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Universal Bases and Greedy Algorithms for
Anisotropic Function Classes

V. N. Temlyakov

Abstract. We suggest a three-step strategy to find a good basis (dictionary) for non-
linear in-term approximation. The first step consists of solving an optimization problem
of finding a near best basis for a given function class F, when we optimize over a col-
lection D of bases (dictionaries). The second step is devoted to finding a universal basis
(dictionary) V. E D for a given pair (.F, D) of collections: F of function classes and
D of bases (dictionaries). This means that D,, provides near optimal approximation for
each class F from a collection F. The third step deals with constructing a theoretical
algorithm that realizes near best m-term approximation with regard to V. for function
classes from F.

In this paper we work this strategy out in the model case of anisotropic function
classes and the set of orthogonal bases. The results are positive. We construct a natural
tensor—product—wavelet-type basis and prove that it is universal. Moreover, we prove
that a greedy algorithm realizes near best m-term approximation with regard to this
basis for all anisotropic function classes.

1. Introduction

In this paper we discuss a general approach of how to choose a good basis (dictionary)
for approximation. This approach consists of several steps. We have worked it out in
the case of multivariate anisotropic function classes. We concentrate here on nonlinear
approximation and compare realizations of this approach for linear and nonlinear ap-
proximations. The first step in this approach is an optimization problem. In both cases
(linear and nonlinear), we begin with a function class F in a given Banach space X with
a norm 11 • 11 := 11 • lix. A classical example of the optimization problem in the linear case
is the problem of finding (estimating) the Kolmogorov width

m
dm (F, X) := inf sup inf f — Ecjcpj .

V1....4.EF' C1,...,C,,,t	 j.l

This concept allows us to choose among various Chebyshev methods (best approx-
imation) having the same dimension of the approximating subspace, the one which
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has the best accuracy. The asymptotic behavior (in the sense of order) of the sequence
{dm (F, X)} 1 is known for a number of function classes and Banach spaces. It turns out
that in many cases, for instance, in the case where F = Wp is a standard Sobolev class
and X = L, the optimal (in the sense of order) m-dimensional subspaces can be formed
as subspaces spanned by m elements from one orthogonal system. We describe this for
the multivariate periodic Holder-Nikol'skii classes NHQ . We define these classes in
the following way. The class NH, R = (R I , ... , Rd) and 1 < q < oo, is the set of
periodic functions f E Lq ([0, 2n ]d) such that for each ! = [Ri ] + 1, j = 1, ... , d, the
following relations hold

(1.1)	 IIfIIq	 1,	 IILI"^fll q 	ItI R',	 j = 1, ... ,d,

where A" j is the lth difference with step t in the variable x1. In the case d = 1, NHq
coincides with the standard Holder class Hq . It is known (see, for instance, [ 13]) that

(1.2)	 dm(NHq , Lq) x m-g(R) 	1 q oo

where

I d	 —1

g(R) := L Ri- 1

(j=1

It is also known that the subspaces of trigonometric polynomials T(R, 1) with frequencies
k satisfying the inequalities

Ike 1 <2g(R)1/Rj	 j = 1,...,d,

can be chosen to realize (1.2). In this case l is set to be the largest satisfying inequality
dim T(R, 1) < m. We stress here that optimal (in the sense of order) subspaces T(R, 1)
are different for different R and formed from the same (trigonometric) system.

A nonlinear analog of the Kolmogorov m-width setting was discussed in [15]. In
[15] we replace the Chebyshev method of best approximation from a linear subspace
of dimension m by best m-term approximation with regard to a given orthogonal basis
and optimize over all orthogonal bases. Thus, in the nonlinear case we formulate an
optimization problem in a Banach space X for a pair of function class F and collection
D of bases (dictionaries) D:

m

Qm(f,V)x :=	 inf	 f 
- i=1	 x

cim(F, D)x := supam(.f, D)x,
fEF

am(F, D)x := inf am (F, D)x•

In this paper we consider only the case D = 0—the set of all orthogonal bases on a
given domain. In Section 3 we prove that

(1.3)	 Qm(NHq , 0)[.p m_g(R)
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for

1 <q <oo, 2<p<oo, g(R)>(1/q-1/p)+.

It is interesting to remark that we cannot prove anything like (1.3) for L p with p < 2.
We proved (see [6]) that there exists c E 0 such that for any f E L1 (0,  1) we have
vl (f, C)L, = 0. The proof from [6] also works for LP , p < 2, instead of L1. The
following remark has been made in [15].

Remark 1.1. For any 1 < p < 2 there exists a complete in the system L2(0, 1)
orthonormal system' such that for each f E L (0, 1) we have ai (f, I )Lp = 0.

This remark means that to obtain nontrivial lower bounds for am (f, <)Lp , p < 2, we
need to impose additional restrictions on (D E 0.

It is important to remark that the basis Ud studied in [ 15] realizes (1.3) for all R (see
the definition of Ud in Section 3). We introduce the following definition of a universal
dictionary:

Definition 1.1. Let two collections F (of function classes) and D (of dictionaries) be
given. We say that D E D is universal for the pair (F, D) if there exists a constant C
which may depend only on F, D, and X such that for any F E F we have

am(F,D)x Cam(F,D)x•

This is a new concept in nonlinear approximation. The following observation motivates
our interest in this setting. In practice we often do not know the exact smoothness class
F where our input function (signal, image) comes from. Instead, we often know that our
function comes from a class of certain structure, for instance, an anisotropic Sobolev
class. This is exactly the situation we are dealing with in the universal dictionary setting.
So, if for a collection ,)7 there exists a universal dictionary D,, E D, it is an ideal
situation. We can use this universal dictionary D„ in all cases and we know that it adjusts
automatically t .  best smoothness class F E F which contains a function under
approximation. Next, if a pair (F, D) does not allow a universal dictionary we have a
trade-off between universality and accuracy.

The second step in our approach is to look for a universal basis (dictionary) for
approximation. The above-mentioned result on the basis Ud means that Ud is universal
for the pair (Fq ([A, B]), 0) and the space X = Lp ([0, 2ir]d) for A, B E Z+ such that

g (A) > ( 1 /q — 1 /p)+, 1 < q < oo, 2 < p < oo, where

Fq ([A,B]):={NHQ :0<Aj <Rj<Bj<oo,j=1,...,d}.

It is interesting to compare this result on a universal basis in nonlinear approximation
with the corresponding result in the linear setting. We define the index K (m, F, X) of
universality for a collection F with respect to the Kolmogorov width in X:

K(m,F, X) := L(m,F,X)lm,
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where L(m, .'', X) is the smallest number among those L for which there is a system of
functions {g91 }L 1 such that for each F E F we have

sup inf I f — 	 ci (oi < dm (F, X).
IEF C1 .....CL	

1=1

It is proved in [12] (see also [13, Ch. 3, S.5]) that for any A, B E Z+ such that BB > A^,
j = 1, ... , d, we have

(1.4)	 ic(m,.Fp([A, B]), Lp )	 (logm)d-1 ,	 1 <p < 00.

The estimate (1.4) implies that there is no Chebyshev methods universal for a nontrivial
collection of anisotropic function classes. Thus, from the point of view of the existence
of universal methods the nonlinear setting has an advantage over the linear setting.

After two steps of realizing our approach in the nonlinear approximation we get a
universal dictionary D,, for a collection of function classes .F, say, Ud for .Fq ([A, B]).
This means that the dictionary D,, is well-designed for best m-term approximation of
functions from function classes in the given collection. The third step is to find an
algorithm (theoretical first) to realize best (near best) m-term approximation with regard
to V,. It turns out that in the model case of.Fq ([A, B]) and the basis Ud there is a simple
algorithm which realizes near best m-term approximation for classes NHQH . This is a
thresholding or greedy-type algorithm. We give the definition of a greedy algorithm for
a general basis. Let 41 := {*k }k° I be a basis for X. Represent f E X in the form

00

f = ECk(f>
k=1

Then lick (f, 'p) fk II -+ 0 as k -+ oo. We enumerate the summands in decreasing order

II Ck, (f, 1')'k,I1 >_ II Ck2 (f, 'I')'k2 II > ..

and define the mth greedy approximant as

Gm(f, LI') :_	 Ck,(.f, tII)*kr.
i=1

We prove in Sections 2 and 3 that (1.3) can be realized by the greedy algorithm

Gm° (f, Ud). Namely,

(1.5)	 sup 11 f — GM'(.f, U')II Lp x m —g(R)

fENHH

for 1 < q, p < oo, g(R)>(1/q-1/p).

In this paper we realize three steps of our approach in the model case of periodic
anisotropic function classes N Hq . However, we present the results in sufficiently general
form to include wavelet-type bases.
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Section 4 is devoted to one more good property of the basis Ud . We prove there that a
soft thresholding algorithm with regard to an unconditional basis is a mapping from the
Lipschitz class.

Let us agree to denote by C various positive absolute constants and by C, with ar-
guments or indexes (C(q, p), Cr , and so on), positive numbers which depend on the
arguments indicated. For two nonnegative sequences a = {an }n° 1 and b = {bn }n° 1 the
relation (order inequality) an << bn means that there is a number C(a, b) such that for all
n we have an < C(a, b)bn ; and the relation an x bn means that an << bn and bn << an

The sign << will be used for the sake of brevity in estimates of the various characteristics
of functions.

2. The Upper Estimates for Anisotropic Function Classes

We consider in this section a basis 4f := {*l }JED , enumerated by dyadic intervals I of
[0, 1] d , I = x • • • x Id , I^ is a dyadic interval of [0, 1], j = 1, ... , d, which satisfies
certain properties (see (2.1)—(2.4) below). Let Lp := Lp (Q), 0 = [0, 1]d , Td, and alike
with normalized Lebesgue measure on S2, 101 = 1. First of all we assume that for all
1 < q, p < oo, and I E D, D := D([0, 1] d) is the set of all dyadic intervals of [0, 1] d ,
we have

(2.1)	 II*IIIp ^ II*IIIgl1l	
'-11q,

with constants independent of I. This property can be easily checked for a given basis.
Next, assume that for any s = (s1.... , sd) E Zd , sj > 0, j = 1, ... , d, and any {c7}

we have, for 1 <p < oo,

P

(2.2)	 E cl1l ^ T IIcIII II p,
I ED,	 li p	

I ED,,

where

Ds:={I=I1x...xIdED:IIj I=2 —s ,j=1,...,d}.

This assumption allows us to estimate the L p-norm of a dyadic block in terms of the
coefficients {cl}IED,..

The third assumption is that is a basis satisfying the Littlewood—Paley inequality.
This means the following. Let I <p < oo and f E Lp has an expansion

f =	 .fi fI

We assume that

(2.3)	 lim	 f —	 E.fi *l = 0,
inm, it, s oo	 (I

Si^I2J,J= 1 .... ,d IED,	 P

and
21/2

(2.4)	 II! lip = 	 fi I
S	 I ED,,	 p
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Let µ E Zd , p, > 0, j = 1, ... , d. Denote by W (µ) the subspace of polynomials of the
form

yJ	 Cl/l

.....1=1,...,d IED,

Our primary goal is to study the wavelet and wavelet-type bases II'. The above-described
framework of studying bases satisfying (2.1)—(2.4) should be considered as a convenient
way to work simultaneously with wavelet bases and also bases like the basis U defined
below (see Section 3) that is a wavelet-type basis. We begin studying the approximative
properties of . satisfying (2.1)—(2.4) by two lemmas.

Lemma 2.1. Let 1 <q <p < oo. Then for any f E IP (/2) and h > 0 we have

(2.5)	 #{I : Il fl/l Ilp >_ h} << Il f Il9h—q2(1—q/p)Ilµll

with a constant independent of f , h, A.

Proof. Denote

A(f, h) := {I: II fi^ri II ? h},	 N(f, h) := #A(f, h),

and

A,(.f, h) := A(f, h) fl D,	 N(f, h) :_ #A,(.f, h).

We estimate first N,. (f, h). Denote

ss(f) := E f,*,.
IED,

By (2.2) and (2.1) we have

9

II8 (f)IIq =	 f1*1	 IIfi iII
[ED^	 q IED,

II fiV'i II >> E IIfj*/ IIp2 (q/p — ' )Il s ll ^
IEA(f,h)	 IEA,(f,h)

> hg2(4/p-1)IIsIhNs(.f, h).

Thus,

(2.6)	 N(f, h) << 11 3,(.f)Ilyh -92(1-9/p)Ilsll,

In order to derive the estimate (2.5) from (2.6) we need the following two inequalities:

	1 /pt	 \ 1/p

(2.7)	 Ilss(f)IIp`	 << IlfIlp << T' IISS(f)IIp° f
s	 s

with p1 := max(2, p) and Pu :_ min(2 , p).
The relation (2.7) is a corollary of the Littlewood—Paley inequalities (2.4) and the

following known inequalities (see, for instance, [8, p. 73]). We will give a proof of these
useful inequalities for completeness. n
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Lemma 2.2. For any finite collection {f5}  of functions in L, 1 < p < oo, we have

l/pI	 1/2	 1/p

(	

„

^IlfsH) < (^Ifsl
)

	2 	
<(

^IlfsllP"
S	 S 	 S	 )P

Proof. We prove first the upper estimate. For p = oo it is obvious. Let 2 < p < oo,
then

1/2	 1/2	 1/2	 1/2

Ifs I 2 	=	 I fs l 2 	<_	 II I fs I 2 IIp/2	 = (^ Ifs II
P	 P/2

P
S	 )	 S	 ( S	 )	 S

Let now 1 < p < 2. Then

II	
1/2	 P/2	 1 /P

(^ I fS I 2)	 = (f (^ fs 12) )

1/p	 1/p	(f" Elfsl p 	 = ^Ilfsllp) •

	

s	 s

We proceed now to the lower estimate. Again for p = oo it is obvious. Let 2 < p < 00.
Then we have

1/2	 1/p	 1/P

s 	 >_ (EIf,IP)	 = (EIIfsIIp)( Ifl2)
 S	 S	 S\  li p

For 1 < p < 2, we have

1/p

II{Ilf5IIp}IIr2 = II{ f I.fslp}1
12/p$Z 

	1/p 	 1/2

(I
II{IfsIP}II121p)	 _ (rIfsI 2)

P

Lemma 2.2 is now proved. Li

We return to the proof of Lemma 2.1. Using (2.6) and (2.7) we obtain, in the case
q < 2,

	N(f, h) _	 NS (f, h) _ ^ N5 (f, 
h)2—(1—q/P)IIsII12(1—q/P)IISIIl

s<µ	 S<µ

qlq^	 1-4/ql

	< 	 (f,	 )q^lq E(NS 	h)2—(1-4/P)IISII^ 	—q/P)IIsIIi(1—q/qt)-'

µ (572(l )

Cs	 S!L

q /qi

h -9 	Ilss(f)IN)	
2(1—q/P)11µ11, << h -9 II f IIg2(1-9/P)IIµII^
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In the case 2 < q < oo, we similarly obtain

N(f, h) < (N(f h)2_(1_/P)s0 u 2(1-q/P)IIµIIi

s<µ

<< h—q II&s(f)Ilq 2('—q/P)II iI1 << —QIIf1142
{1—q/P) !Iull1

05A

This completes the proof of Lemma 2.1. 	 n

Denote by Th the thresholding mapping:

Th (f) :_	 .fl l•
1:IIfr*I11p?h

Lemma 2.3. Let 1 <q <p < oo. Then for each f E 'I'(t) we have

II f — Tp (f)II p << hl—q/P(II f IIg 2(1/q-1/P)II/LII1 )q/P

Proof. We estimate first J (f — Th (f )) II p . We have

1185(f — Th (f))IIP <<	 IIfi*IIlp <hp—q ^ IIfI*III,
I EDs \As (f,h)	 I EDs

<< h p—q E IIf/'i/li1Ig 2(1—q/P)IlsjIi <<h P—g 1ISs(f)IIq 2(1—q/P)IlsIIi

IED,

Therefore,

(2.8)	 118s(f — Th (f))IIp <<h l—q/P (Ilss(f)IIg 2
^1/q-1/P)Ilsllj\q/P

Next, using the Holder inequality with a parameter pqi / p„q, we get from (2.7) and (2.8)
that

/ 1/P.

IIf — Th (f)IIP << 	 Iias(f — Th (f))llpu 1//
\s stt	 /

<< hl—qlp I^ lI8 (f)IIgp,/P2(1/q-1/P)Ilslligp,/p

S5/.t

q/(Pqt)

<< h' — /P r II85(f)IIq'	 (2(1/q-1/P)Ill4I1)q/P

SjL

<< hl—q/P(II f IIg
2(1/q-1/P)Il/tll1 )q/P

This completes the proof of Lemma 2.3. 	 n



Universal Bases and Greedy Algorithms for Anisotropic Function Classes 	 537

Remark 2.1. Let h > 0 be given. Denote

A=(f, h) := {I : 11.fl *l 11 p = h}.

Take any subset Y C A=(f, h) and denote

Th Y(.f) :_ E fir.
I EA(f,h)\Y

It is not difficult to see that Lemma 2.3 holds with Th replaced by Th Y with any Y c_
A=(f, h) and the constant in the estimate does not depend on Y.

We now define a function class. Let R = (R1, ... , Rd), R^ > 0,1 = 1, ... , d, and as
above

I d	 -1
1)

(j=1

For natural numbers 1 denote

'Y(R, 1) := `I'(),	 l-ti = [g(R)l/Ri],	 j = 1, ... , d.

We define the class Hq (41) as the set of functions f E L q representable in the form

00

f =	 ti,	 t1 E''(R, l),	 Ilt1IIq <2-s(R)^,
1=1

and denote

H9 (q')C := { f : f/C E Hq (ku')}.

Theorem 2.1. Let 1 < q, p < oo and g(R) > (1/q - 1/p) + . Then for satisfying
(2.1)-(2.4) we have

sup If — G7' (f, tui)IIp <<m-8(R)
fEHH (W)

Proof. We need some simple properties of the expansions of functions in HQ (W).
Denote

S(f, R, l) :=	 E	 ss(f),
si <[g(R) 1/Ri],J= 1 ,...,d

fR , l := S(f, R, l + 1) - S(f, R, l).

It is easy to derive from the definition of HQ (ku') that

(2.9)	 II! - S(f, R , l)IIq << 2-g (e)l 	and	 IIfR,l IIq << 2-8(R)l



538	 V. N. Temlyakov

We consider first the case q < p. Take h > 0 and specify n such that

2— (n+ 1 )(8(R)+ 1 /P) < h < 2—n(8(R)+ 1 /P)

Then, for a function f E Hq (41) by (2.9) and Lemma 2.1, we obtain

(2.10)	 #{I : Iifi *i ll p ? h} << 2n + h E 2-8(R)Iq+(1—q/P)1 <<2g.
1>n

We now estimate the LP-norm of

.fh : _ .f — Th (.f) •

We have

(2.11)	 II.fh llp	 IIS(fh, R, n) II p + E II S(.fh, R, 1 + 1) — S(fh , R, l) ii.
1>n

By (2.9) and Lemma 2.3 we get

(2.12)	 IIS(fh, R, l + 1) — S(fh, R, l)IIp «hl—q/P2(-8(R)1+(1/q-1/P)l)q/P

For S(fh, R, n) we have

(2.13)	 II S(.fh, R, n)II p	 Y,	 i18s(.fh)II p
s, <[8(R)n/Ri].1= 1 ,....d

<<	 E	 h211s11l/P <<h2'
s, <<8(R)n/Ril , J= 1 .... ,d

Combining (2.12) and (2.13) we get, from (2.11),

(2.14)	 I1fh lip << 2-8(R)n

Taking into account (2.10) and Remark 2.1 we obtain from here the estimate in Theo-
rem 2.1 for q < p. It is clear this implies the general case 1 < q, p < oo.	 n

3. Approximation of Anisotropic Holder—Nikol'skii Classes

Here we study m-term approximation in the L p-norm of functions from classes NHq
with regard to the basis Ud := U x ... x U.

We define the system U := (U,) in the univariate case. Denote

2'-1	 ei2nx — 1
	U(x) __ [^ eikx = eix — 1 ,	 n = 0, 1, 2, ...

k[̂J

U,+, k(x) := e i2"X UU (x — 27rk2 —n ),	 k = 0, 1, ... , 2' — 1,

Un k(x) := e—l2^x U,i (—x + 2nk2—n ), k = 0, 1, ... , 2n — 1.
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It will be more convenient for us to normalize in L 2 the system of functions {UU,k , Un,k}
and enumerate it by dyadic intervals. We write

Uj(x) := 2-n^2 Un k (x)	 with I = [(k + 2)2-", (k + 1)2-"),

Uj (x) — 2—n/2Un k(x)	 with I = [k2-n, (k + Z)2-n ),

and

U[o,l)(x) := 1.

Denote

Dn :={I:I =[(k+2)2-n,(k+1)2-n),k=0,1,...,2n-1}

and

Dn :_ {I : I = [k2-n, (k + 1/2)2), k =0,1,  ... , 2n — l},

D0 :_ [0, 1),	 D := U(Dn U Dn) U Do .
n>0

It is easy to check that for any I, J E D, I # J, we have

2n

(Ur, Uj) = (2n) - 1
fo

UI(x)Uj(x)dx = 0 ,

and

II U,II2 = 1.

We use the notations, for f E L 1 ,

u
.fi :_ (.f, Uj ) = (2jr)-i f

o
.f (x)UI(x) dx,	 .f (k) _ (2n)-i fo .f (x)e-

^ kx dx

 

and

2s+'_1	 _2s

sS (f) =	 f (k)e ikx ,	 s,. (.f) _	 .f (k)e'kx ,	 so(.f) := f(0)
k=2'	 k=-25+1+1

Then, for each s and f E L1, we have

8s (.f) = E flU,,	 ss (f) _	 .f1U1,	 So(f) = .f[0,1).
IEDs	 IEDy

Moreover, the following analog of Marcinkiewicz's theorem holds

(3.1)	 Ills (f)Ilp ^ E IIf/Ulllp , 	Ills (f)IIP ^ E IIfIUIIIp,
IED,+ 	IED,
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for 1 < p < oo with constants depending only on p. We note that (3.1) and the
boundedness of operators 6 , 8; , as operators from L p into L, 1 <p < oo, imply

	Ilas(f)+ss (f)Ilpx	 IIfIUIIIp,
IEDUD,,

that is the property (2.2) from Section 2. Indeed, we have on the one hand IISs+ (f) +
8;(f) lip 	II5,+ (.f) lip + IISs (.f) fl y, and, on the other hand, we have

Iiss (f)IIp = II8 (as (f)+Ss (f))Ilp	 Cpliss (f)+Ss (f)llp

and the same inequality for 1185 (f) II p that gives the lower estimate.
We remark that

(3.2)	 II Uilip >< I111L1/2,	 1 < p < 00,

which implies, for any 1 < q, p < oo,

(3.3)	 11 UI lip = IIUIII g ill 1/p-1/q

This relation gives the property (2.1) from Section 2. In the multivariate case of x =
(x1, ... , Xd) we define the system Ud as the tensor product of the univariate systems U.
LetI=Ilx.• xId,IjED,j=1,...,d,then

d

UI(x):=11UI^(xj).
j=1

For s=(Si, ... ,sd) and s=(el,...,Ed) with sj =+or — ifsj >0 and sj =+,—or
0 if s1 = 0 denote

Ds:={I:I=I1 x...xId ,Ij ED,Do:=Do,j=1,...,d}.

It is easy to see that (3.2) and (3.3) are also true in the multivariate case. It is not difficult
to derive from (3.1) that for any s we have

Ilss(.f)IIp	 Ilflulllp,
I ED;

and

p

(3.4)	 Ess(f)	 Il fiUr llp,	 1 <p < 00,
E	 p	 IEU,DI

with constants depending only on p and d. Here we denote

ss (f) :=	 .f (k)e` (k,x ) ,
kEp(s,e)

where

p(s, e) •= e1[2s^, 2s ' +1 —1) x •.. x sd [2sd 2sd+1 —1).
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The convergence

(3.5)	 urn	 f -	 E	 Ss (f) =0,	 1 <p < oo,
mini L,—>oo

si <4j,J= 1 ,...,d s 	l I p

and the Littlewood-Paley inequalities

21/2

(3.6)	 Ilfllp	 (r i r-
are

Ss(f) / II P

 well-known. Thus Ud satisfies the properties (2.1)-(2.4) from Section 2.
Denote, for given R and n,

En (.f)p := inf If — tIIp,
teT(R,n)

where the trigonometric subspaces T(R, n) are defined in Section 1. It is known (see
[13, Ch. 2, S.3]) that for f E NHq we have

(3.7)	 En (.f )q <<2-'

This implies that, for some C > 0, we have

NHq C Hq (Ud )C :_ {f:  f/C E H9 (Ud )}.

Therefore, Theorem 2.1 gives

Theorem 3.1. Let 1 < q, p < oo; then for R such that g(R) > (1 /q -1 /p) + we have

sup IIIf — G ." (.f, U") II p << m —g(R)
f ENHH

We now discuss a question of what other systems satisfying (2.1)-(2.4) are also good
for approximating the classes NH . The following lemma combined with Theorem 2.1
gives a sufficient condition.

Lemma 3.1. Let R = (R,,..., Rd) E Z+, and let 1 < q < oo be given, and let A
be a number such that A > R^, j = 1, ... , d. Assume that a basis 4 := {cpl}I€D([o,l])
of functions on a single variable has the following approximative property. For any
0 < r < A we have

En (HH , )q := sup inf f - E cicoi << 2-rn

fEH C,y	 I[I>2-'	 Il q
Then for (pd := 0 x • • • x 0 we have

En (NHq , (Dd )q := sup inf II f -	 E	 c1co li
q

 < 2-g(R)n
f€NHq C1	 ^11>2-"8(R)/Rj ,j=1,...,d
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and, for some constant C,

NH C HQ (b)C.

Proof. We get from (3.7) that each f E NHQ has a representation

00
(3.8)	 f =	 ti, t1 E T(R, 1),	 II tl II q << 2—g(R)t

t=i

We study first the multivariate analogs of approximation of functions on a single variable.
Fix 1 <j <d and define

	En ,1(.f, (D)q := inf 0 1(x)  -	 cl (x')^P1(xj) ,
c,(xi)

I12 "	 q

where xi :=(x1 ... , xj-i, xj+i, ... , xd).

For any trigonometric polynomial t E T(R, 1), we can estimate E 1 (t, 1)q using the
following two arguments. The first one is trivial

(3.9)	 En,3(t, dt))q 	IItIIq .

The second one uses the Bernstein inequality: for any xi we have

(3.10)	 IIDXit(•,x3)IIq	 CIIt(•,x')ll g 2r8(R)1/Rj,

where the Lq -norm is taken only in the variable x1. The inequality (3.10) implies that
for any xJ we have

t(., x i ) E HgrCi2rg(R)l/Rj 
II t(, x') II q

and, therefore, for 0 < r < A we obtain, by our assumption, that

(3.11)	 En,1(t, C')q << 2
r(r(R)t/Ri —n) II t II q.

We now take f E N Hq and prove that

c)q << 2-n RR

We choose a number r such that R1 <r < A and use the representation (3.8). Applying
(3.11) for 1 < L := nR1 /g(R) and (3.9) for ! > L we obtain

(3.12)	 En.i (f, 1)q << E 2-rn2B(R)(r/Ri-1)t + 	 2-e(R)1 << 2-
n Ri.

t<L	 1>L

We now use the following inequality

d

(3.13)	 En (.f 4d )q	 C(P , d) d Eg(R)n/R, ,j(f, 4)q ,
j=1
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which is an analog of Bernstein's theorem (see [1] and also [9], [16], [11]). We prove
here Theorem 3.2 that is a more general inequality than (3.13). The inequality (3.13)
combined with (3.12) implies for f E N Hq that

En (.f, (Dd)q «2-8(R)n.

This completes the proof of Lemma 3.1. 	 n

We now prove an analog of the Bernstein theorem mentioned above. Let X be a Banach
space and let W be a basis for X. For a given set G of indices denote

EG(f)x := inf f — T,c1*i
C„iEG	

iEG X

Consider a projector SG which maps a function f E X to

SG(f) :_ T ci (f)i11	 where f = E c^ (.f )^Gi -
iEG	 i

If G is finite then the operator SG is a bounded operator from X onto

XG := {Y'i}iEG•

In the case of infinite G we define

XG := span{^lfi}j EG

and assume that G is such that the operator SG is a bounded operator from X onto XG.
In the case of the unconditional basis 'I' the operator SG is bounded for all G with the
norm bound independent of G.

Theorem 3.2. Let two sets G1 and G2 of indices be such that

(3.14)	 II SG, Il x--x	 B,	 j = 1, 2.

Denote G := Gr fl G2. Then for any f E X we have

EG(.f)x <_ 2(B + 1) 2 (EG,(.f)x + EGZ(f)x).

Proof. We estimate II .f — SG (.f) II x. Let us represent

SG(f) = SG1(.f) — SG1\G2(.f)

and estimate

(3.15)	 If — SG(f)IIX <_ Ilf — SG,(f)IIX+ IISG,\G2(f)IIX•

By the assumption (3.14) we get

(3.16)	 Ill — SG1(f)Ilx	 (B+1)EG,(.f)x•
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Next, we have

(3.17)	 IISG,\GZ(.f)Ilx	 B(B+ l)EG (f) x .

Combining (3.16) and (3.17) we obtain, from (3.15),

(3.18)	 Il.f — SG(f)Ilx (B + 1)(EG 1 (f)x + BEG,(f)x ).

Changing the roles of G 1 and G 2 we get in the same way

(3.19)	 Il.f — SG(.f)llx (B+ 1 )(BEG 1 (f)x+EG2 (f)x)•

Adding (3.18) and (3.19) we obtain the required inequality. 	 n

We now prove the lower estimates in best m-term approximation. These proofs are
similar to the corresponding ones from [15, S.4].

Theorem 3.3. Let 1 < q, p < oo. Then for R such that g(R) > (1/q — 1/p) + we
have

a"m(NHq , U d)p >> m-8(R)

Proof. We need a concept of the entropy numbers. For a bounded set F in a Banach
space X we denote, for integer m,

Zm

sm (F, X) := inf e : 3 fl , ... f2m E X : F C U(fi + sB(X))

where B(X) is the unit ball of Banach space X and fj + EB(X) is the ball of radius s
with the center at f^ .

In this proof we use the following estimates:

(3.20) s,,(NHq , Lp ) x m-a (R) ,	 I < q, p, <_ oo, g(R) > ( 1 /q — I/p)+•

These estimates should be considered known and can be derived, for instance, from the
finite-demensional results (see [10]) by the standard arguments of discretization. The
estimates (3.20) will be used in the general method which, roughly speaking, states that
m-term approximations with regard to any reasonable basis are bounded from below by
the entropy numbers. We now formulate one result from [14, see Th. 4 with b = 0]. •

Assume that a system 4f := {^fr }j 1 of elements in X satisfies the condition:

(VP) There exist three positive constants A 1 , i = 1, 2, 3, and a sequence {nk }k 1 ,
nk+1 < A l nk, k = 1, 2, ..., such that there is a sequence of the de la Vallee-
Poussin-type operators Vk with the properties

Vk (fl) = ?.k,.l 1frl , 	 a,k,j = 1 for j = 1, ... , nk,

Ak,j = 0 for j > A2nk,

(3.21)	 Il Vkllx_.x	 A3,	 k = 1, 2, ....
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Theorem 3.4. Assume that for some a > 0 we have

sm (F,X)>Clm —° ,	 m=2,3,....

Then if a system 4' satisfies condition (VP) and also satisfies the following condition:

n

(3.22)	 En (F, 4') := sup inf f —	 c^i/ii	 <_ C2n —° ,	 n = 1, 2, ... ,
fEFc1,....C,	

j=1	 X

we have

am(F,'P)X >> m—a

We use this theorem with 4' = Ud and X = L. As a sequence of operators Vn we
take

V. (.f) :=	 E	 f1 U1
^Ij >2 -°8(R"Ri.j_1,...,d

_	 T,	 Eas(f)
s_^2ng(R)/Ri_1,)=1....,d E

It is well-known that, for any 1 <p < oo,

IIVnIIL,,L, <_ C(p,d)•

The relation (3.22) follows from (3.7). Thus, Theorem 3.3 follows from Theorem 3.4
and the estimates (3.20).

Theorem 3.5. For any orthogonal basis 4) we have, for R such that g(R) > (1/q —

0m(NHq,4')2>>m_ (R)	 1 <q <00.

Proof. The proof of this theorem is similar to the univariate case (see [5]). We shall not
carry it out here and formulate only the key lemma of the proof (see [5, Corollary 2]). n

Lemma 3.2. There exists an absolute constant CO > 0 such that for any orthonormal
basis L and any N-dimensional cube

N

BN(4) :_ FaJ*j, Ian I < 1, j = 1, ... , N;	 := {1J }N 1 an orthonormal system
J= 1

we have

am(BN, (D)2 > 4N 112

ifm CON.
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4. Soft Thresholding Is a Lipschitz Mapping

In this section we assume that a basis qi _ { irk }' 1 is an unconditional normalized
(I1'kII = 1,k= 1,2,...)basisforX.

Definition 4.1. A basis 41' = {'k } 1 of a Banach space X is said to be unconditional
if for every choice of signs 9 = {9k }k° 1 , Bk = 1 or —1, k = 1, 2, ..., the linear operator
MB , defined by

MB(akv,k) =	 akekYfk,
k=1	 k=1

is a bounded operator from X into X.

The uniform boundedness principle implies that the unconditional constant

K := K(X, W) := sup liMe ii
e

is finite.
The following theorem is a well-known fact about unconditional bases (see [8, p. 19]).

Theorem 4.1. Let '.1' bean unconditional basis for K. Then for every choice of bounded
scalars {Ak }k 1 , we have

O )kakvfk <2K sup Rkl	 ak*k
k=1	 k	 k=1

(in the case of a real Banach space X we can take K instead of 2K).

In the numerical implementation of nonlinear m-term approximation one usually
prefers to employ the strategy known as thresholding (see [2, S.7.8]) instead of a greedy
algorithm. We define and study here the soft thresholding. Let a real function v(x) defined
for x > 0 satisfy the following relations:

1 for x > 1,
(4.1)	 v(x) _

0 for 0 < x < Z ,
(4.2)	 Iv(x)I < A,	 x E [0, 1],

there is a constant CL such that for any x, y E [0, oo) we have

(4.3)	 Iv(x) - v(Y)I < CLIX - YI•

Let
00

f = E Ck (.f) *k
k=1
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We define a soft thresholding mapping TE,,, as follows. Take e > 0 and set

Te,v(f) := Ev(ICk(f)I/E)Ck(f)1k-
k

Theorem 4.1 implies that

(4.4)	 IITE,U(f)II <— 2KAII f II.

We now prove that the mapping TE,,, satisfies the Lipschitz condition with a constant
independent of e.

Theorem 4.2. For any s and any functions f, g E X, we have

IITE,v(f) — Te,,(g)II <— (3A+2CL)2KIIf —gll•

Proof. Let s > 0 be fixed. We use for simplicity the following abbreviated notations:

Vk(f) := V(Ick(f)I/s), 	 uk(g) := v(Ick(g)I/e)•

Then we have

(4.5)	 TE.v(.f) — Te,v(g) = E(Ck(f)vk(.1 ) — Ck(g)vk(g))lfrk
k

= E(Ck(.f) — Ck(g))vk(f)*k
k

+	 Ck(g)(vk(f) — vk(g))frk =: E1 + E2.
k

For the first sum we have, by Theorem 4.1,

(4.6)	 IIE111 <2K11{vk(f)}IIl-IIf —g II _52KAIIf —gll.

In order to estimate the second sum, we introduce the set

A(g, e) := {k : Ick(g)I > e}

and write

E2 = E Ck(g)(vk(.f) — Vk(g))fk + E Ck(9)(vk(.f) — vk(g))lfrk =: E. + E2.
k€A(g,^ )	 kf A(g,e)

Let us first estimate E'. We have

Ick(g)(vk(f) — Vk(g))I	 sCLIIck(f)I — Ick(g)II/e <- CLIck(f) — ck(g)I•

We get from here, by Theorem 4.1,

(4.7)	 IIEzIl	 2KCLIIf —gII
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We proceed to estimating E. Represent EZ in the form

=	 E	 Ck(g)(vk(f) — vk(g))1k
k€ A (g,e)f1A (f, e)

+	 Ck(g)(vk(f) — vk(g)) 1Gk =: E2.1 + E2,2 .
kEA(g,e)\A(f,e)

For k in the first sum we have from the definition of v that Vk (f) = Vk (g) = 1 and thus
X21 = 0. Let us now estimate the following sum:

	E :_	 E	 Ck(f)(Vk(f) — vk(g))/fk•
kEA(g,e)\A(f,e)

Similarly to E2 we get

(4.8)	 IIEII <_ 2KCLII.f — gll•

Next, we have

(4.9)	 HE21 ` ElI =	 (Ck(9) — Ck(f))(vk(.f) — vk(9)) 1fk
likEA(g,E)\Aff,E)

< 2K 2AIIf — gll•

Combining the estimates (4.5)—(4.9), we complete the proof of Theorem 4.2. 	 n

Theorem 4.2 provides a way of constructing greedy-type algorithms which have the
Lipschitz property. For instance, one can use a soft thresholding algorithm with regard to
Ud to approximate functions from classes N Q and also from classes M 9 and MHq
with a bounded mixed derivative or difference (see [15]). A problem of constructing
a continuous mapping in m-term approximation was discussed in [4]. The following
remarks will be useful in this regard:

(1) The system Ud is an unconditional basis for Lp , 1 <p < oo. See [17] for d = 1.
The general case d> 1 follows from the case d = 1 by standard arguments (see,
for instance, [3]).

(2) Denote by TE the thresholding algorithm, i.e., Tg := TT,,, with u(x) = 1 for x > 1
and u(x) = 0 otherwise. Then by Theorem 4.1 we have

(4.10)	 Ilf — Te,,,(f)II < 2KAIIf — Te(.f)II•

Thus, if we have upper estimates for a thresholding algorithm TE (a greedy algo-
rithm), then we can derive from them the corresponding upper estimates for the
soft thresholding algorithm.

In [7] we studied the concept of a greedy basis, i.e., a basis 'I' such that for each f E X
we have

Il.f — G.(f, '1 )II <_ Ga.(f, P), 	 m = 1, 2, ... ,
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with a constant G independent of f and m. Denote

m(f, e) := #{k: ICk(.f)I ? s}.

Then (4.10) implies that if 41 is a greedy basis, we have, for each f E X,

(4.11)	 Ilf — TE,U(f)II < G'am(f,e)(f, P).

We note here that (4.11) implies that tY is a greedy basis. The proof of this statement
uses the arguments from [7] and can be carried out as follows. We have proved in [7]
(see Theorem 1) that iY is greedy if and only if 41 is unconditional and democratic.

Definition 4.2. We say that a basis 'Y = {'k}1 is a democratic basis if, for any two
finite sets of indices P and Q with the same cardinality #P = #Q, we have

I V vk D F *k
kEP	 kEQ

with a constant D := D(X, W) independent of P and Q.

Using the arguments from [7], which were used to prove that a greedy basis is un-
conditional and democratic, we prove that (4.11) implies that 'I' is unconditional and
democratic. It remains to apply Theorem 1 from [7] to complete the proof. n
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