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SUMMARY 

In this paper, we summarize some recent developments in the analysis of nonparametdc models 
where the classical models of ANOVA are generalized in such a way that not only the assump- 
tion of normality is relaxed but also the structure of the designs is introduced in a broader frame- 
work and also the concept of treatment effects is redefined. The continuity of the distribution 
functions is not assumed so that not only data from continuous distributions but also data with 
ties are included in this general setup. In designs with independent observations as well as in re- 
peated measures designs, the hypotheses are formulated by means of the distribution functions. 
The main results are given in a unified form. Some applications to special designs are consid- 
ered, where in simple designs, some well known statistics (such as the Kruskal-Wallis statistic 
and the X2-Statistic for dichotomous data) come out as special cases. The general framework 
presented here enables the nonparametric analysis of data with continuous distribution func- 
tions as well as arbitrary discrete data such as count data, ordered categorical and dichotomous 
data. 

Key words: Rank Tests, Factorial Designs, Repeated Measures, Unbalanced Designs, Or- 
dered Categorical Data, Count Data 
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1 Independent Observations 

1.1 Introduction 

The analysis of factorial desings is one of the most important and frequently encountered prob- 
lems in statistics. In the past, numerous models and procedures were developed under more or 
less restrictive assumptions on the underlying distribution functions of the observations. These 
assumptions were relaxed and the models were generalized under different requirements of the 
applications. For a historical overview, we refer to Brunner and Puri (1996, 2000). 

With the exception of a few special cases, the analysis of factorial designs in a nonparame- 
tric setup was mainly restricted to designs with one fixed factor, where by nonparametric we 
mean that no specific parametric class of distribution functions is assumed. Thus, there are no 
parameters by which treatment effects can be defined and hypotheses can be formulated. There- 
fore, one of the main problems in a nonparametric setup is the formulation of the hypotheses in 
factorial designs beyond the one-way layout. In some papers, interactions are excluded from the 
model and only main effects in a two-way layout were considered (Mack and Skilling, 1980; 
Rinaman, 1983; Groggle and Skillings, 1986; Thopmson and Ammann, 1989). In other papers, 
main effects and interactions are amalgamated in the hypotheses (Hora and lmarl, 1988; Thopm- 
son and Ammann, 1990; Akritas, 1990; Thompson, 1991). Other approaches are reslricted to 
special designs (Patel and Hoel, 1973; Brenner and Neumaun, 1986r Boos and Brownie, 1992; 
Brunner Puri and Sun, 1995; Marden and Muyot, 1995). All  these approaches are of more or 
less limited meaning for the analysis of real data sets in general factorial designs. In many 
cases, the terminology 'main effects' and 'interaction' is used in the sense of a linear model. 

The problem to define interactions and main effects in nonparametric factorial designs and 
to formulate hypotheses remained open until Akritas and Arnold (1994) provided the simple 
idea to formulate the hypotheses in a two-way repeated measures model by contrasts of the 
distribution functions. This idea seems to be a breakthrough towards a purely nonparametric 
formulation of hypotheses in higher-way layouts. Several important points should be noted: 

(1) 

(2) 

(3) 

(4) 

This formulation of the hypotheses is a straightforward generalization of the nonparame- 
tric hypothesis in the one-way layout. 

The hypotheses in the linear model are implied by these nonparametric hypotheses. 

The nonparametric hypotheses are not restricted to continuous distribution functions and 
models with discrete observations are included in this setup. 

Under these hypotheses, the asymptotic covariance matrix of a vector of linear contrasts 
of the rank means has a simple form and can be estimated by the ranks of the observations. 

(5) This formulation is not restriced to independent observations and is also valid for repeated 
measures. 



To handle the case of continuous and discontinuos distribution functions in a unified form, 
Ruymgaart (1980) suggested the use of the so-called normalized version of the true and the 
empirical distribution function. The combination of this technique with the formulation of 
the hypotheses by contrasts of the distribution functions provides the basis for the derivation 
of asymptotic results in general nonparametric factorial designs. The results derived by His 
approach give a new insight into the so-called 'rank transform method' (Conover and Iman, 
1976, 1981 and Lemmer, 1980) and it can easily be seen when the heuristic technique of the 
'rank transform' fails. 

In this section, we combine the results of some recent papers in this area in a unified form. 
Not only new procedures for designs with independent observations are derived from this gen- 
eral approach but also some well-known procedures in simple designs come out as special cases. 
Designs with repeated measures are considerd separately in Section 2. 

1.2 Models and Notations 

1.2.1 Notations 

For a convenient formulation of hypotheses and the relevant statistics in factorial designs, the 
following matrix notations are used throughout the paper. 

Let # = (#1, . . -  , #d)' be a d-dimensional vector of constants. Hypotheses concerning the 
components of # are formulated by contrast matrices where a matrix Cr• is called a contrast 
matrix if Cr• = 0r• where ld = (1, . . .  , 1)' denotes the d-dimensional vector of l 's.  In 
particular, we use the contrast matrix (sometimes called centering matrix) 

P d =  Id-- ~Jd (1.1) 

where Id is the d-dimensional unit matrix and 3d = ldl~ is the d • d matrix of l 's .  Note that 
Pd is a d-dimensional projection matrix of rank d - 1, i.e. P~ = Pd and P~d =Pd. 

For a technically simple formulation of hypotheses and test statistics in two- and higher-way 
layouts, we use the Kronecker-product (direct product) and the Kronecker-sum (direct sum) of 
matrices. The Kronecker-product of two matrices (all 1)(bll  bls) 

Ap• ! : and Br• ! : 

O, p l  " ' "  apq brl . . .  brs 

is defined as 

I a11B "" alqB) 
A| = i 

apl B ... a~B ? xqs 



where A = An• q , /3  = / 3 r x o  and the Kronecker-product of the matrices Ai, i = 1 , . . .  , a  is 
r 

written as ~ )  ~ .  
i = l  

The Kronecker-sum of the two matrices A and/3  is defined as 

Q 

and the Kronecker-sum of the matrices Ai,  i = 1 , . . . ,  a is written as I ~  Ai.  
i = 1  

Note that 

A i  B i  = ALiBi and A i  B i  = A i B i  
i = 1  ' =  i = l  i = l  

if  the matrices Ai  and Bi  are conformable with respect to multiplication. 

Factors (in the sense of experimental design) are denoted with capital letters A, B, C , . . .  
and the levels of A are numbered by i = 1 , . . .  , a, the levels of B are numbered by j = 1 , . . . ,  b, 
etc. If factor B is nested under factor A, this is denoted by B ( A ) .  

1.2.2 Nonparametric Model 

We consider independent random variables 

Xij ,~ F i ( z ) ,  i =  1 , . . .  ,d,  j = 1 , . . .  ,m ,  (1.2) 

where Fi(z)  = ~ [F+(z)  + Fi-(z)]  denotes the normalized-version of the distribution func- 
tion while F + ( z )  = P ( X i  < z )  is the right continuous version and F i - ( z  ) = P ( X i  < x)  is 
the left continuous version of the distribution function. Here, and in the sequel, Xij ,'~ Fi (:r) 
means that Xi j  is distributed according to the distribution function Fi(z) .  This defirtition of 
the distribution function includes the case of ties and, moreover ordered categorical data are 
included in this setup. The normalized version of the distribution function dates back to Ltvy 
(1925) and Kruskal (1952) and was later on used by Ruymgaart (1980), Brunner, Purl and Sun 
(1995) and Munzel (1999a) among others to derive asymptotic results for rank statistics includ- 
ing the case of ties in a unified form. We use the normalized-version of the distribution function, 
the empirical distribution function and the counting function. In the sequel, we will drop the 
expression 'normalized-version' for brevity and when using the above quoted functions, the 
'normalized-version' is understood unless stated otherwise. The vector of the distribution func- 
tions is denoted by k" = ( F1, . . . , Fa)'. 

A two-way or a higher-way layout, is described by putting a structure on the index i, i.e. 
i = 1 , . . . ,  d is split into i l  = 1 , . . . ,  ia, and iu = 1 , . . .  , ia2, etc. and the distribution functions 
F t , . . .  , Fa are a lexicographic ordering of the higher-way layout distribution functions, e.g., 
F l l , . .  �9 , Fala2 such that the second index iu is changed first. 



1.3 Relative Treatment Effects and Hypotheses 

1.3.1 Relative Treatment Effects 

Since no parameters are involved in the general model (1.2), we use the distribution functions 
Fi(x) to describe a treatment effect. To this end, we consider the so-called relative treatment 
effects 

Pi = f H(z)dFi(z) ,  i =  1 , . . .  ,d, (1.3) 

whereH(z)  N_~ d = ~-'~i=* niFi(z) is the weighted average of all distribution functions in the 
experiment. The pi's can be regarded as 'relative effects' with respect to the weighted average 
H(x). They describe a tendency (Kruskal, 1952) of F~(z) with respect to H(z) .  If  H( z )  -- x, 
then Pi = I~i = f zdFi(z)  is the expectation (if it exists). In this sense, Pi = f H(z)dFi (z )  or 
shortly Pi = f HdFi is a generalized expectation. 

Since the random variables Xrk "~ Fr(z), k = 1 , . . .  , nr, r = 1 , . . .  , d are independent and 
identically distributed the relative effect Pi can also be written as a weighted average of the prob- 
abilities P ( X j l  < Xil),  where the average is taken overj  = 1 , . . .  , d and i is fixed. Note that 
Fj(z)  = P(Xjx  < z)  + �89 = z)  and H(z )  = 1~ Ej=ld nj [P(Xjx < z)  + ~P(X j l  = z)]. 
Thus, by (1.3), 

1 d 
pi ~ ~ j~=l ~j [P(Xjl <~ Xil) -} - 1p(xjl----Xil)]. 

If the distribution functions F l ( z ) , . . .  , Fd(Z) are continuous then P ( X j l  = Xil) = 0 and 
1 d p~ reduces to p~ = ~ ~ j = l  n~P(Xjl <_ X~). 

We denote by p = (Pt, �9 �9 �9 , Pd) ~ = f HalF, the vector of the relative treatment effects. Note 
that in general, p depends on the sample sizes ni through H(:v). To avoid the dependence on 

d F, sample sizes, the function H(z)  is replaced by the unweighted mean H*(z) = ~ ~-'~i=l i(z) of 
all distribution functions in the experiment. Thus, the relative effects 

7ri = f H * d F i ,  i =  1, . . .  ,d, (1.4) 

do not depend on the sample sizes hi. In some sense, they correspond to parameters of distri- 
bution functions and may be used to formulate nonparametric hypotheses. The vector of these 
(unweighted) relative effects is denoted by lr = (1rl,... , ~rd)'. Clealy, p = Ir if all sample sizes 
are equal. For brevity, we shall only discuss the weighted relative treatment effects Pi in this 
paper. 



1.3.2 Hypotheses  

In the nonparametric setup introduced above, hypotheses may be either formulated by the distri- 
bution functions Fi or by the (unweighted) relative treatment effects 7q. Since we are only dis- 
cussing the (weighted) relative treatment effects lo/we only shall consider the hypotheses which 
are formulated by the distribution functions. Let (7 denote a contrast matrix as given in (1.1). 
Then these nonparametric hypotheses in their most general form are written as H0 F : C F  = O. 

For example, the simplest hypothesis is the hypothesis that there is no treatment effect at 
all. This hypothesis is formulated as H0 F : F1 . . . . .  Fd which can formally be written as 
H0 F : P a F  = 0, where Pd is given in (1.1) and 0 denotes a d x I vector of functions which are 
identically 0. 

More complex hypotheses or hypotheses in higher-way layouts may be formulated by a 
suitable contrast matrix (7 as H y : (TF = 0. This formulation of the hypotheses in a nonpa- 
rametric setup is analogous to the formulation of the hypotheses in the theory of linear models 
where the hypotheses are formulated in terms of the expectations P,i = f xdFi, i.e. H~ : (7/~ = 
0, where/~ = (#x,. �9 �9 ,/~d)'. Note that in general, 

H o F : ( T F = O  =~ H ~ ( ( 7 ) : ( 7 1 t = O  

since (71~ = (7 f x d F  = f xd((TF). 

The nonparametric hypotheses H F which are based on the distribution functions have been 
introduced by Akritas and Arnold (1994) and have been further developed and discussed by 
Akritas, Arnold and Brunner (1997), Akritas and Brunner (1997), Brurmer and Purl (1996, 
2000) and Brunner, Munzcl and Puff (1999). For details, we refer to these papers. Some 
examples for nonparametric hypotheses are given in Section 1.6. 

1.3.3 Es t imators  

The relative treatment effects Pi are estimated by replacing the distribution functions Fi(x) by 
their empirical counterparts 

(1.5) 

where c(u) = 2 ! [c+(u) + c-(u)] denotes the counting function and c+(u) = 0 or 1 according as 
u < or _> 0 and c-  (u) = 0 or 1 according as u < or > 0. The vector of the empirical distribution 
functions is denoted by ~'(z) = ( F l ( x ) , . . . ,  Z~d(X))' or shortly by ~' = (F1 , - . . ,  Fd)'. The 

d combined empirical distribution function of the N = Y]i=x ni random variables X l l , .  �9 �9 , Xand 
is denoted by 

1 d 1 d .~ 

i=I i=i j=l 

(1.6) 



and an unbiased estimator for pi is given by 

where 

1 (ff~/.. __ 1 )  1 (R0__ 1 )  = 

~ j  = ~- + N ~ ( X , ~ )  = 
1 d nr  

r = l  $=1 

(1.7) 

(1.8) 

(1.9) 

where R. = (RI., . . . .  Rd.)' denotes the vector of the rank means Ri'. = n~ -t ~ -~1Ri~ .  The 
notation given in (1.9) enables a simple and short presentation of the asymptotic theory of rank 
statistics in nonparametric factorial designs. 

1 . 4  A s y m p t o t i c  T h e o r y  

1.4.1 Basic Results and Assumptions 

In this Section, some asymptotic properties of the statistic ~ are given and the asymptotic nor- 
reality of v/ 'NC'~ is derived under the hypothesis H0 F : C F  = 0 where (7 is a suitable contrast 
matrix to formulate the hypothesis. To derive the asymptotic results, the following weak regu- 
larity conditions are needed. 

ASSUMPTIONS 1.1 

(a )  N = ~_~=l ni --* oo, 

(b) N/n i  _< No < oo, i = l , . . . , d ,  

(c) a~ = Var[H(Xil)]  > O, i = 1 , . . . ,  d, where H(x) = N -1Y~fl=x niFi(x). 

Below, it will be stated separately for each theorem or proposition which of  these assump- 
tions are needed to prove the results. First, conditions for the consistency of  the estimators 
a l e  g i v e n .  

= _ = : = ~  ! , 
= H d F  ~ N R~d. '-- ~ i~d 

is the (mid)-rank of the random variable X 0 among all the N observations. Note that 1/2 has 
to be added to N H ( X o )  in order to get the 'position numbers' of the ordered observations in 
case of no ties, since c(0) = 1/2. Note also that R/j is the midrank in case of  tics. Thus, the 
vector of the relative treatment effects p = (Pl,. �9 �9 ,Pal)' is estimated unbiasedly by 
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PROPOSITION | . 2  (CONSISTENCY) Let Xij  '~ El(X), i = 1 , . . .  , d, j -- 1 , . . .  , ni be inde- 
pendent random variables and let Pi and ffi be as given in (1.3) and (1.7) respectively.. Then, 
under the assumptions 1.1 (a) and (b), E(ffi - pi) 2 ---> 0, i = 1 , . . .  , d, as n --+ co. 

PROOF: see Brunner and Purl (2000). [2 

The next theorem is one of the basic results in the theory of rank tests. It provides a se- 
quence of independent random variables which has, asymptotically, the same distribution as a 
certain sequence of non-independent random variables. Here and in the sequel, the asymptotic 
equivalence of two sequences of random variables UN and TN is denoted by UN -- TN. 

THEOREM 1.3 (ASYMPTOTIC EQUIVALENCE) L e t g f f  ,~ F i ( z ) ,  i = 1,.. .  , d  j --- 1 , . . .  ,hi  
be independent random variables. Then, under the assumptions 1.1 (a) and (b), 

- f : 

where Y .  = (Yr . , . . .  , Yd.)' is a vector of  independent (unobservable) random variables Yi. = 
--1 nl n~ Ej=~ ~j, i = 1 , . . . ,  d, and where ~ = H(X~). 

PROOF: See Akritas, Arnold and Brenner (1997) or Brurmer and Purl (2000). 

The quantity Y~j = H ( X i j )  is called asymptotic rank transform (ART) because Y/j is asymp- 

totically equivalent to Yil = H(Xi~), (Akritas, 1990). We note that v / - N f  Hd~" = ~ Y.  is 
a vector of independent (unobservable) random variables and thus, the covariance matrix of 

Y .  is a diagonal matrix, viz. 

(1.10) 

where o~i is given in the assumption 1.1 (c). 

1.4.2 Asymptotic Normality under Ho F : C F  = 0 

It should be pointed out that the statement of Theorem 1.3 is that v / N ( Y .  - p )  is asymptotically 

equivalent to the random vector ~ ( ~  - f f f ldF) where f H a l f  is unobservable. However, 

under the hypothesis Ho F : C F  = 0 it follows that 

Note that the random vector f H d F  vanishes under H0 F : C F  = 0 and thus, by Theorem 1.3, 

v T c p  - v ~ c V  
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under Ho F : C F  = 0 where v/-NG-~ is a vector of (observable) linear rank statistics. These 
considerations are the key point for the derivation of rank tests in factorial designs. They were 
intnxtuced by Akritas and Arnold (1994). Finally, the asymptotic normality of  ~ Y.  follows 
r a r e l y  from the Cenlral Limit Theorem since the components of Y. are means of inde- 
pendent and identically distributed random variables which are also uniformly bounded. We 
summarize the above considerations in the following 

THEOREM 1.4 (ASYMPTOTIC NORMALITY) Let Xij ~ Fi(a 0, i = i , . . .  , d, j = i , . . .  , hi, 
be independent random variables and assume that a~ >_ a~ > 0 where tr~ is given in the 
assumption 1.1 (c). Let V N  be as given in (1.10). Then, under the assumptions 1.1 (a), (b) 
and (c) and under the hypothesis Hff : r = O, the statistic x / ~  has, asymptotically, a 
multivariate normal distribution with mean 0 and covariance matrix C V  ~rC'. 

1.4.3 E s t i m a t i o n  o f  the  A s y m p t o t i c  Var iances  

The asymptotic variances cry, i = 1, . . .  , d, are unknown. They can easily be estimated from 
2 is given in the following theorem. the ranks Rij. An L2-consistent estimator of tr i 

THEOREM 1.5 (VARIANCE ESTIMATORS) Let Xij -,~ Fi(z), i = 1 , . . . ,  d, j = 1 , . . .  ,hi, be 
independent random variables and assume that cr~ > ag > O. Then, under the assumptions 1.1 
(a), (b) and (c), E(~ / t r~  - 1) 2 --~ 0 as N --+ 00, where 

^ 1 n, , = - - 1  P~j, i = l , . . . , d ,  (1.11) 
~ - N2(n i _ 1 / ~  (Rij - ~..)2 ff~i', ni 

where Rij is the rank of  Xi j  among all the N observations. Moreover, ~rN v~r I - - ~  Id Where 
d 

N = ( 3  k q  
i=1 n i  

PROOF: see Brunner and Purl (2000). [] 

It should be noted that in some special cases, all or some of the variances a~ may be equal 
under//oF. Thus, the corresponding estimators may be pooled to have a better estimator for the 
common variance. For example, in the one-way layout under the hypothesis/-/oF : P d F  = 0, it 
follows that ol 2 . . . . .  a~ = tr 2 which is estimated consistently by 

1 d ~ (  N + 1 ) 2  
~ = N ~ ( N -  1) ~ Rij (1.12) 

"= j=l 

since R.. = (N + 1)/2. In case of no ties, ~ reduces to ~ = (N + 1)/(12N).  This means 
that it is not necessary to give a 'correction for ties' since 3~ given in (1.11) and ~ given in 
(1.12) automatically accomodate for ties. 
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1.4.4 Asymptotic Normality under Fixed Mternatives 

The results of this subsection are used to derive confidence intervals for relative treatment ef- 
fects. Therefore, we restict the considerations to the component i of the vector ~. The asymp- 
totic multivariate distribution ~ C ~  has a rather involved covariance matrix which we shall 
not consider in this paper. We refer to Purl (1964). 

THEOREM 1.6 (ASYMPTOTIC NORMALITY UNDER FIXED ALTERNATIVES) Le tX i j  ,,~ Fi(x), 
i = 1 , . . .  , d, j = 1 , . . . ,  hi, be independent random variables. Furthermore, let 

where 

Z ~  = I [NH(Xik )  - -  niF~(Xik)], 

Z(-~ 0 = I [ N H ( X r o )  - ( N  - -  n i ) H ( - i ) ( X , , ) ] ,  r # i, 

d 

1 E nrFr(x)  (1.13) H(-i)-z-( ) = N - -  ni ,.#i 

denotes the weighted average o f  all distribution functions without the distribution function 
F~(x). Finally, let a~ = V a r ( Z n )  and ~r:i = Vat(Z(-1 O) and assume that o~i , ~:i >- cr~ > O, 
i # r = 1 , . . .  , d. Then, under the assumptions 1.1 (a) and (b), the statistic ~r - Pi) has, 
asymptotically, a normal distribution with expectation 0 and variance 

d 

2 No~.. + N E n~'r~,:i , i = 1 , . . .  ,d. 
8i  = ~ t n i  r#i 

(1.14) 

PROOF: The proof follows easily from Theorem 1.3 by noting that the random variables Zik 

and g(~ -i) are independent, k = 1 , . . .  , ni, s = 1 , . . .  , nr,  i # r = 1 , . . .  , d. [2 

The unknown variances e~ and ~:i in (1.14) can be estimated easily by using three different 
types of rankings. The estimators are given in the following theorem. 

THEOREM 1.7 (VARIANCE ESTIMATOR FOR 8~) Let R(iik ) denote the rank of  Xik among all 
the ni observations within treatment level i (within-ranks), i = 1 , . . .  , d, and let p ~ O  denote 
the rank of  Xra among all the ( N  - ~)observations without the observations X i l , . . .  , Xin~ 
within treatment level i (partial ranks). Further let 

^ - -  , (1.15) 

~ ; '  = m ( , ~  - 1) ~ ~ "  - ~ ; - o  _ r~. + ~ - o  ~ # ~, (1.16) 
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where i~r. -i) - t  ,~',,~, p~-i) denotes the mean o f  the partial ranks p~;i) within treatment = n r  L..~a=l 

level i. I f  o~i, 7-~i >_ ~ > O, i ~ r = 1 , . . .  , d, then, under the assumptions 1.1 (a) and (b), 

N a 
= N37 + ~ E r ~ . ~ :  i (1.17) 

is a consistent estimator of s~ given in (1.14) in the sense that E (~i / s 2 - 1)2 __~ 0 as N --~ oo. 

PROOF: The proof follows by using the same techniques as in the proof of Theorem 3.3 of 
Bnmner and Puri (2000) and is therefore omitted. [] 

1.5 S t a t i s t i c s  

To test the nonparametdc hypothesis H F : C F  = 0, three different types of statistics are 
considered. 

1. Two quadratic forms (explained below in (a) and (b)) based on V'-NC~ are used to detect 
general alternatives of the form C p  ~ 0. 

(a) The so-called Wald-type statistic (WTS) uses a generalized inverse of the covariance 
matrix C V ~ C '  to generate the quadratic form, where the unknown covariance ma- 
trix VN is replaced by the consistent estimator V N  given in Theorem 1.5. 

(b) The so-called ANOVA-type statistic (ATS) is also used to detect general alternatives 
of the form C p  ~ 0. Compared with WTS, its small sample properties are more 
desirable. 

2. Linear rank statistics of the form x/-Nw'C~ are used to detect the special patterned alter- 
natives of the form w ' C p  ~ O, where tv = (wt, �9 �9 �9 , wd)' is a vector of known constants 
corresponding to the conjectured pattern. In particular, this includes the cases of ordered 
alternatives for w = (1,2,3, . . .  ,d)' or w = (d, . . .  ,3 ,2 ,1) ' .  Moreover, linear rank 
statistics are used to derive confidence intervals for relative treatment effects. In view of 
the discussion in Sections 1.3.1 and 1.3.2, we restrict ourselves either to the case of d = 2 
treatments or to equal sample sizes nl  = �9 .. = n d  = n. 

1.5.1 Quadratic Forms 

A nonparamelric hypothesis of the form H0 F : C F  = 0 can be tested by a quadratic form 

q*N(c) = vT(c~) '  A vT(C~) 
= N .  ~ ' C ' A C ~ ,  

where C is the contrast matrix by which the hypothesis is formulated and A is a suitable sym- 
metric matrix. Both matrices depend on the hypothesis and on the slrucmre of the design. 
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Wald-Type Statistics In this paragraph, we consider a quadratic form to test hypotheses of 
the form Ho F : ( T F  = 0 in an arbitrary experimental design where C has to be chosen appro- 
priately. First, consider 

Q ~ ( C )  = N. ~C'[(TVNC']-C~, 

where [(TVNC']-  denotes a g-inverse of C V N C '  where the covariance matrix VN is given 
in (1.10) and is assumed to be offifll  rank according to the assumption 1.1 (c). Thus, under 
Ho F : (TF = 0, the quadratic form Q~r has, asymptotically, a x~-distdbution with f = r ( C )  
d.egrees of freedom. Since V N  is unknown in general, it is replaced by the consistent estimator 
VN given in Theorem 1.5. The quadratic form 

QN( C)  = N " ~' C'[(7~r N(7']- (7~ (1.18) 

is called Wald-type statistic (WTS) (or rank version of WTS) and has, asymptotically, also a X~- 
distribution with f = r ( C )  degrees of freedom. However, very large sample sizes are needed 
to achieve a good approximation by this distribution. Therefore, another quatratic form should 
be used for medium or small sample sizes which is considered below. 

ANOVA.Type Statistics The hypothesis H0 F : C F  = 0 can be formulated equivalently as 
Ho F : M F  = 0 where M = C ' ( C ( 7 ' ) - C  is a projection matrix. Note that all elements of M 
are known constants and M does not depend on the special choice of the g-inverse ((7(7')- .  
In many cases (in all complete crossed-classified designs, for example), the contrast matrix (7 
can be chosen such that all diagonal elements of M are identical to ra, say. This leads to the 
simplified form of the Approximation Procedure given below. 

To test the hypothesis Ho P : (TF = 0, consider the quadratic form Q N ( M )  = N .  ~' M ~. 
The asymptotic distribution of QN under the hypothesis is given in Theorem 1.8 and a small 
sample approximation is given in Approximation Procedure 1.9. 

THEOREM 1.8 Let M = C ' ( C C ' ) - C  and let V N  be as given in (1.10). Then, under the 
assumptions 1.1 (a) and (b) and under the hypothesis Ho F : C F  = O, the quadratic form 
Q N ( M )  = N . ~' M ~ has, asymptotically, a weighted x2-distribution, i.e. the same dis- 
tribution as o f  ~,~= l AiUi where the Ui are independent random variables each having a X~- 
distribution and the Ai are the eigenvalues o f  M V  N M .  

PROOF: First note that M F  = 0 r C F  = 0 since C ' ( ( 7 ( 7 ' ) -  is a generalized inverse 
of  (7. Thus, under Ho F, by Theorem 1.4, ~ M ~  has, asymptotically, a multivariate nor- 
real distribution with mean 0 and covariance matrix M V N M .  From this, it follows that 
Q N ( M )  = N �9 ( M ~ ) '  M M ~ = N .  ~ '  M ~ has, asymptotically, the same distribution 
as of  ~/~=1AiUi, which has a weighted x2-distribution (see e.g. Graybill, 1976, p.136). D 
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APPROXIMATION PROCEDURE 1.9 Let M = C ' ( C C ' ) - C  and assume that the diagonal el- 
ements rnu o f  M are identical to m, say, i.e. rau = m. Further let Aa = d i a g { n l , . . .  ) ha}. 
Then, under the assumptions o f  Theorem 1.8, the distribution o/the statistic 

N �9 ~ ' M ~  = Q~v(M) (1.19) 
F l y ( M )  -- m .  tr(~rN) m . tr(~rN) 

A 

can be approximated by the central F ( f l, $o )-distribution with estimated degrees o f  freedom 

= m ' .  = (Nm)  u. 
t,'( Mf,'N Mf,'~ ) t,'( Mf" N M f ' N  ) 

(s, 
- >-~i=1 ~ / [ n ~ ( n i  - 1)] 

where ~ is given in (1.11) and tr(.)  denotes the trace o f  a square matrix. 

and (1.20) 

(1.21) 

For the derivation of this approximation procedure, see Brunner, Dette and Munk (1997) where 
also the the more general case is considered where M does not have identical diagonal elements 
and the accuracy of the approximation is verified by some simulation studies. 

1.5.2 Pat terned  Al ternat ives  

The method of Page (1963) and Hettmansperger and Norton (1987) is used to derive test statis- 
tics which are especially sensitive against a conjectured patterned alternative. The estimated 
treatment effects are weighted by a set of constants W l , . . . ,  wd reproducing the conjectured 
pattern of the alternative which has to be specified in advance. Let to = ( w l , . . . ,  wd)' denote 
the vector of the weights wi. Then under//oF : C F  = 0, the linear rank statistic 

Ln( to)  = x / -Nto 'C~ (1.22) 

has, asymptotically, a normal distribution with mean 0 and variance 

a~ = to'CVnC'to , 

which can be estimated consistently by 

~ = t o ' C f z N C ' . ,  , 

where ~rN is given in Theorem 1.5. Thus the statistic TN(to) = LN( to ) /~N has, asymp- 
totically, a standard normal distribution under H0 F : C F  = 0. For small sample sizes, the 
distribution of the statistic LN(to)fg~r may be approximated by a central t]- -distribution with 

T = - (123) d ) 
E~=I ( q ~ / m )  2/('~, - 1) 
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degrees of  freedom. Here, the quantities qi are the components of  q '  = to'Cr. In case of no 
ties, this approximation is rather accurate for ni _> 7, while in case of ties, the quality of the 
approximation apparently depends on the number and the size of the ties. 

1.5.3 The Rank Transform Property 

In this subsection, the rank transform (RT)-technique suggested by Conover and lman (1976, 
1981) is discussed. This technique has been criticized by Blair, Sawilowski and Higgens (1987), 
Akritas (1990, 1991), Thompson and Ammann (1990) and Thompson (1991) and was studied 
in detail by Brunner and Neumann (1986a). The following considerations shall clarify the ques- 
tion when the method of the RT-teclmique works and when it fails. Moreover, the procedures 
described in this paper shall be distinguished from the usual RT-statistics and the expression 
RT-technique should be replaced by the terminology rank transform property of a rank statistic 
which is explained in detail below. 

First note that with the statistic ~, the original observations are replaced by the (mid)-ranks 
among all observations. Recall that Y. = (YI., �9 �9 �9 , Y~.)' is the mean vector of the asymptotic 
rank transform Y~j = H(Xij), i = 1 , . . .  , d, j = 1 , . . .  , hi. It follows from Theorem 1.3 that 
V~C?~  is asymptotically equivalent to v/-NG-'I 7 .  ff C $ '  = 0, i.e. ff the hypotheses are formu- 
lated in terms of the distribution functions. In some cases, the hypotheses in the linear model 
are equivalent to the corresponding nonparametric hypotheses (see e.g. Bruaner and Purl, 2000, 
Proposition 5.1). Note that most counter examples for the RT-technique use linear hypotheses 
(7/~ = 0 such that C F  ~ 0 where t* = (#t,- �9 �9 #a)' is the vector of the expectations. 

Next, consider the covariance matrix 

V N  = Cov ( v / N  Y . )  = N.d iag{n-~ta~, . . .  ,n-dla~} 

and note that in general the diagonal elements a~ = Var(Yit)  of V u  am not necessarily all 
equal, even ff homoseedasticity is assumed for the Xij 's,  since H(.) is a non-linear transforma- 
tion (Akritas, 1990). However, some of the diagonal elements in VN may be equal under the 
hypothesis H0 : C F  = 0 and the corresponding estimators given in (1.11) can be pooled to 
estimate V N  consistently. 

Now let Uij "~ N (#i,a~), i = 1 , . . .  , d, be independent normally distributed random vari- 
ables where #i = E(Yil) and ~ = Var(Yil). Let U. = (UI., �9 - . ,  Ua.)' denote the mean vector 
of the Uij's. Then, by definition, the statistics V ~  U. and VtN Y. have, asymptotically, the 
same multivariate normal distribution. Furthermore, define ~i (hi -- - I  ,*~ = 1) E~=I(Uij - ~i.)2 

and let ~r denote the matrix VN with o~i replaced by ~i. Then VN is consistent for V N  
and from Theorem 1.11, ~rN is consistent for V N  in the sense that ~'NVTv t --?-4 Id and 
~ ' N V ~  t P > Id, respectively. Note that ~ is derived from ~ by replacing the ranks Rij by the 
corresponding normally distributed random variables Uij. Thus, the statistic ff is a 'rank trans- 
form' of  the statistic U. and it follows from the above considerations that under Ho : r  = 0, 
the statistics vt-N(7~ and v / - N ~ ,  have, asymptotically, a multivariate normal distribution 
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N(0,  C V N C ' ) .  This property of the rank statistic x/-NC~ shall be called rank transform prop- 
erty (RTP) with respect to the normal theory statistic v/-NCU.. Note that the expectations #i 
and the variances o~i of the corresponding normally distributed random variables Uij are deter- 
mined from the ART under H0 : C F  = 0. 

For testing H 0 : C F  = 0, there are two useful ways to define a statistic from ~/-NC~. 
One possibility is to define the quadratic form QN(C)  = N ~ ' ( C V ' N C ' ) - I ~  which is the rank 
version of WTS. It follows from Theorem 1.4 that under H0 : C F  = 0, the quadratic form 
QN(C)  has, asymptotically, a central x~-distribution with f = rank(C) degrees of freedom. 

The other possibility is to define the quadratic form FN(M) = N ~ ' M ~  which has the RTP 
with respect to the normal theory statistic N ~ . M U .  where M = C ' ( C C ' # ) - t C  is a projection 
matrix which is taken from the ANOVA models with equal sample sizes. Under Ho : C F  = O, 
the asymptotic distribution of N ~ . M U .  is a weighted x2-distribution because the variances 
a~ are not necessarily equal, in general. For small sample sizes, N ~ . M U .  is approximated by 
a scaled F-distribution with estimated degrees of freedom. 

1.6 Applications to Special Designs 

In this section, the general theory described in the previous subsections is applied to some 
special factorial designs. Some explicit statistics shall be derived from the general approach 
where it tunas out that several known rank statistics which have been proposed for some sim- 
ple designs, come out as special cases. In particular, we consider the one-factor design where 
the Kruskal-Wallis statistic (1952, 1953) and the rank-transform statistic (Conover and Iman, 
1981) come out as special cases. Moreover, for d = 2 treatments, the Wilcoxon-Mann-Whitney 
(WMW) statistic also comes out as a special case and if the observations have a Bernoulli- 
distribution, the Xa-statistic for comparing proportions comes out as the square of the W M W  
statistic. Cross-classified models are considered as examples for two-way layouts. The exten- 
sion to higher-way layouts is straightforward. 

1.6.1 One-Way-Layout 

Kruskal-Wail is-Test  In the one-way layout, we observe independent random variables Xij  "~ 
Fi = 1 + F i - ] , i  1 , . . .  j 1 , . .  L e t P e  = I e  1 ~[Fi + = , a, = . , hi. - ~ J ,  be the contrast matrix 
defined in (1.1). Then the hypothesis for the one-way layout is written as H ~  : F1 . . . . .  Fa 
or equivalently as P e F  = O. Let p = (Pl,. .. ,PaY = f H d F  be the vector of the relative 
treatment effects Pi = f HdFi where H(x)  = t e ~ i=x  niFi(x). The vector p is estimated 

consistently by ~ = f Hd~ '  = ( i f1 , - - . ,  fie)' where Pi = -~ ( ~ .  - t )  and ~. .  = ni -x ~-'~'~1 Rij 
is the mean of the (mid- ) ranks /~  of Xij among all the N = ~--~=1 n~ observations. 

Under H0 F, the statistics v f - N P ~  and x/-NPeY, are asymptotically equivalent (see Theo- 
rem 1.3) where Y.  = ( Y l . , . . .  , Ye.) ~, Y---i. = ni -x ~-'~=1 H(Xij) .  Let A = diag{n l , . . . ,  he} 
denote the diagonal matrix of the sample sizes. Then under H0 F : P a F  = 0, it  follows that 
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a l  2 . . . . .  o~a = e 2 and VN = Coy (Vt 'NY.)  = N a 2 i  -1. A consistent estimator of a 2 

follows immediately fmom Theorem 1.5 by pooling the estimators 8~, viz. 

^ 1 (P~j - ~..)~. (1.24) 
a~ = r e ( N -  a) i = ,  ~ = 1  

To test the hypothesis H0 F, consider the quadratic form QN given in (1.18) and let W N  = 
A - 1  A - 1  ^ - 1  ^ - 

V N (I~ - J . V  N/tr(V.N )), where VN: = A / ( N ~ ) .  Note that W N  is a g-inverse of 
Pa~rmpa and that P ~ W N P a  = ~ 'N .  Then, the quadratic form 

= ~ P  - 

N - a  " ( ) = a n, i ~ l n  i ~.. N + I  2 
E E (R.ij - ~..)2 2 (1.25) 

i = l  j = l  

is a WTS which has, asymptotically, a central X~a_l-distribution under Ho F. For small samples, 
the distribution of the statistic QN/(a - 1) may be approximated by the central F(f l ,  .1'2)- 
distribution where f l  = a - 1 and f2 = N - a - 1. Note that under Ho F, the variances are 
equal, i.e. a~ . . . . .  a~ and thus, it is not necessary to apply the small sample approxima- 
tion considered in the previous section. It is well known that for continuous distributions, the 
approximation is quite accurate ff a > 3 and ni > 6. 

REMARK 1.1 QN given in (1.25) has the so called rank transform (RT) property, i.e. i f  the 
ranks Rij are replaced by independent normally distributed random variables, then the corm- 
sponding normal theory statistic has, asymptotically, the same distribution as QN. Note that the 
statistic Q N was called 'rank transform statistic' by Conover and Iman (1981). 

If  a~v given in (1.24) is replaced by 

^ 1 p~j N + I  2 
ag = N2(N_ 1) i=: j=l 2 ' (1.26) 

then the quadratic form QN given in (1.25) becomes the Kruskal-Wallis statistic which ac- 
comodates automatically for ties ff the mid-ranks are used. If the distribution functions are 
continuous, then, 

1 ~/r ( N + I )  2 _ N + I ,  
ag -- N 2 ( N _  1) i 2 12N 

- =  

under H R. Then, QN given in (1.25) becomes the Kruskal-Wallis H-statistic (Kruskal and 
Wallis, 1952, 1953). Note that both the variance estimators ~ and ~2 am consistent estimators 
of a 2 under H~.  
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Wflcoxon.Malm-Whitney- and xa-Test Straightforward computations show that, for a = 2, 
QN given in (1.25) reduces to the square of the W'flcoxon-Mann-Whitney (WMW) statistic 

W~r = - - N  - 1 . nlna �9 (R1. - ~ . ) 2  , (1.27) 

i = l  .~=1 2 

which in case of no ties becomes 

w g -  12nlr~ (-Rt. _ ~2.)u. 
N ( N  + 1) 

Now assume that the observations are dichotomous having Bernoulli-distributions, i.e. Xij "~ 
B(qi), i = 1,2, j = 1 , . . .  ,hi. Generally, the results of such a trial are arranged in a contin- 
gency table where nio denotes the number of O's and nil denotes the number of l 's,  i = 1, 2, 
within treatment i. 

Treatment 
Outcome 1 1 2 Total 

Xi~ = 0 m0 [ n~o n.0 
Xq= 1 7/,11 T/,21 n .  1 I 

II nl I II N 
The hypothesis Ho e : F1 = Fz is equivalent to Ho : ql = q2 since B(q~) is completely 

determined by q,, i = 1, 2. Note that with dichotomous data, only two different mid-ranks 
occur, namely 

(1 +n.o)/2,  if Xij = 0, 
Rij = ( n . o + N + l ) / 2 ,  if X i j = l .  

Thus, the rank means and their differencs are 

R1. 1 +n.o  + N nil 
2 2 nl 

~ .  l + n . o  + N r~l 
2 2 r~ 

 o11 
R 1 . - ~ .  = 2-" ~ n l  

Moreover, the quantity N ~  reduces to 

1 ~..~ j..~ ( 
N ~ -  N--=-i  ~ - -  

and W~ given in (1.27) finally becomes 

2 
N + 1. N n.on.1 

2 N - 1  4 

W 2 = ( N  - 1 )  (7"/'1~ - T/'11n20)2 , ( 1 . 2 8 )  

n l n 2 n . o n . 1  

which is the well known X2-contingency table statistic, up to a factor N / ( N  - 1). Thus, for 
dichotomuous data, the WMW test is asymptotically equivalent to the xZ-contingency table tst. 
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1.6.2 T w o - W a y - L a y o u t  

Next, we consider the two-way cross classification where factor A has i = 1 , . . . ,  a levels 
and factor B has j = 1 , . . .  ,b levels with k -- 1 , . . .  ,ni t  replications per cell (i , j)  and the 
independent random variables X0 t  have distribution functions Fit  (x) = ~[F0X + + Fi~ ]. Let 

F = ( F H , . . .  , F l b , . . .  , F a t , . . .  , Fab)' 

1 1 CB 11, denote the vector of  the distribution functions. Let CA = Pa | ~lb, = ~ a | Pb and 
C, AB = Pa | Pb where P a  and Pb are given in (1.1). Then the nonparametric hypotheses of 
'no main effect A ' ,  'no main effect B '  or 'no interaction A B '  are formulated as 

HoF(A) : O A F  = O, H E ( B ) :  C e F  = O, HoF(AB): CABF = O. 

REMARK 1.2 In a linear model without interaction (i.e. where the main effects are well de- 
lined), the hypotheses of  no nonparametric main effect A or B,  respectively are equivalent to 
the parametric hypotheses o f  no main effect A or B,  respectively (in the usual linear model). 
For a timber discussion o f  nonparame~c hypotheses, see Akritas and Arnold (1994), Akritas, 
Arnold and Brmmer (1997), Brmmer, Puri and Sun (1995) and Brmmer and Ptwi (1996). 

Let k ' (z)  = ( F u  (z), . . .  , F,b(Z))' denote the vector of the empirical dislribution functions 
_ n / j  

Fit(x)  rtit I E k = l  c(x Xijk) and let ~... b -1 b -- , = - = ~--~=1Rit- i = 1 , . . .  , a, denote the un- 

weighted means of the cell means ~ ' t .  = ~-1 x--,n~ RO t where Rift  is the rank of Xitk among '*i t L . i k =  1 

all the N = ~ = t  ~-~=1 r~t observations. To test the hypotheses/-/oF(-) formulated above, con- 

sider the statistic ~ = f ~d~ 1 - -  1 - -  1 , . . . .  ~ ( R l l . -  ~, , R~b.--~) under the hypothesis H y : C F  = 0 
using the contrast matrices CA, C n  and CAn. Let 

n o  a b ~.2. 

^2 1 E ( ~ i j k  - -  ~.j .)2 V'N : N ( ~  ( ~  ~ ,  (1.29) 
a b  = N2(n0 - I)  k=1 i=I t=l  

1 b A 2  

= P t=1 ', i=I  

i~--I ^-i . t ~--i . 
First we consider the WTS for this design. Let W~ ---- N- E. (I~ - d~r. /I~ 1~) and 

note that W .  is  a g-inverse o f  CAVNCtA = N P . ~ . P .  and that P . W a P a  = Wa.  Then, 
under Ho F (A), it follows from Theorem 1.4 that the quadratic form 

QN(CA)  = N~CIA(CA~rNCtA)-CAp = N~ '  ( W a  | l Jb )  

1 ~ . .  1 , (1.30) 

,=1 ~ E~=1(1/~) ,=1 

has asymptotically a central x~-distribution with f = a - I degrees of  freedom. Because of the 
symmetry, rows and columns are interchangeable in this design and the quadratic form QN(CB) 
for testing HoF(B) is obtained from QN(CA) by interchanging the indices i and j .  
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The statistic for testing the hypothesis H((AB) of no nonpararnetric interaction, namely 

Q~(CA.) = N~C'A.(CA~frNC'A.)-CA~ 

is also derived from Theorem 1.4 and Q~r(CAB) has, asymptotically, a centxal x~-distribution 
with f = ( a -  1) x ( b -  1)degrees of freedom under HoF(AB). 

Simulation studies showed (see Brunner, Dette and Munk, 1997) that the approximation by 
the limiting x2distributions of the quadratic forms given above are rather poor and large sample 
sizes are needed to have acceptable approximations. Therefore, we derive the ANOVA-type 
statistics described in subsection 1.5.1. 

In the two-way layout, the nonparametric hypothesis of no main effect A is equivalently 
restated as HoF(A) : M A . F  = 0 where M A  = P,, | ~Jb is a projection matrix with constant 
diagonal elements rna = (a -- 1)/(ab). Let 

1( -0 1 b ^ 1 b 1 (~ . i . __1  ~ 

~.. = - ~  . . . -  , 

where ~. .  b_t b ~2~=~ ~ ' j .  and ~ . . . .  -1  ~ = a ~ i = t  ~'." Then, under HoF(A), the statistic 

N Nab * 
FN(MA)  = t r (MA~rN ) ~ ' M a ~  = ( a -  1)tr(~'N) ~--'~--~(ffi. _ft..)2 

i=1 j = l  

----- ab 2 "~'~ (~... _ x~...) 2 

has, asymptotically, a ~entral F(7",,, s w h ~  the de~.,~s of f r ~ o m  7",, ~d  s 
1 are derived from (1.20) and (1.21) respectively by replacing M with M A  = P,, | ~Jb, m with 

(a - l)/(ab) and ~ and ~rN are given in (1.29). Because of the symmetry, rows and columns 
are interchangeable in this design, the quadratic form FN(MB) for testing HoF(B) is obtained 
from FN(MA) by interchanging the indices i and j. 

Finally, the nonparametric hypothesis of no interaction is restated equivalently as HoF(AB) : 
MABF = 0 where MAB = P. @ P~ is a projection matrix with constant diagonal elements 
.~ = (~- I)@- 1)/(~b). Let~'.j - ~ E,_-~ p,~ ~(~.j.- 1), where ~.~. = ~-~ ET_=~ ~j.. 
Then, under HoF(AB), the statistic 

N 
FN(MAB) ---- t r (MAB~rN) ~ ' M a B  

Nab a b 

= (~-  1)@- 1)t~(fT~) Y ] ~ ( ~ J  -~ '  -P'J+P")~ i=1 .~=1 

= ~ ( ~ - 1 - ) @  1 ) ~ *  " - ' b  ^ ~ "  - - 
- -  2..ai=1 ~.ai----.l 0 r l j / n i j  i=1 j = l  
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has, asymptotically, a eenlxal F(fAB, fo)-distribution where the degrees of freedom fan  and fo 
are derived from (1.20) and (1.21) respectively( by replacing M with M A B  = Pa | Pb, m with 
(a -- 1)(b - 1)/(ab). The quantities ~ j  and VN are given in (1.29). 

1.6.3 Higher-Way-Layouts  

In this Section, it is explained how to extend the methods presented in the previous Sections to 
higher-way layouts. This will be done by means of the three-way layout (cross-classification). 

Example :  Three -Way  Layout  

The observations X o u  ~ Fij~(x) are assumed to be independent with distribution functions 
F0~(x ), i = 1 , . . .  ,a, j = 1 , . . .  ,b, k = 1 , . . .  ,c and the index l = 1 , . . .  ,nij~ denotes 
the independent and identically distributed replications. The hypotheses for the nonparametric 
main effects are expressed as 

HOe(A): P l  . . . . . . .  F-',.., 

HF(B) : ;.I ...... r.b., 

HOe(C): ; . . ,  . . . . .  ; .... 

where Fi.. denotes the mean over all bc dislribution functions within level i of factor A, F.  1. 
denotes the mean over all ac distribution functions within level j of factor B and F..k denotes 
the mean over all ab distribution functions within level k of factor C. Then, the hypotheses can 
be written as 

1 , ! l , ~ F  CA/;'  0, HE(A): ( P a  @ ~lb | c c, = = 

HOE(B): (11' 11'U~ .~ ~ | Pb | ~ ~, = C B F  = 0 ,  

HoE(C): (t  1, 1 , Pr CcF 0, ,~ a | ~lb | = = 

where F = (Fro,  �9 �9 �9 , F~c)' denotes the vector of the distribution functions. 

The hypothesis of no nonparamelric AB-interaction is usually expressed as 

HoF(AB) : -ffij. + -ff . . . .  f-~.. + f--.j., i = 1 , . . . ,  a, j = 1 , . . . ,  b, 

where F 0. denotes the mean over all c dislribution functions within the levels i of factor A 
and level j of factor B and F... denotes the mean over all abc distribution functions in the 
experiment. In matrix notation, this hypothesis is written as 

1 , Hoe(AS):  (Pa | Pb | ~ I~)F  = C A B F  : O. 

In the same way, the hypotheses for the other nonparametric interactions are formulated as 

1 , Ho(AC): (Pa | ~1 b | P c ) F  = C A C F  = O, 

Ho(BC): (!I' | Pb | Pc)F = CBcF = O, (1.31) 

Ho(ABC): (Pa | Pb | Pc)F = CABCF = O. 
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The conuast matrices CA, CB . . . .  , CABC by which the hypotheses are formulated are used 
to write the statistics for testing these hypotheses. Let P~jk~ denote the rank of Xijkj among all 
N a b = ~-~-~=1 ~ j = t  ~ = 1  n/jk observations and let R.  = (RI l l . , . .  �9 , R ~ . ) '  denote the vector of 

the rank means ~"ik. = n ~  ~-'~'~ Rij~t within all abc treatment combinations. Finally, denote 
by 

S N  = d i a g ~ S ~ ' ~ )  s ~  
t n u l  " ' "  ' n ~  j 

the diagonal matrix of the variance estimators 

r t i j k  

Si~, 1 E ( P~jkt -- - -  2 - ~ j ~ . )  
niitc -- 1 t = l  

divided by the sample sizes nij~. Then, for large sample sizes, the statistic 

QN(C) = ~C'[CSNC/]-xcR- (1.32) 

has, approximately, a central x}-distribution with f = rank(C)  degrees of freedom. 

To test the hypothesis HoF(A) of no nonparametric main effect A, for example, the matrix 
C in (1.32) is replaced by CA = P~ | ~1~ | ~1'  where rank(CA)  = a - 1. In the same way, 
the statistics for testing the other hypotheses can be derived from (1.32) by using the contrast 
matrices given above to formulate the hypotheses. 

For small sample sizes, let 

T A = C ' A [ C  A C ' A ] - I C  A 

T B = C ' B [ C  B C ~ B ] - I c  B 
e t --I T c  = Oc[CcOc] Co 

v t - 1  
TAC = CAc [CAcCAc  ] C A C  

T,,o = C' , ,o [C, ,~C' , ,~ ] - 'CBc 

i , ~ q ,  HE(A) ,  = P ,  | ~1 b v ~ e, - f o r  

= ! 1 '  | 1 7 4  - fo rHoF(B) ,  Q Q C C) 

= .1-1'. | ]1; | Pc,  - for  Ho~(O)) 
P ~ '1' - f o ~ y ( A B ) ,  = P a D  b ~  c, 
, , l-loV(AC), ----Pa|174 --for 

= t-l' | Pb | V~, --for/-/oF(Be), 

- f o r  HoF ( A B C ) .  # t --1 T ABO = C ABo[C ABoC ABo] C ABO = P~ | Pb | Pc, 

Here, the matrices P~ = Ia - !jet a, Pb = lb -- ~Jb and Pc  = Ic  - !jc c are the centering 
matrices of dimensions a, b and c respectively. 

For small samples sizes, the hypotheses H0 F : C F  = 0 are tested by the statistic 

1 . ~  T R, (1.33) F~(T)  = ,r(f~-------~ 

by replacing in (1.33) the matrix T by one of the matrices TA, TB . . . . .  corresponding to 
the hypothesis to be tested. In (1.33), tr(.)  denotes the trace of a square matrix. Under the 
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hypothesis H0 F, the statistic FN(T) has approximately a central F(fr ,  fo)-distribution where 

/ ^ 

f T =  tr(TSN) and f0 = i=l j=l  k=, / 

t r (TSNTSN) ~ E(sijk/rt i jk 2/(nijk -- 1) 

i=1 .~=1 k = l  

1.7 Example and Software 

1.7.1 Two-way Layout with Count Data 

Fert i l i ty  Trial  In this subsection, we apply some of the procedures discussed in the previous 
subsections to an example with count data in a two-way layouL The statistics and the approx- 
imations are given in subsection 1.6.2. The authors are grateful to Dr. Beuscher (Schaper & 
Briimmer, Inc., Salzgitter, Germany) for making available the data. 

In a fertility trial, three groups of female Wistar rats were treated with three different dosages 
(placebo, dosage 1 and 2) of a drug (factor A). Among other fertility parameters, the number 
of corpora lutea from rat ovaries was counted after a section of the animals. The same trial was 
repeated one year later with three new groups of rats. The results of the trial for the two years 
(factor B) and the three groups with nt t  = 9, nt2 = 13, n2t = 9, n,~ = 8, n31 = 8, rts2 = 12 
animals are given in Table 1.1. 

TABLE 1.1 Number of corpora lutea from Wistar rats in a fertility trial. 

Group ]l Year 1 
Placebo 

Dosage 1 
Dosage 2 

Year 2 
13,12,11,11,14,14,13,13,13 12,16,9,14,15,12,12,11,13,14,12,13,12 
15, 12, 11, 11, 14, 13, 14, 14, 12 9, 12, 11, 15, 11, 10, 13, 11 
15, 12, 13, 14, 11, 14, 17, 15 15, 13, 17, 14, 14, 13, 13, 13, 9, 12, I5, 14 

The rank means ~.j. ,  i = 1, 2, 3; j = 1, 2, within the three treatment groups and the two 

years as well as the unweighted means ~-.. within the treatment groups and R.j. within the two 
years are displayed in Table 1.2. 

TABLE 1.2 Rank means Rij., Ri.. and R.j. and relative treatment effects for the number of the 
corpora lutea of the Wistar rats in the fertility trial. 

Ranks Relative Treatment Effects 

Group Year 1 Year 2 [ Ri'.. Year 1 Year 2 Pi. 

Placebo 27.6 28.1 27.8 0.46 0.47 0.46 
Dosage 1 30.1 17.0 23.5 0.50 0.28 0.39 
Dosage 2 38.8 36.7 37.7 0.65 0.61 0.63 

R. -. 32.1 27.7. 0.54 0.46 
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The results of the analysis by the WTS QN(C) and the ATS FN(M)  given in subsection 
1.6.2 along with the resulting p-values are displayed in Table 1.3 

TABLE 1.3 Test statistics and p-values for the nonpararaetric main effects and interaction in the 
ferti/ity Wial. The restdts o f  the test statistics obtained by the WTS with the restdting p-values 
are given in the left part and the results obtained by the ATS with the resulting p-redoes are 
given in He right part of  the ruble. 

Hypothesis 

n y ( a )  
H~(B)  
HoF(AB) 

Wald-Type 
Statistic 

Q~(C) p-Value 

ANOVA-Type 
Statistic 

F,~(M) p-Value 
6.91 0.032 3.80 0.031 
1.28 0.257 1.28 0.264 
1.78 0.412 0.92 0.403 

The large p-value (p = 0.403) for HF(AB) indicates that the results are quite homogeneous 
within the two years (no interaction). However, a significant treatment effect for the drug is 
proved at the 5% level (p = 0.031) and there is no evidence for an effect of the year (p = 0.264). 

1.7.2 Software 

Regarding software for the computation of the statistics described in this section, we note that 
the statistics QN(C) ,  F N ( M )  and LN(to) have the rank transform property under H F.  There- 
fore, it is only necessary to rank all the data and to identify the special heteroscedastic para- 
metric model from the ART under H0 F (see Subsection 1.5.3). Thus, any statistical software 
package which provides 

1. the mid-ranks of the observations, 

2. the analysis of heteroscedastic factorial designs 

can be used to compute the statistics QN(C),  FN(M)  and LN(tO). Below, we provide the 
necessary statements for the Statistical Analysis System (SAS), where the DATA-step and the 
procedures RANK and MIXED are used. 

Data Input  The input of the data is handled in the same way as for the data of a parametric 
model, i.e. factors are treated as 'classifying variables'. 

Ranking The procedure PROC RANK is used to assign the mid-ranks among all observations 
to the data. Note that the assignment of mid-ranks is the default with this procedure in 
SAS. 
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Heteroscedasfic Model The procedure PROC MIXED provides the possibility to define the 
structure of the covariance matrix of the 'cell means' by the option 'TYPE=. . . '  within 
the 'REPEATED' statement. Moreover, the 'GRP=- -. ' option within the 'REPEATED' 
statement defines the factor levels (or combinations of them) where different variances 
are allowed. Note that many types of covariance malrices can be defined by these options 
(including diagonal matrices) so that the notation 'MIXED'  of this SAS-procedure may 
be somewhat misleading. The WTS QN(C) and the resulting p-values are printed out by 
adding the option 'CHISQ' after the slash ' / '  in the MODEL statement. 

For independent observations, the covariance matrix has a diagonal structure which is 
defined by 'TYPE=UN(1)'. In general, for the nonparametric main effects and all inter- 
actions, the variances in this diagonal ma~_x may be different for all factor level com- 
binations. Thus, the highest interaction term must be assigned in the 'GRP' option. For 
example, in a three-way layout with factors A, B and C, this option is 'GRP=A*B*C'. 

Starting with version 8.0 (which should be available after the end of the year 1999), the 
option 'ANOVAF' can be added somewhere in the line of  the PROC MIXED statement 
in order to print out the ATS Fie(M) and the resulting p-values. The use of the ATS is 
recommended for small and medium numbers of replications. 

Example: Fertility Trial (Results, see Table 1.3) 

DATA fert; 
INPUT treatS year number;, 
CARDS; 
PL 1 13 
PL 1 12 

PL 2 12 
D1 1 15 

D2 2 14 

RUN; 

PROC RANK DATA=fert OUT=fert; 
VAR number; 
RANKS r; 
RUN; 

PROC MIXED DATA=fert ANOVAF; 
CLASS treat year; 
MODEL r = treat I year / CHISQ; 

REPEATED / TYPE=UN(1) GRP= treat*yeal~, 
RUN; 

The computation of the variances for the confidence intervals (see Subsection 1.6) needs 
some more involved rankings of the data which may be performed by a special macro where 
DATA steps and different types of rankings are used. Unfortunately, these computations are not 
yet available with a SAS standard procedure or with any statistical software package, to the best 
of  our knowledge. 
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2 Repeated Measures 

In a repeated measures model, randomly chosen subjects are observed repeatedly under the 
same or under different treaUments. Such designs occur in many biological experiments and 
medical or psychological studies. They include growth curves, longitudinal data or repeated 
measures designs where a special structure for the dependencies of  the multivariate observa- 
tions, e.g. the compound symmetry, may or may not be assumed. 

Noapammetric hypotheses and tests for the mixed model have already been considered by 
Sen (1967), Koch and Sen (1968) and by Koch (1969, 1970). In the latter article, a complex 
split-plot design is considered and different types of rank.x are given to aligned and original 
observations and the asymptotic distributions of univariate and multivariate rank statistics arc 
given. Mainly joint hypotheses in the linear model arc considered, i.e., main effects and cex~n  
interactions arc tested together. However, no unified theory for the derivation of rank tests 
in repeated measures models is presented in these papers. Moreover, some of the statistics 
are aligned rank statistics (not pure rank statistics) and therefore, they are restricted to linear 
models. 

First ideas to use the so-called marginal model to define treatment effects in a nonparametric 
mixed model date back to Hollander, Pledger and Lin (1974) and Govindarajulu (1975) and 
were extended later on and studied in more detail by Brunner and Neumann (1982), Thompson 
(1990, 1991) and Brunner and Denker (1994). In this marginal model, a treatment effect is 
defined through the marginal distributions Fs, s = 1 , . . .  ,d  o f X k  = ( X k l , . . .  , X ~ ) '  where 
X~ is the vector of observations for subject k. The observations Xka and Xiea, coming from 
different subjects k and k'  are assumed to be independent while the observations Xhs and X~,, 
from the same subject may be dependent. 

A general formulation of hypotheses in the nonparametric marginal model was suggested 
by Akritas and Arnold (1994) who introduced the idea to formulate the hypotheses in terms 
of the distribution functions. They derived the relevant asymptotic distribution theory under 
the assumption of the continuity of the distribution functions which means that ties were not 
allowed. This is rather an unrealistic assumption for applications. Based on the idea of the 
normalized version of  the marginal distribution function F(x) = ~ [F + (x) + F -  (x)] and of the 
empirical marginal distribution function (see Ruymgaart, 1980), Akritas and Brunner (1997) 
provided a unified approach to nonparametric repeated measures models using the concept of 
Akritas and Arnold (1994) to formulate nonparametric hypotheses. Brunner, Mtmz~l and Puff 
(1999) general iz~ these results to the case of (randomly) missing values, singular covariance 
matrices, score functions with a bounded second derivative. Note that singular eovariance ma- 
trices may appear quite often in models with ordered categorical data. Moreover, they derived 
an approximation of the distribution under the hypothesis for the ANOVA-type statistic in this 
setup. This approximation is particularly useful for small samples. 

In what follows, we provide a summary of the main results of the above papers in a unified 
form such that procedures for particular problems or special designs may be derived from the 
general framework presented here. 
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2.1 Nonparametric Marginal Model 

In the general repeated measures (or mixed) model, r treatment groups (the so-called whole- 
plot factor) are considered where every treatment group i contains k = 1 , . . . ,  ni indepen- 
dent  (randomly chosen) subjects. These n = ~-'~=1 rti subjects are observed repeatedly under 
s = 1 , . . . ,  d different (fixed) situations (levels of the ' treatment factor', the so-called sub-plot 
factor) with l = 1 , . . . ,  miks replications for subject k under  the treatment combination(i,  s). 
Thus, there are Mik d = ~ , = x  raika repeated measures for each subject where the subjects are re- 
peatedly observed under the same treatment as well as under different treatments. This general 
mixed model can be written by independent random vectors 

Xik  = ( X ~ t t , . . . , X ~ u f ,  i = l , . . . , r ,  k = l , . . . , n i  where 

Xik ,  = (Xttol , . . .  ,Xit~r,, ,) ' ,  s = 1 , . . .  ,d (2.1) 

and where Xi t , t  '~ F/ ,(x) = ~ [F+(z)  + F i ; (x ) ] ,  i = 1 , . . .  , r ,  s = 1 , . . .  ,d,  k = 1 , . . .  ,h i ,  
l = 1 , . . . ,  rn~k, (the sign ,,~ means 'is distributed as'). To derive the general results, no par- 
t i tular  structure is assumed for the dependencies between the components of the vectors Xik .  
It is only assumed that the vectors Xo~ are independent, i = 1 , . . . ,  r ,  k = 1 , . . . ,  n / a n d  that 
the bivariate marginal distribution functions of (Xttst, X i t ee )  do not depend on k, s and ~,  
i.e. (Xik,t, Xik,,e) "~ Fi,e (z, y). This assumption is reasonable since the observations with 
k # M are independent replications and the observations with t # s for the same s and k are 
dependent replications of the same experiment. The dependencies between the observations on 
the same subject are considered as 'nuisance parameters'  and their impact on the asymptotic 
distribution of  the statistics to be derived in this section has to be estimated separately. 

The rather general notation introduced above, covers a lot of  designs which are commonly 
used in practice. 

1. Paired samples design: This design is derived from (2.1) by letting r ---- 1, n~ ---- n ,  s -- 
2 ,m~a  --  1. Here, n independent pairs of random variables X k  ---- (Xkl, Xk2)', k = 
1 , . . .  , n are observed, where F/s(z) _---- Fo(:v), s = 1, 2. 

2. Simple repeated measures design: Here, r = 1 group of k = 1 , . . . ,  n subjects is observed 
under s = 1 , . . . ,  d treatments and Fi,  - Fa, s = 1 , . . .  , d. 

3. Split-plot design: In this design, i = 1 , . . . ,  r > 2 groups of k = 1 , . . . ,  ni  independent 
subjects are observed. 

4. Two-fold nested design: In this design, where i = 1 , . . . ,  r treatments are applied, k = 
1 , . . . ,  r~ independent subjects are observed within each treatment group i. Every subject 
receives only one treatment but it is observed repeatedly l = 1 , . . . ,  n ~  times under the 
same treatment in order to get a more accurate measurement  for the variable of interest. In 
total, there are N = ~ = 1  ~-'~=1 raik observations of n = )-'~=x ni  independent subjects. 

5. Higher-Way layouts: Higher-way layouts with repeated measures or longitudinal data are 
covered by the general model defined in (2.1) by splitting the indices i or s into sub- 
indices i ', i l l , . . ,  or s ~, s", . . . .  respectively. 
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Note that in most cases with longitudinal data, rnik, = 1 or rr~o = 0 (ff the observation 
is missing). The ease of miko > 1 typically occurs when some material, tissue or a set of 
individuals is split into several homogeneous parts and the compound symmetry model can be 
used as an appropriate model for this design. 

To introduce the ideas, to define treatment effects, to formulate hypotheses and to derive test 
procedures in the nonparametric marginal model, we consider only the case where m ~ ,  = 1 
in order to keep the notation simple. This means that we do not consider missing values and 
dependent replications. Regarding these cases, we refer to the literature (Brunner and Puri, 
1996; Bruuner, Munzel and Puri, 1999). 

2.2 Relative Effects, Hypotheses and Estimators 

Since no parameters are involved in the nonparametric model (2.1), the marginal distribution 
functions Fio(Z) are used to describe an effect (e.g. time effect or treatment effec0. To this 
end, the so-called relative marginal effects Pi~ = f H ( z ) d F i o ( z )  a re  considered where H ( z )  = 
N - i  E~=! d ~o=1 n i F i o ( Z )  is the average of all N = d -  ~-'~=1 ni distribution functions in the 
experiment. L e t  F = ( F n  , . . . , F l d ,  . . . , F , 1 ,  . . . , F , d ) '  t h e  vector of the marginal distribution 
functions and let p = f H d F  = ( P i ~ , . . .  , P t d , . . .  , P , l , . . .  ,P~d)', the vector of  the relative 
(marginal) effects. 

In the nonparametric setup introduced above, hypotheses are formulated by the distribution 
functions Fi~ in the same way as for independent observations. Let (7 denote a covariance 
matrix (see section 1.2.1). Then a nonparametric hypothesis for a mixed model in its most 
general form is written as H0 F : C F  = 0. Some examples for nonparametric hypotheses are 
given in Section 2.5. 

The vector of the relative marginal effects is estimated by replacing Fio (z) and H ( z )  by the 
empirical functions 

i n~2~ 1 r d n~ 
= x , , . ) ,  = E x , ,~  

D'i k = l  i=1 s = l  k = l  

(2.2) 

Here, c ( u )  = ~ [c+(u) + c-(u)]  denotes the normalized version of the counting function. Then, 
the relative marginal effects Pio are  estimated by 

= ' 

where P~o is the mid-rank of X~ ,  among all N observations. Let ~- .  = n~ -i Y ~ l / ~  denote 
the mean of the v e c t o r s / ~  = ( P ~ l , . - -  , Ra~)' ,  i = 1 , . . .  , r ,  within level i of the whole- 

plot factor and let R.  = ( ~ . , . . .  , ~ . ) ' .  Then, the vector p of the relative marginal effects is 
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estimated by 

f 1 (~ .  _ �89 | ld ) 

= L -~,.d-�89 1 phd. 

N T~.~ - ~ ~,~ 

' k~,-d / ~Pt, r.d' --  

1(. 0,) 
= N  ~.  ' 

~la 

(2.4) 

The notation given in (2.4) enables a simple and short presentation of  the asymptotic theory 
of rank statistics in nonparametric factorial designs with repeated measures. 

We note that ffio is only an asymptotically unbiased estimator of  Pia- To derive the exact 
expectation of ~m, let H(O(z) = ~ ~ = 1  Fit(z) denote the mean distribution function within 

~--,d ^(i) the level i of the whole-plot factor and let p!i) = f H(OdFi,,. Further let A! i) = ~ z.,t=l --t~ 
denote the mean of the within-subjects probabilities 

�9 1 
A~ ~) = P ( X . t  < x . , )  + ~P(X~t = x . , )  

and let n = ~-]~=i ni denote the total number of subjects. Then, 

E(ffi,) = P i sq - l (A~i  )_p~i)) ,  i - - - -1 , . . . , r ;  s = l , . . . ,  d. 

Obviously, ffio is unbiased ff A! i) p~i). Let ~ii~ -x----m ~7(i) where •(i) denotes = = n i  2.Ak=l "~iks '  "~iks 
the (mid-)rank of Xik, among all hid observations within level i of the whole-plot factor and let 
~ . :  = n - l  ~ "n, i L..~k=X 11~ks' where P~.*~, is the (mid-)rank of Xit ,  among all d observations within 

subject k in level i of the whole-plot factor. Note that I < ~(i) < hid and I < R*~, < d. Then, 
in practice, the bias can be checked by comparing 

1) -C" ~ i )  = d - and p~(a i) = 1 nid R i ' s -  " 

2.3  A s y m p t o t i c  T h e o r y  

In this Section, the asymptotic dislribution of v/-ffC~ = v/nC(ff11,... , P'ra)' is derived under 
the hypothesis Ho e : C F  = 0. Moreover, consistent estimators of the covariance malrix are 
provided for the compound symmetry model as well as for the multivariate model. 
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2.3.1 Basic Results and Assumplions 

The asymptotic results are derived under the following assumptions: 

ASSUMPTIONS 2.1 

(a) m i n n i - ~  cr i = 1 , . . .  , r ,  

(b) n /n i  < No < oo, i = 1 , . . .  , r, where n = Y]r=l ni is the total number o f  the subjects. 

The first result is that ffio given in (2.3), is consistent for Pio = f HdFi~ in the sense given 
in the following Proposition. 

PROPOSITION 2.2 Let Xik = (Xik~ , . . . ,  X i ~ ) '  be independent and identically distributed 
random vectors. Then, under the assumption 2.1 (a), E(ffi~ - pio) 2 ---* 0 as  ni --* oo, i = 
1 , . . . , r , s = l , . . . , d .  

PROOF: see Brurmer, Munzel and Purl (1999), for example. [] 

Next, the basic asymptotic equivalence for the mixed model is stated. 

THEOREM 2.3 Let g i k  be as given in Proposition 2.2 and let F = ( F l l , . . .  , Fray denote 
the vector o f  the marginal distributions and F = ( F t l , . . .  , Frd)', the vector o f  the empirical 
marginal distributions as given in (2.2). Then, under the assumptions 2.1 (a) and (b), 

= 

where 

Y .  = . , . . . ,  ~.1 , Y i . = ( Y i a , . . . , Y i . a )  = - ~ . Z Y i k ,  
k=l  

Y~k = ( Y ~ k ~ , . . .  , Y~kd)', Y~k~ = U ( X ~ k ~  s = 1 , . . . ,  d .  (2.5) 

PROOF: see Brunner, Munzel and Puff (1999), for example. [] 

2.3.2 Asymptot ic  Normal i ty  

To establish the asymptotic normality of C ~  (or v/-nC~ to be precise), a further regularity 
assumption is needed. First note that the vectors Yi. are independent. Thus, 

V n  = G o v ( v ~ Y . )  = + n v i ,  (2.6) 
i=1 n i  

where Vi = Cov(Yi~) and Yik is given in (2.5). Let pro(i) denote the smallest characteristic 
root of Vi.  

ASSUMPTION 2.1 

(c) Pro(i) _> Po > 0, i = 1 , . . .  , r .  
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THEOREM 2.4 Let Xi~ be as in Proposition 2.2 and let V n  be as given in (2.6). Then, un- 
der the assumptions 2.1 (a), (b) and (c) and under Ho F : C~' = O, the statistic x ~ C ~  = 
x/nC' f H d F  has, asymptotically, a multivariate normal distribution with mean 0 and covari- 
anc e matrix C V . C' .  

PROOF: The proof follows easily from the assumptions, from Theorem 2.3 and the Central 
Limit Theorem by noting that the random vectors Yik are independent and identically dis- 
Wibuted, [3 

Regarding the asymptotic equivalence of the random vectors x/-nC~ and v/-nC~, under 
Ho F : CYF = 0, the same considerations apply as given in subsection 1.4.2 for the case of 
independent observations. 

2.3.3 Estimation of the Asymptotic Covariance Matrix 

In most practical examples, the covariance matrices Vi  defined in (2.6) are unknown and must 
be estimated from the data. To derive a consistent estimator of Vi ,  i = 1 , . . .  , r ,  two models 
are distinguished. The multivariate model does not assume any special pattern for the bivariate 
marginal distribution functions while the compound symmetry model assumes the equality of 
all covariances under the hypothesis. This is stated in details in the last part of this subsection. 
In what follows, the estimators for Vi  are provided for both models and the assumptions are 
given under which the consistency of these estimators follows. 

Mult ivar ia te  Model  In the multivariate model, let/?~k = (P~kl,. �9 �9 , R t~ ) '  denote the vector 
of the rankx/~ks of  Xiko among all the N = n d  observations and let f?~-. = n~ -1 Y~=t P~k 
denote the mean of these rank vectors within the a'eatment level i of the whole-plot factor, 
i = 1 , . . .  , r .  Finally, let 

N2(n, - 1) ~ (/~t, - ~ . )  (P-~ - ~ ' . ) '  (2.7) 
k = l  

denote the sample covariance matrix of -~P~k, k = 1 , . . .  ,r~, i = 1 , . . .  , r ,  and let 

i = l  n i  

denote an estimator of V~. 

(2.8) 

THEOREM 2.5 Let Vi and V n  be as defined in (2.6) and let ~ri and ~r be as given in (2.7) 
and (2.8) respectively. Then, under the assumptions 2.1 (a), (b) and (c), 

1. II~'~-V~tl--~0, i =  l , . . .  ,r, and 
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2. I IV .  - v . I I  "> 0, 

where I1" II aenotes the e.cl iaean norm of a mat,~x. 

PROOF: see Akritas and Brunner (1997). [3 

REMARK 2.1 A stronger result, namely ttm L2-consistency was shown by Btunner, Munzel 
and Purl (1999) in a mote general setup. For details, we refer to this paper. 

It should be emphasized that V,,  is the covariance matrix of ~ Y .  and not of v/~ ~. The 
matrix V,, is only needed to compute the asymptotic covariance matrix C V ,  C '  of ~ C ~  
under the hypothesis Ho F : ( T F  = 0. 

Compound Symmetry  Model  In the compound symmetry model, it is assumed that under 
Ho F : Fil . . . . .  F~ ,  the bivariate marginal distribution functions of (Xiko, Xiks,) do not 
depend on k , s  and s', i.e. (Xik~,X~ko,) "~ Fi ,e (x ,y )  = Fi*(x,y), s ~ s' = 1 , . . .  ,d. Thus, 
under Ho F, the variances and the covariances are given by 

cr~ =_ ~r~, = Var(Yit , ) ,  s = 1 , . . .  ,d, i = 1 , . . .  , r  (2.9) 

c~ = Cov(Y/t,, Y/t,,), s # s '  = 1 , . . .  ,d, i = 1 , . . .  , r  (2.10) 

and it follows that V i  = (a~ - c~)Id + C~Jd. 

Compound symmetry is only assumed for hypotheses regarding the sub-plot factor, i.e. for 
hypotheses which can be written as H0 F : ( I t  | (Td) F = 0 where Cd  is a suitable contrast 
matrix for the sub-plot factor. Thus, it is only necessary to estimate ri = a~ - c~, i = 1 , . . .  , r,  

r 

since (I, | c~) ( ~  cta~ = o. 
i = l  

Tm~OREM 2.6 Let r~ = a~ -- c~, i = 1 , . . . ,  r, where cr~ and c~ are defined in (2.9) and (2.10) 
respectively, and let 

d r~ 

1 E E (Rik' - ff"ik')2' (2.11) 
~i = N 2 n i ( d _  1) ,=t k=l 

where ~.~. t d = ~ Y~,=t Rik, is the mean o f  the ranks Rtt ,  within subject k and Ri~, is the rank o f  
Xi~, among all the N = n d  observations. Then, in the compound synunetry model, under the 
assumptions 2.1 (a), (b) and (c) and under the hypothesis H0 F : Fi t  . . . . .  Fid, the estimator 
~i is consistent for 'q  in the sense that E(~i/7-i - 1) 2 -+ 0 as ni --4 co. Moreover, 

CV'nC' = (I ,  | Cd) Vn (I ,  | C~) = ~ ~iCdC~ . (2.12) 
i=1 

PROOF: see Brunner, Munzel and Puri (1999) where the more general case of mi~s ~ 1 is 
considered. E] 
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2.4 Statistics 

To test the nonparametric hypothesis Ho e : C F  = 0, the rank versions of the WTS and of 
the ATS axe considered to detect general alternatives while a linear ranks statistic is used to 
detect special patterned alternatives. Other statistics which are commonly used in multivariate 
analysis axe not discussed here since they require the equality of the covariance matrices. In a 
nonparametric setup, however, this assumption is only justified in a few special cases. Note that 
in general any assumed homoscedasticity of the parent distribution functions is not transferred 
to the asymptotic rank transform Y-,~o = H(Xi~,) because H(-)  is a non-linear transformation. 

2.4.1 Quadra t i c  Forms 

W a l d - ~  Statist ics (WTS) Let ~r,~ denote the consistent estimator of Vn which is given 
in (2.8) and let [c~rnc'] - denote a g-inverse of C ~ r , C  '. If  V n  -~ V # 0 such that 
r a n k ( C V n )  = r a n k ( C V ) ,  then under HOe : C F  = 0, it follows from Theorem 2.4 and 
Theorem 2.5 that the rank version of the WTS 

Q ~ ( C )  = n ~ 'C '  [ c ~ r . c ' ]  - C ~  (2.13) 

has, asymptotically, a central X2-distribution with f = r a n k ( C $  r) degrees of freedom. How- 
ever, extremely large sample sizes are needed to achieve an acceptable approximation by this 
distribution. Therefore, the ANOVA-type statistic is considered in the following paragraph (as 
in the ease of  independent observations in subsection 1.5.1). 

ANOVA-Type Statistics (ATS) Let M = C ' [ C C ' ] - C  where [CO ' ] -  denotes some g- 
inverse of C C ' .  Then, the rank version of the ATS is defined by 

Q A ( c )  = n ~ ' M ~ .  (2.14) 

Note that M is a projection matrix and that M F  = 0 r O F  = 0 because C'[CC'] -  is a 
generalized inverse of  C.  Thus, it is also reasonable to use QA(C)  as a test statistic for testing 
the hypothesis Ho F : C F  = O. The asymptotic distribution of QnA(C) is given in the next 
Theorem. 

THEOREM 2.7 Let M = C ' [ C C ' ] - C  and let V ,  and ~rn be as in (2.6) and (2.8) respectively. 
Then, under the hypothesis HOe : C F  = 0 and under the assumptions 2.1 (a), (b) and (c), 
the statistic QA(C)  given in (2.14) has, asymptotically, the same distribution as the random 

r d variable ~i=1 ~ s = l  AisZi,, where the Ai8 are the characteristic roots o f  M V n M  and the Zi8 
are independent random variables each having a central x~-distribution. 

PROOF: The proof follows from Theorem 2.4 and well known theorems on the distribution of 
quadratic forms (see e.g. Mathai and Provost, 1992, Chapter 4). [] 
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The distribution of ~--]~=t d ~-']~o=1Ai, Zi, can be approximated by a scaled x2-distribution in 
the same way as discussed in the ease of independent observations (see subsection 1.5.1, ap- 
proximation procedure 1.9). 

F.(C) = 

where 

APPROXIMATION PROCEDURE 2.8 

1. Assume that t r ( M V , )  _> to > O. Then, under Ho F : C 'F  = O, thefirst two moments of 
the asymptoac distribution of  Q~( C)  I t r (  M V ~ )  and of the F ( f ,  ~)-distribution coin- 
cide for f = [ t r ( M V n ) ] 2 / t r ( M V , , M V n ) .  

2. The unknown traces t r ( M V . )  and t r ( M V n M V , )  can be estimated consistently by 
replacing V .  with ~rn given in (2.8) and (2.12) respectively. This finally leads to the 
statistic 

1 O ~ ( C ) -  n ~ ' M ~  ~ F ( f ,  oe), (2.15) 
t r ( M V , )  t r ( M V n )  " 

~" = [ t rCMf' . ) ]  ~ 
tr( M ~ r . M S r . )  " 

(2.16) 

(Here, the sign ~ means 'approximately distributedas'.) 

DERIVATION: see Brunner, Munzel and Purl (1999). [] 

REMARK 2.2 The approximation procedure goes back to Box (I 954) and turns out to be quite 
accurate fort independent observations (see Bmtmer, Dette and Munk, 1997). For repeated 
measures, f in (2.16) may be biased for small sample sizes. In all cases where the factor 'time' 
is not i~volved (i.e. tests for the whole-plot factors and their interactions), the approximation 
in (2.15) can be improved by estimating the second degree of freedom in a similar way as for 
independent observations in (1.21 ). The details are omitted for brevity. 

Comparison of  the WTS and the ATS The main advantage of the WTS Qw (C) is that its 
asymptotic distribution under Ho F is a known disUribution function, namely a X 2-distribution. 
The general drawback of  Q w ( c )  is that it converges extremely slowly to its asymptotic distri- 
bution resulting in rather liberal decisions for small or moderate sample sizes. Moreover, the 
restrictive assumption that Vn --~ V such that rank(CVn)  = r a n k ( C V )  cannot be checked. 

The ATS Fn(C) has the main disadvantage that its asymptotic distribution under H0 F con- 
rains unknown quantities, namely the characteristic roots of M V . M  which are unknown in 
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general and must be estimated where the Box-approximation is used to approximate the dis- 
tribution of the ANOVA-type statistic. However, note that even in the asymptotic case, the 
x~/f-distribution is an approximation of the true distribution of the statistic under Hoe. One 
advantage is that it is neither necessary to assume the convergence of the covariance matrix 
Vn to a constant matrix V nor that the rank of C V n  is preserved in the limit C V .  The only 
additional assumption to the assumptions 2.1 (a), (b) and (c) which is needed for the ATS, is 
that t r ( M V n )  # 0 which means that - regarding the hypothesis of interest - there is at least 
some variation among the observations of the experiment. This is close to a trivial assumption. 

The main advantage of the ATS Fn(C) is that the approximation by the x}/f-distribution 
works also fairly well for rather small sample sizes (for details, see e.g. Brunner and Langer, 
1999) and can be recommended for small and moderate sample sizes. 

2.4.2 Patterned Alternatives 

As in the case of independent observations, the method of Page (1963) and Hettmansperger 
and Norton (1987) is also used for repeated measures to derive test statistics which are espe- 
cially sensitive against a conjeetur~ patterned alternative. The estimated treatment effects are 
weighted by a set of  constants Wtl, �9 . . ,  wr~ reproducing the conjectured pattern of the alterna- 
tive which has to be specified in advance. Let to = (w11,... ,W,d)' denote the vector of the 
weights wi,. Then under HOe : C F  = 0, the linear rank statistic 

L . ( to)  = x/~ t o ' C  ~ (2.17) 

has, asymptotically, a normal distribution with mean 0 and variance 

= t o ' C V . C ' t o ,  

which can be estimated consistently by 

= t o ' c f , ' . c ' t o ,  

where ~ ' ,  is given in the Theorems 2.5 and 2.6 respectively. Then, under Ho e : O F  = O, the 
statistic T.( to)  = L.(tv)/~w has, asymptotically, a standard normal distribution. 

Approximations for small samples have to be derived separately for the special designs. 
The considerations are similar to those in subsection 1.5.2 and are therefore omitted. Some 
examples can be found in Akritas and Brunner (1996). 

2.4.3 The ' R a n k  Transform'  (RT) Proper ty  for Repeated Measures 

The WTS-statistics given in (2.13) can formally be derived from the parametric MANOVA 
statistics by replacing the original observations Xik, by their ranks Riko. However, one must be 
careful with the assumptions of the model. First of all, the underlying testin$.problem must be 
identified from the asymptotic equivalence of the rank statistic x/-nC f HalF and the random 
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vector v ~ C  f Hd.~' = ~ - n C Y .  which is a contrast vector of the asymptotic rank transform. It 
follows from Theorems 2.3 and 2.4 that these two random vectors are asymptotically equivalent 
if the hypothesis is formulated in terms of the distribution functions, i.e. Ho F : C F  = O. 
Furthermore, it has been pointed out by Akritas (1990) that any assumed homoscedasticity of 
the random variables Xi t ,  is not transfea~ed to the ART Yi~s = H(Xito) in general. Thus, 
in the nonparametric marginal model, the homoscedasticity of the covariance malrices V i  can 
only be assumed in very special cases under the hypothesis and therefore, MANOVA-statistics 
for multivariate beteroscedastic models are required. A rank statistic corresponding to such a 
parametric MANOVA-statistic, is said to have the rank transform property (RTP). 

If a rank statistic has the RTP then this is of importance for computational purposes. The 
parametric counterpart of a RT-statistic which may be available in a statistical software package 
can be applied to the ranked data. Only the quality of approximation to the asymptotic distri- 
bution or some finite approximation has to be taken into account. In any case, it is necessary to 
identify the properties (like independence and heteroscedasticity) of the ART under the hypoth- 
esis. The RT should not be regarded as a technique to derive statistics rather than a property of 
a statistic which can be useful for computational purposes. 

2 .5  A p p l i c a t i o n s  t o  S p e c i a l  D e s i g n s  

In this section, the general theory derived in the previous subsections is applied to some special 
factorial designs with repeated measures. Some explicit statistics are given and it is shown that 
several known rank statistics which are given in the literature, follow as special cases from the 
general approach. In particular, the paired samples design, the simple repeated measures design 
and the so-called split-plot design are considered. 

2.5.1 Pai red  Samples  Design 

In this special case, there is only one group of observations (r  = 1) and the vector X k  has 
two components (t = 2). Thus, we observe independent random vectors X k  = (Xkt, X~2)', 
k = 1 , . . .  ,n ,  where X~, ~ F, (z) ,  s = 1,2. Let p = f FldF2, then the relative treatment 
effects Pa = f HdF~, s = 1, 2, are linearly dependent since p = ~  - 2pt = 2/~ - ~. Let Rks 
denote the rank of Xka among all the N = 2n observations, let R., = ~ ~ = 1  R~o, s = 1, 2, 
and let 

S~,o = 1 A ( R k 2 - R ~ I - R ' 2 + R ' I )  2. 
n - 1  

k = l  

Then the statistic 

R.2 - R.1 
T. F = V~ S.,o 
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has, asymptotically, a standard normal distribution under the hypothesis H0 F : F t  = F2 which 
is equivalently written as H0 F : C F  = 0, where (7 = ( - 1 ,  1)'. This follows easily from 
the Theorems 2.4 and 2.5. The statistic Tff is the statistic of the 'paired-ranks test' which 
has been considered in the literature under different assumptions by Mehra and Puff (1967), 
Govindarajulu (1975), Raviv (1978), Brunner and Neumann (1986b), Brunner and Puff (1996) 
and by Munzel (1999b), among possibly others. 

2..5.2 Simple Repeated Measures Design 

In the simple repeated measures design, n subjects are repeatedly observed under t treatments. 
Thus, we have independent random vectors 

X ! Xt, = (Xt, t , - - .  , t,t) , k = 1 , . . .  ,n ,  

where Xk, ,'~ F , (x) ,  s = 1 , . . .  , t. To test the hypothesis Ho F : F1 . . . . .  F,, let C = P t  = 
t j  I t  - "i t denote the t-dimensional centering matrix. Let Rh, denote the rank of Xka among 

all the tn  observations and let R., denote the mean of the ranks within treatment level s. Two 
models are distinguished: the multivariate model, where no special structure of the covariance 
matrix V,, is assumed, and the compound symmetry model where it is assumed under//OF that 

. . . . .  ~ = o a and that all the covariances are equal to e* = C o v ( H ( X n ) ,  H(X12)),  
where H ( X u )  = Yn t ,  t = 1, 2, as given in (2.9) and (2.10) respectively. Compound symmetry 
can be assumed if  all permutations of the observations X~I, �9 �9 �9 , X~, within subject k are equally 
likely under the hypothesis H ( .  This assumption is not justified ff the 'treatments' are the time 
points of time curves. Generally, observations which am more closer am higher correlated than 
more distant observations. In the latter case, the so-called multivariate model is used. Both 
models differ only in the structure, and thus in the estimators of  the covariance matrix Vn. 
Note that compound symmetry is assumed to derive the well-known Friedman-statistic and its 
distribution under the hypothesis. Thus, the Friedman-statistic cannot be used for the analysis 
of time curves. 

Compound Symmetry  In the compound symmetry model of the simple repeated measures 
design, it suffices to estimate the quantity r = a 2 - c*. From Theorem 2.6, it follows that 

1 n t 

- - ' "  F _ ,  F _ , (  - 
/ )  k = l  s----1 

is a consistent estimator of r and the statistic 

n ~ ( t - 1 )  7"~t ( n t ~ l ) 2  
O ~  = ,, , ~ R., 

has, asymptotically, a central X~_t-distdbution under the hypothesis//OF. This statistic has been 
given in literature by Brunner and Neumann (1982) and by Kepner and Robinson (1988). 
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Multivariate Model  In the general case of the multivariate model, let Rk  = (R~I , . . .  , R~t)', 
k = 1 , . . . ,  n, denote the vector of the ranks within subject k and let R. denote the mean of the 
vectors R t , . . .  , Rn. Then, 

1 ~ (n.  - ~ )  (R~ - R.)' (2.18) 
f "  = ( n t ) 2 ( n -  1) ~=1 

is a consistent estimator of Vn (c.f. Theorem 2.5) and the WTS 

Qn(Pt)  = n~Pt[Pt~r ,~Pt]-PtP = n ~ ' ~ ' ~  (2.19) 

has, asymptotically, a central Xt2t_l-distribution under the hypothesis Ho F. Here, 

W = V n I t -  J t V  n / l t V  n I t )  

is a g-inverse of Pt~,rnPt. Note also that P t W P t  = W .  This statistic was considered in the 
literature by Thompson (1991) and by Akritas and Arnold (1994). 

For small sample sizes, the statistic ( n  - t + 1 ) .  O , . ( P t ) / [ ( t  - 1 ) ( n  - 1)] is compared 
with the central F-distribution with f t  = t - 1 and f2 = n - t + 1 degrees of freedom. This 
small sample approximation is motivated by the distribution of  Hotelling's T%statistic under 
the assumption of multivariate normality, where the hypothesis #t  . . . . .  #t is tested. A 
comprehensive simulation study shows (see Brunner and l_anger, 1999) that this approximation 
is rather accurate, also for small numbers of subjects. The power of this statistic, however, 
compared with the power of the ATS (to be considered below) is rather poor and thus, the ATS 
should be preferred in case of small samples. 

Next, the ATS given in (2.15) is considered in the multivariate model. 

To derive the ANOVA-type statistic for the simple repeated measures design, note that M = 
P ~ ( P t P ~ ) - P t  = P t  since P t  is a projection matrix. Then, the ATS is derived from (2.15) and 
is given by 

Fn(Pt)  -- ~ P 'PtP 
tr( P t  ~r.) 

_ n ~ R., (2.20) 
N2tr( p t  ~r,~) = 

where ~r n is given in (2.18). Under Ho F : P t F  = 0, the ATS Fn(Pt)  is approximated by the 
central F ( f ,  oo)-distribution with 

degrees of freedom. 
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A linear rank statistic which is sensitive to the special patterned alternative descibed by the 
pattern va = (w l , . . .  , wt)', is derived from (2.17) and, in the simple repeated measures design, 
it reduces to 

Tn(lv) = L , (w) /~w  = ~---ntv'Pt~ 
O'to 

N~w k = l  s = l  

and the variance estimator aw is given by 

where U~ = 

~ 0 1 ~  �9 �9 �9 , ? J ) s -  

t l  

1 ~-'~ (Uk _ ~.)2, 
= ~ 'P t~ ' rnPtw  - N2(n - 1) k=l 

t --1 t 
~ - - ~ s = l ( ~ ) s  - -  ~ ' ) / ~ k s  and ~. = t ~s----X We denotes the mean of the weights 

2.5.3 Split-Plot Design 

The so-called split-plot design is one of the most frequently used designs with repeated mea- 
sures. If a different groups of subjects are repeatedly observed under t different treatments 
(generally t time points), then this design is appropriate to model the data of the experiment. 
Let 

X t �9 . ~ . .  , Xik = (Xitcl,... , ikt),~ = 1, . .  ,a ,  k 1,. n~, 

denote the observation vector of subject k within group i. These vectors are assumed to be inde- 
pendent and the components Xihs, s = 1 , . . . ,  t, am assumed to have the distribution functions 
F~o(X), k = 1 , . . . ,  n~. 

The hypothesis of no group effect (factor A) means that the averages F--i. -x t = t ~ , = 1  Fi, of 
the distributions Fi, over the t treatments are the same for all groups i = 1 , . . . ,  a. In matrix 
notation, this hypothesis is written as HoF(A) : (P~ | 1 ~ I , ) F  = o .  

Let gi ---- t -  1 ~t l=  1 Pis denote the mean of the relative marginal effects Pi, which is estimated 
by 

~, = = _ . . ~  ~ . o -  ~ . . -  . 

According to the hypothesis HoF(A) : (P~ | 1 , i l t ) F  ---- 0, the contrast vector is given by 

( (11,  v ~  P ' |  t ' ) P  = v/-nP* I " |  t t )  ~ = v ~ P a ~  
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and its asymptotic distribution is derived from Theorem 2.4. It follows that vCn P .  ~ has, 
asymptotically, a multivariate normal distribution with mean 0 and covariance matrix Pa~,,Po, 
where I],~ is estimated consistently by 

- -  k = l  

(2.21) 

- -  - - 1  t Here, P~. = t ~-'],=1 P ~ .  denotes the mean of the ranks P~ ,  over the t treatments for 
subject k within group i and ~... = n[ -~ Y]~=I ~'k. denotes the mean of all t m  ranks within 
group i. Then the WTS follows from (2.13) and is given by 

Qn(A)  = ~n~-~2 1 n t - -  .. o ^2 Rt.. (2.22) 
�9 = t = ,  t / ' 

which has, asymptotically, a central X2,_ 1-distribution under Ho e (A). 

The ATS and the approximation by the central F ( f ,  oo)-distribution is easily derived from 
(2.15) and reduces to 

Fn(A)  = n a Z ( ~ . . .  _ _~...)2, (2.23) 
t r ( P , ~ n )  ~ P "  ~ = (a - 1) E~=, ~ / n i  ,=, 

and under Hoe(A), the distribution of Fn (A) is approximated by the central F ( f A ,  f'o)-distribution 
with 

f a  = (a -- 1) 2 
a ^ 2 a ~ 2  'n  2 1 + a ( a - -  2)[~-~,=,(~/ni)  / ( ~ i = 1  (ri/ i) ] (2.24) 

and 

T0 = (2.25) 
_ 1) 

degrees of freedom. Here, R... a -1 a --  = ~--~i=l P~.. denotes the unwelghted mean of  the rank means 
P~.. , i  = 1 , . . .  ,a. 

The hypothesis of no treatment effect (time effec0 (factor T) means that the averages 
F., of the distributions Fi, over all i = 1 , . . .  ,a  groups at time point s are the same, i.e. 
HoF (T)  : -F.1 . . . . .  ff . t .  In matrix notation, this hypothesis is equivalently written as 

( t l ,  P t )  F 0. L c t / ~  (P~l,  . , / ~ Y , i  ---- 1 , . . .  k -- 1, HoF(T) : , ;  , | . . . .  ,a,  . . . , h i ,  
denote the vector of the ranks/~k, for the subject k within group i and let 

_ _  1 m 1 TM 

: k----I k----I 
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denote the mean o f / / i t , . . .  ,/~,,~ within group i and let finally 

Q G 
= _1 = 

s i = l  a i = 1  

denote the unweighted mean of R1., �9 �9 �9 P-~. over all a groups. Then, consistent estimators for 
the covariance matrices Vi  and V n  follow from (2.7) and (2.8) and are given by 

Vi  - N2ni(n i _ 1) k=l i=1 
(2.26) 

where n = ~ = 1  ni denotes the total number of subjects and N = n �9 t the total number of 

observations. Furthermore, let ~r t = ,~(-11', | I t )  Vn (~ la  | I t )  = a -2 E~=I_ ~' i .  Then, the 
WTS for testing the hypothesis H F ( T )  follows from (2.13) and is given by 

Qn(T)  = - ~  R t . . P , [ P t V t P t ] -  P t R .  . 

Under H0 F(T),  the statistic Qn(T) has, asymptotically, a central X~t_l-distribution. However, 
large sample sizes may be necessary to achieve a satisfactory approximation by the limiting 
X%distribution. For small sample sizes, the ATS should be used to test the hypothesis HoF(T). 
Let R..o = a -1 )'~=1 ~.o denote the unweighted mean of the rank means ~. . ,  and let R . . . .  

--1 t t )-'~,=1 ~ .... Then the ATS follows from (2.15) and is given by 

t 

F ,  C T )  - " - '  - - " 
N2trCPt~rt  ) R . . P , R . .  iV2frCP*~rt) ,=1  

Under HoF(T), the distribution of Fn(T)  is approximated by the central F ( f T ,  oo)-distribution 

with  = [ t r ( P t f r , ) ] 2 / t r ( p t f r , P , f ' t )  d e g a s  o f  fr dom. 

In most cases when a split-plot design with repeated measures is conducted, it is mainly 
of interest to investigate an interaction between groups (factor A) and time (factor T). For 
example, if a placebo is applied in group 1 and the active treatment is given to group 2, then 
the distribution functions at the start of the trail (time point 1) F n  and F21 am identical if the 
subjects am randomly assigned to the two treatment groups of factor A. Then, an effect of the 
active treatment will produce non parallel time curves of the measurements. This means that 
there is an interaction between factor A and factor T. In a nonparametric setup, the hypothesis 
of no interaction is formulated as HoF (AT)  : Fio = -Fi. +-F.,  - -F.., i = 1 , . . .  , a, s = 1 , . . .  , t. 
In matrix notation, this hypothesis is equivalently written as 

HoF(AT) : C A T  F = = : = O, 

F,t  - - F , .  f f  .t + f f  .. 0 
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where C, A T  = P a  O P t  and Pa and P t  denote the a- and t-dimensional centering matrices 
respectively (c.f. (1.1)). Let R .  = (Rt.1,--- ,T~,.t)' denote the vector of all at rank means. 
Then, the WTS 

n ~ I A I - -  

Qn(AT) = ~ R . C A T [ C A T V n C A T ] - C A T R  

follows from (2.13) where ~ r  is given in (2.26). Under HoF(AT), the statistic Qn(AT)  has, 
asymptotically, a central X~(o_l)(t_l)-distribution for which very large sample sizes are needed 
for a satisfactory approximation. 

The ATS is derived firom (2.15) by letting M A T  = C~Z(C'ATC'~T)-CAT = CAT = 
P* | P t  since Pa and P t  are both projection matrices. Let R..s = a - t  Y'~=l fli.., and R . . . .  
t-t t ~,=t /~ . . s  denote the unweighted means over the a -  t rank means ~-. , ,  i = 1 , . . .  , a, s = 
1 , . . .  , t. Then, under HoF(AT), the distribution of the ATS 

a t 

F . ( A T )  = n E E (~''s - ff~''" - ffl..s + R...) 2 

can be approximated by the central F(faT, oo)-distribution where fAT is given by 

fAT = [tr(MaT~'n)]2 
t r ( M  AT~'VrnM Ar~rn) " 

2.6 Example  and Software 

2.6.1 Split-Plot Design with Ordered Categorical Data 

The Roof-Experiment A rain cleaning experiment was performed in a low-mountain range 
(Soiling) in Lower-Saxony (Germany). In two different areas of the forest, 300 m 2 each, the 
ground was covered by a roof at a height of 3m in order to protect the soil of the forest from the 
contaminated rain water. The precipitation was collected in tanks, and after preparation, it was 
re-splashed under the roofs. For the control-roof(D2) which contained 23 trees, the water was 
not chemically purified and the same water which had been collected was re-splashed under the 
roof. Only the dust and larger sedimentary particles were filtered out so that the nozzles could 
not be blocked. For the clean-rain-roof(D1) with 27 trees, the precipitation was re-splashed 
after a chemical purification. A third area of 300 m 2 without any roof (Do) served as a control 
to examine the effect of the filtration for the control-roof. This area contained 22 trees. 

The vitality of the trees was measured on a grading scale ranging from 1 (excellent) to 10 
(dead). It was judged at the region of the treetops by means of a crane which was fixed in the 
center of the three areas. The experiment started in 1993 and longitudinal observations on the 
trees were taken in the years 1994, 1995, and 1996. The data are displayed in Table 2.1. 

Several detailed questions had to be answered: (1) Is there any trend (increasing or decreas- 
ing) in the time curves of the vitality scores for the different areas Do, Dt  and/92?  (2) Is 
there any effect of  the clean-rain-roof? (3) Do the time curves of the three areas have the same 
shapes? 
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TABLE 2.1 Vitality scores for the trees in the roof-experiment for the areas Do, D1 and 02. 

AreaD0 AreaD2 ~'eaD1 
Tree Year Tree Year Tree Year 

no. 93 94 95 96 no. 93 94 95 96 no. 93 94 95 96 
569 2 2 2 2 547 8 4 4 5 646 2 3 2 1 
570 1 1 1 1 549 1 1 1 1 647 6 4 4 5 
589 3 I 2 2 551 4 4 4 3 648 3 2 2 2 
590 2 1 1 3 561 4 3 3 3 649 1 1 1 1 
592 5 4 3 4 562 2 1 1 2 650 4 5 4 2 
593 1 1 1 2 564 5 3 3 3 651 6 5 5 3 
601 4 3 3 4 566 3 4 4 3 652 8 7 6 5 
602 4 4 4 4 567 4 3 3 2 682 3 2 2 2 
611 1 1 2 3 596 5 4 4 4 683 3 2 2 2 
613 3 2 2 2 597 2 1 2 2 684 5 4 4 5 
618 4 2 3 3 599 5 2 2 3 685 2 2 2 3 
619 6 5 4 4 614 7 5 5 5 686 3 3 1 2 
620 2 1 2 2 615 6 4 5 6 687 5 4 3 2 
636 3 3 4 2 616 6 6 3 3 693 6 4 4 4 
638 3 2 1 3 617 4 3 5 3 694 8 7 8 7 
639 1 1 2 1 626 5 4 3 3 695 5 3 2 3 
653 6 7 6 5 627 1 2 2 2 696 4 1 1 2 
655 1 1 1 1 628 2 I 1 I 697 3 2 3 2 
656 6 3 3 3 629 6 4 4 5 698 4 4 4 4 
657 1 1 1 2 630 3 2 2 1 723 4 4 4 3 
659 8 5 6 4 631 4 3 3 2 724 6 4 4 4 
681 I 2 1 1 632 2 1 1 1 725 5 4 3 2 

633 3 4 3 3 726 3 3 1 1 
733 4 4 5 4 
735 4 4 4 2 
736 3 3 2 1 
737 6 5 5 4 

First  we note  tha t  the observations are ordered categorical  data. Thus,  all results must  be 
invar iant  under  the choice o f  the grading scores 1 , 2 , . . . ,  10, i.e. the  results  must  be  invariant 
unde r  strictly mono tone  t ransformations of  the data. This  is a wel l  known  property of rank 

statistics and thus, the procedures considered in this section are especial ly  appropriate for the 
analysis  of  ordered categorical data with  repeated measures.  The  rank  means  ~ . . ,  and the 
es t imated  relative marginal  effects ffia, i = 1, 2, 3; j = 1 , . . .  , 4, for  the three areas within the 
four  years arc d isplayed in Table 2.2. 

TABLE 2.2 Rank means and estimated relative marginal effects o f  the vitality scores for the 
trees within the three areas during the years 1993, 94, 95 and 96 in the clean rain experiment. 

Rank Means/7./. ,  Relat ive Marg ina l  Effects 

Years Years 
93 94 95 96 93 94 95 96 Area  

DO 135.2 103.7 110.1 122.0 
D1 198.0 168.2 150.4 132.2 
D2 183.2 141.7 140.0 132.3 

0.47 0.36 0.38 0.42 
0.69 0.58 0.52 0.46 
0.63 0.49 0.48 0.46 
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The results of the analysis by the WTS Q,,(C) and the ATS Fn(M)  given in subsection 
2.5.3 along with the resulting p-values are displayed in Table 2.3. 

TABLB 2.3 Statistics and p-values for the main effects and the interaction in the clean-rain 
experiment. 

Wald-Type Statistics ANOVA-Type Statistics 

Factor Q.(C) ld.f. p-Value F.(M)[ • Io I p-Value 
Area 4.51 2 0.1049 2.35 1.97 oo 0.0960 
Year 58.06 3 < 10 -5 21.39 2.73 oo < 10 -5 

Interaction 14.82 6 0.0217 3.11 5.35 oo 0.0068 

The difficulty with this example is that the trees could not be randomiTed to the three treat- 
ments and, at the beginning of the trial, the relative marginal effects for both the experimen- 
tal areas D1 and D2 seem to be somewhat larger than for the area 130 without a roof (DO: 
ff, t = 0.47, DI: ~ ,  = 0.69, D2: P3: = 0.63). The p-value obtained by the Kruskal-Wallis test 
for the vitality scores on the first time point is p = 0.066 which indicates that the vitality scores 
may not have the same distribution for all three areas. Thus, the result of the test for the main 
effect of the area is difficult to interpret and the question of a potential treatment effect can only 
be answered by the analysis of the interaction between the areas and the years. The p-value of 
p = 0.0068 for the interaction is significant on the 1%-level and the interpretation is that the 
time curves of the relative marginal effects within the three areas are not parallel (see Figure 
2.1). For a more detailed analysis including palrwise comparisons of the three areas and tests 
for decreasing trends, we refer to Brunner and Langer (1999), Section 8.3.7. 

Pis 

0,7 

0,6 

0,5 

0,4 

0,3 

D1 

1993 1994 1995 1996 

FIGURE 2.1 Time curves of the relative marginal effects for the vitality scores in the three 
areas DO (area without roof), D1 (clean-rain-roof) and D2 (control-roof) during the years 
1993- 1996. 
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2.6.2 Software 

Similar to the discussion of the software in Subsection 1.7.2 for independent observations, the 
statistics Q,~(C), Fn(M) and Tn(w) have the rank transform property under H0 F. Therefore, 
only mid-ranks have to be assigned to the data and the analysis can be performed on these ranks 
ff the special heteroscedastic model of the ART under Ho F is used (see Subsection 2.4.3). Then, 
the computation of the statistics Qn(C), Fn(M) and Tr,(to) can be performed by any statistical 
software package which provides 

1. the mid-ranks of the observations, 

2. the analysis of  heteroscedastic factorial designs with repeated measures and unspecified 
covariance matrices. 

The Statistical Analysis System (SAS) provides these computations by the procedure 'MIXED'. 
Below, we provide the necessary statements for the DATA-step and the procedures SORT, 
RANK and MIXED. 

Data Input  The input of the data is handled in the same way as for the d_ata of a paramet- 
ric model, i.e. factors are treated as 'classifying variables'. Note, however, that PROC 
MIXED needs the data first sorted by the subjects and then by the repeated measures. 

Ranking The procedure PROC RANK is used to assign the mid-ranks among all observations 
to the data. Note that the assignment of mid-ranks is the default with this procedure in 
SAS. 

Heteroscedastie Model The procedure PROC MIXED provides the possibility to define the 
sla-ucture of the covariance matrix of the 'cell means' within the levels of the repeated 
measures factor by the option TYPE=.. .  within the REPEATED statement. Moreover, 
the GRP=- �9 �9 option within the REPEATED statement defines the factor levels (or com- 
binations of them) of the whole-plot factor(s) where different covariance matrices are 
allowed. The WTS QN(C) and the resulting p-values are printed out by adding the op- 
tion CHISQ after the slash (/) in the MODEL statement. 

In general, for the nonparametric main effects and all interactions of  the whole-plot fac- 
tor(s), the covariance matrices may be different for all factor level combinations. Thus, 
the highest interaction term of the whole-plot factors must be assigned in the GRP option. 
For example, in a repeated measures design with two whole-plot factors A and B and 
with one sub-plot factor C (repeated measures), this option is GRP=A*B. 

Starting with version 8.0 the option ANOVAF can be added somewhere in the line of the 
PROC MIXED statement in order to compute the ATS FN(M) and the resulting p-values. 
The use of the ATS is recommended for small and medium numbers of replications. To 
avoid computational difficulties by using the method REML (default) to estimate the un- 
structured covariance matrix (see SAS online documentation for the procedure MIXED) 
it is recommended to use the minimum variance quadratic unbiased estimation method 
by adding the option METHOD=MIVQUE0 after the option ANOVAF in the line of the 
PROC MIXED statement. 
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Example: Clean-Rain-Experiment 

TABLE 2.4 ANOVA-type statistics and p-values for the main effects and the interaction in 
the clean-rain exlmriment computed by the SAS-procedures 'RANK' and 'MIXED' where the 
statements are provided below. 

AN'OVA-Type Statistics 

Factor F n ( M ) [  f l  fo (PROcP'ValueMIXED) 

Area 2.35 1.97 64.4 0.1041 
Year 21.39 2.73 179 < 10 -5 

Interaction 3.11 5.35 179 0.0086 

p-Value 
(corrected) 

< 10 -5 
0.0068 

DATA roof; 
INPUT areaS tree sl-s4; 

ARRAY ss{4} sl-s4; 
DO year=l to 4; 

score=ss{year}; 
OUTPUT; 

END; 
DROP sl-s4; 

DATALINES; 
DO 569 2 2 2 2 

D2 737 6 5 5 4 

RUN; 

PROC RANK DATA=roof OUT=roof; 
VAR score; 
RANKS r; 
RUN; 

PROC SORT DATA=roof OUT--roof; 
BY tree year; 
RUN; 

PRO(2 MIXED DATA--roof ANOVAF METHOD=MIVQUE0; 

CLASS tree area year, 
MODEL r = area [ year /CHISQ; 
REPEATED year / TYPE=UN GRP=year SUB=tree; 
RUN; 

The results for the Wald-type statistics produced by the SAS-procedure 'MIXED'  are identical 
m those displayed in Table 2.3 with the exception that the second degree of freedom fo is taken 
(automatically) from the option DDFM=KR. To obtain a better approximation for the p-values 
of the tests for 'Year' and 'Interaction', a separate DATA step must be added to compute the 
p-values p = 1 -  F(21.3912.73, cr ) < 10 -5 a n d p  = 1 -  F(3.1115.35,oo) = 0.0068. The 
results are displayed in Table 2.4. 

3 Further Developments 

3.1 Adjustment for Covariates 

In applications, quite often the variable of interest X~ ~ ,-, Fi (~ (x) depends on one or more co- 

variates Xi(~ ) ,,~ F / t ) , . . .  ,Xi(7) ,,~ Fi (~), i = 1 , . . .  ,d. Then, the motivation of  the adjustment 
for covariates is twofold: 
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If the distributions F(It),... , F(~ t), l = 1,... , m, are assumed to be all equal to F0 (t), say, 

then the adjustment is intended to reduce the variances of the estimators ~ ~ i = 1,... , d. 
The assumption of the equality of the distribution functions of the covariates over the 
treatment groups may be justified in designs where the experimental units are randomly 
assigned to the treatments (or to the treatment combinations). Thus, by randomization, 
this assumption is reasonable. 

2. In case of 'unhappy randomization' and in observational studies, however, the relative 
treatment effects p~o) = f HdFi(O) may depend on the relative effects p~t) = f H(t)dFit), 
g = 1 , . . . ,  m; i = 1 , . . . ,  d, of the covariatcs within the treatment groups. In this case, 
adjustment for covariates is not only intended for a possible reduction of the variances 
but also for the correction of a potential bias caused by the dependence on the covariates. 

The first case was considered in literature by a more or less heuristically motivated proce- 
dure (Quade, 1967) and by a procedure which is based on the asymptotic multivariate normality 
of  a vector of linear rank statistics in the one-way layout for shift models with continuous dis- 
tribution functions (Puff and Sen, 1969). This procedure was recently generalized by Langer 
(1998) to factorial designs and possibly discontinuous distribution functions where the concept 
of formulating hypotheses by the distribution functions was used. The second case causes more 
problems and is still under research. First encouraging results have been derived by Siemer 
(1999) but they have to be developed further. 

3.2 Unweighted Treatment Effects 

As briefly indicated in subsection 1.3.1, the relative treatment effects pi = f HdFi depend on 
the sample sizes n l , . . . ,  rid, through the weighted mean distribution functions H(x).  In case of 
unequal sample sizes hi, i = 1 , . . .  ,d, the tmweighted relative effects Iri = f H*dFi as given 
in (1.4) may be used to formulate the hypotheses and to derive meaningful confidence intervals 
for relative treatment effects. Some recent results (Kulle, 1999) need to be improved regarding 
the approximation of  the null distribution of the statistics in case of small sample sizes. 

3 . 3  M u l t i v a r i a t e  D e s i g n s  

The methods presented in this paper can easily be developed for multivariate observations 
(Munzel, 1996; Munzel and Brunner, 2000). The application of these results to other multi- 
variate problems like principal components analysis or studies with multiple endpoints have yet 
to be developed. 
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