the cost of getting wavelets
with larger supports.

The primal spaces Vj will be standard Lagrange finite element spaces with respect
to meshes that are generated by uniform dyadic refinements starting with an arbitrary
initial mesh. Both �j and �̃j , and so �j and �̃j , will be defined explicitly.

Remark 3.1. Usually, at least the �̃j are only given as solution of some refinement
equation (see [4]). Exceptions are given by [13], [14], [15] dealing with uniform mesh
cases. An advantage of knowing �̃j explicitly is that there is much more freedom in
making efficient and accurate numerical approximations of expansions like (2.8).

3.1. Reduction to a Reference Element

In this subsection, we will explain the general mechanism to reduce the construction of
�j , �̃j , and�j to a construction on the reference (macro-)element. Examples of concrete
realizations will be given in the subsequent subsections.

Consider the closed reference n-simplex,

T =
{
λ ∈ Rn+1 :

n+1∑
i=1

λi = 1, λi ≥ 0

}
.

We fix a refinement of T into 2n congruent subsimplices T1, . . . ,T2n , each of them
determined by some ordered set of vertices.

For any closed n-simplex T , let λT (x) ∈ T denote the barycentric coordinates of
x ∈ T with respect to the ordered set of vertices of T . The above dyadic refinement of
T induces such a refinement of T into 2n congruent subsimplices (λ−1

T ◦ λ−1
Tk

◦ λT )(T )

(1 ≤ k ≤ 2n).
Let τ0 be a fixed collection of closed n-simplices, or elements, such that

⋃
T∈τ0

T is a
partition, also called triangulation, of the closure of some domain � ⊂ R

n . We assume
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that the triangulation is conforming, i.e., the intersection of any two elements is either
empty or a common face. Here, with a face of T , we mean any k-simplex spanned by
k + 1 vertices of T , where 0 ≤ k < n. Starting from τ0, we obtain an infinite sequence
of collections of simplices (τj )j≥0 by defining τj+1 as the collection of all simplices that
arise by applying the above refinement to all simplices from τj . To avoid some technical
complications, we will always assume that n ≤ 3, meaning that automatically all these
triangulations are conforming.

We will consider collections of functions Σ = {σλ : λ ∈ I} with some index set
I ⊂ T that satisfy:

(C) σλ ∈ C(T);
(V) σλ vanishes on any face that does not include λ;
(S) π(I ∩ ∂T) = I ∩ ∂T and σλ|∂T = (σπ(λ) ◦ π)|∂T for any permutation

π : Rn+1 → R
n+1;

(I) for e = T, or for e being any face of T, {σλ|e : λ ∈ I ∩ e} is independent.

An easy example one may think of is I being the set of vertices of T and Σ the set of
linear nodal basis functions, i.e., σλ(µ) = δλ,µ (λ,µ ∈ I). Later this set will be denoted
by ∆(1,0).

These “local” functions from such collections can be assembled into collections of
“global” functions in a way known from finite element methods: For j ≥ 0 and with

Ij = {x ∈ � : λT (x) ∈ I for some T ∈ τj },

we define the collection �j = {σj,x : x ∈ Ij } of functions on � by

σj,x (y) =
{
µ(x; τj )σλT (x)(λT (y)) if x, y ∈ T ∈ τj ,

0 elsewhere,
(3.1)

with scaling factor µ(x; τj ) := (
∑

{T∈τj :T!x} vol(T )/vol(T))−1/2. So these global func-
tions result from connecting the local basis functions over the interfaces. The assumptions
(C), (V), (S), and (I) show that the �j are collections of well-defined, uniformly local,
continuous, and independent functions on �.

In the following paragraphs we collect some general properties of this assembling
procedure.

Suppose that we have two collections Σ(1) = {σ(1)
λ ; λ ∈ I(1)} and Σ(2) = {σ(2)

λ ; λ ∈
I(2)} satisfying (C)–(I). Then, for the resulting (�

(1)
j ) and (�

(2)
j ), there holds span�

(1)
j ⊂

span �
(2)
j ( j ∈ N), if and only if

span Σ(1) ⊂ span Σ(2).

To show the if-statement, let Q = (qν,µ)ν∈I(2),µ∈I(1) be such that (Σ(1))T = (Σ(2))T Q or

σ(1)
µ =

∑
ν∈I(2)

qν,µσ
(2)
ν .(3.2)
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Then, there holds that, for x ∈ I (1)j ,

σ
(1)
j,x

µ(x; τj )
=

∑
{y∈I (2)j :∃T∈τj , x,y∈T }

qλT (y),λT (x)

σ
(2)
j,y

µ(y; τj )
.(3.3)

Indeed, it is not difficult to verify that both sides of (3.3) agree on supp σ
(1)
j,x . Note that

by (S), the coefficient qλT (y),λT (x) in front of σ (2)
j,y is uniquely defined, also when x and

y are included on a face shared by elements in τj . Furthermore, the conditions (V) on
Σ(1) and (I) on Σ(2) ensure that the right-hand side of (3.3) vanishes outside supp σ

(1)
j,x .

Formula (3.3) shows that the representations of the inclusions Incl : span �
(1)
j →

span �
(2)
j with respect to �

(1)
j and �

(2)
j are uniformly local and, furthermore, it shows

how they can be constructed from the representation Q of Incl : span Σ(1) → span Σ(2)

with respect to Σ(1) and Σ(2).
As a special case, suppose that (�(1)

j ) and (�
(2)
j ) satisfy (C)–(I) and that

span Σ(1) = span Σ(2).

With (�
(1)
j ) and (�

(2)
j ) being the sequences of the corresponding global bases, an appli-

cation of the foregoing shows that both the basis transformations from �
(1)
j to �

(2)
j and

their inverses are uniformly local.
The question whether, for given Σ, there holds span �j ⊂ span �j+1 ( j ∈ N) can also

be reduced to a special case of the foregoing analysis. Indeed, with the refined index set
being defined by

I(r) :=
2n⋃

k=1

λ−1
Tk

(I),

let us define Σ(r) = {σ(r)
λ : λ ∈ I(r)}, satisfying (C), (V), (S), and (I), by

σ(r)
ν (µ) =

{
σλTk (ν)

(λTk (µ)) if ν, µ ∈ Tk for some 1 ≤ k ≤ 2n,

0 elsewhere on T.
(3.4)

Then for the resulting (�
(r)
j ) it holds that �(r)

j = 2−n/2�j+1 and so span �j ⊂ span �j+1

( j ∈ N) if and only if

span Σ ⊂ span Σ(r).(R)

Such a collection Σ is called refinable and Σ(r) is the refinement of Σ. Formulas (3.2)
and (3.3) show how, the uniformly local, representation of Incl : span �j → span �j+1

can be constructed from the representation of the local inclusion.
We note the trivial equality

〈u, v〉L2(�) =
∑
T∈τj

vol(T )

vol(T)
〈u ◦ λ−1

T , v ◦ λ−1
T 〉L2(T).(3.5)
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Let � be a collection satisfying (C)–(I). From (3.5), and the fact that Σ is an independent
set and thus an L2(T)-Riesz system, we obtain that

‖cT
j �j‖2

L2(�) =
∑
T∈τj

vol(T )

vol(T)

∥∥∥∥∥
∑

x∈Ij ∩T

cj,xµ(x; τj )σλT (x)

∥∥∥∥∥
2

L2(T)

=∼
∑
T∈τj

vol(T )

vol(T)

∑
x∈Ij ∩T

|cj,x |2µ(x; τj )
2

=
∑
x∈Ij

|cj,x |2µ(x; τj )
2
∑

{T∈τj :T!x}

vol(T )

vol(T)

= ‖cj‖2,

i.e., the �j are uniform L2(�)-Riesz systems.
Having two collections Σ(1) = {σ(1)

λ ; λ ∈ I(1)} and Σ(2) = {σ(2)
λ ; λ ∈ I(2)} satisfying

(C)–(I), for x ∈ I (1)j , y ∈ I (2)j , it holds that

〈σ (1)
j,x , σ

(2)
j,y 〉L2(�) = µ(x; τj )µ(y; τj )

∑
{T∈τj :T!x,y}

vol(T )

vol(T)
〈σ(1)

λT (x)
,σ(2)

λT (y)〉L2(T),(3.6)

where, when {T ∈ τj : T ! x, y} = ∅, the factors 〈σ(1)
λT (x)

,σ(2)
λT (y)〉L2(T) in the sum

on the right-hand side are independent of T . We see that the uniformly local matrices
〈�(1)

j , �
(2)
j 〉L2(�) can easily be assembled from 〈Σ(1),Σ(2)〉L2(T) using some information

about the geometry of τj .
Now that we have collected general properties of the assembling of global functions

from local ones, we come to the construction of �j , �j , and �j . With Φ, Φ̃, and Φ

being particular instances of a collection Σ, the idea is to define �j , �̃j , and �j as the
corresponding collections of global functions according to (3.1). Yet, not in all concrete
realizations will we be able to construct Φ and Φ̃ such that �j and �̃j are biorthogonal.
In these cases, we redefine the dual scaling functions by 〈�̃j ,�j 〉−1

L2(�)�̃j which indeed

is dual to �j . The matrices 〈�̃j ,�j 〉L2(�) will be of a special structure such that their
inverses, and so the redefined dual scaling functions, are uniformly local anyhow.

At the primal side, the collection Φ will always be selected such that it satisfies
(C), (V), and (S) and such that, for some fixed d and m,

span Φ = Pd−1,m(T),

being defined as the space of continuous piecewise polynomials on T of degree d − 1
with respect to an m-times repeated dyadic partition of T.

We define

Iq = {λ ∈ T : λi/q ∈ N},
which is sometimes called the principal lattice of order q. It is well known that

card(I(d−1)2m ) = dim(Pd−1,m(T)).
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We will always assume that the index set of Φ is given by

I = I(d−1)2m ,(3.7)

which guarantees that Φ satisfies the conditions (I) and (R) as well. Indeed, for e = T,
or for e being a face of T, by (V) there holds

span{ϕλ|e : λ ∈ I(d−1)2m ∩ e} = span Φ|e = Pd−1,m(T)|e = Pd−1,m(e),

and so card(I(d−1)2m ∩ e) = dim(Pd−1,m(e)) shows (I). Furthermore, it is clear that
span Φ(r) ⊂ Pd−1,m+1(T). Now from

I(r)(d−1)2m = I(d−1)2m+1 ,

we conclude that spanΦ(r) = Pd−1,m+1(T) and thus that (R) is valid.
A particular collection Φ satisfying the above conditions is the nodal one Φ =

∆(d−1,m) = {δ(d−1,m)
λ : λ ∈ I(d−1)2m } ⊂ Pd−1,m(T) defined by

δ(d−1,m)
λ (µ) =

{
1, λ = µ,

0, λ = µ ∈ I(d−1)2m .

Note that (∆(d−1,m))(r) = ∆(d−1,m+1).

Remark 3.2. We included the possibility of m > 0 to introduce some freedom in the
choice of Φ. Indeed, note that for d = 2 and m = 0, the only possibility is Φ = ∆(1,0)

(up to scalar multiples).

For the resulting sequence of collections (�j ), of functions on � defined by (3.1)
corresponding to Φ, there holds clL2(�) span �j = Vj , being the space of continuous
piecewise polynomials of order d − 1 with respect to τj+m having finite L2(�)-norm. In
view of this, the elements of τj will also be called macroelements in case m > 0. The
sequence (Vj ) satisfies the Bernstein estimate (B) with γ = 3

2 and the Jackson estimate
(J) for this value of d .

At the dual side, we will select Φ̃ satisfying (C), (S), (V), (I), and (R). Aiming at
biorthogonality, for the resulting (�̃j ) defined by (3.1) corresponding to Φ̃, there should
hold card(�̃j ) = card(�j ), independent of τ0. This means that the index set Ĩ of Φ̃

should satisfy card(Ĩ) = card(I(d−1)2m ) and card(Ĩ ∩ e) = card(I(d−1)2m ∩ e) for any face
e of T, which means that it is no restriction to take Ĩ = I(d−1)2m .

Because of (R), the sequence (Ṽj ), defined by Ṽj := clL2(�) span �̃j , is nested. Since
the ϕ̃j,x are continuous, standard arguments (see [16, §2.4]) show that (Ṽj ) satisfies the
Bernstein estimate (B̃) with γ̃ = 3

2 . The set Φ̃ will selected such that, for some d̃, its

span includes Pd̃−1,0(T), so that (Ṽj ) satisfies the Jackson estimate (J̃) for this value of

d̃ . In view of the cancellation property, we are aiming at making d̃ as large as possible. A
dimension argument shows that d̃ − 1 ≤ (d − 1)2m where, in practice, the upper bound
cannot be attained because of the other requirements.
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In some cases (Sections 3.2, 3.3), we will be able to construct biorthogonal Φ, Φ̃.
From (3.6) we conclude that then �j , �̃j are biorthogonal, uniformly local, uniform
L2(�)-Riesz systems.

In other cases (Sections 3.4, 3.5), with respect to some partitioning of the index set
I into I(1), . . . , I(q), where for each 1 ≤ k ≤ q, π(I(k)) = I(k) or, more generally,
π(I(k) ∩ ∂T) = I(k) ∩ ∂T, 〈Φ, Φ̃〉L2(T) will be a block lower triangular matrix with
diagonal blocks equal to identity matrices. As an example of such a partition, one may
think of I being the set of vertices and midpoints of edges split into the set of vertices
I(1) and the set of midpoints I(2).

Then, defining

I (k)j = {x ∈ � : λT (x) ∈ I(k) for some T ∈ τj },

we have 〈�j , �̃j 〉L2 = [(ϕj,x , ϕ̃j,y)x∈I (k)j , y∈I (
)j
]1≤k,
≤q and, again, (3.6) shows that this

is a block lower triangular matrix, with diagonal blocks equal to identity matrices. We
infer that both the 〈�j , �̃j 〉L2(�) and their inverses are uniformly local and uniformly
bounded matrices. So, we conclude that

�j , 〈�̃j ,�j 〉−1
L2(�)�̃j

are biorthogonal, uniformly local, uniform L2(�)-Riesz systems. We will refer to this
step as the a posteriori biorthogonalization.

Remark 3.3. The reason why we apply the a posteriori biorthogonalization, instead of
biorthogonalizing Φ, Φ̃ before constructing the global scaling functions, is that, in the
cases in question, such a “local” biorthogonalization would violate (V).

Finally, we come to the specification of the uniformly local collections �j , such
that �j ∪ �j are uniform L2-Riesz bases for the spaces Vj+1 and such that the basis
transformations from �j+1 to �j ∪ �j are uniformly local.

With

Ξ(d−1,m) := {δ(d−1,m+1)
λ : λ ∈ I(d−1)2m+1\I(d−1)2m },

it is well known that

Pd−1,m+1(T) = span Ξ(d−1,m) ⊕ Pd−1,m(T).

Without returning to this point, in all examples, we take �j to be the “global” collec-
tion defined by (3.1) corresponding to �(d−1,m). Note that �j is nothing other than the
“hierarchical surplus,” that is, the collection of all “global” nodal basis functions corre-
sponding to the “new nodes.” With the canonical application of I(d−1)2m+1 as an index set
for Φ ∪ Ξ(d−1,m), this collection satisfies (C), (V), (S) and, since it spans Pd−1,m+1(T),
also (I). We conclude that indeed the �j ∪ �j are uniformly local, uniform L2-Riesz
bases for the spaces Vj+1.

The set Φ(r) also satisfies (C)–(I) and span Φ(r) = Pd−1,m+1(T) = span Φ∪Ξ(d−1,m).
As we have shown on page OF12, this means that the basis transformations in both
directions between the corresponding global bases, which are 2−n/2�j+1 and �j ∪ �j ,
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are uniformly local, where formulas (3.2) and (3.3) show how they are defined in terms
of the local basis transformations.

In the following Remarks 3.4–3.6 we discuss some issues concerning getting efficient
implementations.

Remark 3.4. To compute the wavelet and inverse wavelet transforms, formula (2.12)
shows that, apart from [Mj,0 Rj,1]−1 and [Mj,0 Rj,1], one needs the application of

the matrices M̃∗
j,0Rj,1. Taking into account the possibility that an a posteriori biorthogo-

nalization is needed, meaning that the collections of the dual scaling functions are given
by 〈�̃j ,�j 〉−1

L2(�)�̃j , we have

M∗
j,0Rj,1 = 〈�j , 〈�̃j ,�j 〉−1

L2(�)�̃j 〉T
L2(�) = 〈�j , �̃j 〉−T

L2(�)〈�j , �̃j 〉T
L2(�).

In the case that 〈Φ, Φ̃〉L2(T) = id, the last equality in the above display indicates an effi-
cient way to apply M̃∗

j,0Rj,1 in a factorized way. Formula (3.6) shows how 〈�j , �̃j 〉L2(�)

and 〈�j , �̃j 〉L2(�) can be computed from 〈Φ, Φ̃〉L2(T) and 〈Ξ(d−1,m), Φ̃〉L2(T). Since
〈�j , �̃j 〉L2(�) is assumed to have a block lower triangular structure with diagonal blocks
equal to identity matrices, 〈�j , �̃j 〉−1

L2(�) can easily be constructed from 〈�j , �̃j 〉L2(�),

where its application takes as many operations as applying 〈�j , �̃j 〉L2(�).

Remark 3.5. For the case that 〈Φ, Φ̃〉L2(T) = id, we applied a correction at the dual
side, that is we considered the biorthogonal system �j , 〈�̃j ,�j 〉−1

L2(�)�̃j . The motiva-

tion not to consider the biorthogonal system 〈�j , �̃j 〉−1
L2(�)�j , �̃j is that, in that case,

[Mj,0 Rj,1] should be replaced by

〈�j+1, �̃j+1〉T
L2(�)[Mj,0 Rj,1]

[〈�j , �̃j 〉−T
L2(�) 0

0 id

]
,(3.8)

being the basis transformation from 〈�j , �̃j 〉−1
L2(�)�j ∪ �j to 〈�j+1, �̃j+1〉−1

L2(�)�j+1.
Comparison with Remark 3.4 tells us that for computing the inverse wavelet transform
this correction at the primal side demands an additional application of 〈�j+1, �̃j+1〉T

L2(�).
A similar observation holds for the wavelet transform. Note that since the supports of
functions from 〈�j , �̃j 〉−1

L2(�)�j extend to several macroelements, one cannot expect to
obtain a cheaper implementation by a “direct” computation of the above basis transfor-
mation, that is, not using the factorization (3.8).

Remark 3.6. Reversing the last argument from Remark 3.5 leads to the insight that,
regardless of whether Φ, Φ̃ are biorthogonal or not, for m > 0 particular efficient
implementations of wavelet and inverse wavelet transforms can be expected, when as
scaling functions at the primal side the collections of nodal basis functions �

(d−1,m)
j

are applied, which are defined by (3.1) corresponding to ∆(d−1,m). Indeed, since the
supports of functions from �

(d−1,m)
j are restricted to elements (i.e., T ∈ τj+m) instead of

macroelements, and �j is just a subset of �(d−1,m)
j+1 , the basis transformations between

�
(d−1,m)
j ∪ �j and �

(d−1,m)
j+1 can be implemented very efficiently. Let Gj now be the
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matrices such that (�
(d−1,m)
j )T = �T

j Gj . Both Gj and G−1
j are uniformly bounded

and uniformly local, and they can easily be constructed from the corresponding local
transformations. The pairs �

(d−1,m)
j , Ḡ−1〈�̃j ,�j 〉−1

L2(�)�̃j are biorthogonal, uniformly
local, uniformly L2(�)-Riesz systems. With these systems applied, the matrix M∗

j,0Rj,1

reads as

G−1
j 〈�j , �̃j 〉−T

L2(�)〈�j , �̃j 〉T
L2(�).

The same arguments that were used in Remark 3.1 show that if the basis transforma-
tions between �j ∪ �j and �j+1 are most efficiently implemented as a composition of
transformations from �j to �

(d−1,m)
j , �(d−1,m)

j ∪�j to �
(d−1,m)
j+1 , and �

(d−1,m)
j+1 to �j+1 or

vice versa, then the approach of applying the nodal basis functions as scaling functions
is more efficient.

Remark 3.7. So far we have considered the construction of bases for the “full” spaces.
Homogeneous Dirichlet conditions on the boundary, or on a part of the boundary con-
sisting of the union of (n − 1)-dimensional faces of T ∈ τ0, can be incorporated into the
construction by excluding those ϕj,x , ϕ̃j,x and ξj,x from �j , �̃j and �j for which x is on
(that part of) the boundary. The conditions (V) and (I) ensure that the resulting sequences
(Vj ), (Ṽj ), defined by Vj = clL2(�) span �j and Ṽj = clL2(�) span �̃j are still nested. The
space Vj is the standard Lagrange finite element space in which the boundary conditions
are incorporated. Basis transformations between the “reduced” sets �j ∪ �j and �j+1

and vice versa are obtained by simply deleting those rows and columns with indices cor-
responding to basis functions that have been removed. By replacing the scale of Sobolev
spaces by the scale of subspaces that incorporate the essential boundary conditions, the
Jackson and Bernstein estimates remain valid, and so the wavelets generate Riesz bases
for the same range in the scale. On the other hand, wavelets from the resulting �j or
�̃j with supports that intersect the interiors of T ∈ τj that have a nonempty intersection
with the boundary, will generally not have cancellation properties.

Finally, as demonstrated in [11], a construction like this carries directly over to finite
element-type spaces on certain Lipschitz manifolds. More precisely, those manifolds are
covered that consist of patches, each of them the parametric image of a domain with
triangulations generated by uniform refinements, such that the images of the triangula-
tions match at the interfaces, and on each domain the Jacobian determinant is piecewise
constant with respect to the initial triangulation.

In the next subsections, for a number of examples of (n, d,m, d̃), we construct sets
Φ and Φ̃. Using these two ingredients, the general theory presented in this subsection
shows how the global scaling and dual scaling functions, and wavelets and dual wavelets,
can be constructed and, furthermore, how the wavelet and inverse wavelet transforms
can be computed.

3.2. The Case (n, d,m, d̃) = (1, 2, 2, 4)

In order to easily formulate conditions (S) and (V), in Section 3.1 we used, as an index
set for Φ and Φ̃, the subset I(d−1)2m of the barycentric coordinates. Yet, to view Φ and Φ̃
as vectors, the index set {1, 2, . . . , #I(d−1)2m } would be more appropriate. Therefore, in
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• • • • •
(1, 0) ( 3

4 ,
1
4 ) ( 1

2 ,
1
2 ) ( 1

4 ,
3
4 )

(0, 1)

1 4 3 5 2

Fig. 2. Numbering of I4.

Figure 2 we fix a numbering of I(d−1)2m = I4, so that we can switch between both index
sets at our convenience.

We start with Φ(0) = ∆(1,2), see Figure 3. It satisfies (C), (S), (V), (I), and (R) and it
spans P1,2(T).

Using a numbering of the elements of ∆(3,0) as indicated in Figure 4, at the dual

side we start with Φ̃
(0)

, where ϕ̃(0)
i = δ(3,0)i for i ∈ {1, 2, 4, 5}. Later, the missing ϕ̃(0)

3

will be selected from P3,1(T)\P3,0(T), such that it vanishes on ∂T and ϕ̃(0)
3 (λ1, λ2) =

ϕ̃(0)
3 (λ2, λ1). We infer that Φ̃

(0)
satisfies (C), (S), (V), and (I) and that

P3,0(T) ⊂ span Φ̃
(0) ⊂ P3,1(T)

showing (R).

Remark 3.8. Note that refinements of the still unknown ϕ̃(0)
3 are not used to ensure (R).

As a consequence, we will be able to construct explicitly given dual scaling functions.
On the other hand, allowing for implicitly defined dual scaling functions would intro-

duce additional freedom in the construction, which might mean that smaller macroele-
ments can be used, resulting in wavelets with smaller support. However, in that case, d̃
will be also smaller, giving weaker cancellation properties. We are planning to discuss
this approach in a forthcoming paper.

Together, the above conditions mean that

ϕ̃(0)
3 ∈ span{ϕ̃(0)

4 + ϕ̃(0)
5 , δ(3,1)

( 5
6 ,

1
6 )

+ δ(3,1)
( 1

6 ,
5
6 )
, δ(3,1)

( 1
2 ,

1
2 )
},(3.9)

see Figure 5.
Apart from fixing ϕ̃(0)

3 , in the following we apply some (invertible) basis transforma-

tions to both collections Φ(0) and Φ̃
(0)

, which preserve (S) and (V). Obviously, a basis

δ(1,2)1 δ(1,2)4 δ(1,2)3 δ(1,2)5 δ(1,2)2

0

1

Fig. 3. ∆(1,2)
.
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0

1

( 2
3 ,

1
3 ) ( 1

3 ,
2
3 )

δ(3,0)1 δ(3,0)4 δ(3,0)5 δ(3,0)2

Fig. 4. ∆(3,0)
.

transformation always preserves (C). Moreover, a basis transformation is represented by
an invertible matrix. The fact that (V) is preserved means that any principal submatrix of
this matrix corresponding to all indices associated to some face is necessarily invertible,
which means that (I) is preserved as well. Since the basis transformations do not change
the spans and preserve (S), (V), and (I), we conclude that (R) is also preserved. We will
end up with biorthogonal sets Φ and Φ̃.

Now we come to the description of the basis transformations and the selection of ϕ̃(0)
3 :

(I) We search

ϕ1 ∈ ϕ(0)
1 + span{ϕ(0)

3 ,ϕ(0)
4 ,ϕ(0)

5 },

such that ϕ1 ⊥ ϕ̃(0)
2 , ϕ̃(0)

4 , ϕ̃(0)
5 . Obviously, ϕ2 defined by ϕ2(λ1, λ2) = ϕ1(λ2,

λ1) then satisfies ϕ2 ⊥ ϕ̃(0)
1 , ϕ̃(0)

4 , ϕ̃(0)
5 . For i ∈ {3, 4, 5}, we take ϕi = ϕ(0)

i .
(II) We select ϕ̃(0)

3 by imposing ϕ̃(0)
3 ⊥ ϕ1 (and thus ϕ̃(0)

3 ⊥ ϕ2). Since ϕ̃(0)
4 +ϕ̃(0)

5 ⊥
ϕ1, the span of the resulting Φ̃ does not change if, instead of (3.9), we search
ϕ̃(0)

3 in the smaller space span{δ(3,1)
( 5

6 ,
1
6 )

+ δ(3,1)
( 1

6 ,
5
6 )
, δ(3,1)

( 1
2 ,

1
2 )
} .

(III) With Φ̃ := 〈Φ̃(0)
,Φ〉−1

L2(T)Φ̃
(0)

, we get 〈Φ, Φ̃〉L2(T) = id. Since by the previous

steps, in the first two columns of 〈Φ̃(0)
,Φ〉L2(T) only the diagonal element is

nonzero, this transformation preserves (V).

0

1
δ(3,1)
( 5

6 ,
1
6 )

δ(3,1)
( 1

2 ,
1
2 )

δ(3,1)
( 1

6 ,
5
6 )

Fig. 5.
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By substituting

〈{δ(1,2)1 , δ(1,2)3 , δ(1,2)4 }, {δ(3,0)1 , δ(3,0)2 , δ(3,0)4 , δ(3,0)5 , δ(3,1)
( 5

6 ,
1
6 )

+ δ(3,1)
( 1

6 ,
5
6 )
, δ(3,1)

( 1
2 ,

1
2 )
}〉L2(T)

= vol(T)




2413

30720

167

30720

687

10240

−267

10240

117

1280

17

3840
−5

512

−5

512

69

512

69

512

−27

640

193

1920
45

1024

7

1024

237

1024

−33

1024

15

128

1

128



,

the above procedure results in ϕ3 = δ(1,2)3 , ϕ4 = δ(1,2)4 ,

ϕ1 = δ(1,2)1 + 23

150
δ(1,2)3 − 23

60
δ(1,2)4 − 3

100
δ(1,2)5 ,

ϕ̃(0)
3 = δ(3,1)

( 5
6 ,

1
6 )

+ δ(3,1)
( 1

6 ,
5
6 )

− 657

299
δ(3,1)
( 1

2 ,
1
2 )
,


ϕ̃1
ϕ̃3
ϕ̃5


 = 1

vol(T)




50

3

−299

162

−64

27

−2

81

0
−5083

2025

2552

2025

2552

2025

0
6877

4050

7196

2025

−484

2025






δ(3,0)1

ϕ̃(0)
3

δ(3,0)4

δ(3,0)5


 ,

see Figure 6.
The analysis from Section 3.1 shows that the resulting global sets �j , �̃j are biorthog-

onal, uniformly local, uniform L2(�)-Riesz systems. The collection �j is a basis for
the space of continuous piecewise linears with respect to τj+2. Furthermore, the spaces
Ṽj := clL2(�) span �̃j are nested and satisfy ˜(B) and ˜(J) with γ̃ = 3

2 and d̃ = 4.

3.3. The Case (n, d,m, d̃) = (1, 5, 0, 4)

As in Section 3.2, (d − 1)2m = 4, and we use the same numbering from Figure 2 of the
index set I4 for Φ and Φ̃. We now take Φ(0) = ∆(4,0).

As in Section 3.2, at the dual side we take ϕ̃(0)
i = δ(3,0)i for i ∈ {1, 2, 4, 5} and search

ϕ̃(0)
3 ∈ span{δ(3,1)

( 5
6 ,

1
6 )

+ δ(3,1)
( 1

6 ,
5
6 )
,δ(3,1)

( 1
2 ,

1
2 )
}. To fix ϕ̃(0)

3 , and to biorthogonalize Φ(0), Φ̃
(0)

, we

follow the same procedure as described in Section 3.2.
By substituting

〈{δ(4,0)1 , δ(4,0)3 , δ(4,0)4 }, {δ(3,0)1 , δ(3,0)2 , δ(3,0)4 , δ(3,0)5 , δ(3,1)
( 5

6 ,
1
6 )

+ δ(3,1)
( 1

6 ,
5
6 )
, δ(3,1)

( 1
2 ,

1
2 )
}〉L2(T)

= vol(T)




151

2520
0

1

28

−1

56

29

560

1

336
−13

210

−13

210

9

70

9

70

−3

14

23

210
2

21

2

63

2

7

−2

35

17

70

1

210



,
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0

1
ϕ1 ϕ4 ϕ3

0

50

3 vol(T)

ϕ̃1 ϕ̃4 ϕ̃3

Fig. 6. Biorthogonal Φ and Φ̃ (ϕ2, ϕ5, ϕ̃2, ϕ̃5 by permuting barycentric coordinates) .

this procedure now results in ϕ3 = δ(4,0)3 , ϕ4 = δ(4,0)4 ,

ϕ1 = δ(4,0)1 − 15

128
δ(4,0)4 + 5

128
δ(4,0)5 ,

ϕ̃(0)
3 = δ(3,1)

( 5
6 ,

1
6 )

+ δ(3,1)
( 1

6 ,
5
6 )

− 63

5
δ(3,1)
( 1

2 ,
1
2 )
,


ϕ̃1
ϕ̃3
ϕ̃5


 = 1

vol(T)




20
−40

27

−56

9

−68

27

0
−5

9

4

9

4

9

0
5

16

163

48

23

48






δ(3,0)1

ϕ̃
(0)
3

δ(3,0)4

δ(3,0)5


 ,

and ϕ2, ϕ5 and ϕ̃2, ϕ̃5 by permuting barycentric coordinates.
The resulting global sets �j , �̃j are biorthogonal, uniformly local, uniform L2(�)-

Riesz systems. The collection�j is a basis for the space of continuous piecewise quartics
with respect to τj . Note that, in contrast to Section 3.2, for each x ∈ Ij , the basis function
ϕj,x has the same support as the nodal basis function corresponding to that point.
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1

%
7

&
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%
8
%
8

•
2

%
12

 
13

 
14

%
9

&
6

 
15

&
5

%
11

%
10

•
3

Fig. 7. Numbering of I4, and its partitioning into {•} ∪ {&} ∪ {%} ∪ { }.

3.4. The Case (n, d,m, d̃) = (2, 2, 2, 4)

We number the index set I(d−1)2m = I4 of Φ and Φ̃ as in Figure 7, and switch between
these numbers and the corresponding barycentric coordinates at our convenience. We
take Φ(0) = ∆(1,2). It satisfies (C), (S), (V), (I), and (R), and it spans P1,2(T).

We define ϕ̃(0)
1..3,7..12 = δ(3,0)1..3,7..12 using a numbering of I3, and with that of the elements

of ∆(3,0) as given in Figure 8. Later, we will define the missing ϕ̃(0)
4..6,13..15 such that

Φ̃
(0)

:= {ϕ̃(0)
1..15} satisfies (C), (S), (V), and (I), as well as

δ(3,0)13 ∈ span{ϕ̃(0)
13..15},(3.10)

ϕ̃(0)
4..6 ∈ P3,1(T),(3.11)

and

ϕ̃(0)
13..15 ∈ P3,1(T) ∪ span{ϕ̃(0)

4..6}(r),(3.12)

where {ϕ̃(0)
4..6}(r) is defined in (3.4) as the refinement of {ϕ̃(0)

4..6}. From (3.10) we have
P3,0(T) ⊂ span{ϕ̃(0)

1..3,7..15}, and so (3.11) and (3.12) show that (R) is valid and, moreover,
that

P3,0(T) ⊂ span Φ̃
(0) ⊂ P3,2(T).(3.13)
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Fig. 8. Numbering of I3.
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Apart from specifying the missing ϕ̃(0)
4..6,13..15, in the following we describe invertible

basis transformations on both Φ(0) and Φ̃
(0)

that preserve (S) and (V). The same reasoning
as in Section 3.2 shows that then (C), (I), and (R) are preserved as well. As a consequence
of (S), we only have to specify ϕ(0)

i and ϕ̃(0)
i for i running over any element of the sets

1..3, 4..6, 7..12, 13..15 (corresponding to {•}, {&}, {%}, { } from Figure 7), since the
other functions then follow by permuting the barycentric coordinates.

We will not be able to end up with biorthogonal Φ, Φ̃. Instead, we derive Φ, Φ̃, such
that with respect to a partitioning of 1..15 into {•}, {&}, {%}, { }, the matrix 〈Φ, Φ̃〉L2(T)

is of the form 


id 0 0 0
∗ id 0 0
∗ ∗ id 0
∗ ∗ ∗ id


 .(3.14)

With respect to a corresponding partitioning of Ij , the matrix 〈�j , �̃j 〉L2(�) of the global
basis functions �j , �̃j defined by (3.1) then inherits the same block form. The pairs �j ,
〈�̃j ,�j 〉−1

L2(�)�̃j will be biorthogonal, uniformly local, uniform L2(�)-Riesz systems.

The sets Φ, Φ̃ are obtained by performing the steps (I)–(VI):
(I) In view of (S) and (V), ϕ1 is searched in

ϕ(0)
1 + span{ϕ(0)

7 +ϕ(0)
12 ,ϕ

(0)
4 +ϕ(0)

6 ,ϕ(0)
8 +ϕ(0)

11 ,ϕ
(0)
13 ,ϕ

(0)
14 +ϕ(0)

15 }

such that

ϕ1 ⊥ ϕ̃(0)
2,7,8,9, δ

(3,0)
13 ,(3.15)

which determines ϕ1 uniquely. Clearly, (3.15) is equivalent to ϕ1 ⊥ ϕ̃(0)
2,3,7..12, δ

(3,0)
13 .

Since δ(3,0)13 ∈ span{ϕ̃(0)
13..15} by (3.10), and forthcoming transformations at the dual side

have to preserve (3.1), condition (3.15) is necessary for obtaining the first row in (3.14).
We define ϕ̃(1)

1 = ϕ̃(0)
1 /〈ϕ̃(0)

1 ,ϕ1〉L2(T).
(II) In view of (V), ϕ4, ϕ7 (and ϕ8) are searched in span{ϕ(0)

4,7,8,13..15}, and, in view

of (S), in particular ϕ4 ∈ ϕ(0)
4 + span{ϕ(0)

7 + ϕ
(0)
8 ,ϕ(0)

13 +ϕ(0)
14 ,ϕ

(0)
15 }.

To get the zeros in the second row in (3.14), ϕ4 must satisfy

ϕ4 ⊥ ϕ̃(0)
9,10, δ

(3,0)
13 ,(3.16)

which determines ϕ4 uniquely and which is equivalent to ϕ4 ⊥ ϕ̃(0)
9..12, δ

(3,0)
13 .

To get the zero in the third row in (3.14), it is necessary that ϕ7 ⊥ δ(3,0)13 . Further-
more, for obtaining the identity matrix in this row, ϕ7 should be orthogonal to ϕ̃9..12.
If span{ϕ̃9..12} would be equal to span{ϕ̃(0)

9..12}, then these conditions on ϕ7 could only
mean that ϕ7 is a multiple of ϕ4. Yet, since ϕ̃(0)

9,10 (ϕ̃(0)
7,8, ϕ̃(0)

11,12) can be updated by the

same multiple of ϕ̃(0)
5 (ϕ̃(0)

4 , ϕ̃(0)
6 ) that still has to be defined, it might be sufficient when

only

ϕ7,8 ⊥ ϕ̃(0)
9 − ϕ̃(0)

10 , ϕ̃
(0)
11 − ϕ̃(0)

12 , δ
(3,0)
13 .(3.17)
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Indeed, in the case that ϕ̃(0)
5 is selected such that

〈ϕ7, ϕ̃
(0)
9 〉L2(T)

〈ϕ7, ϕ̃
(0)
5 〉L2(T)

= 〈ϕ8, ϕ̃
(0)
9 〉L2(T)

〈ϕ8, ϕ̃
(0)
5 〉L2(T)

=: α,(3.18)

then with

ϕ̃(1)
9 := ϕ̃(0)

9 − αϕ̃(0)
5

(similarly, ϕ̃(1)
10 , ϕ̃(1)

7,8, ϕ̃(1)
11,12), (3.17) gives

ϕ7,8 ⊥ ϕ̃(1)
9..12, δ

(3,0)
13 .

Together (3.16) and (3.17), and the fact that {ϕ4,7,8} should be an independent set,

determine span{ϕ4,7,8} uniquely. We fix ϕ7 by selecting it from ϕ(0)
7 + span{ϕ(0)

4,13..15}.
Defining ϕ̃(2)

7,8 ∈ span{ϕ̃(1)
7,8} (and with that ϕ̃(2)

7..12) by imposing 〈ϕ7,8, ϕ̃
(2)
7,8〉L2(T) = id

now yields 〈ϕ7..12, ϕ̃
(2)
7..12〉L2(T) = id.

Remark 3.9. A consequence of the above procedure is that ϕ̃(0)
5 ⊥ ϕ7,8. Since orthog-

onality cannot be restored by any transformation at the dual side that preserves (V), we
conclude that we cannot end up with biorthogonal Φ and Φ̃.

To ensure that (3.15) and (3.16), in which the ϕ̃(0)
7..12 are replaced by ϕ̃(2)

7..12, remain
valid it is, furthermore, necessary that

ϕ̃(0)
5 ⊥ ϕ1,4,(3.19)

which is desirable on its own. Finally, since we also want ϕ4 ⊥ ϕ̃(2)
7 (, ϕ̃(2)

8 ) or, equiva-
lently, ϕ5 ⊥ ϕ̃(2)

9 , the function ϕ̃(0)
5 should satisfy

〈ϕ5, ϕ̃
(0)
9 〉L2(T)

〈ϕ5, ϕ̃
(0)
5 〉L2(T)

= α.(3.20)

(III) We take ϕ13 = ϕ(0)
13 .

At this point, we have fixed Φ. Further definitions and transformations take place at
the dual side. First we specify ϕ̃(0)

4..6 and ϕ̃(0)
13..15.

(IV) We search ϕ̃(0)
4..6 ∈ P3,1(T). A basis for this space is given by

{ϕ̃(0)
1..3,7..12} ∪ {δ(3,0)13 } ∪ {δ(3,1)λ : λ ∈ I6\I3}.

To save some space in the expressions, we introduce a numbering of I6\I3 given in
Figure 9.

Because of (S) and (V), we may search

ϕ̃(0)
5 ∈ span{δ(3,1)2 , δ(3,1)6 + δ(3,1)7 , δ(3,1)11 + δ(3,1)12 , δ(3,1)15

+ δ(3,1)16 , δ(3,1)14 + δ(3,1)17 , δ(3,1)13 + δ(3,1)18 , δ(3,1)10 }.
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Fig. 9. δ(3,1)1..18.

In fact, we may also add δ(3,0)13 and ϕ̃(0)
9 +ϕ̃(0)

10 to this set of generators. However, one may
verify that both these functions satisfy all homogeneous linear conditions on ϕ̃(0)

5 given
below, and thus that adding these functions will not change the span of the resulting Φ̃.
In (II), we already imposed on ϕ̃(0)

5 the conditions (3.18), (3.19) (two conditions) and
(3.20). Here we add the conditions

ϕ̃(0)
5 ⊥ ϕ2,(3.21)

and (3.24) to be discussed below. Together, these six conditions determine span{ϕ̃(0)
5 }

uniquely.
We define ϕ̃(1)

5 = ϕ̃(0)
5 /〈ϕ̃(0)

5 ,ϕ5〉L2(T). Note that (3.19) and (3.21) are equivalent to
ϕ̃(1)

5 ⊥ ϕ1..4,6 resulting in the zero and the identity matrix in the second column of (3.14).

(V) We search ϕ̃(0)
13..15 satisfying

δ(3,0)13 ∈ span{ϕ̃(0)
13 + ϕ̃(0)

14 + ϕ̃(0)
15 },(3.22)

which is equivalent to (3.10), and

ϕ2,4,7,8 ⊥ ϕ̃(0)
13 .(3.23)

By (S), ϕ2 ⊥ ϕ̃(0)
13 implies ϕ3 ⊥ ϕ̃(0)

13 and so ϕ1 ⊥ ϕ̃(0)
14,15. Since, furthermore, ϕ1 ⊥

δ(3,0)13 , we get

〈ϕ1, ϕ̃
(0)
13 〉L2(T) = 〈ϕ1, ϕ̃

(0)
13 + ϕ̃(0)

14 + ϕ̃(0)
15 〉L2(T) − 〈ϕ1, ϕ̃

(0)
14 + ϕ̃(0)

15 〉L2(T) = 0.

By applying the same argument to ϕ4 ⊥ ϕ̃(0)
13 , δ

(3,0)
13 and ϕ7,8 ⊥ ϕ̃(0)

13 , δ
(3,0)
13 we see that

(3.22) and (3.23) imply that

ϕ1..12 ⊥ ϕ̃(0)
13,14,15,

giving the zeros in the last column of (3.14).
It turns out not to be possible to find ϕ̃(0)

13 ∈ P3,1(T) satisfying (3.22) and (3.23).
Therefore, we enlarge this space with the span of the refinement of {ϕ̃(0)

4..6}, which is a
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Fig. 10. I4\I2 and η1..3.

collection of functions defined in (3.4), with index set I4\I2. Since ϕ̃(0)
13 should vanish on

∂T, it is sufficient to consider only those functions from this collection corresponding
to “interior points” of I4\I2. We will denote these functions by η1..3, according to the
numbering given in Figure 10.

In view of (S) and (V), we may search

ϕ̃(0)
13 ∈ span{δ(3,1)10 , δ(3,1)11 + δ(3,1)12 , δ(3,1)13 + δ(3,1)18 , δ(3,1)14

+ δ(3,1)17 , δ(3,1)15 + δ(3,1)16 ,η1, η2 + η3, δ
(3,0)
13 }.

Any choice of ϕ̃(0)
13 fixes ϕ̃(0)

14,15 by permuting the barycentric coordinates. Since δ(3,0)13 ∈
span({δ(3,1)1..18} ∪ {η1..3}), condition (3.22) can be rewritten as

ϕ̃(0)
13 ∈ λδ(3,0)13 + span Θ,

with a scalar λ = 0 and with Θ = {θ1..4} being defined by

θ1 = δ(3,1)11 + δ(3,1)12 − 2δ(3,1)10 ,

θ2 = δ(3,1)13 + δ(3,1)18 − δ(3,1)14 − δ(3,1)17 ,

θ3 = δ(3,1)15 + δ(3,1)16 − δ(3,1)14 − δ(3,1)17 ,

θ4 = η2 + η3 − 2η1.

Moreover, since δ(3,0)13 may not be a multiple of ϕ̃(0)
13 , since that would mean ϕ̃(0)

13 =
ϕ̃(0)

14 = ϕ̃(0)
15 and, furthermore, ϕ2,4,7,8 ⊥ δ(3,0)13 , condition (3.23) now means that

ϕ̃(0)
13 = λδ(3,0)13 + cT Θ,

where 0 = c ∈ Ker〈ϕ2,4,7,8,Θ〉L2(T). A computation shows that the first three columns

of 〈ϕ2,4,7,8,θ1..3〉L2(T) are independent, and so θ4, and thus ϕ̃(0)
4 , should be selected such

that

Ker〈ϕ2,4,7,8,Θ〉L2(T) = {0},(3.24)

which condition on ϕ̃(0)
4 was already announced in step (II).
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One may verify that span{ϕ̃(0)
13..15} does not depend on the choice of λ = 0 and c = 0

in the one-dimensional space Ker〈ϕ2,4,7,8,�〉L2(T). We define ϕ̃(1)
13..15 ∈ span{ϕ̃(0)

13..15} by

imposing 〈ϕ13..15, ϕ̃
(1)
13..15〉L2(T) = id.

By steps (I)–(V), with ϕ̃(2)
1..6,13..15 := ϕ̃(1)

1..6,13..15, the matrix 〈Φ, Φ̃
(2)〉L2(T) has the

desired block-lower triangular form (3.14), which we more specifically denote by

〈Φ, Φ̃
(2)〉L2(T) =




id 0 0 0
A id 0 0
B C id 0
D E F id


 .

As was already pointed out in Remark 3.9, it is not possible to obtain a biorthogonal

system. Indeed 〈Φ̃(2)
,Φ〉−1

L2(T)Φ̃
(2)

will violate (V), since by this transformation some

ϕ̃(2)
i will be updated by ϕ̃(2)

j with j corresponding to points on edges that do not include
point i . Yet, as will be shown in step (VI), by performing some “partial” transformations
at the dual side, which do preserve (C), (S), (V), (I), and (R), it is possible to introduce
a number of zeros in the lower block triangular part.

(VI) With

Φ̃
(3)

:=




id 0 0 −D∗

0 id 0 −E∗

0 0 id −F∗

0 0 0 id


 Φ̃

(2)
,

we have

〈Φ, Φ̃
(3)〉L2(T) =




id 0 0 0
A id 0 0
B C id 0
0 0 0 id


 .

In view of (V), note that each ϕ̃(3)
i is obtained by adding to ϕ̃(2)

i a linear combination of
ϕ̃(2)

13..15, whose functions vanish on ∂T.
Let Â be the matrix obtained from A = (〈ϕi , ϕ̃

(3)
j 〉L2(T))i∈{4..6}, j∈{1..3} by replacing

those entries by zeros which correspond to pairs of points on different edges. With

Φ̃
(4)

:=




id −Â∗ 0 0
0 id 0 0
0 0 id 0
0 0 0 id


 Φ̃

(3)
,

we get

〈Φ, Φ̃
(4)〉L2(T) =




id 0 0 0
A − Â id 0 0

G C id 0
0 0 0 id


 ,

where G := B − CÂ.
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Finally, with Ĝ, Ĉ being the matrices obtained from

G = (〈ϕi , ϕ̃
(4)
j 〉L2(T))i∈{7..12}, j∈{1..3}, C = (〈ϕi , ϕ̃

(4)
j 〉L2(T))i∈{7..12}, j∈{4..6},

respectively, by replacing those entries by zeros which correspond to pairs of points on
different edges, and

Φ̃ :=




id 0 −Ĝ∗ 0
0 id −Ĉ∗ 0
0 0 id 0
0 0 0 id


 Φ̃

(4)
,

we get

〈Φ, Φ̃〉L2(T) =




id 0 0 0
A − Â id 0 0
G − Ĝ C − Ĉ id 0

0 0 0 id


 .

From the definitions of Φ̃
(3)

, Φ̃
(4)

, and Φ̃ it follows that the matrix 〈Φ, Φ̃〉L2(T) only
contains possibly nonzero off-diagonal entries 〈ϕi , ϕ̃j 〉L2(T) on the positions (i, j) =
(5, 1), (9, 1), (9, 4), and (10, 4), as well as those that correspond to permuting barycentric
coordinates. All these entries correspond to pairs of points that are included on different
edges.

Remark 3.10. The fact that 〈Φ, Φ̃〉L2(T) = id and thus 〈�j , �̃j 〉L2(�) = id has
clearly an adverse effect on the sizes of the supports of the dual scaling functions from
〈�̃j ,�j 〉−1

L2(�)�̃j and thus on that of the wavelets and dual wavelets. Yet, by computing
the wavelet and inverse wavelet transforms in the way as exposed in Remark 3.4, the
fact that〈Φ, Φ̃〉L2(T) = id only affects the computation of these transforms in the sense
that on each level j + 1, in addition an application of the matrix 〈�j , �̃j 〉−T

L2(�) has to
be performed. Assuming a uniform square grid, a simple calculation using the fact that
〈Φ, Φ̃〉L2(T) has only a few nonzero off-diagonal entries shows that the total number
of operations needed for these computations is less than half the number of degrees of
freedom on the highest level.

Together, steps (I)–(VI) fully describe the procedure to find Φ and Φ̃. A sufficient in-
gredient for the actual calculations is the matrix 〈∆(1,2),∆(3,2)〉L2(T). These calculations
result in a collection Φ defined by

ϕ1 = δ(1,2)1 + 101

2490
(δ(1,2)4 + δ(1,2)6 + δ(1,2)13 ) − 173

996
(δ(1,2)7 + δ(1,2)12 )

− 9

1660
(δ(1,2)8 + δ(1,2)11 + δ(1,2)14 + δ(1,2)15 ),

ϕ4 = δ(1,2)4 + 361

658
(δ(1,2)7 + δ(1,2)8 ) − 1219

3290
(δ(1,2)13 + δ(1,2)14 ) + 8

35
δ(1,2)15 ,

ϕ7 = δ(1,2)7 − 353029

564499
δ(1,2)4 − 1033547

2822495
δ(1,2)13 + 131990

564499
δ(1,2)14 + 342166

2822495
δ(1,2)15 ,

ϕ13 = δ(1,2)13 .
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At the dual side, Φ̃
(2)

is defined by

ϕ̃(2)
1 = 1

vol(T)
415

3
δ(3,0)1 ,

ϕ̃(2)
4 = 1

vol(T)

[−9301424162156

1912996185027
δ(3,1)1 + 111448863524740

17216965665243
(δ(3,1)4 + δ(3,1)5 )

+ 120098054733160

5738988555081
(δ(3,1)10 +δ(3,1)11 ) + 791219875405708

17216965665243
(δ(3,1)13 +δ(3,1)14 )

+ 349505115151472

17216965665243
(δ(3,1)18 + δ(3,1)15 ) + 545882055813164

17216965665243
(δ(3,1)17

+ δ(3,1)16 ) + 29746337340748

17216965665243
δ(3,1)12

]
,

ϕ̃(2)
7 = 1

vol(T)

[
16214441833474060

183117091220847
δ(3,0)7 + 9269556596061196

183117091220847
δ(3,0)8

]

− 359961477817185491

89252626683938760
ϕ̃(2)

4 ,

ϕ̃(2)
13 = 1

vol(T)

[
512

135
δ(3,0)13 − 429691798688

26453357865
(δ(3,1)11 + δ(3,1)12 − 2δ(3,1)10 )

+ 146540371984

5290671573
(δ(3,1)13 + δ(3,1)18 − δ(3,1)14 − δ(3,1)17 )

− 403973483368

26453357865
(δ(3,1)15 + δ(3,1)16 − δ(3,1)14 − δ(3,1)17 )

]

+ 637665395009

1289356257420
(η2 + η3 − 2η1),

where η1..3 are the functions that correspond to “interior points” (see Figure 10) from
the refinement of the above {ϕ̃(2)

4..6} defined by (3.4). The transformations described in
step (VI) yield the collection Φ̃ given by

ϕ̃1 = ϕ̃(2)
1 − 10209

21056
(ϕ̃(2)

4 + ϕ̃(2)
6 ) − 1107721691222002944137

737201106569595885568
(ϕ̃(2)

7 + ϕ̃(2)
12 )

− 193438650565173948439

737201106569595885568
(ϕ̃(2)

8 + ϕ̃(2)
11 ) − 269103595837

10869175296
ϕ̃(2)

13

− 140609892845

5434587648
(ϕ̃(2)

14 + ϕ̃(2)
15 ),

ϕ̃4 = ϕ̃(2)
4 + 2496527831240624965

17278150935224903568
(ϕ̃(2)

7 + ϕ̃(2)
8 )

− 2034877615278695

36035450441065728
(ϕ̃(2)

13 + ϕ̃(2)
14 ) + 16741222248937735

36035450441065728
ϕ̃(2)

15 ,
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ϕ̃7 = ϕ̃(2)
7 + 4978122426946063

651082991007456
ϕ̃(2)

13 + 6063260745291823

651082991007456
ϕ̃(2)

14

+ 4163663044298017

651082991007456
ϕ̃(2)

15 ,

ϕ̃13 = ϕ̃(2)
13 .

The nonzero off-diagonal entries of 〈Φ, Φ̃〉L2(T) are given by

〈ϕ5, ϕ̃1〉L2(T) = 747

2632
, 〈ϕ9, ϕ̃1〉L2(T) = −769556495

8164913536
,

〈ϕ9, ϕ̃4〉L2(T) = 115709629

9185527728
, 〈ϕ10, ϕ̃4〉L2(T) = 1601470997

9185527728
,

(3.25)

with, as always, equal values for those entries that correspond to permuting barycentric
coordinates.

The resulting collections �j , 〈�̃j ,�j 〉−1
L2(�)�̃ are biorthogonal, uniformly local, uni-

form L2(�)-Riesz systems. The primal collection is a basis for the space of continuous
piecewise linears with respect to τj+2. The spans of the dual collections are nested as
functions of j , and satisfy (B̃) and (J̃) with γ̃ = 3

2 and d̃ = 4.

3.5. The Case (n, d,m, d̃) = (2, 5, 0, 4)

As in Section 3.4, (d −1)2m = 4, and to construct Φ and Φ̃, we follow exactly the same
procedure from that section described in steps (I)–(VI), except that we now start with
Φ(0) = ∆(4,0) instead of ∆(1,2). The actual computations using 〈�(4,0), �(3,2)〉L2(T) now
result in a collected Φ defined by

ϕ1 = δ(4,0)1 − 1

40
(δ(4,0)4 + δ(4,0)6 + δ(4,0)13 ) − 3

640
(δ(4,0)7 + δ(4,0)12 )

+ 13

640
(δ(4,0)8 + δ(4,0)11 + δ(4,0)14 + δ(4,0)15 ),

ϕ4 = δ(4,0)4 + 3

4
(δ(4,0)7 + δ(4,0)8 ) − 1

8
(δ(4,0)13 + δ(4,0)14 ),

ϕ7 = δ(4,0)7 − 224

285
δ(4,0)4 − 259

1140
δ(4,0)13 − 23

380
δ(4,0)14 + 23

190
δ(4,0)15 ,

ϕ13 = δ(4,0)13 .

At the dual side, Φ̃
(2)

is defined by

ϕ̃(2)
1 = 150

vol(T)
δ(3,0)1 ,

ϕ̃(2)
4 = 1

vol(T)

[
10534545

112976
δ(3,1)1 − 837515

112976
(δ(3,1)4 + δ(3,1)5 )



Locally Supported Biorthogonal Wavelets on Nonuniform Meshes 507

− 319865

56488
(δ(3,1)10 + δ(3,1)11 ) − 1398915

112976
(δ(3,1)13 + δ(3,1)14 )

− 1385055

56488
(δ(3,1)18 + δ(3,1)15 ) − 2232895

112976
(δ(3,1)17 + δ(3,1)16 ) − 93205

112976
δ(3,1)12

]
,

ϕ̃(2)
7 = 1

vol(T)

[
90905

3528
δ(3,0)7 − 32575

3528
δ(3,0)8

]
− 5833

12348
ϕ̃(2)

4 ,

ϕ̃(2)
13 = 1

vol(T)

[
35

12
δ(3,0)13 − 67744

12339
(δ(3,1)11 + δ(3,1)12 − 2δ(3,1)10 )

− 51068

12339
(δ(3,1)13 + δ(3,1)18 − δ(3,1)14 − δ(3,1)17 )

+ 11380

12339
(δ(3,1)15 + δ(3,1)16 − δ(3,1)14 − δ(3,1)17 )

]
− 112976

431865
(η2 + η3 − 2η1),

where η1..3 are the functions that correspond to “interior points” (see Figure 10) from
the refinement of the above {ϕ̃(2)

4..6} defined by (3.4). Finally, the collection Φ̃ is given by

ϕ̃1 = ϕ̃(2)
1 − 10

21
(ϕ̃(2)

4 + ϕ̃(2)
6 ) − 162721

40831
(ϕ̃(2)

7 + ϕ̃(2)
12 ) − 14913

5833
(ϕ̃(2)

8 + ϕ̃(2)
11 )

+ 128480

7203
ϕ̃(2)

13 + 21800

7203
(ϕ̃(2)

14 + ϕ̃(2)
15 ),

ϕ̃4 = ϕ̃(2)
4 + 119012

87495
(ϕ̃(2)

7 + ϕ̃(2)
8 ) − 4807

3087
(ϕ̃(2)

13 + ϕ̃(2)
14 ) + 57628

71001
ϕ̃(2)

15 ,

ϕ̃7 = ϕ̃(2)
7 − 3008

1029
ϕ̃(2)

13 + 1108

1029
ϕ̃(2)

14 − 29545

94668
ϕ̃(2)

15 ,

ϕ̃13 = ϕ̃(2)
13 .

As in Section 3.4, Φ, Φ̃ are not biorthogonal. The nonzero off-diagonal entries of
〈Φ, Φ̃〉L2(T) are given by

〈ϕ5, ϕ̃1〉L2(T) = 10

21
, 〈ϕ9, ϕ̃1〉L2(T) = − 64

171
,

〈ϕ9, ϕ̃4〉L2(T) = 181

570
, 〈ϕ10, ϕ̃4〉L2(T) = 371

570
,

with, as always, equal values for those entries that correspond to permuting barycentric
coordinates.

The resulting collections �j , 〈�̃j ,�j 〉−1
L2(�)�̃j are biorthogonal, uniformly local, uni-

form L2(�)-Riesz systems. The primal collection is a basis for the space of continuous
piecewise quartics with respect to τj . The spans of the dual collections are nested as
functions of j , and satisfy (B̃) and (J̃) with γ̃ = 3

2 and d̃ = 4.
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