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Exponential Asymptotics of the Mittag–Leffler Function

R. Wong and Yu-Qiu Zhao

Abstract. The Stokes lines/curves are identified for the Mittag–Leffler function

Eα,β (z) =
∞∑

n=0

zn

�(αn + β)
, Re α > 0.

When α is not real, it is found that the Stokes curves are spirals. Away from the Stokes
lines/curves, exponentially improved uniform asymptotic expansions are obtained. Near
the Stokes lines/curves, Berry-type smooth transitions are achieved via the use of the
complementary error function.

1. Introduction

The Mittag–Leffler function Eα(z) is defined by the Taylor series

Eα(z) =
∞∑

n=0

zn

�(αn + 1)
, α > 0.(1.1)

For α > 0, Eα(z) is an entire function of order 1/α. For x ≥ 0 and 0 < α < 1, Eα(−x)

is a completely monotonic function, i.e.,

(−1)n dn Eα(−x)

dxn
≥ 0, n = 0, 1, 2, . . . .(1.2)

For α ≥ 2, Eα(z) has infinitely many zeros on the negative real axis and no other
zeros. For these and many other properties of this function, we refer to Erdélyi et al. [5,
pp. 206–211].

A function which closely resembles Eα(z) is the entire function

Eα,β(z) =
∞∑

n=0

zn

�(αn + β)
, Re α > 0.(1.3)

In [9], E. M. Wright used Eα,β(z) as the basis function to investigate the asymptotic
behavior of a class of entire functions. The asymptotic expansion of the function Eα,β(z)
is given in the following theorem; see [9, p. 437] or [5, p. 210].
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Theorem 1.1. If 0 < σ < 1
2π , then for z �= 0 and any integer N ≥ 1:

Eα,β(z) = 1

α

∑
s

Z1−β
s eZs −

N−1∑
n=1

z−n

�(β − αn)
+ O(z−N ),(1.4)

where Zs is defined by

Zs := z1/αe2π is/α = e(1/α)(log z+2πsi)(1.5)

and the first summation is over all those integers s satisfying

|arg Zs | < 1
2π + σ.(1.6)

In recent years, significant developments have occurred in the general theory of asymp-
totic expansions. These developments include Berry’s interpretation of the Stokes phe-
nomenon [2], Olver’s notion of the uniform exponentially improved asymptotic expan-
sion [6], and the Berry and Howls theory of hyperasymptotics [3]. All these new concepts
form what is now known as exponential asymptotics. From (1.5) and (1.6), it is readily
seen that the result in (1.4) is sector-dependent. As arg z varies, some of the exponen-
tial terms in the first sum on the right-hand side of (1.4) are suddenly switched off or
switched on. This abrupt change in behavior motivated us to reinvestigate the asymptotic
expansion of the entire function Eα,β(z) with new views from exponential asymptotics
in mind.

The arrangement of this paper is as follows. In Section 2 we restrict ourselves to
the case when α is real. The analysis here is now almost standard. Except for some
special cases when α is a positive integer, there are two Stokes lines in the cut plane
|arg z| < π . Near the Stokes lines, smoothing of the discontinuity is achieved by using the
complementary error function. Our argument is analogous to that given by Olver in [6].

In Sections 3 and 4 we consider the case when α is not real. Our discussion will be
divided into two separate cases:

(i) Re{1/α} > 1; and
(ii) Re{1/α} ≤ 1.

Case (i) is dealt with in Section 3, and Case (ii) is treated in Section 4. The situations in
these cases are not quite the same as that in which α is real. Although there are still the
Stokes phenomena, these phenomena occur when z approaches some spirals, instead of
radial lines. These spirals are represented by equations of the form

arg z − (tan γ ) log |z| = constant,(1.7)

where γ = arg α.

2. Real α

Even in this simpler case, there are five subcases to be considered:

(1) α is a positive integer and β is an integer;
(2) α ∈ (0, 1);
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(3) α ∈ (2l − 1, 2l) for some positive integer l;
(4) α ∈ (2l, 2l + 1) again for some positive integer l; and
(5) α is a positive integer but β is not an integer.

As we shall see in the following, the exponential asymptotic expansions are different in
different cases. We shall also see that when both α and β are integers, we actually have
a sum of two finite series; when α ∈ (0, 1), there are two Stokes lines and they are given
by arg z = ±απ ; when α ∈ (2l − 1, 2l) and α ∈ (2l, 2l + 1), the two Stokes lines are
given by arg z = ±(2l − α)π and arg z = ±(α − 2l)π , respectively. In the final case
when β is not an integer, the two Stokes lines coincide at arg z = ±π when α is an odd
integer, and at arg z = 0 when α is an even integer.

Case 1: α = p is a positive integer and β = q is an integer. For the Mittag–Leffler
function Eα(z), α = p is a trivial case. Indeed, from (1.1) it can be shown that

Ep(z) = 1

p

p−1∑
s=0

eZs ,(2.1)

where Zs is defined in (1.5). If p = 1, then (2.1) reduces to E1(z) = ez . For the
generalized Mittag–Leffler function Eα,β(z), we have the following result.

Theorem 2.1. If p is a positive integer and q is an integer, then for z �= 0:

Ep,q(z) = 1

p

p−1∑
s=0

Z1−q
s eZs −

[(q−1)/p]∑
n=1

z−n

�(q − np)
,(2.2)

where Zs is given in (1.5) and the final sum is zero if [(q − 1)/p] < 1.

Clearly, (2.1) is a special case of (2.2). We also note that (1.4) differs from (2.2); the
former is an asymptotic expansion, whereas the latter is an identity. To prove the above
theorem, we recall the integral representation [5, p. 210]:

Eα,β(z) = 1

2π i

∫
C

tα−βet

tα − z
dt,(2.3)

where C is a loop which starts and ends at −∞, and encircles the disk |t | ≤ |z|1/α in the
positive sense. Let ε be a positive number less than |z|1/α . By deforming C into a smaller
loop C ′ consisting of the two sides of the interval (−∞, −ε) and the circle |t | = ε, we
obtain, from Cauchy’s residue theorem,

Eα,β(z) = 1

α

∑
s

Z1−β
s eZs + 1

2π i

∫
C ′

tα−βet

tα − z
dt,(2.4)

where Zs is given in (1.5) and the summation is over all those integers s satisfying
|arg Zs | < π . If there exists an integer s such that |arg Zs | = π , then the integration
path C ′ in (2.4) is indented to pass above (below) t = Zs when it traverses along the
upper (lower) edge of the negative real axis; see, e.g., [9, p. 438]. This modification on
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the path of integration is also required in (2.6), (2.8), and (2.9). Note that this kind of
situation can occur only when z lies on the spirals Im[1/α log z + 2πsi] = ±π , which
degenerate into rays when α is real. Since s is an integer, these spirals are well separated
from each other. Hence, in the remaining portion of this paper, we may choose z not to
lie on any of these spirals, and use analytic continuation to extend regions of validity to
cover these values of z when needed. This is possible, since Eα,β(Z) is an entire function.
Substituting the identity

tα

tα − z
= −

N−1∑
n=1

tnα

zn
− t Nα

zN

(
1 − tα

z

)−1

into (2.4) gives

Eα,β(z) = 1

α

∑
s

Z1−β
s eZs −

N−1∑
n=1

z−n

�(β − nα)
+ RN (z),(2.5)

where

RN (z) = z−N+1

2π i

∫
C ′

tαN−βet

tα − z
dt.(2.6)

In (2.5), we have made use of Hankel’s loop integral representation for the gamma
function. If Re(αN − β) > −1, then the circular part of contour C ′ can be shrunk to
zero, leaving only two straight lines embracing the cut along the negative real axis. With
the integration variables on the lower and upper edges of the cut written as t = ve−π i

and t = veπ i , the remainder RN (z) in (2.6) becomes

RN (z) = L N (z) + UN (z),(2.7)

where

L N (z) := eiπβ(zeiπα)−N+1 1

2π i

∫ ∞

0

vαN−βe−v

vα − zeiπα
dv(2.8)

and

UN (z) := −e−iπβ(ze−iπα)−N+1 1

2π i

∫ ∞

0

vαN−βe−v

vα − ze−iπα
dv.(2.9)

Now we specify that α = p is a positive integer and that β = q is an integer. Note
that the two integrals in (2.8) and (2.9) are convergent if Re(αN − β) > −1. Thus, if q
is zero or a negative integer then we may choose N = 1, in which case the second sum
in (2.5) is empty. If q is a positive integer, then we choose N = [(q − 1)/p] + 1. In any
case, we have L N (z) = −UN (z), i.e., RN (z) = 0. Returning to (2.5), we may write

Ep,q(z) = 1

p

∑
s

Z1−q
s eZs −

[(q−1)/p]∑
n=1

z−n

�(q − np)
.

Since q is an integer and Zs = Zs−pe2π i , the last equation infers (2.2). Note that the first
sum in the above equation is over all integers s satisfying |arg Zs | < π . This condition,
however, can be removed by analytic continuation so that (2.2) holds for all z �= 0.
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Case 2: α ∈ (0, 1). We temporarily assume that z lies on the negative real axis with
arg z = −π . This assumption will be removed later by an appeal to analytic continuation.
When arg z = −π and α ∈ (0, 1), we have arg Zs = (1/α)(2s − 1)π �∈ [−π, π ] for all
integer s; i.e., |arg Zs | > π for any s. Hence, from (2.5) it follows that

Eα,β(z) = −
N−1∑
n=1

z−n

�(β − nα)
+ RN (z),(2.10)

where RN (z) is given by (2.7) and N is large so that Re(αN −β) > −1. The assumption
arg z = −π can now be lifted. In what follows, we shall give a detailed study of the
behavior of the remainder RN (z).

Let us restrict ourselves to the case arg z ∈ [−π, 0], since the case arg z ∈ [0, π ] can
be handled in an analogous manner. Note that

arg(ze−iπα) = arg z − απ ∈ [−(1 + α)π, −απ ] ⊂ (−2π, 0),

so the integrand of UN (z) in (2.9) is well-defined. In fact, it can be shown that∣∣∣∣1 − vα

ze−iπα

∣∣∣∣ ≥ sin(απ), arg z ∈ [−π, 0].

Hence we have

|UN (z)| ≤ eπ Im β

2π sin απ
|z|−N �(αN − Re β + 1), arg z ∈ [−π, 0].(2.11)

A similar analysis gives

|L N (z)| ≤ e−π Im β

2π min{sin απ, sin ε} |z|
−N �(αN − Re β + 1)(2.12)

for arg z ∈ [−π, −απ − ε], ε > 0. By using an argument of Boyd [4, (13)–(14)], one
can also show that

|L N (z)| ≤ C(α, β)|z|−N �(αN − Re β + 1)N 1/2(2.13)

for arg z ∈ [−π, −απ ]; see also [8, (3.3)–(3.6)]. Here and thereafter C(α, β) is used as
a generic symbol to denote a positive constant whose value depends only on α and β but
may be different in different places. A combination of (2.7), (2.11), (2.13), and Stirling’s
formula yields

|RN (z)| ≤ C(α, β)(αN )−Re β+1eN (−α+α log(αN )−log |z|)(2.14)

for arg z ∈ [−π, −απ ].
The estimate in (2.14) suggests that an optimal truncation takes place at

N ≈ 1

α
|z|1/α = 1

α
|Z |.(2.15)

For convenience, in (2.15) we have written Z for Z0; see (1.5). To see the smoothing
of the Stokes discontinuity at arg z = −απ , we restrict our attention to the interval
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arg z ∈ (− 3
2απ, − 1

2απ) or, equivalently, arg Z ∈ (− 3
2π, − 1

2π). Moreover, we introduce
the parameters ρ, θ , and r defined by

eiπ Z := ρeiθ and αN := ρ + r,(2.16)

with r being a bounded quantity. In (2.8), we now make the change of variable v = ρeiθ t .
This gives

L N (z) = Z1−β

2π i

∫ ∞e−iθ

0

t − 1

tα − 1

tαN−βe−ρeiθ t

1 − t
dt.(2.17)

Using (2.16) and rotating the path of integration, the above equation can be written as

L N (z) = Z1−β

2π i

∫ ∞

0

{
t − 1

tα − 1
tr−β

}
e−ρ(eiθ t−log t)

1 − t
dt.(2.18)

If θ < 0, then the path of integration is indented to pass above the pole at t = 1. Note
that when θ ↗ 0, the saddle point at t = e−iθ coalesces with the simple pole at t = 1.
An asymptotic expansion, which holds uniformly with respect to θ ∈ (− 1

2π, 1
2π), can be

derived by using the method given in Olver [6]; see also [7, pp. 356–358]. To illustrate the
leading behavior of the optimally truncated remainder, hence achieving the smoothing of
a Stokes discontinuity, we shall present, in the following, a brief account of this method.

Define the quadratic transformation

eiθ t − log t = 1
2w2 + icw + d,(2.19)

where c and d are determined in such a way that the pole t = 1 and the saddle point
t = e−iθ correspond to w = 0 and w = −ic, respectively. This leads to

d = eiθ and 1
2 c2 = 1 + iθ − eiθ ,(2.20)

where the branch of c is chosen so that

c = θ + 1
6 iθ2 − 1

36θ3 + · · ·(2.21)

for small values of θ . Under the transformation t → w, (2.18) becomes

L N (z) = Z1−β

2π i

∫ −ic+∞

−ic−∞

f (θ, α, w)

w
e−ρ((1/2)w2+icw+d) dw,(2.22)

where

f (θ, α, w) = t − 1

tα − 1
tr−β w

1 − t

dt

dw
(2.23)

is an analytic function near w = 0. Let us write

f (θ, α, w) = f (θ, α, 0) + wg(θ, α, w).(2.24)

Then g(θ, α, w) is also analytic at w = 0. Simple calculation gives

f (θ, α, 0) =
{

t − 1

tα − 1
tr−β

}∣∣∣∣
t=1

{
w

1 − t

dt

dw

}∣∣∣∣
w=0

= − 1

α
.(2.25)
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Following the arguments given in Olver [6, p. 345], we have

1

2π i

∫ −ic+∞

−ic−∞
e−ρ((1/2)w2+icw) dw

w
= −1

2

{
1 + erf

(
c

√
ρ

2

)}
(2.26)

= − 1
2 erfc

(
−c

√
ρ

2

)

and
1

2π i

∫ −ic+∞

−ic−∞
e−ρ((1/2)w2+icw)g(θ, α, w) dw = O(e−(1/2)ρc2

ρ−1/2),(2.27)

see also [1, p. 297]. Thus, it follows from (2.22) that

L N (z) = 1

α
Z1−βeZ

{
1
2 erfc

(
−c

√
ρ

2

)
+ O(e−(1/2)ρc2

ρ−1/2)

}
(2.28)

uniformly with respect to arg Z ∈ [− 3
2π, − 1

2π ]. Here we have made use of the fact that
e−ρd = eZ ; see (2.16) and (2.20). As to the integral for UN (z) in (2.9), we note that there
is no singularity in the integrand. Hence the argument used to get (2.27) can be applied
to obtain

UN (z) = Z1−βeZ O(e−(1/2)ρc2
ρ−1/2)(2.29)

for arg Z ∈ [− 3
2π, − 1

2π ]. A combination of (2.7), (2.28), and (2.29) yields

RN (z) = 1

α
Z1−βeZ

{
1
2 erfc

(
−c

√
ρ

2

)
+ O(e−(1/2)ρc2

ρ−1/2)

}
(2.30)

uniformly for arg Z ∈ [− 3
2π, − 1

2π ]. That is to say, under optimal truncation (2.15), we
have

RN (z) = 1

α
Z1−βeZ

{
1
2 erfc

(
−c

√
ρ

2

)
+ O(e−Z−ρρ−1/2)

}
(2.31)

uniformly for arg z ∈ [− 3
2απ, − 1

2απ ]. Here we have again made use of (2.16) and
(2.20). Note that as arg z increases from below −απ to above −απ , θ = arg Z + π

increases from below 0 to above 0. A detailed analysis shows that |arg[−c(θ)]| < π/4
for θ ∈ (−π, 0) and |arg[c(θ)]| < π/4 for θ ∈ (0, π). As a result, 1

2 erfc(−c
√

ρ/2)

changes abruptly but continuously from 0 to 1, with exponentially small correction terms.
More precisely, we have

1
2 erfc

(
−c

√
ρ

2

)
∼ − 1√

2πρ c
e−(1/2)ρc2 = − 1√

2πρ c
e−ρ−Z−iθρ(2.32)

for − 3
2απ < arg z < −απ , and

1
2 erfc

(
−c

√
ρ

2

)
∼ 1 − 1√

2πρ c
e−ρ−Z−iθρ(2.33)
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for −απ < arg z < − 1
2απ . This is exactly the kind of continuous transition that we are

looking for near the Stokes line arg z = −απ .
So far we have considered the case α ∈ (0, 1) only for arg z ∈ [−π, 0], but the analysis

is similar when arg z ∈ [0, π ] and the situation is entirely symmetrical.
It should be pointed out that the elegant formula in (1.4) is not uniform with respect

to arg z in the whole complex z-plane. Indeed, when arg z goes beyond the boundary of
the sector |arg Zs | < 1

2π + σ , there is a switch-on effect of extra exponential terms in
the first sum in (1.4).

The following theorem summarizes the results obtained for the case α ∈ (0, 1). Note
that the union of the two disjoint sectors |arg(−z)| < (1 − α)π and |arg z| < απ covers
the entire z-plane except for the two radial lines arg z = ±απ .

Theorem 2.2. In the case when α ∈ (0, 1), we have the exponentially improved uniform
asymptotic expansions

Eα,β(z) = −
[|Z |/α]∑

n=1

z−n

�(β − αn)
+ O(e−ρρ1/2−Re β)(2.34)

for |arg(−z)| ≤ (1 − α)π − ε and

Eα,β(z) = 1

α
Z1−βeZ −

[|Z |/α]∑
n=1

z−n

�(β − αn)
+ O(e−ρρ1/2−Re β)(2.35)

for |arg z| ≤ απ − ε, where ε is any small positive number. Near the Stokes lines
arg z = ±απ , we have the Berry-type smoothing given by

Eα,β(z) = 1

2α
Z1−βeZ erfc

(
−c(θ)

√
ρ

2

)
(2.36)

−
[|Z |/α]∑

n=1

z−n

�(β − αn)
+ O(e−ρρ1/2−Re β)

for − 3
2απ < arg z < − 1

2απ and

Eα,β(z) = 1

α
Z1−βeZ

{
1 − 1

2 erfc

(
−c(θ)

√
ρ

2

)}
(2.37)

−
[|Z |/α]∑

n=1

z−n

�(β − αn)
+ O(e−ρρ1/2−Re β)

for 1
2απ < arg z < 3

2απ , where c(θ) is defined in (2.20)–(2.21), θ = arg Z + π in
(2.36) and θ = arg Z − π in (2.37).

The order estimate in (2.34) is obtained from the two results in (2.11) and (2.12) when
arg z ∈ [−π, −απ − ε], and from two corresponding results when arg z ∈ [απ + ε, π ].
The first term in (2.35) came from (2.5). Expansion (2.36) follows from (2.10) and (2.31),
whereas expansion (2.37) is obtained in a similar manner.
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Case 3: α ∈ (2l −1, 2l), l is a positive integer. When α ∈ (2l −1, 2l) for some positive
integer l and arg z ∈ [−π, π ], we have, from (1.5),

arg Zs = 1

α
(arg z + 2sπ) ∈ (−π, π), s = 0, ±1, . . . ,±(l − 1),

and

arg Zs = 1

α
(arg z + 2sπ) /∈ [−π, π ], s = ±(l + 1), ±(l + 2), . . . .

Consider the function

Fα,β(z) := Eα,β(z) − 1

α

l−1∑
s=−l+1

Z1−β
s eZs .(2.38)

If z is restricted to the positive real axis, then

arg Z±l |arg z=0 /∈ [−π, π ]

and from (2.4) we have

Fα,β(z) = 1

2π i

∫
C ′

tα−βet

tα − z
dt,(2.39)

where C ′ is a loop contour consisting of two straight lines lying on two sides of the
negative real axis and a small circle centered at the origin. The argument leading to (2.5)
gives

Fα,β(z) = −
N−1∑
n=1

z−n

�(β − αn)
+ RN (z),(2.40)

where the remainder RN (z) is defined as in (2.7)–(2.9) and Re(αN − β) > −1. The
restriction arg z = 0 can now be removed by using analytic continuation. From here on,
the argument proceeds more or less the same as in Case 2, and will not be repeated here.
We shall only make a few relevant observations. The order estimate of the remainder in
(2.14) also holds for arg z ∈ [0, (2l − α)π ], and the optimal trunction of the series in
(2.40) again occurs at N ∼ (1/α)|Z±l | = (1/α)|z|1/α; see (2.15). The Stokes lines are
at arg z = ±(2l − α)π , and we have the following expansions in three disjoint sectors:

Fα,β(z) = −
[ρ/α]∑
n=1

z−n

�(β − αn)
+ O(e−ρρ1/2−Re β)(2.41)

for |arg z| < (2l − α)π ,

Fα,β(z) = 1

α
Z1−β

−l eZ−l −
[ρ/α]∑
n=1

z−n

�(β − αn)
+ O(e−ρρ1/2−Re β)(2.42)

for arg z ∈ ((2l − α)π, π ], and

Fα,β(z) = 1

α
Z1−β

l eZl −
[ρ/α]∑
n=1

z−n

�(β − αn)
+ O(e−ρρ1/2−Re β)(2.43)



364 R. Wong and Y.-Q. Zhao

for arg z ∈ [−π, −(2l − α)π), where ρ = |z|1/α . From (2.38), it follows that

Eα,β(z) = 1

α

l−1∑
s=−l+1

Z1−β
s eZs −

[ρ/α]∑
n=1

z−n

�(β − αn)
+ O(e−ρρ1/2−Re β)(2.44)

for |arg z| < (2l − α)π ,

Eα,β(z) = 1

α

l−1∑
s=−l

Z1−β
s eZs −

[ρ/α]∑
n=1

z−n

�(β − αn)
+ O(e−ρρ1/2−Re β)(2.45)

for arg z ∈ ((2l − α)π, π ], and

Eα,β(z) = 1

α

l∑
s=−l+1

Z1−β
s eZs −

[ρ/α]∑
n=1

z−n

�(β − αn)
+ O(e−ρρ1/2−Re β)(2.46)

for arg z ∈ [−π, −(2l − α)π). Note that the results in (2.45) and (2.46) agree on the
negative real axis, since

{Z−l+1, . . . , Zl−1, Zl}|arg z=−π = {Z−l , Z−l+1, . . . , Zl−1}|arg z=π .

For regions near the Stokes lines, arg z = ±(2l −α)π , we have the following Berry-type
transitions:

Eα,β(z) = 1

α

l−1∑
s=−l+1

Z1−β
s eZs + 1

2α
Z1−β

−l eZ−l erfc

(
−c(θ)

√
ρ

2

)
(2.47)

−
[ρ/α]∑
n=1

z−n

�(β − αn)
+ O(e−ρρ1/2−Re β)

for (2l − α)π − µ < arg z < (2l − α)π + µ with θ = arg Z−l + π , and

Eα,β(z) = 1

α

l−1∑
s=−l+1

Z1−β
s eZs + 1

α
Z1−β

l eZl

{
1 − 1

2 erfc

(
−c(θ)

√
ρ

2

)}
(2.48)

−
[ρ/α]∑
n=1

z−n

�(β − αn)
+ O(e−ρρ1/2−Re β)

for −(2l − α)π − µ < arg z < −(2l − α)π + µ with θ = arg Zl − π , where c(θ) is
defined as in (2.20) and (2.21) and µ := min{2π(2l − α), 2π(α − (2l − 1))}. (Some of
the arguments used to achieve (2.47) and (2.48) are given in Section 4 for the case of
complex α; see (4.4) to (4.10).)

Case 4: α ∈ (2l, 2l + 1), l is a positive integer. The analysis here is similar to that of
the previous case. Hence, we shall be contented to just stating the results. Let

Fα,β(z) := Eα,β(z) − 1

α

l∑
s=−l+1

Z1−β
s eZs , arg z ∈ [−π, 0],(2.49)
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and

Fα,β(z) := Eα,β(z) − 1

α

l−1∑
s=−l

Z1−β
s eZs , arg z ∈ [0, π ].(2.50)

Although these two expressions appear to be different, they are in fact the same along
the negative real axis since

{Z−l+1, . . . , Zl−1, Zl}|arg z=−π = {Z−l , Z−l+1, . . . , Zl−1}|arg z=π .

Let us restrict ourselves to the half-plane arg z ∈ [−π, 0]. The other half-plane arg z ∈
[0, π ] can be dealt with by symmetry. Assuming, temporarily, that arg z = −π , the
integral representation in (2.39) can be derived as before, from which expansion (2.40)
also follows. Now we lift the assumption arg z = −π by analytic continuation. The
remainder estimate in (2.14) again holds for arg z ∈ [−π, −(α − 2l)π ], which in turn
suggests the optimal truncation at N ≈ (1/α)|Z−l | = (1/α)|z|1/α . The Stokes lines are
at arg z = ±(α − 2l)π , and the asymptotic expansions are given by

Fα,β(z) = −
[ρ/α]∑
n=1

z−n

�(β − αn)
+ O(e−ρρ1/2−Re β)(2.51)

for |arg(−z)| < ((2l + 1) − α)π ,

Fα,β(z) = 1

α
Z1−β

l eZl −
[ρ/α]∑
n=1

z−n

�(β − αn)
+ O(e−ρρ1/2−Re β)(2.52)

for 0 < arg z < (α − 2l)π , and

Fα,β(z) = 1

α
Z1−β

−l eZ−l −
[ρ/α]∑
n=1

z−n

�(β − αn)
+ O(e−ρρ1/2−Re β)(2.53)

for −(α − 2l)π < arg z < 0. The arguments for (2.52) and (2.53) are similar to that for
(2.35) with Z being replaced by Zl when arg z ≥ 0 and by Z−l when arg z ≤ 0. Due to
symmetry of the regions, it can in fact be shown that both (2.52) and (2.53) are valid in
the larger sector |arg z| < (α − 2l)π . Hence, by virtue of (2.49) and (2.50), these two
results can be combined to yield

Eα,β(z) = 1

α

l∑
s=−l

Z1−β
s eZs −

[ρ/α]∑
n=1

z−n

�(β − αn)
+ O(e−ρρ1/2−Re β)(2.54)

for |arg z| < (α − 2l)π . Near the Stokes lines, arg z = ±(α − 2l)π , we have

Eα,β(z) = 1

α

l∑
s=−l+1

Z1−β
s eZs + 1

2α
Z1−β

−l eZ−l erfc

(
−c(θ)

√
ρ

2

)
(2.55)

−
[ρ/α]∑
n=1

z−n

�(β − αn)
+ O(e−ρρ1/2−Re β)
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for −(α − 2l)π − µ < arg z < −(α − 2l)π + µ with θ = arg Z−l + π , and

Eα,β(z) = 1

α

l−1∑
s=−l

Z1−β
s eZs + 1

α
Z1−β

l eZl

{
1 − 1

2 erfc

(
−c(θ)

√
ρ

2

)}
(2.56)

−
[ρ/α]∑
n=1

z−n

�(1 − αn)
+ O(e−ρρ1/2−Re β)

for (α − 2l)π − µ < arg z < (α − 2l)π + µ with θ = arg Zl − π , where µ :=
min{2π(α − 2l), 2π((2l + 1) − α)}; see (4.34) below. As before, ρ := |z|1/α and
1
2 c2 = 1 + iθ − eiθ with c ∼ θ as θ → 0; see (2.20)–(2.21).

Case 5: α = p is a positive integer and β is not an integer. Since p is an integer, we
have, from (2.7)–(2.9),

RN (z) = sin(π(1 − β))

π
(zeiπp)−N+1

∫ ∞

0

v pN−βe−v

v p − zeiπp
dv(2.57)

and

RN (z) = sin(π(1 − β))

π
(ze−iπp)−N+1

∫ ∞

0

v pN−βe−v

v p − ze−iπp
dv.(2.58)

Of course these two expressions are the same, and we need both of them later in our
discussion, one for arg z near π and the other for arg z near −π . It is convenient to
distinguish the cases when p is odd and when p is even. We first consider the case when
p is odd, say p = 2m + 1, where m is a nonnegative integer. For −π < arg z < π , we
get, from (2.5),

Ep,β(z) = 1

p

m∑
s=−m

Z1−β
s eZs −

N−1∑
n=1

z−n

�(β − pn)
+ RN (z)(2.59)

with RN (z) being given by either (2.57) or (2.58). An estimate similar to those in (2.11)
and (2.12) can be obtained for RN (z)when arg z ∈ (−π+ε, π−ε). This estimate suggests
that optimal truncation of the second series in (2.59) again occurs at N ≈ (1/p)|z|1/p; see
(2.15). Thus we need to consider only the critical values arg z = ±π . As an illustration,
we take the case arg z = π . In the discussion that follows, arg z is allowed to vary
in an interval bigger than 2π . More precisely, we assume arg z ∈ (π − µ, π + µ)

or, equivalently, arg Z−m−1 ∈ (−π − µ/p, −π + µ/p) ⊆ (− 3
2π, − 1

2π), where µ :=
min{pπ/2, 2π}. Since

v p

zeiπp
=

(
v

Z−m−1eiπ

)p

,

we make the substitution v = Z−m−1eiπ t in the integral in (2.57). After rotating the
t-integral path by an angle θ := arg Z−m−1 + π ∈ (− 1

2π, 1
2π), we obtain

RN (z) = sin(π(1 − β))

π
(Z−m−1eiπ )1−β

∫ ∞

0

t pN−βe−Z−m−1eiπ t

t p − 1
dt,(2.60)
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where the integration path passes above the pole at t = 1. Let

ρ := |z|1/p and r := N p − ρ,(2.61)

see (2.16). Note that r is bounded, and (2.60) can be written as

RN (z) = 1

2π i
{Z1−β

−m−1 − Z1−β
m }

∫ ∞

0

{
t − 1

tα − 1
tr−β

}
e−ρ(eiθ t−log t)

1 − t
dt.(2.62)

Here we have made use of the fact that Z−m−1e2iπ = Zm .
The integral in (2.62) is exactly of the same form as that in (2.18); it is a typical

situation in which a saddle point at t = e−iθ coalesces with the simple pole at t = 1 as
θ → 0. With the quadratic change of variable given in (2.19), we obtain, as in previous
cases, the Berry-type transition

RN (z) =
{

1

p
Z1−β

−m−1eZ−m−1 − 1

p
Z1−β

m eZm

}
(2.63)

× 1
2 erfc

(
−c(θ)

√
ρ

2

)
+ O(e−ρρ1/2−Re β),

where θ = arg Z−m−1 + π and c(θ) is given in (2.20)–(2.21). From (2.59) and (2.63), it
follows that

Ep,β(z) = 1

p

m−1∑
s=−m

Z1−β
s eZs −

N−1∑
n=1

z−n

�(β − pn)
(2.64)

+ 1

p
Z1−β

−m−1eZ−m−1 1
2 erfc

(
−c(θ)

√
ρ

2

)

+ 1

p
Z1−β

m eZm

{
1 − 1

2 erfc

(
−c(θ)

√
ρ

2

)}
+ O(e−ρρ1/2−Re β).

In (2.64), we wish to make the following observation. When θ increases from 0− to
0+, c(θ) also increases from 0− to 0+. As a consequence, the term 1

2 erfc(−c
√

ρ/2),
which is exponentially small when θ < 0, increases abruptly from 0 to 1 when θ becomes
larger than 0. This is a common feature of all Berry-type transitions. What is unusual in
(2.64) is that upon crossing the Stokes line θ = 0 or, equivalently, arg Z−m−1 = −π ,
the exponentially small terms (1/p)Z1−β

m eZm and (1/p)Z1−β

−m−1eZ−m−1 are simultaneously
switched on and off, respectively.

The situation when arg z ∼ −π is entirely similar. Instead of (2.57), we now use
(2.58). After making the change of variable v = Zm+1e−iπ t and rotating the integration
path by an angle θ = arg Zm+1 − π , (2.58) becomes

RN (z) = sin(π(1 − β))

π
(Zm+1e−iπ )1−β

∫ ∞

0

t pN−βe−Zm+1eiπ t

t p − 1
dt,

which is of the same form as (2.60) except that the path of integration here passes below
the pole at t = 1. By using Cauchy’s residue theorem and the fact that Zm+1e−2iπ = Z−m ,
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one obtains

RN (z) =
{

1

p
Z1−β

m+1eZm+1 − 1

p
Z1−β

−m eZ−m

}
(2.65)

×
{

1 − 1
2 erfc

(
−c(θ)

√
ρ

2

)}
+ O(e−ρρ1/2−Re β),

where θ = arg Zm+1 − π and p = 2m + 1. Hence

Ep,β(z) = 1

p

m∑
s=−m+1

Z1−β
s eZs −

N−1∑
n=1

z−n

�(β − pn)
(2.66)

+ 1

p
Z1−β

−m eZ−m 1
2 erfc

(
−c(θ)

√
ρ

2

)

+ 1

p
Z1−β

m+1eZm+1

{
1 − 1

2 erfc

(
−c(θ)

√
ρ

2

)}
+ O(e−ρρ1/2−Re β)

for arg z ∈ (−π −µ, −π +µ) or, equivalently, arg Zm+1 ∈ (π −µ/p, π +µ/p), where
µ := min{pπ/2, 2π}.

In view of the different values of θ in (2.64) and (2.66) and the fact that

{Zm+1, Zm, . . . , Z−m+1, Z−m}|arg z=−π = {Zm, Zm−1, . . . , Z−m, Z−m−1}|arg z=π ,

the two expansions in (2.64) and (2.66) actually coincide at their respective Stokes lines
arg z = π (i.e., arg Z−m−1 = −π ) and arg z = −π (i.e., arg Zm+1 = π ).

We now turn to a brief discussion of the case when p = 2m, where m is a positive
integer. First, we assume temporarily that arg z = −π . Since

|arg Zs | = |arg z + 2sπ |
2m

= |(2s − 1)π |
2m

< π

for s = −m + 1, . . . , 0, . . . , m, we have, from (2.5),

Ep,β(z) = 1

2m

m∑
s=−m+1

Z1−β
s eZs −

N−1∑
n=1

z−n

�(β − pn)
+ RN (z),(2.67)

where RN (z) is given by (2.57) or (2.58). Let θ = arg Z−m + π . By removing the
restriction arg z = −π and repeating the above analysis, we obtain

RN (z) =
{

1

p
Z1−β

−m eZ−m − 1

p
Z1−β

m eZm

}
(2.68)

×
{

1
2 erfc

(
−c(θ)

√
ρ

2

)
+ O(e−(1/2)ρc2

ρ−1/2)

}

for arg z ∈ (−µ, µ), µ := min{pπ/2, 2π}, where c(θ) and ρ are as defined previously.
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Hence

Ep,β(z) = 1

p

m−1∑
s=−m+1

Z1−β
s eZs −

N−1∑
n=1

z−n

�(β − pn)
(2.69)

+ 1

p
Z1−β

−m eZ−m 1
2 erfc

(
−c(θ)

√
ρ

2

)

+ 1

p
Z1−β

m eZm

{
1 − 1

2 erfc

(
−c(θ)

√
ρ

2

)}
+ O(e−ρρ1/2−Re β).

The Stokes line in the present case is θ = arg Z−m + π = 0 or, equivalently, arg z = 0.
If we had initially assumed that arg z = π , then the discussion would be entirely sym-

metrical, and we need only exchange the index “m” with “−m” and let θ = arg Zm −π .

3. Complex α with Re(1/α) > 1

When α is not real, our analysis of Eα,β(z) is not quite the same. First, we cut the complex
z-plane along the spiral arg z − (tan γ ) log |z| = ±π , where γ = arg α; see Figure 1.
We shall take the region

−π ≤ arg z − (tan γ ) log |z| < π(3.1)

to be the principal branch of arg z. Also, we let δ = |α| so that α = δeiγ . One may
assume that |γ | < 1

2π since Reα > 0; hence, the quantity tan γ in (3.1) is well-defined.
Once again, we shall study the behavior of Eα,β(z), case by case. In this section, we shall
be concerned with only the case Re(1/α) > 1.

With Zs defined as in (1.5) and α = δeiγ , we have

|Zs | = e(cos γ /δ)(log |z|+(tan γ )(arg z+2sπ))(3.2)

and

arg Zs = cos γ

δ
(arg z − (tan γ ) log |z| + 2sπ).(3.3)

For convenience, we put

a :=
{

Re

(
1

α

)}−1

= δ

cos γ
.(3.4)

Thus, a ∈ (0, 1). Temporarily, let us restrict z to the region between the two spirals given
by arg z − (tan γ ) log |z| = −aπ (i.e., arg Z0 = −π ) and arg z − (tan γ ) log |z| = −π ,
which is the lower edge of the cut in the z-plane; see Figure 1. For z in this region, it can
be shown that

|arg Zs | > π for all integer s.

Hence, from (2.4) and (2.5), it follows that

Eα,β(z) = −
N−1∑
n=1

z−n

�(β − nα)
+ RN (z),(3.5)
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Fig. 1. The Stokes curve arg z − (tan γ ) log |z| = a(γ − π), 0 < a < 1.

where RN (z) is given in (2.7)–(2.9), provided that N > (Re β − 1)/Re α. To obtain
some realistic bounds for RN (z), we first prove the following result.

Lemma 3.1. Let α = δeiγ and a = δ/cos γ . For |γ | < 1
2π and a ∈ (0, 1), we have

|1 − ζ α| > C(α) · sin �

for all ζ with arg ζ ∈ [δ1, δ2], where [aδ1, aδ2] ⊂ (0, 2π), C(α) is a positive constant
depending only on α, and � = min{aδ1, 2π − aδ2} ∈ (0, π ].

Proof. Write ζ = eξ+iη, where η = arg ζ ∈ [δ1, δ2] and ξ is allowed to vary along the
real line.

First, we consider the case aη ∈ (0, π ]. Note that if

ξ Re α − η Im α > log(1 + ε1aη)

for some positive ε1, then

|1 − ζ α| ≥ |ζ α| − 1 = eξ Re α−η Im α − 1 > ε1aη.

Similarly, if

ξ Re α − η Im α < log(1 − ε2aη)

for some positive ε2, then

|1 − ζ α| ≥ 1 − eξ Re α−η Im α > ε2aη.
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Now, if

log(1 − ε3aη) < ξ Re α − η Im α < log(1 + ε3aη)

for some positive ε3 < 1/(4π) then, since log(1+x) ≤ x for x ≥ 0 and log(1−x) ≥ −2x
for 0 ≤ x ≤ 1

2 , one has

|ξ Re α − η Im α| < 2ε3aη.

That is, one can write

ξ = (tan γ )η + εaη

with |ε| < 2ε3/Re α. Furthermore, if we require ε3|tan γ | < 1
4 then, since Im α/Re α =

tan γ and |ε Im α| < 2ε3 tan γ < 1
2 , the last equation gives

ξ Im α + η Re α = aη + ε(Im α)aη ∈ ( 1
2 aη, 3

2 aη) ⊂ (0, 3
2π).(3.6)

It can be shown that

|1 − ζ α| ≥ | sin(ξ Im α + η Re α)|.
Hence, if ξ Im α + η Re α < 1

2π , then

|1 − ζ α| ≥ sin( 1
2 aη),

and if ξ Im α + η Re α ≥ 1
2π , then

|1 − ζ α| = {1 + e2(ξ Re α−η Im α) − 2 cos(ξ Im α + η Re α)eξ Re α−η Im α}1/2 ≥ 1.

Here, use has been made of (3.6).
The case aη ∈ (π, 2π) can be dealt with in a similar manner. In fact, if one replaces

aη by 2π − aη, the above argument remains valid, with only minor modifications.
Summarizing the above results, one can see that by adjusting the constants εi , i = 1, 2,
and 3, our discussion covers all possible cases, thus completing the proof.

Returing to (3.5), we now study the behavior of RN (z). It is well-known that optimal
truncation of an asymptotic expansion occurs near the term which is numerically smallest.
Since 0 < |γ | < 1

2π , we may assume without loss of generality that γ ∈ (0, 1
2π).

Suppose that both |z| and n are large, and that α = δeiγ and β are fixed. By Stirling’s
formula

z−n

�(β − nα)
∼ 1√

2π
(−nα)−β+1/2z−ne−nα+nα log(−nα).

Hence ∣∣∣∣ z−n

�(β − nα)

∣∣∣∣ ∼ C(α, β)n−Re β+1/2e−n log |z|−nδ cos γ+nδ cos γ ·log(nδ)−nδ sin γ ·(γ−π),(3.7)

where C(α, β) = |(−α)1/2−β/
√

2π | and we have taken arg(−nα) = γ − π . The
predominant factor on the right-hand side of (3.7) is clearly the exponential function and
for large, but fixed |z|, its exponent is minimal when n takes the value

N ≈ 1

δ
etan γ ·(γ−π)|z|1/(δ cos γ ).(3.8)
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In what follows, we shall show that the estimates to be derived for the error terms indeed
agree with the above asymptotic formulas. First, we consider UN (z) in (2.9) for z in the
region given by

arg z − (tan γ ) log |z| ∈ [−π, aπ − ε],(3.9)

which, in view of (3.3) and (3.4), is equivalent to arg Z ∈ [−(1/a)π, π − ε/a], where,
as in (2.15), we have written Z = Z0. Since

arg
( v

Ze−iπ

)
= π − arg Z ∈

[
ε

a
,

(
1 + 1

a

)
π

]

and

a

[
ε

a
,

(
1 + 1

a

)
π

]
= [ε, (a + 1)π ] ⊂ (0, 2π),

Lemma 3.1 applies and we get
∣∣∣∣1 − vα

ze−iπα

∣∣∣∣ =
∣∣∣1 −

( v

Ze−iπ

)α∣∣∣ ≥ C(α) sin ε(3.10)

for arg Z ∈ [−(1/a)π, π − ε/a]. From (2.9), it follows that

|UN (z)| ≤ C(|z|eπ Im α)−N �(N Re α − Re β + 1)(3.11)

for arg z − (tan γ ) log |z| ∈ [−π, aπ − ε], where C is a constant depending on α, β, and
ε. By Stirling’s formula, we have

|UN (z)| ≤ C̃ N 1/2−Re βe−N log |z|−N Re α+N Re α·log(Nδ)(3.12)

× e−N Im α·(γ−π)−[N Re α·log(cos γ )−1+N Im α·(2π−γ )],

where C̃ is again a constant depending only on α, β, and ε. Since the quantity inside the
square brackets is positive, we further obtain

|UN (z)| ≤ C̃ N 1/2−Re βe−N log |z|−Nδ cos γ+Nδ cos γ ·log(Nδ)−Nδ sin γ ·(γ−π).(3.13)

We have expressed the estimate in (3.13) in this particular form in order to compare
it with the estimate in (3.16) below. Next, we consider L N (z) in (2.8) when arg Z ∈
[−(1/a)π, γ −π−ε/a], where ε is a small positive number. Note that since 0 < γ < 1

2π ,
the interval [−(1/a)π, γ − π − ε/a] is contained in the interval [−(1/a)π, π − ε/a];
that is, we are now dealing with a region smaller than that given in (3.9). By rotating the
path of integration by an angle ϕ, we have

L N (z) = 1

2π i
e−iπ(1−β)(Zeiπ )−Nα

∫ ∞eiϕ

0

vαN−βe−v

1 − (v/Zeiπ )α
dv,(3.14)

provided that ϕ satisfies

arg v = ϕ ∈ (− 1
2π, 1

2π) and arg
( v

Zeiπ

)
= ϕ − arg Z − π ∈ (0, 2π/a).
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The second condition ensures that the denominator in (3.14) is nonzero. By varying ϕ

in (− 1
2π, 1

2π), we can analytically continue L N (z) to the larger region given by

arg Z ∈
(

− 3
2π − 2

a
π, − 1

2π

)
.

Of course, (3.14) holds in particular when arg Z ∈ [−(1/a)π, γ −π − ε/a]. Specifying
ϕ = γ in (3.14) yields

arg
( v

Zeiπ

)
= γ − arg Z − π ∈

[
ε

a
, γ +

(
1

a
− 1

)
π

]
.

Since [ε, aγ + (1 − a)π ] ⊂ (0, 2π), Lemma 3.1 again applies and we have

|1 − (v/Zeiπ )α| ≥ C(α) sin ε.

In (3.14) we now make the change of variable v = eiγ τ ; this gives

L N (z) = 1

2π i
e−iπ(1−β)(Zeiπ )−Nαeiγ (αN−β+1)

∫ ∞

0

ταN−βe−eiγ τ

1 − (eiγ τ/Zeiπ )α
dτ.(3.15)

Taking absolute value on both sides and using Stirling’s formula, we obtain

|L N (z)| ≤ C(α, β)

sin ε
N 1/2−Re βe−N log |z|−Nδ cos γ+Nδ cos γ ·log(Nδ)−Nδ sin γ ·(γ−π)(3.16)

for arg z − (tan γ ) log |z| ∈ [−π, aγ − aπ − ε]. The results in (3.13) and (3.16) show
that when arg Z is bounded away from the critical value γ − π , our estimate for the
error term RN (z) = UN (z)+ L N (z) is of the same order of magnitude as that of the first
neglected term; see (3.7).

To obtain an estimate when arg Z is close to γ − π , let us consider z in the region
given by

a arg Z = arg z − (tan γ ) log |z| ∈ [−π, aγ − aπ ].

In (3.14), we let the angle ϕ vary in the interval (γ, π/2). For arg Z ∈ [−π/a, γ − π ],
we have ϕ−arg Z −π ∈ (0, 2π/a) and hence (3.14) holds. With ϕ replacing γ in (3.15),
we get

L N (z) = 1

2π i
e−iπ(1−β)(Zeiπ )−Nαeiϕ(αN−β+1)

∫ ∞

0

ταN−βe−eiϕτ

1 − (eiϕτ/Zeiπ )α
dτ.

By Lemma 3.1, we obtain

|L N (z)| ≤ C(α, β)

|sin[a(ϕ − arg Z − π)]|�(N Re α − Re β + 1)(3.17)

× e−N log |z|−(ϕ−π)N Im α(cos ϕ)−(N Re α−Re β+1).

Since (3.16) provides a bound for arg Z not close to γ −π , we need only consider arg Z
in the small interval [γ − π − ε/a, γ − π ], 0 < ε/a < γ . It is easily verified that for
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arg Z ∈ [γ − π − ε/a, γ − π ], we have ϕ − arg Z − π ∈ (0, π/2) for all ϕ ∈ (γ, π/2)

and ϕ − arg Z − π > ϕ − γ . Hence

|L N (z)| ≤ C(α, β)N 1/2−Re βe−N log |z|−Nδ cos γ+Nδ cos γ ·log(Nδ)−Nδ sin γ ·(γ−π) · A,(3.18)

where

A := 1

sin[a(ϕ − γ )]
e−(ϕ−γ )N Im α

(
cos γ

cos ϕ

)N Re α

.

Since ϕ is allowed to vary in the interval (γ, π/2), we may choose ϕ = γ +1/N . Clearly,

lim
N→∞

A

N
= 1

a
.

Hence, it follows from (3.18):

|L N (z)| ≤ C(α, β)N 3/2−Re βe−N log |z|−Nδ cos γ+Nδ cos γ ·log(Nδ)−Nδ sin γ ·(γ−π)(3.19)

for arg Z ∈ [γ − π − ε/a, γ − π ]. As stated before, C(α, β) is used as a generic
symbol to denote a constant depending on only α and β; see the statement following
(2.13). Thus, the values of C(α, β) may be different in (3.17), (3.18), and (3.19). Since
ε/a < γ < π/2 and 0 < a < 1, a combination of (3.13), (3.16), and (3.19) yields

|RN (z)| ≤ C(α, β)N 3/2−Re βe−N log |z|−Nδ cos γ+Nδ cos γ ·log(Nδ)−Nδ sin γ ·(γ−π)(3.20)

for arg Z ∈ [−π, γ − π ]. The last estimate shows that even when arg Z is close to the
critical value γ − π , our error bound is also of the same magnitude as that of the first
neglected term. Furthermore, it suggests that optimal truncation of the series in (3.5)
should occur when N is given by (3.8).

To see the smooth transition near the curve arg Z = γ − π , i.e., the spiral

arg z − (tan γ ) log |z| = a(γ − π)(3.21)

shown in Figure 1, we restrict arg Z to (γ − π − 1
2π, γ − π + 1

2π) and put

θ := arg Z − (γ − π).(3.22)

Making the change of variable t = eiγ τ/Zeiπ in (3.15), we get

L N (z) = Z1−β

2π i

∫ ∞

0

{
t − 1

tα − 1
t−β

}
eαN log t−Zeiπ t

1 − t
dt,(3.23)

where the integration path has been rotated by an angle θ and it is indented to pass above
the pole at t = 1. (Note: θ < 0 when arg Z < γ − π .) Suggested by (3.8), we write

δN = etan γ ·(γ−π)|z|1/(δ cos γ ) + r(3.24)

with r being a bounded quantity. Since α = δeiγ and Zα = z, it can easily be seen that

|Z | = etan γ ·arg Z |z|1/(δ cos γ ).(3.25)
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Hence, (3.23) can be written as

L N (z) = Z1−β

2π i

∫ ∞

0

{
t − 1

tα − 1
tαr/δ−β

}
e−ρF(t)

1 − t
dt,(3.26)

where we have introduced the notations

ρ := etan γ ·(γ−π)|z|1/(δ cos γ )(3.27)

and

F(t) := eiγ (e(tan γ+i)θ t − log t).(3.28)

The integrand in (3.26) has a saddle point at t = e−(tan γ+i)θ which coalesces with the
pole at t = 1 when θ = 0. To construct an asymptotic approximation for L N (z), when ρ

is large, which holds uniformly with respect to θ in an open interval containing θ = 0,
we again use the quadratic transformation

F(t) = 1
2w2 + icw + d.(3.29)

By requiring the simple pole t = 1 and the saddle point t = e−(tan γ+i)θ to correspond,
respectively, to w = 0 and w = −ic, we obtain

d = eiγ+(tan γ+i)θ(3.30)

and

1
2 c2 = eiγ [1 + (tan γ + i)θ − e(tan γ+i)θ ].(3.31)

The branch of c is chosen so that

c = eiγ /2

{
(1 − i tan γ )θ + i

6
[(1 − i tan γ )θ ]2(3.32)

− 1
36 [(1 − i tan γ )θ ]3 + · · ·

}
∼ 1

cos γ
e−iγ /2θ.

Upon transforming t to w, the integral in (3.26) becomes

L N (z) = Z1−β

2π i

∫ −ic+∞

−ic−∞

f (θ, α, w)

w
e−ρ((1/2)w2+icw+d) dw(3.33)

provided that |γ + θ | < 1
2π , i.e., arg Z ∈ (− 3

2π, − 1
2π), where

f (θ, α, w) = t − 1

tα − 1
tαr/δ−β w

1 − t

dt

dw

is an analytic function of w in a neighborhood of the origin. In (3.33), the integration
path has been appropriately deformed. Near w = 0, f can be written as

f (θ, α, w) = f (θ, α, 0) + wg(θ, α, w),
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where g(θ, α, w) is also an analytic function near the origin. Straightforward calculation
gives

f (θ, α, 0) = − 1

α
and ρd = −Z .

From (3.33) it follows that

L N (z) = Z1−βeZ

2π i

{
− 1

α

∫ −ic+∞

−ic−∞
e−ρ((1/2)w2+icw) dw

w
(3.34)

+
∫ −ic+∞

−ic−∞
g(θ, α, w)e−ρ((1/2)w2+icw) dw

}
.

As indicated in Section 2, the first integral can be expressed in terms of the complementary
error function, and the second integral can be shown to be O(e−(1/2)ρc2

ρ−1/2); see (2.26)
and (2.27). Thus, we have, from (3.34),

L N (z) = 1

α
Z1−βeZ

{
1
2 erfc

(
−c

√
ρ

2

)
+ O(e−(1/2)ρc2

ρ−1/2)

}
.(3.35)

In the evaluation of the first integral in (3.34), we have made use of the fact that
Im(−ic

√
ρ/2) > 0 when θ < 0 on account of (3.32). In a similar manner, one can

show that

UN (z) = Z1−βeZ O(e−2πρ sin γ e−(1/2)ρc2
ρ−1/2) = Z1−βeZ O(e−(1/2)ρc2

ρ−1/2);(3.36)

see (2.29) or (3.42) below. Coupling (3.35) and (3.36) yields

RN (z) = 1

α
Z1−βeZ

{
1
2 erfc

(
−c

√
ρ

2

)
+ O(e−(1/2)ρc2

ρ−1/2)

}
.(3.37)

Substituting (3.37) into (3.5), we obtain

Eα,β = −
[ρ/δ]∑
n=1

z−n

�(β − nα)
+ 1

2α
Z1−βeZ erfc

(
−c(θ)

√
ρ

2

)
(3.38)

+ O(e−ρ cos γ ρ1/2−Re β),

where ρ = e(tan γ )(γ−π)|z|1/(δ cos γ ) and c(θ) are given, respectively, in (3.27) and (3.31)–
(3.32). In (3.38), we have also made use of the fact that

Re{Z − 1
2ρc2} = ρ Re

{
−eiγ − θ

cos γ
i

}
= −ρ cos γ.

To see that formula (3.38) indeed provides the kind of smooth transition that we are
looking for, we briefly examine the behavior of the function 1

2 erfc(−c(θ)
√

ρ/2). For
−π/2 < θ < 0, i.e., γ − 3

2π < arg Z < γ −π , this function is exponentially small. For
0 < θ < π/2, i.e., γ − π < arg Z < γ − 1

2π , this function is asymptotically equal to
one with an exponentially small correction term; compare (2.32) and (2.33), and recall
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the assumption γ ∈ (0, 1
2π). Note that the function c(θ) in (3.37) differs from that in

(2.30). Thus, smooth transition occurs at the Stokes curve arg Z = γ − π , i.e., (3.21).
We now consider the case when arg Z > γ − π . By making the change of variable

v = Zeiπ t and rotating the integration path by an angle ϕ, (2.9) can be written as

UN (z) = e2π i(αN−β+1) Z1−β

2π i

∫ ∞eiϕ

0

tαN−βe−Zeiπ t

(te2π i )α − 1
dt,(3.39)

where ϕ is chosen so that |arg Z + π + ϕ| < 1
2π . By varying ϕ in the interval

(−2π, (2/a)π − 2π), (3.39) can be used to analytically continue UN (z) to the region
1
2π − (2/a)π < arg Z < 3

2π . One can also write (3.39) as

UN (z) = ei(2π+ϕ)(αN−β+1) Z1−β 1

2π i

∫ ∞

0

tαN−βe−Zei(π+ϕ)t

(tei(2π+ϕ))α − 1
dt.(3.40)

For a given arg Z ∈ (γ − π, γ + π), we specify ϕ = γ − arg Z − π = −θ . (Recall that
θ = arg Z − (γ − π); see (3.22).) By (3.24) and (3.27), δN = ρ + r with r being a
bounded quantity. Hence, (3.40) can be further expressed as

UN (z) = ei(2π−θ)(αN−β+1) Z1−β

2π i

∫ ∞

0

{
tαr/δ −β

(tei(2π−θ))α − 1

}
e−ρeiγ (eθ tan γ t−log t) dt.(3.41)

By the method of steepest descent, the main contribution to UN (z) comes from the saddle
point t = e−θ tan γ and we have

UN (z) = O(ρ1/2−Re βe−2πρ sin γ−ρ cos γ ).(3.42)

Here we have made use of the fact that

Re{i(2π − θ)αN − ρeiγ − ρeiγ(tan γ )θ} = −2πρ sin γ − ρ cos γ − (2π − θ)r sin γ .

The last result also gives a proof of (3.36).
The situation is slightly different when arg Z = γ + π , i.e., when θ = 2π (or,

ϕ = −2π ). This is because the integrand in (3.41) has a pole at t = 1, in addition to a
saddle point at t = e−2π tan γ . Since tan γ �= 0, these two points are well separated, and we
can consider their contributions to the asymptotic behavior separately. (For this reason,
arg Z = γ +π should not be considered as a Stokes curve.) From the denominator of the
integrand in (3.41), one can see that when θ < 2π , the integration path there is indented
to pass above the pole at t = 1, whereas when θ > 2π , the integration path is indented
to pass below the pole at t = 1. Thus, as θ increases from values below 2π to values
above 2π , we pick up the term

− 1

α
Z1−βeZ(3.43)

from the pole by the residue theorem. The contribution from the saddle point is of the
same order of magnitude as that given in (3.42). We note that

O(Z1−βeZ ) = O(e−ρ cos γ ρ1/2−Re β).(3.44)
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Similar analysis can be used to show that

L N (z) = O(e−ρ cos γ ρ1/2−Re β)(3.45)

for arg Z ∈ (γ − π, γ − π + (2/a)π). In summary, we have the following result.

Theorem 3.1. Let α and β be complex numbers with Re(1/α) > 1, and write α = δeiγ .
For arg Z ∈ (γ − π, γ + π), i.e., in the domain bounded between the two spirals
arg z − (tan γ ) log |z| = a(γ ± π), we have

Eα,β(z) = 1

α
Z1−βeZ −

[ρ/δ]∑
n=1

z−n

�(β − nα)
+ O(e−ρ cos γ ρ1/2−Re β),(3.46)

where ρ is given in (3.27). For z in the domain {z : a(γ +π) ≤ arg z−(tan γ ) log |z| ≤ π}
or {z : −π ≤ arg z − (tan γ ) log |z| < a(γ − π)}, it holds that

Eα,β(z) = −
[ρ/δ]∑
n=1

z−n

�(β − nα)
+ O(e−ρ cos γ ρ1/2−Re β).(3.47)

For z near the Stokes curve arg z − (tan γ ) log z = a(γ − π), we have the Berry-type
smooth transition given by

Eα,β(z) = 1

2α
Z1−βeZ erfc

(
−c(θ)

√
ρ

2

)
(3.48)

−
[ρ/δ]∑
n=1

z−n

�(β − nα)
+ O(e−ρ cos γ ρ1/2−Re β).

In the statement of the above theorem, it is understood that the set

{z : a(γ + π) ≤ arg z − (tan γ ) log |z| ≤ π}

is empty if a(γ + π) > π . Expansion (3.46) is obtained from expansion (2.5) by first
restricting z to the curve arg z − (tan γ ) log |z| = 0, i.e., arg Z = 0. The restriction is
then removed by an appeal to analytic continuation. The remainder term RN (z) in (2.5)
is given by (2.7)–(2.9). The order estimate in (3.46) follows from (3.42) and (3.45).
Expansion (3.47) comes from expansion (3.46); the first term on the right-hand side of
(3.46) is canceled by the term in (3.43). The correction term in (3.47) is obtained from
(3.13) and (3.16) with N being given by (3.8), and from their corresponding results for
arg Z ≥ γ + π ; see (3.44) and (3.45).

The discussion for the case γ ∈ (− 1
2π, 0) is similar. Smooth transition corresponding

to (3.37) or (3.38) can be achieved at the Stokes curve

arg z − (tan γ ) log |z| = δ

cos γ
(γ + π).(3.49)
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4. Complex α with 0 < Re(1/α) ≤ 1

As in Section 3, we write α = δeiγ and use the notation

a :=
{

Re

(
1

α

)}−1

.(4.1)

Thus, the case which concerns us here is when 1 ≤ a < ∞. We again assume, without
loss of generality, γ ∈ (0, 1

2π). The analysis for the case γ ∈ (− 1
2π, 0) is entirely

similar. We shall carry out our discussion case by case.

Case 1: a ∈ [2l − 1, 2l), l is a positive integer. When a ∈ (2l − 1, 2l) for some
positive integer l, it is readily verified from (3.3) that for arg z−(tan γ ) log |z| ∈ [−π, π ],
we have

arg Zs ∈ (−π, π), s = 0, ±1, . . . , ±(l − 1),

and

arg Zs �∈ [−π, π ], s = ±(l + 1), ±(l + 2), . . . .

Also, when a = 2l − 1, we have

arg Zs ∈ (−π, π), s = 0, ±1, . . . , ±(l − 1),

for arg z − (tan γ ) log |z| ∈ (−π, π), and

arg Zs �∈ [−π, π ], s = ±(l + 1), ±(l + 2), . . . ,

for arg z − (tan γ ) log |z| ∈ [−π, π ]. In both cases, we put

Fα,β(z) := Eα,β(z) − 1

α

l−1∑
s=−l+1

Z1−β
s eZs .(4.2)

If we temporarily set arg z − (tan γ ) log |z| = 0, then

arg Z±l |arg z−(tan γ ) log |z|=0 �∈ [−π, π ]

and we can derive from (2.4) that

Fα,β(z) = 1

2π i

∫
C ′

tα−βet

tα − z
dt,(4.3)

where C ′ is the loop contour described in the statement following (2.3); see also (2.39).
By the same argument as in (2.40), we have

Fα,β(z) = −
N−1∑
n=1

z−n

�(β − αn)
+ RN (z),(4.4)

where RN (z) is as defined in (2.7)–(2.9). Once again the restriction arg z−(tan γ ) log |z| =
0 can be removed by analytic continuation. In the following, we do not intend to provide
the details of the analysis, but will point out some key facts.
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Here, instead of (3.14), we write (2.8) as

L N (z) = 1

2π i
e−iπ(1−β)(Z−l e

iπ )−Nα

∫ ∞

0

vαN−βe−v

1 − (v/Z−l eiπ )α
dv.(4.5)

Note that in (4.5), Z−l takes the place of Z = Z0 in (3.14). The analysis following
(3.12) can be adapted to the present case, and the final results are similar. For instance,
the function L N (z) in (4.5) can be continued analytically to the domain arg Z−l ∈
(− 3

2π − (2/a)π, − 1
2π) or, equivalently, arg z − (tan γ ) log |z| ∈ (−(a/2)π − 2π +

(2l − a)π, (a/2)π + (2l − a)π). The estimates (3.16) and (3.17) also hold, with Z−l

replacing Z ; see (3.15). Hence, optimal truncation again occurs at

N ≈ 1

δ
etan γ ·(γ−π)|z|1/(δ cos γ ),(4.6)

as given by (3.8). Making the change of variable t = v/(Z−l e
iπ ) and rotating the t-

integration path, we are led to an expression similar to (3.23):

L N (z) = Z1−β

−l

2π i

∫ ∞

0

{
t − 1

tα − 1
t−β

}
eαN log t−Z−l eiπ t

1 − t
dt,(4.7)

where the integration path is again indented to pass above the pole at t = 1. From (4.7), it
is readily seen that when N is given by (4.6), and z approaches the curve arg Z−l = γ −π ,
the saddle point

t = αN

Z−l eiπ
≈ e−(tan γ+i)(arg Z−l−(γ−π))

coalesces with the simple pole t = 1. This indicates that a Stokes phenomenon occurs
at the curve

arg z − (tan γ ) log |z| = aγ + (2l − a)π.(4.8)

In a neighborhood of this curve, UN (z) is exponentially small. Indeed, by writing (2.9)
as

UN (z) = − 1

2π i
eiπ(1−β)(Z−l e

−iπ )−Nα

∫ ∞

0

vαN−βe−v

1 − (v/Z−l e−iπ )α
dv,

it can be shown, as in (3.36), that when a ∈ (2l − 1, 2l), we have

UN (z) = O(ρ1/2−Re βe−2πρ sin γ−ρ cos γ )(4.9)

for arg Z−l ∈ (γ − π − µ/a, γ − π + µ/a), where

µ := min{2π(2l − a), 2π(a − (2l − 1))} ≤ π(4.10)

and ρ is as given in (3.27).
On the other hand, we can also write UN (z) as

UN (z) = 1

2π i
eiπ(1−β)(Zle

−iπ )−Nα

∫ ∞

0

vαN−βe−v

(v/Zle−iπ )α − 1
dv.
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By rotating the path of integration, this formula can be used to analytically continue
UN (z) to the domain arg Zl ∈ ( 1

2π, 3
2π+(2/a)π)or, equivalently, arg z−(tan γ ) log |z| ∈

(−(a/2)π − (2l − a)π, (a/2)π + 2π − (2l − a)π). Furthermore, the analysis leading
to (3.40) applies, and we have

UN (z) = Z1−β

l eiϕ(αN−β+1)

2π i

∫ ∞

0

tαN−βe−Zl e−i(π−ϕ)t

tα − 1
dt,

as long as ϕ satisfies |arg Zl − π + ϕ| < 1
2π and −2π/a < ϕ < 0. In particular, at the

curve

arg z − (tan γ ) log |z| = aγ − (2l − a)π,(4.11)

i.e., arg Zl = γ + π , we may specify ϕ = 0, giving

UN (z) = Z1−β

l

2π i

∫ ∞

0

tαr/δ −βe−ρG(t) dt

tα − 1
,(4.12)

where r = δN − ρ is bounded, ρ is defined in (3.27), and

G(t) = eiγ(e2π tan γ t − log t).(4.13)

In (4.12), the integration path is indented to pass below the pole at tp = 1; see (3.26).
Note that the saddle point at ts = e−2π tan γ is well-separated from the pole at tp = 1.
This suggests that the curve arg Zl = γ + π , i.e., (4.11) is not a Stokes curve, while the
curve arg Zl = γ − π given in (4.8) is such a curve. Deforming the integration path in
(4.12) to pass above the pole at tp = 1, UN (z) picks up the contribution

1

α
Z1−β

l eZl

by the residue theorem. The contribution from the saddle point ts is of the same order as
that given in (4.9). Similar analysis shows that L N (z) is also of this order; i.e.,

L N (z) = O(ρ1/2−Re βe−2πρ sin γ−ρ cos γ ).(4.14)

Away from neighborhoods of the curves arg z − (tan γ ) log |z| = aγ ± (2l − a)π ,
there is only one saddle point and no pole in each of the integrals L N (z) and UN (z).
Hence the method of steepest descent applies, and the analysis is somewhat routine. In
summary, we have from (4.2) the following asymptotic expansions in regions separated
by the Stokes curve given in (4.8) and the spiral (4.11):

Eα,β(z) = 1

α

l−1∑
s=−l+1

Z1−β
s eZs −

[ρ/δ]∑
n=1

z−n

�(β − αn)
+ O(ρ1/2−Re βe−ρ cos γ )(4.15)

for arg z − (tan γ ) log |z| ∈ (aγ − (2l − a)π, aγ + (2l − a)π),

Eα,β(z) = 1

α

l−1∑
s=−l

Z1−β
s eZs −

[ρ/δ]∑
n=1

z−n

�(β − αn)
+ O(ρ1/2−Re βe−ρ cos γ )(4.16)
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for arg z − (tan γ ) log |z| ∈ (aγ + (2l − a)π, aγ + π ], and

Eα,β(z) = 1

α

l∑
s=−l+1

Z1−β
s eZs −

[ρ/δ]∑
n=1

z−n

�(β − αn)
+ O(ρ1/2−Re βe−ρ cos γ )(4.17)

for arg z − (tan γ ) log |z| ∈ [aγ −π, aγ − (2l −a)π ]. The two representations in (4.16)
and (4.17) agree with each other, since the sets

{Z−l+1, . . . , Zl−1, Zl}|arg z−(tan γ ) log |z|=aγ−π

and

{Z−l , Z−l+1, . . . , Zl−1}|arg z−(tan γ ) log |z|=aγ+π

are the same. For z in the region

aγ + (2l − a)π − µ < arg z − (tan γ ) log |z| < aγ + (2l − a)π + µ(4.18)

arouned the Stokes curve arg z − (tan γ ) log |z| = aγ + (2l − a)π , where µ is given in
(4.10), and when a ∈ (2l − 1, 2l), we have the Berry-type transition

Eα,β(z) = 1

α

l−1∑
s=−l+1

Z1−β
s eZs −

[ρ/δ]∑
n=1

z−n

�(β − αn)
(4.19)

+ 1

2α
Z1−β

−l eZ−l erfc

(
−c(θ)

√
ρ

2

)
+ O(ρ1/2−Re βe−ρ cos γ ),

where c(θ) is a function of θ = arg Z−l − (γ − π) defined by

1
2 c2 = eiγ (1 + (tan γ + i)θ − e(tan γ+i)θ )(4.20)

with c(θ) ∼ e−iγ /2θ/cos γ , as θ → 0, and Z−l eiπ := ρeiγ+(tan γ+i)θ .
Note that µ becomes zero when a = 2l − 1, and that the interval in (4.18) collapses

to a point. Hence, formula (4.19) is no longer valid and a different analysis is needed.
Indeed, when arg z − (tan γ ) log |z| ↗ aγ + (2l − a)π , we have arg Z−l ↗ γ − π and,
simultaneously, arg Zl−1 ↗ γ + π . As a result, it can be shown that L N (z) contributes
a Berry-type transition involving the complementary error function and UN (z) picks up
the exponential term −(1/α)Z1−β

l−1 eZl−1 from a pole. The argument for the case when
arg z − (tan γ ) log |z| ↘ aγ − (2l − a)π , i.e., arg Zl ↘ γ + π and arg Z−l+1 ↘ γ − π ,
is parallel. The details of analysis are similar to that given for Case 5 in Section 2.

Case 2: a ∈ [2l, 2l + 1), l is a positive integer. The situation in this case is only
slightly different from the cases previously considered. Hence our discussion will be
very brief. Put

Fα,β(z) := Eα,β(z) − 1

α

l∑
s=−l+1

Z1−β
s eZs(4.21)

for arg z − (tan γ ) log |z| ∈ [−π, 0], and

Fα,β(z) := Eα,β(z) − 1

α

l−1∑
s=−l

Z1−β
s eZs(4.22)
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for arg z−(tan γ ) log |z| ∈ [0, π ]. As before, these two expressions appear to be different,
but they in fact agree with each other since the two sets

{Z−l+1, . . . , Zl−1, Zl}|arg z−(tan γ ) log |z|=−π

and

{Z−l , Z−l+1, . . . , Zl−1}|arg z−(tan γ ) log |z|=π

are the same. From (3.3), it follows that in the principal branch arg z − (tan γ ) log |z| ∈
[−π, π ], we have

arg Zs ∈ (−π, π) for s = 0, ±1, . . . ,±(l − 1),

and

arg Zs �∈ [−π, π ] for s = ±(l + 1), ±(l + 2), . . . .

We temporarily choose arg z − (tan γ ) log |z| = −π so that

arg Zl = (2l − 1)

a
π ∈ (0, π)

and

arg Z−l = − (2l + 1)

a
π < −π.

With this restriction, the integral representation of Fα,β(z) in (2.39) holds and so does
the expansion in (2.40) with the remainder given in (2.7)–(2.9). The restriction is then
again removed by analytic continuation. It turns out that the curve arg Z−l = γ − π or,
equivalently, the spiral

arg z − (tan γ ) log |z| = aγ − (a − 2l)π(4.23)

is a Stokes curve. To see this, we consider the part of the remainder

L N (z) = Z1−β

−l

2π i

∫ ∞

0

{
t − 1

tα − 1
tαr/δ −β

}
e−ρF(t)

1 − t
dt(4.24)

under optimal truncation

N ≈ 1

δ
e(tan γ )(γ−π)|z|1/δ cos γ ,

where F(t) = eiγ (e(tan γ+i)θ t − log t). The integration path in (4.24) is indented to pass
above the pole at t = 1. As in (3.26), the saddle point ts = e−(tan γ+i)θ coalesces with
the pole tp = 1 when θ approaches 0, where

θ = arg Z−l − (γ − π).(4.25)

From this, it is now evident that a Berry-type smooth transition can be achieved via the
use of the complementary error function. The main contribution to the remainder, in the
present case, comes from L N (z).
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For arg Z−l ∈ (γ − π, γ − π + 2π/a) or, equivalently, aγ − (a − 2l)π < arg z −
(tan γ ) log |z| < aγ − (a − 2l)π + 2π , we have

L N (z) = O(ρ1/2−Re βe−ρ cos γ ).(4.26)

As arg z − (tan γ ) log |z| keeps on increasing, we will come across the other curve
arg Zl = γ + π , namely, the spiral

arg z − (tan γ ) log |z| = aγ + (a − 2l)π.(4.27)

We now consider the other part of the remainder

UN (z) = Z1−β

l

2π i

∫ ∞

0
tαr/δ −β e−ρG(t)

tα − 1
dt,(4.28)

where G(t) is given in (4.13). Here the integrand has a pole tp = 1 and a saddle point
ts = e−2π tan γ . The integration path in (4.28) is indented to pass above the pole tp = 1;
compare (4.12). When the path is deformed to pass below the pole, the residue theorem
gives the term

− 1

α
Z1−β

l eZl .(4.29)

At the same time, there is a contribution from the saddle point ts , which is of the order

O(ρ1/2−Re βe−2πρ sin γ−ρ cos γ ).(4.30)

Both contributions (4.29) and (4.30) are subdominant in comparison with the contribution
coming from the other part given in (4.26).

Summarizing the results, we have

Eα,β(z) = 1

α

l∑
s=−l+1

Z1−β
s eZs −

[ρ/δ]∑
n=1

z−n

�(β − αn)
+ O(ρ1/2−Re βe−ρ cos γ )(4.31)

for arg z − (tan γ ) log |z| ∈ [aγ − π, aγ − (a − 2l)π),

Eα,β(z) = 1

α

l−1∑
s=−l

Z1−β
s eZs −

[ρ/δ]∑
n=1

z−n

�(β − αn)
+ O(ρ1/2−Re βe−ρ cos γ )(4.32)

for arg z − (tan γ ) log |z| ∈ [aγ + (a − 2l)π, aγ + π ], and

Eα,β(z) = 1

α

l∑
s=−l

Z1−β
s eZs −

[ρ/δ]∑
n=1

z−n

�(β − αn)
+ O(ρ1/2−Re βe−ρ cos γ )(4.33)

for arg z − (tan γ ) log |z| ∈ (aγ − (a − 2l)π, aγ + (a − 2l)π).
Expansions (4.31) and (4.32) are obtained, respectively, from (4.21) and (4.22). In

(4.21) we first restrict z to the curve arg z − (tan γ ) log |z| = −π , and in (4.22) we
restrict z to the curve arg z − (tan γ ) log |z| = π . The restrictions are then removed,
as in many previous cases, by analytic continuation. Expansion (4.33) can be obtained
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directly from (2.5) by first restricting z to the curve arg z − (tan γ ) log |z| = 0. The order
estimates in (4.33) follow from (4.26) and (4.30).

For the region

aγ − (a − 2l)π − µ < arg z − (tan γ ) log |z| < aγ − (a − 2l) + µ

around the Stokes curve arg z − (tan γ ) log |z| = aγ − (a − 2l)π , where

µ = min{2π(2l + 1 − a), 2π(a − 2l)} ≤ π,

there is the complementary-error-function approximation

Eα,β(z) = 1

α

l∑
s=−l+1

Z1−β
s eZs −

[ρ/δ]∑
n=1

z−n

�(β − αn)
(4.34)

+ 1

2α
Z1−β

−l eZ−l erfc

(
−c(θ)

√
ρ

2

)
+ O(ρ1/2−Re βe−ρ cos γ ),

see (4.19) and (4.20). Note that when a = 2l, µ becomes 0. An argument analogous to
that for Case 5 in Section 2 is again needed; see also Case 1 of this section.

The discussion for the case γ ∈ (− 1
2π, 0) is entirely similar, and the Stokes curve

here is given by

arg z − (tan γ ) log |z| = aγ + (a − 2l)π.(4.35)
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