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SUMMARY

In this paper, we summarize some recent developments in the analysis of nonparametric models
where the classical models of ANOVA are generalized in such a way that not only the assump-
tion of normality is relaxed but also the structure of the designs is introduced in a broader frame-
work and also the concept of treatment effects is redefined. The continuity of the distribution
functions is not assumed so that not only data from continuous distributions but also data with
ties are included in this general setup. In designs with independent observations as well as in re-
peated measures designs, the hypotheses are formulated by means of the distribution functions.
The main results are given in a unified form. Some applications to special designs are consid-
ered, where in simple designs, some well known statistics (such as the Kruskal-Wallis statistic
and the x2-statistic for dichotornous data) come out as special cases. The general framework
presented here enables the nonparametric analysis of data with continuous distribution func-
tions as well as arbitrary discrete data such as count data, ordered categorical and dichotomous
data.

Key words:  Rank Tests, Factorial Designs, Repeated Measures, Unbalanced Designs, Or-
dered Categorical Data, Count Data
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1 Independent Observations

1.1 Introduction

The analysis of factorial desings is one of the most important and frequently encountered prob-
lems in statistics. In the past, numerous models and procedures were developed under more or
less restrictive assumptions on the underlying distribution functions of the observations. These
assumptions were relaxed and the models were generalized under different requirements of the
applications. For a historical overview, we refer to Brunner and Puri (1996, 2000).

With the exception of a few special cases, the analysis of factorial designs in a nonparame-
tric setup was mainly restricted to designs with one fixed factor, where by nonparametric we
mean that no specific parametric class of distribution functions is assumed. Thus, there are no
parameters by which treatment effects can be defined and hypotheses can be formulated. There-
fore, one of the main problems in a nonparametric setup is the formulation of the hypotheses in
factorial designs beyond the one-way layout. In some papers, interactions are excluded from the
model and only main effects in a two-way layout were considered (Mack and Skilling, 1980;
Rinaman, 1983; Groggle and Skillings, 1986; Thopmson and Ammann, 1989). In other papers,
main effects and interactions are amalgamated in the hypotheses (Hora and Iman, 1988; Thopm-
son and Ammann, 1990; Akritas, 1990; Thompson, 1991). Other approaches are restricted to
special designs (Patel and Hoel, 1973; Brunner and Neumann, 1986a; Boos and Brownie, 1992;
Brunner Puri and Sun, 1995; Marden and Muyot, 1995). All these approaches are of more or
less limited meaning for the analysis of real data sets in general factorial designs. In many
cases, the terminology 'main effects’ and “interaction’ is used in the sense of a linear model.

The problem to define interactions and main effects in nonparametric factorial designs and
to formulate hypotheses remained open until Akritas and Amold (1994) provided the simple
idea to formulate the hypotheses in a two-way repeated measures model by contrasts of the
distribution functions. This idea seems to be a breakthrough towards a purely nonparametric
formulation of hypotheses in higher-way layouts. Several important points should be noted:

(1) This formulation of the hypotheses is a straightforward generalization of the nonparame-
tric hypothesis in the one-way layout.

(2) The hypotheses in the linear model are implied by these nonparametric hypotheses.

(3) The nonparametric hypotheses are not restricted to continuous distribution functions and
models with discrete observations are included in this setup.

(4) Under these hypotheses, the asymptotic covariance matrix of a vector of linear contrasts
of the rank means has a simple form and can be estimated by the ranks of the observations.

(5) This formulation is not restriced to independent observations and is also valid for repeated
measures.



To handle the case of continuous and discontinuos distribution functions in a unified form,
Ruymgaart (1980) suggested the use of the so-called normalized version of the true and the
empirical distribution function. The combination of this technique with the formulation of
the hypotheses by contrasts of the distribution functions provides the basis for the derivation
of asymptotic results in general nonparametric factorial designs. The results derived by this
approach give a new insight into the so-called ‘rank transform method’ (Conover and Iman,
1976, 1981 and Lemmer, 1980) and it can easily be seen when the heuristic technique of the
’rank transform’ fails.

In this section, we combine the results of some recent papers in this area in a unified form.
Not only new procedures for designs with independent observations are derived from this gen-
eral approach but also some well-known procedures in simple designs come out as special cases.
Designs with repeated measures are considerd separately in Section 2.

1.2 Models and Notations
1.2.1 Notations

For a convenient formulation of hypotheses and the relevant statistics in factorial designs, the
following matrix notations are used throughout the paper.

Let ¢ = (1, - .- , 14)' be a d-dimensional vector of constants. Hypotheses concerning the
components of u are formulated by contrast matrices where a matrix C..4 is called a contrast
matrix if Crxq1y = Opx; where 1; = (1,...,1) denotes the d-dimensional vector of 1’s. In

particular, we use the contrast matrix (sometimes called centering matrix)

Py = I;—3J, (1.1)
where I is the d-dimensional unit matrix and J4 = 141} is the d x d matrix of 1’s. Note that
P, is a d-dimensional projection matrix of rank d — 1, i.e. P4 = P4 and P, = P,.

For a technically simple formulation of hypotheses and test statistics in two- and higher-way
layouts, we use the Kronecker-product (direct product) and the Kronecker-sum (direct sum) of
matrices. The Kronecker-product of two matrices

a1 - Qg b -+ b
A;zxq = and By, = :
Gp1 v Gpg by c+- bps
is defined as
G.HB .. aqu
A®B = : :
a,,lB s aqu

prxgs



where A = A,y,, B = B,y, and the Kronecker-product of the matrices 4;,7 = 1,... ,ais
a
written as ® A;.
i=1
The Krone'cker-sum of the two matrices A and B is defined as

AoB = (‘3 %)
(p+r)x(g+3)

a
and the Kronecker-sum of the matrices A;,7 = 1,... ,a is written as @ A;.
i=1

Note that

(£4)(82)-1. = (64) @) -oon

i=l
if the matrices A; and B; are conformable with respect to multiplication.

Factors (in the sense of experimental design) are denoted with capital letters A, B, C, ...
and the levels of A are numbered by i =1,... , g, the levels of B are numbered by j = 1,... ,b,
etc. If factor B is nested under factor A, this is denoted by B(A).

1.2,.2 Nonparametric Model
We consider independent random variables
Xy ~ Flz), 1=1,...,d,j=1,...,n (1.2)

where Fi(z) = 1 [F;"(z) + F{ (z)] denotes the normalized-version of the distribution func-
tion while F;* (z) = P(X; < z) is the right continuous version and F"(z) = P(X; < z) is
the left continuous version of the distribution function. Here, and in the sequel, X;; ~ Fi(z)
means that X;; is distributed according to the distribution function Fj(x). This definition of
the distribution function includes the case of ties and, moreover ordered categorical data are
included in this setup. The normalized version of the distribution function dates back to Lévy
(1925) and Kruskal (1952) and was later on used by Ruymgaart (1980), Brunner, Puri and Sun
(1995) and Munzel (1999a) among others to derive asymptotic results for rank statistics includ-
ing the case of ties in a unified form. We use the normalized-version of the distribution function,
the empirical distribution function and the counting function. In the sequel, we will drop the
expression 'normalized-version’ for brevity and when using the above quoted functions, the
"normalized-version’ is understood unless stated otherwise. The vector of the distribution func-
tions is denoted by F = (Fy,... , Fy)'.

A two-way or a higher-way layout, is described by putting a structure on the index ¢, i.e.
t=1,...,dissplitintod; =1,... ,4g, andiz = 1,... ,4q,, etc. and the distribution functions
Fi, ..., Fy are a lexicographic ordering of the higher-way layout distribution functions, e.g.,
Fi1,. .., F44, such that the second index i, is changed first.



1.3 Relative Treatment Effects and Hypotheses
1.3.1 Relative Treatment Effects

Since no parameters are involved in the general model (1.2), we use the distribution functions
Fi(z) to describe a treatment effect. To this end, we consider the so-called relative treatment
effects

pi = [H(z)dF,.(x), i=1,...,d, 1.3)

where H(z) = N1 Zf=l n; F;(z) is the weighted average of all distribution functions in the
experiment. The p;’s can be regarded as ’relative effects’ with respect to the weighted average
H(z). They describe a tendency (Kruskal, 1952) of F;(z) with respect to H(z). If H(z) = z,
then p; = p; = [ zdF(z) is the expectation (if it exists). In this sense, p; = [ H(z)dF;(z) or

shortly p; = [ HdF; is a generalized expectation.

Since the random variables X,i ~ F,(z),k=1,...,n,, r =1,...,d are independent and
identically distributed the relative effect p; can also be written as a weighted average of the prob-
abilities P(X;, < X;;), where the average is taken over j = 1,... ,d and i is fixed. Note that
FJ(.’B) = P(Xj] < .’L‘) + %P(le = :L‘) and H(IL‘) = T{T_ ';=1nj [P(le < :8) + %P(le = I)]
Thus, by (1.3),

d
1 1
D = N jEzl ng I:P(le < X,'l) + §P(X]1 = X.'l):l .

If the distribution functions Fy(z), ... , Fy(z) are continuous then P(X;; = X;;) = 0 and
p; reduces to p; = % ?21 an(Xj1 < X,‘l).

We denote by p = (py, ... ,pa)’ = [ HdF, the vector of the relative treatment effects. Note
that in general, p depends on the sample sizes n; through H(z). To avoid the dependence on
sample sizes, the function H (z) is replaced by the unweighted mean H*(z) = } ZLI Fi(z) of
all distribution functions in the experiment. Thus, the relative effects

m = /H"dF,-, i=1,....d, (14

do not depend on the sample sizes n;. In some sense, they correspond to parameters of distri-
bution functions and may be used to formulate nonparametric hypotheses. The vector of these
(unweighted) relative effects is denoted by w = (74, ... ,mg)’. Clealy, p = 7 if all sample sizes
are equal. For brevity, we shall only discuss the weighted relative treatment effects p; in this
paper.



1.3.2 Hypotheses

In the nonparametric setup introduced above, hypotheses may be either formulated by the distri-
bution functions F; or by the (unweighted) relative treatment effects ;. Since we are only dis-
cussing the (weighted) relative treatment effects p; we only shall consider the hypotheses which
are formulated by the distribution functions. Let C denote a contrast matrix as given in (1.1).
Then these nonparametric hypotheses in their most general form are written as HY' : CF = 0.

For example, the simplest hypothesis is the hypothesis that there is no treatment effect at
all. This hypothesis is formulated as Hf : F; = --. = F,; which can formally be written as
H({’ : P4F = 0, where P, is given in (1.1) and 0 denotes a d X 1 vector of functions which are
identically O.

More complex hypotheses or hypotheses in higher-way layouts may be formulated by a
suitable contrast matrix C as Hf : CF = 0. This formulation of the hypotheses in a nonpa-
rametric setup is analogous to the formulation of the hypotheses in the theory of linear models
where the hypotheses are formulated in terms of the expectations p; = [ zdF;,i.e. HY : Cp =
0, where p = (1, . .. , pta)’. Note that in general,

H{:CF=0 = H{(C):Cu=0

since Cu = C [ zdF = [ zd(CF).

The nonparametric hypotheses H} which are based on the distribution functions have been
introduced by Akritas and Arnold (1994) and have been further developed and discussed by
Akritas, Arnold and Brunner (1997), Akritas and Brunner (1997), Brunner and Puri (1996,
2000) and Brunner, Munzel and Puri (1999). For details, we refer to these papers. Some
examples for nonparametric hypotheses are given in Section 1.6.

1.3.3 Estimators

The relative treatment effects p; are estimated by replacing the distribution functions Fj(z) by
their empirical counterparts

~ QPN ~ 1

B = 3[B@+F@] =3 do-Xy) 1
j=1

where c(u) = 3 [c*(u) + ¢~ (u)] denotes the counting function and c¢*(u) = 0 or 1 according as

u <or2 0andc™(u) = 0or 1 according as u < or > 0. The vector of the empirical distribution

functions is denoted by F(z) = (Fi(z),..., Fy(z))’ or shortly by F = (F,,..., Fy)". The

combined empirical distribution function of the N = E?=1 n; random variables X1, ... , Xgn,
is denoted by

~ 1 d - 1 d ng

Hz) = N;"‘F‘(‘”) = Ni;;c(z — Xy3) 1.6)



and an unbiased estimator for p; is given by

N PUPUES QA | 1 1 /(5 1

pi = /Hdﬂ—;;;'ﬁ(&j—g) —N(Rp 5) 1.7
where

d nr
+3 ) el(Xij = Xr) (1.8)

r=1 s=1

B =

1 —
Ry = S+ NH(Xy)=

is the (mid)-rank of the random variable X;; among all the N observations. Note that 1/2 has
to be added to NH (Xi;) in order to get the ’position numbers’ of the ordered observations in
case of no ties, since ¢(0) = 1/2. Note also that R;; is the midrank in case of ties. Thus, the
vector of the relative treatment effects p = (p1, ... ,pg)’ is estimated unbiasedly by
~oa 1 B 3 [ B
f) = /HdF: N(I_Z.—%ld) = ]V = N s a9
= N
Ry — 3 Dd
where R. = (Ry,...,Ry.) denotes the vector of the rank means R;. = n;' Y 0| Rix. The
notation given in (1.9) enables a simple and short presentation of the asymptotic theory of rank
statistics in nonparametric factorial designs.

1.4 Asymptotic Theory
14.1 Basic Results and Assumptions

In this Section, some asymptotic properties of the statistic P are given and the asymptotic nor-
mality of vV NCP is derived under the hypothesis Hf : CF = 0 where C is a suitable contrast
matrix to formulate the hypothesis. To derive the asymptotic results, the following weak regu-
larity conditions are needed.

ASSUMPTIONS 1.1

(@ N =31, ni— oo,
(b) N/‘n,'<No<OO, i=1,...,d

(c) 0? = Var[H(Xa)] > 0,i=1,...,d, where H(z) = N1 ¢ | n;Fi(x).
Below, it will be stated separately for each theorem or proposition which of these assump-
tions are needed to prove the results. First, conditions for the consistency of the estimators p;
are given.
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PROPOSITION 1.2 (CONSISTENCY) Let X;; ~ Fi(z), ¢ = 1,...,d, j = 1,... ,n; be inde-
pendent random variables and let p; and D; be as given in (1.3) and (1.7) respectively.. Then,
under the assumptions 1.1 (a) and (b), E(P; — p;)? = 0,i=1,... ,d, asn = oo

PROOF: see Brunner and Puri (2000). a

The next theorem is one of the basic results in the theory of rank tests. It provides a se-
quence of independent random variables which has, asymptotically, the same distribution as a
certain sequence of non-independent random variables. Here and in the sequel, the asymptotic
equivalence of two sequences of random variables Uy and T is denoted by Uy = T.

THEOREM 1.3 (ASYMPTOTIC EQUIVALENCE) Let X;; ~ Fy(z),i=1,...,d j=1,...,1
be independent random variables. Then, under the assumptions 1.1 (a) and (b),

\/N/ﬁd(i'-p) = x/N/Hd(fF—F) = VN(Y.-p),

where Y. = (Yy.,...,Ya4) is a vector of independent (unobservable) random variables Y;. =
n YR Y= 1 ,d, and where Yi; = H(X;;).

PROOF: See Akritas, Amold and Brunner (1997) or Brunner and Puri (2000). 0

The quantity Y;; = H (X, ,,) is called asymptotic rank transform (ART) because Y;; is asymp-
totically equivalent to ¥;; = H(Xi;), (Akritas, 1990). We note that VN [ HdF = VN V. is
a vector of independent (unobservable) random variables and thus, the covariance matrix of
VN Y. is a diagonal matrix, viz.

d
Vn = Cov (\/N 17.) =N 1oz (1.10)
where 7 is given in the assumption 1.1 (c).

14.2 Asymptotic Normality under Hf : CF =0

It should be pointed out that the statement of Theorem 1.3 is that v/ N (¥ . — p) is asymptotically
equivalent to the random vector v N (f) -[H dF) where [ HdF is unobservable. However,
under the hypothesis HY : CF = 0 it follows that

c (5- f ﬁdF) - VNCP-VN / fd(CF) = VNC}.

Note that the random vector [ HdF vanishes under HF : CF = 0 and thus, by Theorem 1.3,
vVNCp = +/NCY.
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under Hf : CF = 0 where VN Cp is a vector of (observable) linear rank statistics. These
considerations are the key point for the derivation of rank tests in factorial designs. They were
introduced by Akritas and Amold (1994). Finally, the asymptotic normality of v/N Y. follows
immediately from the Central Limit Theorem since the components of Y. are means of inde-
pendent and identically distributed random variables which are also uniformly bounded. We
summarize the above considerations in the following

THEOREM 1.4 (ASYMPTOTIC NORMALITY) Let X;; ~ Fy(z), i=1,...,d, j = 1,... ,n;
be independent random variables and assume that 6? > o > 0 where g? is given in the
assumption 1.1 (c). Let V i be as given in (1.10). Then, under the assumptions 1.1 (a), (b)
and (c) and under the hypothesis HY : CF = 0, the statistic VNCP has, asymptotically, a

multivariate normal distribution with mean 0 and covariance matrix CV yC'.

14.3 Estimation of the Asymptotic Variances

The asymptotic variances o2, i = 1,... ,d, are unknown. They can easily be estimated from
the ranks R;;. An La-consistent estimator of a? is given in the following theorem.

THEOREM 1.5 (VARIANCE ESTIMATORS) Let X; ~ Fi(z), i=1,...,d, 7 =1,... ,n; be
independent random variables and assume that a? > 0% > 0. Then, under the assumptions 1.1
(a), (b) and (¢}, E(G%/0? — 1)®> - 0as N - oo, where

~2 1 < 7. )2 R 13" ;
2 - - =R, R ii =1,...,d, 1.11
7 e T R e i ed 0

where Rij is the rank of Xi; among all the N observations. Moreover, VNV 7' 25 I, where

. 41
i=1

PROOF: see Brunner and Puri (2000). ]

It should be noted that in some special cases, all or some of the variances o7 may be equal
under Hf . Thus, the corresponding estimators may be pooled to have a better estimator for the
common variance. For example, in the one-way layout under the hypothesis Hf : P4F = 0, it
follows that 07 = - - - = g3 = o? which is estimated consistently by

1 d ns N+1 2
=2 e ——
a2 = M(N_I)ZZ(&, 5 ) 1.12)

=1 j=1

since R.. = (N + 1)/2. In case of no ties, 33 reduces to 3% = (N + 1)/(12N). This means
that it is not necessary to give a 'correction for ties’ since 57 given in (1.11) and % given in
(1.12) automatically accomodate for ties.
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1.4.4 Asymptotic Normality under Fixed Alternatives

The results of this subsection are used to derive confidence intervals for relative treatment ef-
fects. Therefore, we restict the considerations to the component z of the vector p. The asymp-
totic multivariate distribution VN CP has a rather involved covariance matrix which we shall
not consider in this paper. We refer to Puri (1964).

THEOREM 1.6 (ASYMPTOTIC NORMALITY UNDER FIXED ALTERNATIVES) Let X;; ~ Fi(z),
i=1,...,d,j=1,...,n be independent random variables. Furthermore, let

Zi = %[NH(Xsk) - TL,‘E(X,‘],)],

750 = %{NH(X")—(N—n.-)H<-">(x")1, r#s
where

H9(z) (1.13)

r;h

denotes the weighted average of all distribution functg'ons without the distribution function
Fi(z). Finally, let 6 = Var(Z) and 12; = Var(Z5") and assume that o2,7%; > o2 > 0,
i # 1 =1,...,d. Then, under the assumptions 1.1 (a) and (b), the statistic VN (p; — p;) has,
asymptotically, a normal distribution with expectation 0 and variance

s = 02+ 2211, i 1=1,...,d (1.14)
i r#i

PROOF: The proof follows easily from Theorem 1.3 by noting that the random variables Zi
and Z$;" are independent, k=1,... ,n;, s=1,... 0, i#r=1,...,d. o

The unknown variances o? and 72, in (1.14) can be estimated easily by using three different
types of rankings. The estimators are given in the following theorem.

THEOREM 1.7 (VARIANCE ESTIMATOR FOR s?) Let R\ denote the rank of Xy, among all
the n; observations within treatment level i (within-ranks), i = 1,... ,d, and let Rﬁ:") denote
the rank of X,, among all the (N — n;)observations without the observations Xi, ... , Xin,
within treatment level i (partial ranks). Further let

n; 2
R ""“) , (1.15)

=2 @) _
e R

A2 1

"' o
Tri = m Z (Rﬂ - R,E;") - R, + I_Z,(.._'))2, r#i, (1.16)
s=1
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where TZ‘,__'.) = n' " RSP denotes the mean of the partial ranks R? within treatment

s=1

leveli. Ifo2,72, > 02 > 0, i # r = 1,... ,d, then, under the assumptions 1.1 (a) and (b),

d
N, N ~
# = A a L a1m
* S orski

is a consistent estimator of s? given in (1.14) in the sense that E(3%/s? — 1) = 0as N — oo.

PROOF: The proof follows by using the same techniques as in the proof of Theorem 3.3 of

Brunner and Puri (2000) and is therefore omitted. (]
1.5 Statistics

To test the nonparametric hypothesis Hy : CF = 0, three different types of statistics are
considered.

1. Two quadratic forms (explained below in (a) and (b)) based on vV NCP are used to detect
general alternatives of the form Cp # 0.

(a) The so-called Wald-type statistic (WTS) uses a generalized inverse of the covariance
matrix CV yC' to generate the quadratic form, where the unknown covariance ma-
trix V' is replaced by the consistent estimator V' given in Theorem 1.5.

(b) The so-called ANOVA-type statistic (ATS) is also used to detect general alternatives
of the form Cp # 0. Compared with WTS, its small sample properties are more
desirable.

2. Linear rank statistics of the form v/ Nw'Cp are used to detect the special pasterned alter-
natives of the form w'Cp # 0, where w = (wy, ... ,wq)’ is a vector of known constants
corresponding to the conjectured pattern. In particular, this includes the cases of ordered
alternatives for w = (1,2,3,... ,d) orw = (d,...,3,2,1). Moreover, linear rank
statistics are used to derive confidence intervals for relative treatment effects. In view of
the discussion in Sections 1.3.1 and 1.3.2, we restrict ourselves either to the case of d = 2
treatments or to equal sample sizes ny = -+ =nqg =n.

1.5.1 Quadratic Forms

A nonparametric hypothesis of the form Hj : CF = 0 can be tested by a quadratic form
Qw(C) = VN(Cp) AVN(CP)
= N-p'C'ACD,

where C is the contrast matrix by which the hypothesis is formulated and A is a suitable sym-
metric matrix. Both matrices depend on the hypothesis and on the structure of the design.
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Wald-Type Statistics In this paragraph, we consider a quadratic form to test hypotheses of
the form HY : CF = 0 in an arbitrary experimental design where C has to be chosen appro-
priately. First, consider

Qy(C) = N-pC[CVNC| CP,

where [CV yC']~ denotes a g-inverse of CV yC’ where the covariance matrix V y is given
in (1.10) and is assumed to be of full rank according to the assumption 1.1 (c). Thus, under
Hf : CF = 0, the quadratic form Q% has, asymptotically, a x}-distribution with f = r(C)
degrees of freedom. Since V'y is unknown in general, it is replaced by the consistent estimator
V v givenin Theorem 1.5. The quadratic form

Qn(C) = N-PC[CVrC| CP (1.18)

is called Wald-type statistic (WTS) (or rank version of WTS) and has, asymptotically, also a x}-
distribution with f = r(C) degrees of freedom. However, very large sample sizes are needed
to achieve a good approximation by this distribution. Therefore, another quatratic form should
be used for medium or small sample sizes which is considered below.

ANOVA-Type Statistics The hypothesis Hf : CF = 0 can be formulated equivalently as
Hf : MF = 0 where M = C'(CC")~C is a projection matrix. Note that all elements of M
are known constants and M does not depend on the special choice of the g-inverse (CC')~.
In many cases (in all complete crossed-classified designs, for example), the contrast matrix C
can be chosen such that all diagonal elements of M are identical to m, say. This leads to the
simplified form of the Approximation Procedure given below.

To test the hypothesis Hf : CF = 0, consider the quadratic form Qn(M) = N -5 M p.
The asymptotic distribution of Qu under the hypothesis is given in Theorem 1.8 and a small
sample approximation is given in Approximation Procedure 1.9.

THEOREM 1.8 Let M = C'(CC'")~C and let Vy be as given in (1.10). Then, under the
assumptions 1.1 (a) and (b) and under the hypothesis HY : CF = 0, the quadratic form
Qn(M) = N -9 M D has, asymptotically, a weighted x>-distribution, i.e. the same dis-
tribution as of EL‘ AU where the U; are independent random variables each having a x3-
distribution and the A; are the eigenvalues of MV y M.

PROOF: First note that MF = 0 <= CF = 0 since C'(CC’)~ is a generalized inverse
of C. Thus, under HY, by Theorem 1.4, VN M®p has, asymptotically, a multivariate nor-
mal distribution with mean 0 and covariance matrix MV yM. From this, it follows that
Qv(M) = N-(Mp) M M p = N -p M P has, asymptotically, the same distribution
as of E‘-’zl AU;, which has a weighted x2-distribution (see e.g. Graybill, 1976, p.136). D
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APPROXIMATION PROCEDURE 1.9 Let M = C'(CC')~C and assume that the diagonal el-
emenis my; of M are identical to m, say, i.e. my; = m. Further let Ag = diag{n,, ... ,ng}.
Then, under the assumptions of Theorem 1.8, the distribution of the statistic

N .NMA_ QN(M)

(M) = ——— = = (1.19)
w(M) m-tr(Vy) m-tr(Vn)
can be approximated by the central F(ﬁ, f;)-distribution with estimated degrees of freedom
~ 12 2
- tr(Vw) Y. 82/
fi = m?. —Q = (Nm)"’-(—:——i—-z)— (1.20)
tT(MVNMVN) tT(MVNMVN)
o~ 2 d ~2 2
. [tr(@w)] (zLa2/m)
fo = = ) (1.21)

tr (Va(As— 1)) X1 81/nd (s — 1))
where G? is given in (1.11) and tr(-) denotes the trace of a square matrix.

For the derivation of this approximation procedure, see Brunner, Dette and Munk (1997) where
also the the more general case is considered where M does not have identical diagonal elements
and the accuracy of the approximation is verified by some simulation studies.

1.5.2 Patterned Alternatives

The method of Page (1963) and Hettmansperger and Norton (1987) is used to derive test statis-
tics which are especially sensitive against a conjectured patterned alternative. The estimated
treatment effects are weighted by a set of constants wy,. .. , wy reproducing the conjectured
pattern of the alternative which has to be specified in advance. Let w = (wy,. .. ,wq)’ denote
the vector of the weights w;. Then under HY : CF = 0, the linear rank statistic

Ly(w) = VNw'Cp (1.22)
has, asymptotically, a normal distribution with mean 0 and variance

‘UJ'CVNC,‘ID y

il

oN
which can be estimated consistently by
3}",, = w’CVNC'w s
where Vi is given in Theorem 1.5. Thus the statistic Ty(w) = Ln(w)/Gn has, asymp-
totically, a standard normal distribution under H} : CF = 0. For small sample sizes, the
distribution of the statistic Ly (w)/Sy may be approximated by a central ¢ 7 ~distribution with
2
;o (Zhaom)
Yt (@3 /m)* /(i ~ 1) 7

(1.23)
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degrees of freedom. Here, the quantities ¢; are the components of ¢ = w'C. In case of no
ties, this approximation is rather accurate for n; > 7, while in case of ties, the quality of the
approximation apparently depends on the number and the size of the ties.

1.5.3 The Rank Transform Property

In this subsection, the rank transform (RT)-technique suggested by Conover and Iman (1976,
1981) is discussed. This technique has been criticized by Blair, Sawilowski and Higgens (1987),
Akritas (1990, 1991), Thompson and Ammann (1990) and Thompson (1991) and was studied
in detail by Brunner and Neumann (1986a). The following considerations shall clarify the ques-
tion when the method of the RT-technique works and when it fails. Moreover, the procedures
described in this paper shall be distinguished from the usual RT-statistics and the expression
RT-technique should be replaced by the terminology rank transform property of a rank statistic
which is explained in detail below.

First note that with the statistic p, the original observations are replaced by the (mid)-ranks
among all observations. Recall that ¥, = (Y,.,...,Y,.) is the mean vector of the asymptotic
rank transform Y;; = H(X;;),i=1,...,d,j = 1,... ,n;. It follows from Theorem 1.3 that
V' NCBP is asymptotically equivalent to \/_ NCY . if C’F 0, i.e. if the hypotheses are formu-
lated in terms of the distribution functions. In some cases, the hypotheses in the linear model
are equivalent to the corresponding nonparametric hypotheses (see e.g. Brunner and Puri, 2000,
Proposition 5.1). Note that most counter examples for the RT-technique use linear hypotheses
Cpu = O such that CF # 0 where pp = (p1, . .. , ug)’ is the vector of the expectations.

Next, consider the covariance matrix
VN = Cov (\/IV ?.) = N -diag{ni'd,... ,n7'03}

and note that in general the diagonal elements 67 = Var(Y;;) of V' x are not necessarily all
equal, even if homoscedasticity is assumed for the X;;'s, since H(:) is a non-linear transforma-
tion (Akritas, 1990). However, some of the diagonal elements in V' may be equal under the
hypothesis Hy : CF = 0 and the corresponding estimators given in (1.11) can be pooled to
estimate V' y consistently.

Now let U;; ~ N(p;,02),i =1,...,d, be independent normally distributed random vari-
ables where y; = E(Y;) and 6? = Var(Y;). LetU. = (U,.,... ,U,)" denote the mean vector
of the Uj;’s. Then, by definition, the statistics VN U. and v N Y. have, asymptotically, the
same multivariate normal distribution. Furthermore, define 57 = (n; — 1)~ 374 (Us; — Us.)?
and let Vy denote the matrix Vx with of replaced by &;. Then VN is cons1stent for Vy
and from Theorcm 1.11, VN is cons1stent for V5 in the sense that VNV 2y I;and
Vvt ~ —2» I, respectively. Note that & ? is derived from 57 by replacing the ranks R;; by the
corresponding normally distributed random variables U;;. Thus, the statistic P is a ’rank trans-
form’ of the statistic U. and it follows from the above considerations that under Hy:CF =0,
the statistics vV NCP and vVNCU. have, asymptotically, a multivariate normal distribution
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N(0,CV xC"). This property of the rank statistic vVNCP shall be called rank transform prop-
erty (RTP) with respect to the normal theory statistic /NCU.. Note that the expectations y;
and the variances o7 of the corresponding normally distributed random variables U;; are deter-
mined from the ART under Hy : CF = 0.

For testing Hy : CF = 0, there are two useful ways to define a statistic from VNCp.
One possibility is to define the quadratic form Qu(C) = Np'(CV xC")~'p which is the rank
version of WTS. It follows from Theorem 1.4 that under Hy : CF = 0, the quadratic form
Qn(C) has, asymptotically, a central x}—dislribution with f = rank(C) degrees of freedom.
The other possibility is to define the quadratic form Fy(M) = Np' Mp' which has the RTP
with respect to the normal theory statistic NU MU where M = C'(CC')~'C is a projection
matrix which is taken from the ANOVA models with equal sample sizes. Under Hy : CF = 0,
the asymptotic distribution of NU' MU. is a weighted x?-distribution because the variances
o? are not necessarily equal, in general. For small sample sizes, NU'MTU. is approximated by
a scaled F'-distribution with estimated degrees of freedom.

1.6 Applications to Special Designs

In this section, the general theory described in the previous subsections is applied to some
special factorial designs. Some explicit statistics shall be derived from the general approach
where it turns out that several known rank statistics which have been proposed for some sim-
ple designs, come out as special cases. In particular, we consider the one-factor design where
the Kruskal-Wallis statistic (1952, 1953) and the rank-transform statistic (Conover and Iman,
1981) come out as special cases. Moreover, for d = 2 treatments, the Wilcoxon-Mann-Whitney
(WMW) statistic also comes out as a special case and if the observations have a Bernoulli-
distribution, the x2-statistic for comparing proportions comes out as the square of the WMW
statistic. Cross-classified models are considered as examples for two-way layouts. The exten-
sion to higher-way layouts is straightforward.

1.6.1 One-Way-Layout

Kruskal-Wallis-Test In the one-way layout, we observe independent random variables X;; ~
F,=MF'+F),i=1,...,a,j=1,...,n;. Let P, = I, — 1J, be the contrast matrix
defined in (1.1). Then the hypothesis for the one-way layout is writtenas Hf : F{ = --- = F,
or equivalently as P, F = 0. Let p = (p1,... ,pa) = [ HdF be the vector of the relative
treatment effects p; = [ HdF; where H(z) = %Y i, niFi(z). The vector p is estimated
consistently by p = [ HdF = (B, ... ,p,) where ; = & (Ri. — §) and R, = ;' Y75 Ry
is the mean of the (mid-)ranks R;; of X;; among all the N = Y _;_, n; observations.

Under HY, the statistics vV NP,p and VNP,Y . are asymptotically equivalent (see Theo-
rem 1.3) where Y. = (Y,.,...,Y,), Y, = n;! YL H(Xy5). Let A = diag{n,,... ,n.}
denote the diagonal matrix of the sample sizes. Then under Hf : P, F = 0, it follows that
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ol=---=0=0’andVy =Cov (\/N?) = No?A~L. A consistent estimator of o®
follows immediately from Theorem 1.5 by pooling the estimators 52, viz.

~ - - \2

on = m(zv a) >3- (-’ €29

i=1 j=1

To test the hypothesis HY, consider the quadratic form Qy given in (1.18) and let VT’N =
~— -~ ~— ~—1 —
Vi (T — JuVy /ir(Vy)), where V5 = A/(NG%). Note that Wy is a g-inverse of
P,V 5P, and that P,W y P, = W y. Then, the quadratic form

Qv = NP'P,[P. VNP, P,p=NpWyp
1., 1 ~
= gp (A - NAJGA) p
a
= N-a Z (E _ M) (1.25)

33 (Ry- R = ?

i=1 j=1

is a WTS which has, asymptotically, a central x2_, -distribution under Hf . For small samples,
the distribution of the statistic @n/(a — 1) may be approximated by the central F'(f;, fa)-
distribution where f; = a — 1 and f; = N — a — 1. Note that under HY, the variances are
equal, i.e. 02 = --- = ¢2 and thus, it is not necessary to apply the small sample approxima-
tion considered in the previous section. It is well known that for continuous distributions, the
approximation is quite accurate if a > 3 and n; > 6.

REMARK 1.1 Qy given in (1.25) has the so called rank transform (RT) property, i.e. if the
ranks R;; are replaced by independent normally distributed random variables, then the corre-
sponding normal theory statistic has, asymptotically, the same distribution as Q. Note that the
statistic Q y was called ‘rank transform statistic’ by Conover and Iman (1981).

If 5% given in (1.24) is replaced by

~2 N+1
= mamg oo (- ) 126

=1 j=1

then the quadratic form @y given in (1.25) becomes the Kruskal-Wallis statistic which ac-
comodates automatically for ties if the mid-ranks are used. If the distribution functions are

continuous, then,
N+1 N+1
Ag = =
% M(N—I)Z( ) 12N’

under Hf. Then, Qn given in (1.25) becomes the Kruskal-Wallis H-statistic (Kruskal and
Wallis, 1952, 1953). Note that both the variance estimators 6% and 32 are consistent estimators
of 0% under Hf.
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Wilcoxon-Mann-Whitney- and x?-Test Straightforward computations show that, for a = 2,
Q@n given in (1.25) reduces to the square of the Wilcoxon-Mann-Whitney (WMW) statistic

N-1 ) (ﬁl —ﬁz)2

WI%I ‘g - — a.27n
N+1
53 (R Y1)
i=1 j=1
which in case of no ties becomes
12nn,
2 _ l
Wi = N(N+1) R -Fa)".

Now assume that the observations are dichotomous having Bernoulli-distributions, i.e. X;; ~
B(g;),i= 1,2, j = 1,...,n;. Generally, the results of such a trial are arranged in a contin-
gency table where n;o denotes the number of 0’s and n;; denotes the number of 1’s, 2 = 1,2,
within treatment 2.

Treatment
Outcome 1 2 Total
Xij=0 |l nio | nao o
Xg=1 | ny | na | 1

n {7 N

The hypothesis H} : F; = F; is equivalent to Hy : 1 = go since B(g;) is completely
determined by ¢;, ¢ = 1,2. Note that with dichotomous data, only two different mid-ranks
occur, namely

R,“ (1 + n.o)/2, if X,'J' = 0,
g (Tlo+N+1)/2, if X.'j=1.
Thus, the rank means and their differencs are

R,

1+ n. N
no N mu

2 _2_ Tl«l’

5 _ l+mng N ny
R2- - 2 _2’ 11«2’

- - N nn n21
R.-R, = —-([2-2).
R = (o)

Moreover, the quantity NG% reduces to

Naﬁ _ ZZ( N+1) - N]il.n.o;n.l

i=1 j=1

and W} given in (1.27) finally becomes
W,f, - ( 1) (n1o’n21 '"11'"@0)2
ni1Nan.eN.1

which is the well known x2-contingency table statistic, up to a factor N/(N — 1). Thus, for
dichotomuous data, the WMW test is asymptotically equivalent to the x2-contingency table tst.

(1.28)
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1.6.2 Two-Way-Layout

Next, we consider the two-way cross classification where factor A has ¢ = 1,...,a levels
and factor B has j = 1,...,b levels with £ = 1,...,n;; replications per cell (z,7) and the
independent random variables X;;; have distribution functions Fy;(z) = 3[F;} + F;;]. Let

(Fllr'--yFlba-' alr ab)

denote the vector of the distribution functions. Let C4 = P, ® 11}, Cp = 11, ® P} and
Cp = P, ® P, where P, and P, are given in (1.1). Then the nonparametric hypotheses of
’no main effect A’, "no main effect B’ or *no interaction AB’ are formulated as

HF(A):C4F =0, HI(B):CpF =0, H{(AB):C.sF =0.

REMARK 1.2 In a linear model without interaction (i.e. where the main effects are well de-
fined), the hypotheses of no nonparametric main effect A or B, respectively are equivalent to
the parametric hypotheses of no main effect A or B, respectively (in the usual linear model).
For a further discussion of nonparametric hypotheses, see Akritas and Arnold (1994), Akritas,
Arnold and Brunner (1997), Brunner, Puri and Sun (1995) and Brunner and Puri (1996).

Let ¥ (z) = (ﬁu (z)y..., Fu (z))' denote the vector of the empirical distribution functions
Fiji(z) = n;' Yopd, o(z — Xija) and let Ri. =b'Y’_ Rij.i=1,...,a, denote the un-
weighted means of the cell means R«: =ny Ek_l R;jx where Rjy is the rank of Xz among
allthe N=3; , J=1 n;; observations. To test the hypotheses HF(-) formulated above, con-
sider the statistic p = [ HdF = %(Ru.—3,... , Rap.—1) under the hypothesis HY : CF =0
using the contrast matrices C 4, C'p and C4p. Let

ngj

CHES N?(n., Z(R-uk R;)? Vw=N @@n’; (1.29)

i=1 j=1
b ~2

1 o7 a N
i b“znu zn:@ﬁ?.

First we consider the WTS for this design. Let W, =N"1%] (I -Ja >3 /1’2 "1 ) and
note that W is a g-inverse of CAVNCA = NP, E P, and that P, W P, W,l Then,
under HY (A), it follows from Theorem 1.4 that the quadratic form

Qn(Ca) = NﬁCk(CAf’NC'A)’CAf’=NA' (Wee )P

EaosimEs). o

i=1
has asymptotically a central ) f-dislribution with f = a — 1 degrees of freedom. Because of the

symmetry, rows and columns are interchangeable in this design and the quadratic form Qx(C'p)
for testing HJ (B) is obtained from @ (C 4) by interchanging the indices i and j.
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The statistic for testing the hypothesis Hf (AB) of no nonparametric interaction, namely
Qn(Can) = NP'C5(CapVnClyp) Cash
is also derived from Theorem 1.4 and Qn(C 45) has, asymptotically, a central x} -distribution
with f = (@ — 1) x (b — 1) degrees of freedom under HY (AB).

Simulation studies showed (see Brunner, Dette and Munk, 1997) that the approximation by
the limiting x2distributions of the quadratic forms given above are rather poor and large sample
sizes are needed to have acceptable approximations. Therefore, we derive the ANOVA-type
statistics described in subsection 1.5.1.

In the two-way layout, the nonparametric hypothesis of no main effect A is equivalently
restated as Hy (A) : M 4F = 0 where M4 = P, ® }J, is a projection matrix with constant
diagonal elements m, = (a — 1)/(ab). Let

b b
~ g It 1\ _1/= 1
o= g2 ”""Z,_I"N(R"’""i)'ﬁ(&“ 5)’
Fo= - R...—l),

where R;.. = b~! ,—1 R and R.. = 7' Y%, R;.. Then, under HE (A), the statistic

N ~ ~ ~\2
FMA) = ot T MR = >36-7)

=1 j=1
ab? SN o= \2
= R, —R.
NYa-1)30, 21—1 0%/ g ( )
has, asymptotically, a central F(ﬁ, f;,)-distnbuuon where the degrees of freedom ja and f,
are derived from (1.20) and (1.21) respectively by replacing M with M 4 = P, ® %J » ™ with
(a —1)/(ab) and 67; and V' y are given in (1.29). Because of the symmetry, rows and columns
are interchangeable in this design, the quadratic form Fy (M g) for testing H (B) is obtained
from Fy (M ,) by interchanging the indices i and j.
Finally, the nonparametric hypothesis of no interaction is restated equivalently as HY' (AB) :

M, pF = 0 where M 4p = P, ® P, is a projection matrix with constant dlagonal elements

]

Mey = (@—1)(b—1)/(ad). Letp; =a™' 30, Bij = N(R - ) whereR a”' Yo Rij..
Then, under Hf' (AB), the statistic
N
Fn(Mup) = ————=— PMupp
tT(MABVN)

~ 1)(b—-1)tr(VN) ZZ(”” PP+’

i=1 j=1

ab a b .
T M@-)bE-1)3", ,Z_;;(R" -E.-R,+R.)

]_1 j/'"iJ
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has, asymptotically, a central F(fAB, ]‘B)—distribution where the degrees of freedom ﬁ g and ﬁ)
are derived from (1.20) and (1.21) respectively by replacing M with M 4p = P, ® Py, m with
(@ — 1)(b — 1)/(ab). The quantities 5% and V y are given in (1.29).

1.6.3 Higher-Way-Layouts

In this Section, it is explained how to extend the methods presented in the previous Sections to
higher-way layouts. This will be done by means of the three-way layout (cross-classification).
Example: Three-Way Layout

The observations Xy ~ Fijx(x) are assumed to be independent with distribution functions
Fiyr(z), i = 1,...,a,5 = 1,...,b,k = 1,... ,c and the index £ = 1,...,n;; denotes

the independent and identically distributed replications. The hypotheses for the nonparametric
main effects are expressed as

HF(A):F.= -.- =F,,
H{(B) Zf.l. = =F.b.,
HF(C):F.y= - =F.,

where F;.. denotes the mean over all bc distribution functions within level i of factor A, F;
denotes the mean over all ac distribution functions within level j of factor B and F'..; denotes
the mean over all ab distribution functions within level & of factor C. Then, the hypotheses can
be written as

H{(A): (Pa ® 11, ® L1))F = C4F =0,

Hi(B): 31, ® Py, ® !1)F = CpF =0,

HJ(C): (11, ® 11}, ® P.)F = CcF =0,

a

where F = (Fjy1, . .. , Fy.)’ denotes the vector of the distribution functions.
The hypothesis of no nonparametric AB-interaction is usually expressed as
H:(AB) :-ng.+7’7‘-... = F. +F.j., i=1,...,a,7=1,...,b

where F;;. denotes the mean | over all ¢ distribution functions within the levels ¢ of factor A
and level j of factor B and F'.. denotes the mean over all abc distribution functions in the
experiment. In matrix notation, this hypothesis is written as

HF(AB): (P, ® Py ® %I'C)F = CupF =0.
In the same way, the hypotheses for the other nonparametric interactions are formulated as

Ho(AC): (P, ® }1, ® P)F = CucF =0,
Ho(BC): (all; 534 Pb ® PC)F = Cch =0, (1.31)
HQ(ABC): (Pa ® P, ® PC)F = CuapcF =0.
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The contrast matrices C4, Cp, ... ,Capc by which the hypotheses are formulated are used
to write the statistics for testing these hypotheses. Let Ry;x denote t_h_e rank of X;;x; among all
N=3%7, E,_l pIran n,,k observations and let R. = (Ry11.,- - . , Rase.)' denote the vector of

the rank means Ri;z. = n,,k 3°73% Rijxe within all abe treatment combmauons Finally, denote
by

2 2
Sy = d'l,ag{s111 ...,sﬂ}

N Tabe

the diagonal matrix of the variance estimators

Tijk
1 = 32
s?jk = Tl,.Jk 1 IE—I (R,,k( - R{jk.)

divided by the sample sizes nz. Then, for large sample sizes, the statistic
Qn(C) = RC'[CSyC|"'CR. (1.32)

has, approximately, a central x-distribution with f = rank(C)) degrees of freedom.

To test the hypothesis HY (A) of no nonparametric main effect A, for example, the matrix
C in (1.32) is replaced by CA =P, ®}1,® 11' where rank(C 4) = a — 1. In the same way,
the statistics for testing the other hypotheses can be derived from (1.32) by using the contrast
matrices given above to formulate the hypotheses.

For small sample sizes, let

Ta=CLICAC,]ICA =P, ® %13 il;, —for HY (A),

Ts =C'B[CBC’B]_ICB = %1L®Pb® il:, —for H{(B),

Tc= C'C[CcC'C]_ICC = %1; ® %1;, ® P., —for H({"(C),
T ap =C:43[CABC£QB]_lCAB =Pa®Pb®%1::, —for H{(AB),
Tac = Clc[CacClhc)'Cac =P,®31,® P, —for Hf (AC),
Tpe = C’Bc[CBCC;;c]‘lCBC = %1:‘ ® P,®@ P, —for HOF(BC),

Tasc = C'hpclC ascClhpc) *Capc = Po® P,® P,, —for HF (ABC).
Here, the matrices P, = I, — 1J,, P, = I, — }J, and P, = I, — 1J are the centering
matrices of dimensions a, & and ¢ respectively.

For small samples sizes, the hypotheses Hj : CF = 0 are tested by the statistic

1 -

F —_— R .
~(T) TBn) RT (1.33)

by replacing in (1.33) the matrix T by one of the matrices T 4, T'p, ..., corresponding to
the hypothesis to be tested. In (1.33), tr(-) denotes the trace of a square matrix. Under the
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hypothesis HY', the statistic F (T) has approximately a central F(fT, ﬁ,)-distribution where

[tr(T.§N)] ? R (E DD sl "-'J'k)

i=1 j=1 k=1
d fo=

a b ¢

DD (sha/man)*/ (g — 1)

=1 j=1 k=1

B tT(ngngn)

1.7 Example and Software
1.7.1 Two-way Layout with Count Data

Fertility Trial In this subsection, we apply some of the procedures discussed in the previous
subsections to an example with count data in a two-way layout. The statistics and the approx-
imations are given in subsection 1.6.2. The authors are grateful to Dr. Beuscher (Schaper &
Briimmer, Inc., Salzgitter, Germany) for making available the data.

In a fertility trial, three groups of female Wistar rats were treated with three different dosages
(placebo, dosage 1 and 2) of a drug (factor A). Among other fertility parameters, the number
of corpora lutea from rat ovaries was counted after a section of the animals. The same trial was
repeated one year later with three new groups of rats. The results of the trial for the two years
(factor B) and the three groups with ny; = 9,712 = 13,19, = 9,792 = 8,n3; = 8,n32 = 12
animals are given in Table 1.1.

TABLE 1.1 Number of corpora lutea from Wistar rats in a fertility trial.

Group Year 1 Year 2

Placebo | 13, 12,11, 11, 14, 14,13, 13,13 | 12, 16,9, 14, 15, 12, 12, 11, 13, 14, 12, 13, 12
Dosage 1 || 15,12,11,11, 14, 13,14, 14,12 | 9,12, 11, 15, 11, 10, 13, 11
Dosage 2 || 15, 12, 13, 14, 11, 14, 17, 15 15,13, 17, 14, 14, 13, 13, 13,9, 12, 15, 14

The rank means R;;., i = 1,2,3; j = 1,2, w1thmthethreetreatmentgroupsandthetwo

years as well as the unweighted means R;.. within the treatment groups and R within the two
years are displayed in Table 1.2.

TABLE 1.2 Rank means R;;., R;. and IE._,-. and relative treatment effects for the number of the
corpora lutea of the Wistar rats in the fertility trial,

Ranks Relative Treatment Effects

Group | Year1 | Year2 | R;. || Year1 | Year2 i
Placebo 276 28.1]27.8 046 | 047 0.46
Dosage 1 30.1 17.0 | 235 050 | 028 0.39
Dosage 2 388 | 36.71(37.7 0.65| 0.61 0.63

R, 32.1| 277 0.54| 046
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The results of the analysis by the WTS Qn(C) and the ATS Fx (M) given in subsection
1.6.2 along with the resulting p-values are displayed in Table 1.3

TABLE 1.3 Test statistics and p-values for the nonparametric main effects and interaction in the
fertility trial. The results of the test statistics obtained by the WTS with the resulting p-values
are given in the left part and the results obtained by the ATS with the resulting p-values are
given in the right part of the table.

Wald-Type ANOVA-Type
Statistic Statistic
Hypothesis | Qx(C) p-Value | Fy(M) p-Value
HF(4) 6.91 0.032 3.80 0.031

HF(B) [128 0257 [128 0264
HF(AB) |178 0412 [092 0403

The large p-value (p = 0.403) for HY (AB) indicates that the results are quite homogeneous
within the two years (no interaction). However, a significant treatment effect for the drug is
proved at the 5% level (p = 0.031) and there is no evidence for an effect of the year (p = 0.264).

1.7.2 Software

Regarding software for the computation of the statistics described in this section, we note that
the statistics @n(C), Fy(M) and Ly (w) have the rank transform property under Hf . There-
fore, it is only necessary to rank all the data and to identify the special heteroscedastic para-
metric model from the ART under H‘{" (see Subsection 1.5.3). Thus, any statistical software
package which provides

1. the mid-ranks of the observations,
2. the analysis of heteroscedastic factorial designs
can be used to compute the statistics Qn(C), Fy(M) and Ly(w). Below, we provide the

necessary statements for the Statistical Analysis System (SAS), where the DATA-step and the
procedures RANK and MIXED are used.

Data Input The input of the data is handled in the same way as for the data of a parametric
model, i.e. factors are treated as ’classifying variables’.

Ranking The procedure PROC RANK is used to assign the mid-ranks among all observations
to the data. Note that the assignment of mid-ranks is the default with this procedure in
SAS.
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Heteroscedastic Model The procedure PROC MIXED provides the possibility to define the

structure of the covariance matrix of the cell means’ by the option "TYPE=-- -’ within
the 'REPEATED’ statement. Moreover, the *GRP=- - - * option within the "REPEATED’
statement defines the factor levels (or combinations of them) where different variances
are allowed. Note that many types of covariance matrices can be defined by these options
(including diagonal matrices) so that the notation "MIXED”’ of this SAS-procedure may
be somewhat misleading. The WTS Qn(C) and the resuiting p-values are printed out by
adding the option *CHISQ’ after the slash °/’ in the MODEL statement.

For independent observations, the covariance matrix has a diagonal structure which is
defined by *'TYPE=UN(1)’. In general, for the nonparametric main effects and all inter-
actions, the variances in this diagonal matrix may be different for all factor level com-
binations. Thus, the highest interaction term must be assigned in the 'GRP’ option. For
example, in a three-way layout with factors A, B and C, this option is "GRP=A*B*C’.
Starting with version 8.0 (which should be available after the end of the year 1999), the
option ’ANOVAF’ can be added somewhere in the line of the PROC MIXED statement
in order to print out the ATS Fy (M) and the resulting p-values. The use of the ATS is
recommended for small and medium numbers of replications.

Example: Fertility Trial (Results, see Table 1.3)

DATA fert; PROC RANK DATA=fert OUT=fert;
INPUT treat$ year number; | VAR number;

CARDS; RANK T,

PL 1 13 RUN;

PL 1 12

: PROC MIXED DATA=fert ANOVAF;
PL 2 12 CLASS treat year;

D1 1 15 MODEL r=treat | year / CHISQ;

: REPEATED / TYPE=UN(1) GRP=treat*year;
D2 2 14 RUN;

RUN;

The computation of the variances for the confidence intervals (see Subsection 1.6) needs
some more involved rankings of the data which may be performed by a special macro where
DATA steps and different types of rankings are used. Unfortunately, these computations are not
yet available with a SAS standard procedure or with any statistical software package, to the best
of our knowledge.
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2 Repeated Measures

In a repeated measures model, randomly chosen subjects are observed repeatedly under the
same or under different treatments. Such designs occur in many biological experiments and
medical or psychological studies. They include growth curves, longitudinal data or repeated
measures designs where a special structure for the dependencies of the multivariate observa-
tions, e.g. the compound symmetry, may or may not be assumed.

Nonparametric hypotheses and tests for the mixed model have already been considered by
Sen (1967), Koch and Sen (1968) and by Koch (1969, 1970). In the latter article, a complex
split-plot design is considered and different types of ranks are given to aligned and original
observations and the asymptotic distributions of univariate and multivariate rank statistics are
given. Mainly joint hypotheses in the linear model are considered, i.e., main effects and certain
interactions are tested together. However, no unified theory for the derivation of rank tests
in repeated measures models is presented in these papers. Moreover, some of the statistics
are aligned rank statistics (not pure rank statistics) and therefore, they are restricted to linear
models.

First ideas to use the so-called marginal model to define treatment effects in a nonparametric
mixed model date back to Hollander, Pledger and Lin (1974) and Govindarajulu (1975) and
were extended later on and studied in more detail by Brunner and Neumann (1982), Thompson
(1990, 1991) and Brunner and Denker (1994). In this marginal model, a treatment effect is
defined through the marginal distributions F,, s = 1,... ,d of X} = (Xj1,... , Xxq)' where
X, is the vector of observations for subject k. The observations X, and X, coming from
different subjects k and k' are assumed to be independent while the observations Xi, and Xi,
from the same subject may be dependent.

A general formulation of hypotheses in the nonparametric marginal model was suggested
by Akritas and Amold (1994) who introduced the idea to formulate the hypotheses in terms
of the distribution functions. They derived the relevant asymptotic distribution theory under
the assumption of the continuity of the distribution functions which means that ties were not
allowed. This is rather an unrealistic assumption for applications. Based on the idea of the
normalized version of the marginal distribution function F(z) = 3[F*+(z) + F~(z)] and of the
empirical marginal distribution function (see Ruymgaart, 1980), Akritas and Brunner (1997)
provided a unified approach to nonparametric repeated measures models using the concept of
Akritas and Amold (1994) to formulate nonparametric hypotheses. Brunner, Munzel and Puri
(1999) generalized these results to the case of (randomly) missing values, singular covariance
matrices, score functions with a bounded second derivative. Note that singular covariance ma-
trices may appear quite often in models with ordered categorical data. Moreover, they derived
an approximation of the distribution under the hypothesis for the ANOVA-type statistic in this
setup. This approximation is particularly useful for small samples.

In what follows, we provide a summary of the main results of the above papers in a unified
form such that procedures for particular problems or special designs may be derived from the
general framework presented here.
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2.1 Nonparametric Marginal Model

In the general repeated measures (or mixed) model, r treatment groups (the so-called whole-
plot factor) are considered where every treatment group ¢ contains k = 1,...,n; indepen-
dent (randomly chosen) subjects. These n = ) _;_; n; subjects are observed repeatedly under
s =1,...,d different (fixed) situations (levels of the *treatment factor’, the so-called sub-plot
factor) with £ = 1,... , mu, replications for subject k£ under the treatment combination(z, s).
Thus, there are My, = E',’:l mix, repeated measures for each subject where the subjects are re-
peatedly observed under the same treatment as well as under different treatments. This general
mixed model can be written by independent random vectors

X,'k = (X:kl,...,Xﬁkd)',i=1,...,r,k=1,...,n,~ where
X,'k, = (Xiksl;- . ,Xikam“,,)ly 8§ = 1,. .. ,d (21)

and where Xuue ~ Fip(z) = § [ (z) + F (z)].i=1,...,r,8=1,...,d k=1,...,n,
£ =1,...,my, (the sign ~ means ’is distributed as’). To derive the general results, no par-
ticular structure is assumed for the dependencies between the components of the vectors X .
It is only assumed that the vectors X, are independent, i = 1,...,r, k = 1,... ,n; and that
the bivariate marginal distribution functions of (Xis¢, Xiksee) do not depend on &, £ and £,
i.e. (Xikat, Xiksr#r) ~ Fisw(z,y). This assumption is reasonable since the observations with
k # K’ are independent replications and the observations with £ # ¢ for the same s and k are
dependent replications of the same experiment. The dependencies between the observations on
the same subject are considered as 'nuisance parameters’ and their impact on the asymptotic
distribution of the statistics to be derived in this section has to be estimated separately.

The rather general notation introduced above, covers a lot of designs which are commonly
used in practice.

1. Paired samples design: This design is derived from (2.1) by letting r = 1,n; = n,s
2,mg, = 1. Here, n independent pairs of random variables X = (X, Xi2)', &k
1,... ,n are observed, where F;,(z) = F,(z),s=1,2.

2. Simple repeated measures design: Here,r = 1 groupof k = 1,. .. , n subjects is observed
under s = 1,...,d treatments and F;, = F,,s=1,... ,d.

3. Split-plot design: In this design,i = 1,... ,r > 2 groups of k = 1,... ,n; independent
subjects are observed.

4. Two-fold nested design: In this design, where ¢ = 1,... ,r treatments are applied, k =
1,...,n; independent subjects are observed within each treatment group i. Every subject
receives only one treatment but it is observed repeatedly £ = 1,. .. ,my times under the
same treatment in order to get a more accurate measurement for the variable of interest. In
total, there are N = 3 ._, 3°1¢ | my; observations of n = }_[_, n; independent subjects.

5. Higher-Way layouts: Higher-way layouts with repeated measures or longitudinal data are
covered by the general model defined in (2.1) by splitting the indices i or s into sub-
indices #',4",... or &', 8", ..., respectively.
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Note that in most cases with longitudinal data, mi, = 1 or my, = O (if the observation
is missing). The case of mi, > 1 typically occurs when some material, tissue or a set of
individuals is split into several homogeneous parts and the compound symmetry model can be
used as an appropriate model for this design.

To introduce the ideas, to define treatment effects, to formulate hypotheses and to derive test
procedures in the nonparametric marginal model, we consider only the case where my, = 1
in order to keep the notation simple. This means that we do not consider missing values and
dependent replications. Regarding these cases, we refer to the literature (Brunner and Puri,
1996; Brunner, Munzel and Puri, 1999).

2.2 Relative Effects, Hypotheses and Estimators

Since no parameters are involved in the nonparametric model (2.1), the marginal distribution
functions Fi,(z) are used to describe an effect (e.g. time effect or treatment effect). To this
end, the so-called relative marginal effects p;, = [ H(x)dF;,(z) are considered where H(z) =
N~ Y 3% niFi(z) is the average of all N = d - Y_7_, n; distribution functions in the
experiment. Let F = (Fyy,... ,Fiq4,... ,F,. .., F,4)" the vector of the marginal distribution
functions and let p = [ HdF = (p11,...,P1d;--- »Pr15--- ,Pra)'» the vector of the relative
(marginal) effects.

In the nonparametric setup introduced above, hypotheses are formulated by the distribution
functions Fj,(z) in the same way as for independent observations. Let C denote a covariance
matrix (see section 1.2.1). Then a nonparametric hypothesis for a mixed model in its most
general form is written as HY : CF = 0. Some examples for nonparametric hypotheses are
given in Section 2.5.

The vector of the relative marginal effects is estimated by replacing F;,(z) and H(z) by the
empirical functions

ng d ni

Fi(z) = %Z oz — Xus), H(z) = %Zr: 33 ez - Xa) @2

* k=1 i=l s=1 k=1

Here, c(u) = } [¢*(u) + c™(u)] denotes the normalized version of the counting function. Then,
the relative marginal effects p;, are estimated by

5 _/ﬁdﬁ _if:g(x. )_ii‘i Ry, — & 23)

Dis = is = n; s iks] = n o N ks 2/ .
where R, is the mid-rank of X;, among all N observations. Let B;. = n; ! 35 | Ry, denote
the mean of the vectors Ry, = (Ripy,... , Rixa)', = 1,...,7, within level 1 of the whole-
plot factor and let R, = (1_2'1,, ceny 1_%:,_)' . Then, the vector p of the relative marginal effects is
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estimated by
1 1 —Rl.—%ld
p = /HdF:NR.—§1,®1¢)=—ﬁ _ 31 24)
-1,
(Rll"% \ (Pll \
1 Rl-d._% 1 P
=%l _: . =N
Rf. —3 prl
\E-d—%/ Kﬁrd)

The notation given in (2.4) enables a simple and short presentation of the asymptotic theory
of rank statistics in nonparametric factorial designs with repeated measures.

We note that p;, is only an asymptol:ncally unbiased estimator of p;,. To derive the exact
expectation of B;,, let H®(z) = 13°% | Fie(z) denote the mean distribution functlon within

the level i of the whole-plot factor and let p{’) = [ HOdF;,. Further let AP = 134 AP
denote the mean of the within-subjects probabilities

§ 1
AL = P(Xar< Xad) + 5P(Xar = Xa,)

and let n = Y}, n; denote the total number of subjects. Then,

i=1

~ 1, ; )
E®;,) = pi,+;(A§'>—p£')), i=1,...,r;5=1,...,d.

Obviously, 7, is unbiased if A = p®. Let _(') =n7 3R, Sc),, where R denotes

iks

the (mid-)rank of X;x, among all n;d observations w1thm level 1 of thc whole-plot factor and let
R, = n;' 0 Ry, where R}, is the (mid-)rank of X;x, among all d observations within
subject k in level i of the whole-plot factor. Note that 1 < Rf;‘), <nydand 1 £ R}, < d. Then,
in practice, the bias can be checked by comparing

~ 1 /= 1 . 1
= (g -2 50 — ®_ 2
A} d (R” 2) and p; md (R 2) .

2.3 Asymptotic Theory

In this Section, the asymptotic distribution of \/nCP = /7C (P11, - - . ,Prd)’ is derived under
the hypothesis HY : CF = 0. Moreover, consistent estimators of the covariance matrix are
provided for the compound symmetry model as well as for the multivariate model.
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2.3.1 Basic Results and Assumptions

The asymptotic results are derived under the following assumptions:

ASSUMPTIONS 2.1
(a) minn; 2 00,1 =1,...,r,
(b) nfn; < Ng<o0,§=1,...,r, where n =Y _,_, n; is the total number of the subjects.

The first result is that p;, given in (2.3), is consistent for p;; = [ HdF;, in the sense given
in the following Proposition.

PROPOSITION 2.2 Let Xy = (Xi,-.. , Xika)' be independent and identically distributed
random vectors. Then, under the assumption 2.1 (a), E(D;, — pis)? — Oasn; — o0, i =
1,...,r,8=1,...,d

PROOF: see Brunner, Munzel and Puri (1999), for example. O

Next, the basic asymptotic equivalence for the mixed model is stated.

THEOREM 2.3 Let X be as given in Proposition 2.2 and let F = (Fu, ..., Fmq) denote
the vector of the marginal distributions and F = (Fy,, ... ,F.q4), the vector of the empirical
marginal distributions as given in (2.2). Then, under the assumptions 2.1 (a) and (b),

ﬁ/ﬁd(i‘-F) _i\/ﬁ/Hd(f‘—F) = ﬁ(?.—/HdF)

where

— ! — —

Y = (?’1?') , YVi=(Yir,-o Via) = }:Y,k,

Y = (Yiky,...,Yd)', Yo =H(Xirs), 5=1,...,d. 2.5
PROOF: see Brunner, Munzel and Puri (1999), for example. 0

2.3.2 Asymptotic Normality

To establish the asymptotic normality of Cp (or_ /nCp to be precise), a further regularity
assumption is needed. First note that the vectors Y';. are independent. Thus,

V. = Co(vnY) = @ Vi, (2.6)

where V; = Cov(Y ;1) and Yy is given in (2.5). Let py, (i) denote the smallest characteristic
rootof V;.

ASSUMPTION 2.1
() pm(i) > po>0,i=1,...,r
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THEOREM 2.4 Let X, be as in Proposition 2.2 and let V , be as given in (2.6). Then, un-
der the assumptions 2.1 (a), (b) and (c) and under HY : CF = 0, the statistic /iCp =
VnC | HdF has, asymptotically, a multivariate normal distribution with mean 0 and covari-
ance matrix CV,,C'.

PrROOF: The proof follows easily from the assumptions, from Theorem 2.3 and the Central
Limit Theorem by noting that the random vectors Y are independent and identically dis-
tributed. (m]

Regarding the asymptotic equivalence of the random vectors +/CP and /nCY . under
HY : CF = 0, the same considerations apply as given in subsection 1.4.2 for the case of
independent observations.

2.3.3 Estimation of the Asymptotic Covariance Matrix

In most practical examples, the covariance matrices V; defined in (2.6) are unknown and must
be estimated from the data. To derive a consistent estimator of V;, ¢ = 1,...,r, two models
are distinguished. The multivariate model does not assume any special pattern for the bivariate
marginal distribution functions while the compound symmetry model assumes the equality of
all covariances under the hypothesis. This is stated in details in the last part of this subsection.
In what follows, the estimators for V; are provided for both models and the assumptions are
given under which the consistency of these estimators follows.

Multivariate Model In the multivariate model, let Rix = (Rix1, - - - , Riza)’ denote the vector
of the ranks Ry, of Xy, among all the N = nd observations and let R;. = n;’ Yo R
denote the mean of these rank vectors within the treatment level i of the whole-plot factor,
i=1,...,r. Finally, let

~ 1 hiad — —
Vi= —— « — R:) (R — R, 2.7
Nz(ni_l);(n.k R;) (Ra— R;) @7
denote the sample covariance matrix of xR, k=1,... ,m;,i=1,... ,r,and let
-~ r n ~
V. = @;V; (2.8)
=1

denote an estimator of V',,.

THEOREM 2.5 Let V; and V, be as defined in (2.6) and let V'; and V ,, be as given in (2.7)
and (2.8) respectively. Then, under the assumptions 2.1 (a), (b) and (c),

L|V,-Vi| 250, i=1,...,r and
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2 |V, — V| 250,
where || - || denotes the Euclidean norm of a matrix.

PROOF: see¢ Akritas and Brunner (1997). 0

REMARK 2.1 A stronger result, namely the Lq-consistency was shown by Brunner, Munzel
and Puri (1999) in a more general setup. For details, we refer to this paper.

It should be emphasized that V', is the covariance matrix of /n Y. and not of \/n p. The
matrix V, is only needed to compute the asymptotic covariance matrix CV,C’ of /n Cp
under the hypothesis Hf : CF = 0.

Compound Symmetry Model In the compound symmetry model, it is assumed that under
Hf : F,; = -+ = Fy, the bivariate marginal distribution functions of (Xi,, Xixs) do not
depend on k, s and ¢, i.e. (Xiks, Xiks') ~ Fisw(z,y) = F!(z,y), s # 8 = 1,...,d. Thus,
under HY, the variances and the covariances are given by

o? 02 =Var(Yy,), s=1,...,d,i=1,...,r 2.9)
¢; = Cov(Yis,Yuy), s#s =1,...,d,i=1,...,7 (2.10)

1]
3
and it follows that V'; = (62 — ¢})I4 + c{J 4.

Compound symmetry is only assumed for hypotheses regarding the sub-plot factor, i.e. for

hypotheses which can be written as HY : (I, ® C4) F = 0 where Cj is a suitable contrast

matrix for the sub-plot factor. Thus, it is only necessary to estimate ; = 0% — ¢}, i =1,...,r,
r

since (I, ® Cy) @c:Jd =0.
=1

THEOREM 2.6 Letr; =02 —c},i=1,...,r, where o? and c} are defined in (2.9) and (2.10)
respectively, and let

d n;
~ 1 = 12
= ke — Fir.)?, 2.11
7 N7n,(d- l)uzlg(}?ﬂu R’k) ( )
where Ry, = § Ele Ry, is the mean of the ranks Ry, within subject k and R, is the rank of
Xixs among all the N = nd observations. Then, in the compound symmetry model, under the
assumptions 2.1 (a), (b) and (c) and under the hypothesis HY : Fy| = - -- = F4, the estimator
7; is consistent for 7 in the sense that E(7;/7; — 1)? — 0 as n; — 0o. Moreover,

r
CV,.C' = (I,8C) V. (I,8Cy) = PRCCy. (2.12)

=1

PROOF: see Brunner, Munzel and Puri (1999) where the more general case of mg, > 1 is
considered. m|



34

24 Statistics

To test the nonparametric hypothesis Hf : CF = 0, the rank versions of the WTS and of
the ATS are considered to detect general alternatives while a linear ranks statistic is used to
detect special patterned alternatives. Other statistics which are commonly used in multivariate
analysis are not discussed here since they require the equality of the covariance matrices. In a
nonparametric setup, however, this assumption is only justified in a few special cases. Note that
in general any assumed homoscedasticity of the parent distribution functions is not transferred
to the asymptotic rank transform Y, = H(X;x,) because H(-) is a non-linear transformation.

2.4.1 Quadratic Forms

Wald-Type Statisﬁ (WTS) Let f’,, denote the consistent estimator of V. which is given
in (2.8) and let [CV,C']” denote a g-inverse of CV,C'. ¥V, — V # 0 such that
rank(CV,) = rank(CV), then under Hf : CF = 0, it follows from Theorem 2.4 and
Theorem 2.5 that the rank version of the WTS

Q¥(C) = npC [cff,.c’]_oﬁ @.13)

has, asymptotically, a central x2-distribution with f = rank(CV') degrees of freedom. How-
ever, extremely large sample sizes are needed to achieve an acceptable approximation by this
distribution. Therefore, the ANOVA-type statistic is considered in the following paragraph (as
in the case of independent observations in subsection 1.5.1).

ANOVA-Type Statistics (ATS) Let M = C'[CC'|"C where [CC']~ denotes some g-
inverse of C'C". Then, the rank version of the ATS is defined by

Qa(C) = np'MPp. (2.14)

Note that M is a projection matrix and that MF = 0 <= CF = 0 because C'[CC']" is a
generalized inverse of C. Thus, it is also reasonable to use @2(C) as a test statistic for testing
the hypothesis HY : CF = 0. The asymptotic distribution of Q4(C) is given in the next
Theorem.

THEOREM 2.7 Let M = C'[CC'|C andlet V,, and V., be as in (2.6) and (2.8) respectively.
Then, under the hypothesis HY : CF = 0 and under the assumptions 2.1 (a), (b) and (c),
the statistic QA(C) given in (2.14) has, asymptotically, the same distribution as the random
variable Y ;_, Z:=1 XisZis, where the )\, are the characteristic roots of MV ., M and the Z;,
are independent random variables each having a central x3-distribution.

PROOF: The proof follows from Theorem 2.4 and well known theorems on the distribution of
quadratic forms (see e.g. Mathai and Provost, 1992, Chapter 4). O
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The distribution of 37_, 3°9_, A;,Z;, can be approximated by a scaled x?-distribution in
the same way as discussed in the case of independent observations (see subsection 1.5.1, ap-
proximation procedure 1.9).

APPROXIMATION PROCEDURE 2.8

1. Assume that tr(MV ,) > to > 0. Then, under HY : CF = 0, the first two moments of
the asymptotic distribution of QA(C) /tr(MV ) and of the F(f, oo)-distribution coin-
cide for f = [tr(MV )] /tr(MV MV ).

2. The unknown traces tr(MV,) and tr(MV .MV ) can be estimated consistently by
replacing V,, with V, given in (2.8) and (2.12) respectively. This finally leads to the

statistic
1 n -~
F,(C) = —=—QA(C) = ——=—P Mp ~ F(f,00), (215)
»(C) tr(MV,.)Q (C) tr(MV”)p P *~ F(f,0)
where PR
Fo _[trMVaE (2.16)
tr(MV,MV,)
(Here, the sign ~ means 'approximately distributed as’.)
DERIVATION: see Brunner, Munzel and Puri (1999). O

REMARK 2.2 The approximation procedure goes back to Box (1954) and turns out to be quite
accurate for independent observations (see Brunner, Dette and Munk, 1997). For repeated
measures, f in (2.16) may be biased for small sample sizes. In all cases where the factor ‘time’
is not involved (i.e. tests for the whole-plot factors and their interactions), the approximation
in (2.15) can be improved by estimating the second degree of freedom in a similar way as for
independent observations in (1.21). The details are omitted for brevity.

Comparison of the WTS and the ATS The main advantage of the WTS Q¥ (C) is that its
asymptotic distribution under HY is a known distribution function, namely a x2-distribution.
The general drawback of Q¥ (C) is that it converges extremely slowly to its asymptotic distri-
bution resulting in rather liberal decisions for small or moderate sample sizes. Moreover, the
restrictive assumption that V,, — V such that rank(CV,) = rank(CV’) cannot be checked.

The ATS F,(C) has the main disadvantage that its asymptotic distribution under Hf" con-
tains unknown quantities, namely the characteristic roots of MV ,, M which are unknown in
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general and must be estimated where the Box-approximation is used to approximate the dis-
tribution of the ANOVA-type statistic. However, note that even in the asymptotic case, the
X%/ f -distribution is an approximation of the true distribution of the statistic under Hy'. One
advantage is that it is neither necessary to assume the convergence of the covariance matrix
V', to a constant matrix V' nor that the rank of CV,, is preserved in the limit CV. The only
additional assumption to the assumptions 2.1 (a), (b) and (c) which is needed for the ATS, is
that tr(MV,) # 0 which means that - regarding the hypothesis of interest - there is at least
some variation among the observations of the experiment. This is close to a trivial assumption.

The main advantage of the ATS F,,(C) is that the approximation by the x}/ f-distribution

works also fairly well for rather small sample sizes (for details, see e.g. Brunner and Langer,
1999) and can be recommended for small and moderate sample sizes.

2.4.2 Patterned Alternatives

As in the case of independent observations, the method of Page (1963) and Hettmansperger
and Norton (1987) is also used for repeated measures to derive test statistics which are espe-
cially sensitive against a conjectured patterned alternative. The estimated treatment effects are
weighted by a set of constants wyy, . . . , wrq reproducing the conjectured pattern of the alterna-
tive which has to be specified in advance. Let w = (wyy,... ,wyq)’ denote the vector of the
weights w;,. Then under HY : CF = 0, the linear rank statistic

L.,(w) = V/nw'Cp 217
has, asymptotically, a normal distribution with mean 0 and variance

a2 w'CV,C'w,

which can be estimated consistently by
8 = wcV,Cw,

where V,, is given in the Theorems 2.5 and 2.6 respectively. Then, under HY : CF = 0, the
statistic T (w) = Ly (w) /3, has, asymptotically, a standard normal distribution.
Approximations for small samples have to be derived separately for the special designs.

The considerations are similar to those in subsection 1.5.2 and are therefore omitted. Some
examples can be found in Akritas and Brunner (1996).

24.3 The ’Rank Transform’ (RT) Property for Repeated Measures

The WTS-statistics given in (2.13) can formally be derived from the parametric MANOVA
statistics by replacing the original observations X, by their ranks R;;,. However, one must be
careful with the assumptions of the model. First of all, the underlying testing problem must be
identified from the asymptotic equivalence of the rank statistic +/nC [ HdF and the random
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vector yiC [ HdF = \/nCY . which is a contrast vector of the asymptotic rank transform. It
follows from Theorems 2.3 and 2.4 that these two random vectors are asymptotically equivalent
if the hypothesis is formulated in terms of the distribution functions, i.e. Hf : CF = 0.
Furthermore, it has been pointed out by Akritas (1990) that any assumed homoscedasticity of
the random variables X;;, is not transferred to the ART Y, = H(Xj,) in general. Thus,
in the nonparametric marginal model, the homoscedasticity of the covariance matrices V'; can
only be assumed in very special cases under the hypothesis and therefore, MANOVA-statistics
for multivariate heteroscedastic models are required. A rank statistic corresponding to such a
parametric MANOVA -statistic, is said to have the rank transform property (RTP).

If a rank statistic has the RTP then this is of importance for computational purposes. The
parametric counterpart of a RT-statistic which may be available in a statistical software package
can be applied to the ranked data. Only the quality of approximation to the asymptotic distri-
bution or some finite approximation has to be taken into account. In any case, it is necessary to
identify the properties (like independence and heteroscedasticity) of the ART under the hypoth-
esis. The RT should not be regarded as a technique to derive statistics rather than a property of
a statistic which can be useful for computational purposes.

2.5 Applications to Special Designs

In this section, the general theory derived in the previous subsections is applied to some special
factorial designs with repeated measures. Some explicit statistics are given and it is shown that
several known rank statistics which are given in the literature, follow as special cases from the
general approach. In particular, the paired samples design, the simple repeated measures design
and the so-called split-plot design are considered.

2.5.1 Paired Samples Design

In this special case, there is only one group of observations (r = 1) and the vector X has
two components (f = 2). Thus, we observe independent random vectors X = (X, Xia)',
k=1,...,n, where Xy, ~ Fy(z), s = 1,2. Let p = [ FidPF3, then the relative treatment
effects p, = [ HdF,, s = 1,2, are linearly dependent since p = § — 2p, = 2p, — 3. Let Ry,
denote the rank of Xy, among all the N = 2n observations, let R, = 137 Ry,, s = 1,2,
and let

1 < - =
Sio = mZ(sz—Ru—R.2+R.1)2.

k=1

Then the statistic

}_2.2 - -R.l

TF = vn 3
n,0
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has, asymptotically, a standard normal distribution under the hypothesis H; : F; = F; which
is equivalently written as H : CF = 0, where C = (—1,1)’. This follows easily from
the Theorems 2.4 and 2.5. The statistic T is the statistic of the ’paired-ranks test’” which
has been considered in the literature under different assumptions by Mehra and Puri (1967),
Govindarajulu (1975), Raviv (1978), Brunner and Neumann (1986b), Brunner and Puri (1996)
and by Munzel (19995), among possibly others.

2.5.2 Simple Repeated Measures Design

In the simple repeated measures design, n subjects are repeatedly observed under ¢ treatments.
Thus, we have independent random vectors

Xk = (Xkly--',th),, k=1,___,n’

where Xy, ~ Fy(z), s = 1,...,t. To test the hypothesis HY : F{ = --- = F,,letC = P, =
I, — %J ¢ denote the f-dimensional centering matrix. Let Ry, denote the rank of X, among
all the ¢n observations and let R., denote the mean of the ranks within treatment level s. Two
models are distinguished: the multivariate model, where no special structure of the covariance
matrix V, is assumed, and the compound symmetry model where it is assumed under H that
02 = ... = g% = o? and that all the covariances are equal to ¢* = Cov(H(X11), H(X12)),
where H(X},) = Y114, £ = 1,2, as given in (2.9) and (2.10) respectively. Compound symmetry
can be assumed if all permutations of the observations Xy;, . . . , Xy within subject k are equally
likely under the hypothesis Hy . This assumption is not justified if the ’treatments’ are the time
points of time curves. Generally, observations which are more closer are higher correlated than
more distant observations. In the latter case, the so-called multivariate model is used. Both
models differ only in the structure, and thus in the estimators of the covariance matrix V.
Note that compound symmetry is assumed to derive the well-known Friedman-statistic and its
distribution under the hypothesis. Thus, the Friedman-statistic cannot be used for the analysis
of time curves.

Compound Symmetry In the compound symmetry model of the simple repeated measures
design, it suffices to estimate the quantity 7 = g2 — ¢*. From Theorem 2.6, it follows that

T = (Rks — R )2
S LR
is a consistent estimator of 7 and the statistic

o _ n?(t—1) : nt+1
Qn B 2;::1 2:=1(Rlu - Eb)z Z ( )

s=1

has, asymptotically, a central xZ_, -distribution under the hypothesis H{ . This statistic has been
given in literature by Brunner and Neumann (1982) and by Kepner and Robinson (1988).
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Multivariate Model In the general case of the multivariate model, let Ry = (Ry1,... , Ri)',
k =1,...,n,denote the vector of the ranks within subject k£ and let R. denote the mean of the
vectors R,, ... , R,. Then,

—~

V. = (nt)z(n Z(m R)(R:-R) (2.18)

is a consistent estimator of V', (c.f. Theorem 2.5) and the WTS
Qu(P:) = np'PP.V.P| PP = np'Wp 2.19)

has, asymptotically, a central x?_, -distribution under the hypothesis H{ . Here,

———

w = V. (.-, /10, 1)

is a g-inverse of P,f’,.P,. Note also that Ptﬁ\’Pt = W. This statistic was considered in the
literature by Thompson (1991) and by Akritas and Arnold (1994).

For small sample sizes, the statistic (n — ¢ + 1) - Q,(P)/[(t — 1)(n — 1)] is compared
with the central F-distribution with f; = ¢t — 1 and fo = n — ¢t + 1 degrees of freedom. This
small sample approximation is motivated by the distribution of Hotelling’s T2-statistic under
the assumption of multivariate normality, where the hypothesis y; = --- = pu, is tested. A
comprehensive simulation study shows (see Brunner and Langer, 1999) that this approximation
is rather accurate, also for small numbers of subjects. The power of this statistic, however,
compared with the power of the ATS (to be considered below) is rather poor and thus, the ATS
should be preferred in case of small samples.

Next, the ATS given in (2.15) is considered in the multivariate model.

To derive the ANOVA-type statistic for the simple repeated measures design, note that M =
P,(P,P,)~ P, = P, since P, is a projection matrix. Then, the ATS is derived from (2.15) and
is given by

n
F,(P) = —~—pPPp
al t) t'r(PgV,,)p 7 4
t 2
n — N+ 1)
= — R,———1} , 2.20)
N2tr(P,V,) Zl( )

where 17,, is given in (2.18). Under H} : P,F = 0, the ATS F,(P,) is approximated by the
central F'(f, co)-distribution with

= [ (P¥ )] ftr (PV.P.V,)

degrees of freedom.



A linear rank statistic which is sensitive to the special patterned alternative descibed by the
pattern w = (wy, ... ,w;)’, is derived from (2.17) and, in the simple repeated measures design,
it reduces to

T(w) = La(w)/ou=Sow'Pip

- Na,,,z w’(R’“ N+1)

and the variance estimator &,, is given by
1 n
~ _ D 17 = _TT\2
52 = wP,V,Pw ECES) k§=l(Uk U.)?,

where Uy = S8 (w, — W)Ry, and @. = t~'3%_, w, denotes the mean of the weights
Wyy»-. , Wy

2.5.3 Split-Plot Design

The so-called split-plot design is one of the most frequently used designs with repeated mea-
sures. If a different groups of subjects are repeatedly observed under ¢ different treatments
(generally ¢ time points), then this design is appropriate to model the data of the experiment.
Let

X,'k = (Xikl,--- ,X,'kg)',’l:=1,... 3 Gy k= 1,... » iy

denote the observation vector of subject k within group i. These vectors are assumed to be inde-
pendent and the components Xi,, 8 = 1,... ,t, are assumed to have the distribution functions
Fo(z), k=1,... ,n,

The hypothesis of no group effect (factor A) means that the averages F;, =t~} ‘ 1 Fis of
the distributions F;, over the ¢ treatments are the same for all groups ¢ = 1,... ,a. In matrix
notation, this hypothesis is written as Hy (4) : (P, ® }1;)F = 0.

Letg; =t~ 3 _¢_, p;, denote the mean of the relative marginal effects p;, which is estimated
by

~ I, 11 (- 1 1 (= 1
g = Zzpia'—_?Zﬁ(Ri-a—E)=N(Ri--_'§)-

s=1 =1

According to the hypothesis Hj (A) : (P, ® }1;)F = 0, the contrast vector is given by

\/_(P @11) Vn P, ( ®%1§)§=\/5Pa§
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and its asymptotic distribution is derived from Theorem 2.4. It follows that /n P, g has,
asymptotically, a multivariate normal distribution with mean 0 and covariance matrix P, X%, P,
where %, is estimated consistently by

~ _ a n._. " 5
En = @;;0’?, 0!2 NQ(m 1) Z(Ek RI) 2.21)

i=1

Here, Ry. = ¢t~ .—1 Rixs denotes the mean of the ranks R;, over the ¢ treatments for
subject k w1th1n group i and R;.. = n;' Y 0t Ry denotes the mean of all tn; ranks within
group i. Then the WTS follows from (2 13) and is given by

o = L3 (Fo i) em

i=1
which has, asymptotically, a central x2_, -distribution under HY (A).
The ATS and the approximation by the central F(f, o0o)-distribution is easily derived from
(2.15) and reduces to

n
Fo(d) = ——=—-g P.9g
( ) tr(P,,Z,.) 9 9= (0, - 1) Et—l l

Z(& —-R.)? (23)

and under HY (A), the distribution of Fy,(A) is approximated by the central F(f4, fo)-distribution
with

_ (e —1) 2.24)
1+ a(a - 2) [o, 6%/ [ (T, 82/ne)]
and
PR O 7L) 225

PN DICIESY

degrees of freedom. Here, R.=a Y R;.. denotes the unweighted mean of the rank means
R..,i=1,...,a.

The hypothesis of no treatment effect (time effect) (factor 7)) means that the averages
F., of the distributions F;, over all ¢+ = 1,...,a groups at time point s are the same, i.c.
HF (T) : Fy = --- = F,. In matrix notation, this hypothesis is equivalently written as
HF(T) (;1;®P.)F = 0. Let R = (Rigy,... . Re)yi=1,...,a, k = 1,... 0,
denote the vector of the ranks Rj, for the subject k within group 7 and let

= _ZR"‘ = —E(Rm, - s Rige)'

Y k=1 gy
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denote the mean of Ryi, . .. , Ri,, within group ¢ and let finally

lgns 15 = v

denote the unweighted mean of R;., ... , R,. over all a groups. Then, consistent estimators for
the covariance matrices V; and V', follow from (2.7) and (2.8) and are given by

Z(R.k R)Bx-R), Vo=@PV: (29

=1

78 S L
' N”m(n.
where n = Y ;| n; denotes the total number of subjects and N = n - ¢ the total number of

observations. Furthermore, let ¥V, = (i el) v, (r.e®I) =a?);, V;. Then, the
WTS for testing the hypothesis Hf (T') follows from (2.13) and is given by

Qu(T) = %R{_P,[P,?,P,]-p,n...
Under Hf (T), the statistic Q,(T’) has, asymptotically, a central x7 ,-distribution. However,
large sample sizes may be necessary to achieve a satisfactory approximation by the limiting
x-distribution. For small sample sizes, the ATS should be used to test the hypothesis Hy r (T)
Let R =a} E,_ R;, denote the unweighted mean of the rank means R;., and let R.
t-13"¢_ R.,. Then the ATS follows from (2.15) and is given by

t
’ ~ n ~

n o~ ~
F(T) = ——=RPR =——=— R,—R.).
( ) Nth(PtVt) ‘ Nth(PtVC) Z;( ’ )

Under HY (T), the distribution of F,,(T’) is approximated by the central F(fr, 0o)-distribution
with fr = [tr(P, V)2 /tr(P,V . P,V) degrees of freedom.

In most cases when a split-plot design with repeated measures is conducted, it is mainly
of interest to investigate an interaction between groups (factor A) and time (factor T). For
example, if a placebo is applied in group 1 and the active treatment is given to group 2, then
the distribution functions at the start of the trail (time point 1) Fi, and F3; are identical if the
subjects are randomly assigned to the two treatment groups of factor A. Then, an effect of the
active treatment will produce non parallel time curves of the measurements. This means that
there is an interaction between factor A and factor T'. In a nonparametric setup, the hypothes1s
of no interaction is formulated as HY (AT) : F;, = Fs. + F.,~F.,i=1,...,a, s=1,...,t
In matrix notation, this hypothesis is equivalently written as

Fu-F,.—-F,+F. 0
H{(AT) :CarF = = =0,

Fu—-F,-F,+F. 0



43

where Cur = P, ® P; and P, and P, denote the a- and ¢-dimensional centering matrices
respectively (c.f. (1.1)). Let R. = (Ry.1,... , Bas)' denote the vector of all at rank means.
Then, the WTS

Qu(AT) = %ECQT[CAT‘?nCQT]"CATR
follows from (2.13) where V,, is given in (2.26). Under HF (AT), the statistic Q, (AT has,
asymptotically, a central x?a_l)(,_l)-disuibution for which very large sample sizes are needed
for a satisfactory approximation.

The ATS is derived from (2.15) by letting M 47 = Clyp(CarClz) Car = C ar =
P, ® P, since P, and P, are both projection matrices. Let R., = a1 3¢ R;, and R.. =
t13¢_, R., denote the unweighted means over the a - ¢ rank means R;,,i = 1,... ,a, 8 =
1,...,t. Then, under H} (AT), the distribution of the ATS

2“: > (Ri.-Ri.—R,+R.)?

i=1 s=1

FJ(AT) = —
" N2tr(MATf’,,)

can be approximated by the central F(}'}T, 00)-distribution where f":qT is given by

[tr(M 4z V )2
tl‘(MATV"MATV,.)

far =

2.6 Example and Software
2.6.1 Split-Plot Design with Ordered Categorical Data

The Roof-Experiment A rain cleaning experiment was performed in a low-mountain range
(Solling) in Lower-Saxony (Germany). In two different areas of the forest, 300 m? each, the
ground was covered by a roof at a height of 3m in order to protect the soil of the forest from the
contaminated rain water. The precipitation was collected in tanks, and after preparation, it was
re-splashed under the roofs. For the control-roof (D2) which contained 23 trees, the water was
not chemically purified and the same water which had been collected was re-splashed under the
roof. Only the dust and larger sedimentary particles were filtered out so that the nozzles could
not be blocked. For the clean-rain-roof (D,) with 27 trees, the precipitation was re-splashed
after a chemical purification. A third area of 300 m? without any roof (Dp) served as a control
to examine the effect of the filtration for the control-roof. This area contained 22 trees.

The vitality of the trees was measured on a grading scale ranging from 1 (excellent) to 10
(dead). It was judged at the region of the treetops by means of a crane which was fixed in the
center of the three areas. The experiment started in 1993 and longitudinal observations on the
trees were taken in the years 1994, 1995, and 1996. The data are displayed in Table 2.1.

Several detailed questions had to be answered: (1) Is there any trend (increasing or decreas-
ing) in the time curves of the vitality scores for the different areas Dy, Dy and D,? (2) Is
there any effect of the clean-rain-roof? (3) Do the time curves of the three areas have the same
shapes?
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TABLE 2.1 Vitality scores for the trees in the roof-experiment for the areas Dy, D, and D,.

Area Dy Area D, Area Dy

Tree Year Tree Year Tree Year
no. (93 94 95 96| no. |93 94 95 96| no.|93 94 95 96
569 | 2 2 2 2| 547 8 4 4 5| 646 2 3 2 1
5700 1 1 1 1 549 1 1 1 1647 6 4 4 5
589 3 1 2 2} 551 4 4 4 3| 648}, 3 2 2 2
590 2 1 1 35614 3 3 3([649( 1 1 1 1
5921 5 4 3 41562 2 1 1 2f 650 4 5 4 2
5931 1 1 1 2{ 54| 5 3 3 3| 650 6 5 5 3
601 4 3 3 4566} 3 4 4 3{ 652 8 7 6 5
6021 4 4 4 4 567 4 3 3 2682 3 2 2 2
611} 1 1 2 35965 4 4 4] 68| 3 2 2 2
613} 3 2 2 25971 2 1 2 2/ 684| 5 4 4 5
618 4 2 3 3 59| 5 2 2 368 2 2 2 3
619 6 5 4 4| 6141 7 5 5 5[ 686| 3 3 1 2
6201 2 1 2 2 615 6 4 5 6 687 5 4 3 2
636 3 3 4 2| 616 6 6 3 3693} 6 4 4 4
6381 3 2 1 3617 4 3 5 3| 694 B 7 8 7
6391 1 1 2 1/ 626 5 4 3 3|69 5 3 2 3
653 6 7 6 5i627{ 1 2 2 271696 4 1 1 2
655) 1 1 1 1628/ 2 1 1 1697} 3 2 3 2
666 6 3 3 3629 6 4 4 5698 4 4 4 4
657 1 1 1 2§ 630( 3 2 2 1] 723 4 4 4 3
659 8 5 6 4} 631| 4 3 3 2|724f 6 4 4 4
681 1 2 1 16322 1 1 1725} 5 4 3 2
633 3 4 3 37261 3 3 1 1
7331 4 4 5 4
735} 4 4 4 2
7366 3 3 2 1
737} 6 5 5 4

First we note that the observations are ordered categorical data. Thus, all results must be
invariant under the choice of the grading scores 1,2, ... ,10, i.e. the results must be invariant
under strictly monotone transformations of the data. This is a well known property of rank
statistics and thus, the procedures considered in this section are especially appropriate for the
analysis of ordered categorical data with repeated measures. The rank means R;., and the
estimated relative marginal effects p;,, 2 = 1,2,3; j = 1,... , 4, for the three areas within the
four years are displayed in Table 2.2.

TABLE 2.2 Rank means and estimated relative marginal effects of the vitality scores for the
trees within the three areas during the years 1993, 94, 95 and 96 in the clean rain experiment.

Rank Means R, Relative Marginal Effects

Years Years

Area 93 94 95 96 93 94 95 96
DO | 1352 1037 1101 1220 0.47 0.36 0.38 042
D1 | 198.0 1682 1504 1322 |0.69 0.58 0.52 046
D2 | 1832 1417 1400 1323|0.63 049 048 046
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The results of the analysis by the WTS Q,,(C) and the ATS F,(M) given in subsection
2.5.3 along with the resulting p-values are displayed in Table 2.3.

TABLE 2.3 Statistics and p-values for the main effects and the interaction in the clean-rain

experiment.
Wald-Type Statistics ANOVA-Type Statistics
Factor || Qu(C) | df. p-Value || Fou(M)| fi fo | p-Value
Area 451 2 0.1049 235 1.97 oo | 0.0960
Year 5806 3 <10-% 2139273 oo <1078
Interaction 1482 6 0.0217 3.11] 535 oo | 0.0068

The difficulty with this example is that the trees could not be randomized to the three treat-
ments and, at the beginning of the trial, the relative marginal effects for both the experimen-
tal areas D1 and D2 seem to be somewhat larger than for the area D0 without a roof (DO:
P = 0.47, D1: py; = 0.69, D2: p3; = 0.63). The p-value obtained by the Kruskal-Wallis test
for the vitality scores on the first time point is p = 0.066 which indicates that the vitality scores
may not have the same distribution for all three areas. Thus, the result of the test for the main
effect of the area is difficult to interpret and the question of a potential treatment effect can only
be answered by the analysis of the interaction between the areas and the years. The p-value of
p = 0.0068 for the interaction is significant on the 1%-level and the interpretation is that the
time curves of the relative marginal effects within the three areas are not parallel (see Figure
2.1). For a more detailed analysis including pairwise comparisons of the three areas and tests
for decreasing trends, we refer to Brunner and Langer (1999), Section 8.3.7.

Pis

0,7}
06}

05¢

D1
D2

DO
014 I \_———’/

0,3

1993

1994

1995 1996

FIGURE 2.1 Time curves of the relative marginal effects for the vitality scores in the three
areas DO (area without roof), D1 (clean-rain-roof) and D2 (control-roof) during the years

1993 - 1996.
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2.6.2 Software

Similar to the discussion of the software in Subsection 1.7.2 for independent observations, the
statistics Qn(C). Fy,(M) and T,,(w) have the rank transform property under Hj . Therefore,
only mid-ranks have to be assigned to the data and the analysis can be performed on these ranks
if the special heteroscedastic model of the ART under Hy is used (see Subsection 2.4.3). Then,
the computation of the statistics Qy,(C), F,(M) and T, (w) can be performed by any statistical
software package which provides

1. the mid-ranks of the observations,

2. the analysis of heteroscedastic factorial designs with repeated measures and unspecified
covariance matrices.

The Statistical Analysis System (SAS) provides these computations by the procedure "MIXED’.
Below, we provide the necessary statements for the DATA-step and the procedures SORT,
RANK and MIXED.

Data Input The input of the data is handled in the same way as for the data of a paramet-
ric model, i.e. factors are treated as ’classifying variables’. Note, however, that PROC
MIXED needs the data first sorted by the subjects and then by the repeated measures.

Ranking The procedure PROC RANK is used to assign the mid-ranks among all observations
to the data. Note that the assignment of mid-ranks is the default with this procedure in
SAS.

Heteroscedastic Model The procedure PROC MIXED provides the possibility to define the
structure of the covariance matrix of the ’cell means’ within the levels of the repeated
measures factor by the option TYPE=: - - within the REPEATED statement. Moreover,
the GRP=: - . option within the REPEATED statement defines the factor levels (or com-
binations of them) of the whole-plot factor(s) where different covariance matrices are
allowed. The WTS Qn(C) and the resulting p-values are printed out by adding the op-
tion CHISQ after the slash (/) in the MODEL statement.

In general, for the nonparametric main effects and all interactions of the whole-plot fac-
tor(s), the covariance matrices may be different for all factor level combinations. Thus,
the highest interaction term of the whole-plot factors must be assigned in the GRP option.
For example, in a repeated measures design with two whole-plot factors A and B and
with one sub-plot factor C (repeated measures), this option is GRP=A*B.

Starting with version 8.0 the option ANOVAF can be added somewhere in the line of the
PROC MIXED statement in order to compute the ATS Fy (M) and the resulting p-values.
The use of the ATS is recommended for small and medium numbers of replications. To
avoid computational difficulties by using the method REML (default) to estimate the un-
structured covariance matrix (see SAS online documentation for the procedure MIXED)
it is recommended to use the minimum variance quadratic unbiased estimation method
by adding the option METHOD=MIVQUEQ after the option ANOVAF in the line of the
PROC MIXED statement.
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Example: Clean-Rain-Experiment

TABLE 2.4 ANOVA-type statistics and p-values for the main effects and the interaction in
the clean-rain experiment computed by the SAS-procedures ‘RANK’ and ‘MIXED’ where the
statements are provided below.

ANOVA-Type Stafistics ]
Factor | Fu(M)| H Fo p-Value | p-Value
(PROC MIXED) | (corrected)
Area 235|197 644 0.1041 -
Year 21391273 179 < 10°8 <1073
Interaction 3.11 {535 179 0.0086 0.0068
DATA roof; PROC RANK DATA=roof OUT=roof;
INPUT area$ tree s1-s4; | VAR score;
ARRAY ss{4} sl-s4; [ RANKS r;
DO year=1to 4; RUN;
score=ss{year};
OUTPUT; PROC SORT DATA=roof OUT=roof;
END; BY tree year;
DROP sl1-s4; RUN;
DATALINES;

PROC MIXED DATA=roof ANOVAF METHOD=MIVQUEQ;

CLASS tree area year;

MODEL r = area | year / CHISQ;

5 REPEATED year / TYPE=UN GRP=year SUB=tree;
RUN; RUN;

The results for the Wald-type statistics produced by the SAS-procedure ‘MIXED’ are identical
to those displayed in Table 2.3 with the exception that the second degree of freedom f, is taken
(automatically) from the option DDFM=KR. To obtain a better approximation for the p-values
of the tests for ‘Year’ and ‘Interaction’, a separate DATA step must be added to compute the
p-values p = 1 — F(21.39]2.73,00) < 107% and p = 1 — F(3.11|5.35,00) = 0.0068. The
results are displayed in Table 2.4.

D0 569 2 222

D27376554

3 Further Developments

3.1 Adjustment for Covariates

In applications, quite often the variable of interest X,.(J(.)) ~ F,~(°) (z) depends on one or more co-

variates X,-(J-l) ~F®, .. ,X,-(}") ~ F™ i=1,...,d. Then, the motivation of the adjustment
for covariates is twofold:
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1. If the distributions F{, ... , F®, £ =1,... ,m, are assumed to be all equal to Fy?, say,
then the adjustment is intended to reduce the variances of the estimators iifo) ,i=1,...,d.
The assumption of the equality of the distribution functions of the covariates over the
treatment groups may be justified in designs where the experimental units are randomly
assigned to the treatments (or to the treatment combinations). Thus, by randomization,
this assumption is reasonable.

2. In case of ’unhappy randomization’ and in observational studies, however, the relative
treatment effects p{” = [ HdF{” may depend on the relative effects p{” = [ HOJF®,
£=1,...,m;i=1,...,d, of the covariates within the treatment groups. In this case,
adjustment for covariates is not only intended for a possible reduction of the variances
but also for the correction of a potential bias caused by the dependence on the covariates.

The first case was considered in literature by a more or less heuristically motivated proce-
dure (Quade, 1967) and by a procedure which is based on the asymptotic multivariate normality
of a vector of linear rank statistics in the one-way layout for shift models with continuous dis-
tribution functions (Puri and Sen, 1969). This procedure was recently generalized by Langer
(1998) to factorial designs and possibly discontinuous distribution functions where the concept
of formulating hypotheses by the distribution functions was used. The second case causes more
problems and is still under research. First encouraging results have been derived by Siemer
(1999) but they have to be developed further.

3.2 Unweighted Treatment Effects

As briefly indicated in subsection 1.3.1, the relative treatment effects p; = f HdF; depend on
the sample sizes ny, . . . , 74, through the weighted mean distribution functions H(z). In case of
unequal sample sizes n;, i = 1,... ,d, the unweighted relative effects m; = [ H*dF; as given
in (1.4) may be used to formulate the hypotheses and to derive meaningful confidence intervals
for relative treatment effects. Some recent results (Kulle, 1999) need to be improved regarding
the approximation of the null distribution of the statistics in case of small sample sizes.

3.3 Multivariate Designs

The methods presented in this paper can easily be developed for multivariate observations
(Munzel, 1996; Munzel and Brunner, 2000). The application of these results to other multi-
variate problems like principal components analysis or studies with multiple endpoints have yet
to be developed.
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