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Abstract
Accelerated life tests (ALTs) play a pivotal role in life testing experiments as they
significantly reduce costs and testing time. Hence, this paper investigates the statistical
inference issue for the Weibull inverted exponential distribution (WIED) under the
progressive first-failure censoring (PFFC) data with the constant-stress partially ALT
(CSPALT) under progressive first-failure censoring (PFFC) data for Weibull inverted
exponential distribution (WIED). For classical inference, maximum likelihood (ML)
estimates for both the parameters and the acceleration factor are derived. Making
use of the Fisher information matrix (FIM), asymptotic confidence intervals (ACIs)
are constructed for all parameters. Besides, two parametric bootstrap techniques are
implemented. For Bayesian inference based on a proposed technique for eliciting the
hyperparameters, the Markov chain Monte Carlo (MCMC) technique is provided to
acquire Bayesian estimates. In this context, the Bayesian estimates are obtained under
symmetric and asymmetric loss functions, and the corresponding credible intervals
(CRIs) are constructed. A simulation study is carried out to assay the performance of
the ML, bootstrap, and Bayesian estimates, as well as to compare the performance
of the corresponding confidence intervals (CIs). Finally, real-life engineering data is
analyzed for illustrative purposes.

Keywords Weibull inverted exponential distribution · Constant-stress partially
accelerated life test · Asymptotic confidence intervals · Parametric bootstrap
methods · MCMC technique
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AW Average width
Boot-p Bootstrap-p
Boot-t Bootstrap-t
CDF Cumulative distribution function
CIs Confidence intervals
CP Coverage probability
CRIs Credible intervals
CSPALT Constant-stress partially accelerated life test
CSs Censoring schemes
FIM Fisher information matrix
HRF Hazard rate function
K-S Kolmogorov-Smirnov
LED Light-emitting diode
LX Linear exponential
MCMC Markov chain Monte Carlo
M-H Metropolis-Hastings
ML Maximum likelihood
MSE Mean square error
PALTs Partially accelerated life tests
PDF Probability density function
PFFC Progressive first-failure censoring
RF Reliability function
SE Squared error
WIED Weibull inverted exponential distribution

1 Introduction

Undoubtedly, several statisticians seek information about the lifetimes of products
and materials to improve and develop them, and it may be difficult to obtain it during
testing under normal conditions, as lifetime testing is costly and time-consuming. So,
to access failure data in the shortest possible time in fields such as manufacturing
industries, it is preferable to use ALTs. In ALTs, the experiment items are tested by
exposing them to higher stress levels than normal ones, which could be temperature,
vibration, voltage, pressure, etc., and continue under these conditions to induce early
failure or start them up under normal conditions, hence exposing the units that did
not fail by pre-specified time to higher stress levels. Therefore, we can divide ALTs
into two types, the first one is fully ALTs which is based on the major assumption
that the relationship between life and stress is known while the second one is partially
ALTs in which the previous relationship is unknown or cannot be assumed. It is
worth noting that in such accelerated conditions, the collected data is extrapolated by
a physically appropriate statistical model to estimate the lifetime distribution under
normal conditions of use.

In accordance with Nelson (2009), fully ALTs are divided mainly into three types.
The first one is constant-stress ALT which is considered the most common stress. In
this kind of stress, the sample items are exposed to continuous stress until failure or
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censoring whichever occurs first. Many authors studied that type, see, for instance,
Lin et al. (2019) and Dey and Nassar (2020). Sometimes there is a large variation
in failure times, so constant-stress may take too much time. Hence, an alternative
approach is needed to ensure failure occurs faster. As a result, step-stress testing
appeared to overcome this obstacle and to be more efficient and practical than constant
stress. Under this type, the test item is exposed to a level of stress for a pre-specified
period until it fails but if it does not fail, the level of stress to which it is exposed is
raised and increases repeatedly until the test item fails or the censored condition is
reached. Several authors studied step-stress ALT, see for example (Wang 2006 and
Hakamipour 2021). The third type is considered progressive-stress ALT in which the
test items are exposed to continuously increasing stress with time, see (Abdel-Hamid
and Al-Hussaini 2007; Mahto et al. 2020) and (Mahto et al. 2021).

In some cases, the data of fully ALTs cannot be extrapolated to normal use con-
ditions because the nature of the life-stress relationship is unknown, so partially
accelerated life tests (PALTs) are a good option to use in such cases in estimating
the acceleration factor, thus extrapolating the accelerated data to normal use condi-
tions. Just like fully ALTs, PALTs are also mainly divided into three types. The first
one is CSPALT where the sample items are run at either normal or accelerated con-
ditions, i.e. each test item is run at a constant stress level until the test is terminated.
Several authors have studied this type under various censoring schemes, see (Abushal
and Soliman 2015) and (Hassan et al. 2020). In the second one, step-stress PALT, the
test item is firstly run at normal stress with a pre-specified time (stress change time)
until failing but if it does not fail, the test condition is switched to a higher stress level
in which the item is exposed to steady stress until failure occurs or censoring reaches,
that is, the total lifetime of the test item goes through two stages, normal use condition
and accelerated condition, respectively, see (Ismail 2016) and (Akgul et al. 2020). The
third one is considered progressive-stress PALT, see (Ismail and Al-Babtain 2015).

In life testing experiments, complete data on failure times for all test items may not
be obtained and this leads us to what is known as censoring, where the data obtained
from these tests are called censored data. Themost common censoring types are Type-I
and Type-II censoring. In the first type, the units are run simultaneously in the test for a
pre-specified period. During this period, if not all test units fail, the surviving units are
removed when the period expires, see (Ali and Aslam 2013) and (Algarni et al. 2020),
while in the second type, the units are run simultaneously in the test until a pre-fixed
number of items fail, thus the remaining items are removed, see (Balakrishnan andHan
2008) and (Kundu and Howlader 2010). In such previous types, there is no flexibility
in withdrawing test items during the test. Hence, a more general censoring scheme is
proposed which is known as a progressive type-II censoring scheme to overcome this
obstacle. In this type, pre-specified items are withdrawn from the test at an individual
item failure and the test continues at this pace until a pre-fixed number of items fail, at
which stage the remaining surviving items are removed, see for example (EL-Sagheer
2018; Guo and Gui 2018), and (Mingjie and Gui 2021). At present, the most general
flexible censoring scheme for withdrawing and saving the largest number of test units
without failure, thus reducing time and cost, is the PFFC scheme proposed by Shuo-
Jye andKuş (2009), andwill be highlighted in the next section. Several authors studied
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this scheme under different distributions, see (Sukhdev and Yogesh 2015; Xie and Gui
2020; Shi and Shi 2021), and (Lin et al. 2023).

Chandrakant et al. (2018) proposedWIED as an extension of the inverted exponen-
tial distribution.WIED is highly flexible and can take several shapes such as J-reversed,
positively skewed, and symmetric as well. Besides, WIED in terms of the hazard rate
function can acquire several forms such as constant, increasing, decreasing, unimodal,
and j-shaped. In accordance with the previous features, WIED can be used in several
sectors such as industry and medicine to fit different reliability data.

The probability density function (PDF), cumulative distribution function (CDF),
reliability function (RF), and hazard rate function (HRF) can be written, respectively,
as follows:

f1 (x;α, β, λ) = αβλ

x2

(
exp{−λ

x })β
(
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and

H1(x) = αβλ

x2

(
exp{−λ

x })β
(
1 − exp{−λ

x })β+1 , x > 0. (4)

This article aims to discuss the statistical inference issue for the WIED in the pres-
ence of CSPALT under the PFFC scheme. To this end, point and interval estimates are
discussed by implementing classical and Bayesian approaches. Besides, two bootstrap
techniques are proposed. The paper layout is arranged as follows. Section 2 discusses
the characterization of the CSPALT procedure within the framework of the PFFC
scheme. In Sect. 3, ML estimates are highlighted, and the observed FIM is obtained.
In Sect. 4, bootstrap-p (Boot-p), and bootstrap-t (Boot-t) are discussed. In accordance
with the squared error (SE) and linear exponential (LX) loss functions, Bayesian esti-
mates are obtained in Sect. 5. In Sect. 6, a simulation study is conducted using the
Monte Carlo method. A real engineering illustrative example is discussed in Sect. 7.
Finally, Sect. 8 summarizes the paper.
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2 Model characterization

2.1 Test procedure

1. Suppose u test items are divided in accordance with a certain proportion p into
two groups: up items among u items are chosen at random for use condition, while
the remaining items u(1 − p) are chosen for accelerated condition.

2. The PFFC scheme is implemented as follows:

i. The test items under use and accelerated conditions are divided into several
groups n j , j = 1, 2 of the same size k j , j = 1, 2.

ii. Let X
Rji
j i :m j :n j :k j , j = 1, 2, i = 1, 2, . . . ,m j refer to two PFFC samples with

censoring schemes R ji , j = 1, 2, i = 1, 2...,m j from WIED.

iii. As soon as the first failure item X
Rj1
j1:m j :n j :k j in a group occurs, the group which

includes that failure item, as well as R j1 groups are withdrawn at random from

the n j groups and as soon as the second failure item x
R j2
j2:m j :n j :k j in a group

occurs, the group which includes that failure item, as well as R j2 groups are
withdrawn at random from the remaining groups n j − R j1 − 1 and so on until

them j -th failure item x
R jmj
jm j :m j :n j :k j in a group occurs, the groupwhich includes

that failure item, as well as the remaining groups R jmj are withdrawn and the
test is terminated. It is noteworthy that in our study,m j < n j , and additionally,
R ji are predetermined.

iv. According to PFFC order statistics x
R j1
j1:m j :n j :k j < x

R j2
j2:m j :n j :k j < ... <

x
R jmj
jm j :m j :n j :k j with censoring schemes R ji under CSPALT, the joint PDF for

x
R j1
j1:m j :n j :k j , x

R j2
j2:m j :n j :k j , . . . , X

Rj1
j1:m j :n j :k j , j = 1, 2 is given by

f
x
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j1:m j :n j :k j ,x
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j2:m j :n j :k j ,...,x

R jmj
jm j :m j :n j :k j

(x
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j1:m j :n j :k j , x

R j2
j2:m j :n j :k j , . . . , x

R jmj
jm j :m j :n j :k j )

=
2∏

j=1

c j k
m j
j

m j∏

i=1

f j
(
X

Rji
j i :m j :n j :k j

) (
1 − Fj

(
X

Rji
j i :m j :n j :k j

))k j(R ji+1)−1
.

(5)

It is clear that Eq. (5) can devolve into type-II censoring, progressive type-II cen-
soring, first failure censoring, and complete sample as special cases.

2.2 Assumptions

1. Under use conditions, the lifetimes of the items X
Rj1
j1:m j :n j :k j , i = 1, 2, . . . ,m1

follow WIED with the Equations given in (1)-(4).
2. Under accelerated conditions, the tested item hazard rate is increased to μH1(x),

where μ is the acceleration factor satisfying μ > 1. Consequently, the HRF, RF,
CDF, and PDF can be written, respectively, as:
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H2(x) = αβλμ
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3. The lifetimes of the items X
Rji
j i :m j :n j :k j , j = 1, 2, i = 1, 2, . . . ,m j are statistically

independent and identically distributed.

3 Maximum likelihood estimation

In this section, our interest is in obtaining ML estimators of the parameters in accor-

dance with the data X
Rji
j i :m j :n j :k j , j = 1, 2, i = 1, 2, . . . ,m j obtained under the PFFC

scheme with CSPALT. To this end, the natural logarithm of the likelihood function
without normalized constant can be reduced to the following expression:
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. (10)

where x ji is used instead of X
Rji
j i :m j :n j :k j .
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By setting the partial derivatives of Eq. (10) with respective to α, β, λ, and μ to
zero, theML estimators can be obtained by solving the following likelihood equations:

∂�
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}
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It is noted that the non-linear Eqs. (11)–(14) cannot be solved analytically. There-
fore, numerical methods such as the Newton–Raphson method are used.
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3.1 Interval estimation

Making use of the asymptotic normality of the ML estimates, the ACIs of the parame-
ters can be constructed via asymptotic variances that can be acquired from the inverse
of the FIMwhich can be established according to the likelihood equations through the
following form:

Î−1 (α, β, λ, μ) =

⎡

⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

E

⎛

⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

− ∂2�

∂α2 − ∂2�

∂α∂β
− ∂2�

∂α∂λ
− ∂2�

∂α∂μ

− ∂2�

∂β∂α
− ∂2�

∂β2 − ∂2�

∂β∂λ
− ∂2�

∂β∂μ

− ∂2�

∂λ∂α
− ∂2�

∂λ∂β
− ∂2�

∂λ2
− ∂2�

∂λ∂μ

− ∂2�

∂μ∂α
− ∂2�

∂μ∂β
− ∂2�

∂μ∂λ
− ∂2�

∂μ2

⎞

⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

⎤

⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

−1

↓(α=α̂,β=β̂,λ=λ̂,μ=μ̂)

(15)
At times it is difficult to figure out an exact expression of Eq. (15), so the inverse of

the FIM will be used without taking the expectation. Correspondingly, the asymptotic
variance-covariance matrix (observed FIM) is expressed as

Î−1 (α, β, λ, μ) =

⎛

⎜⎜⎜
⎝

̂var(α) cov(α, β) cov(α, λ) cov(α, μ)

cov(β, α) ̂var(β) cov(β, λ) cov(β, μ)

cov(λ, α) cov(λ, β) ̂var(λ) cov(λ, μ)

cov(μ, α) cov(μ, β) cov(μ, λ) ̂var(μ)

⎞

⎟⎟⎟
⎠

↓(α=α̂,β=β̂,λ=λ̂,μ=μ̂)

(16)
The required asymptotic variances for α̂, β̂, λ̂, and μ̂ can be extracted from the

matrix (16). Hence, (α̂, β̂, λ̂, μ̂) ∼ N [(α, β, λ, μ), Î−1 (α, β, λ, μ)] and it can be
figured out (1 − γ )100%, (0 < γ < 1) two-sided ACIs for ψ = (α, β, λ, μ) as

(

ψ̂ − Zγ /2

√
̂

var(ψ̂), ψ̂ + Zγ /2

√
̂

var(ψ̂)

)

(17)

where Zγ /2 is the percentile of the standard normal distribution with right-tailed
probability γ /2.

Occasionally, theACIs yield a negative lower bound even though the parameters are
strictly non-negative. To conquer this obstacle, we used the delta method proposed by
Greene (2000) and the logarithmic transformation discussed in Meeker and Escobar
(1998) and Ren and Gui (2021). The asymptotic distribution of ln ψ̂ is

ln ψ̂ − lnψ
D−→ N (0, var(ln ψ̂)) (18)

where
D−→ indicates convergence in distribution and var(ln ψ̂) = var(ψ̂)

ψ̂2 = ̂

var(ψ̂)

ψ̂2

123



Inference on Weibull inverted...

Hence, the ACIs based on log-transformed ML estimates are

⎛

⎜
⎝ψ̂. exp

⎧
⎪⎨

⎪⎩
−
Z γ

2

√
̂

var(ψ̂)

ψ̂

⎫
⎪⎬

⎪⎭
, ψ̂. exp

⎧
⎪⎨

⎪⎩

Z γ
2

√
̂

var(ψ̂)

ψ̂

⎫
⎪⎬

⎪⎭

⎞

⎟
⎠ (19)

The accuracy and efficiency of the normal approximation of ML estimates may
decrease if the sample size is not large enough. Therefore, in the next section, a
resampling technique is provided to overcome the issue of constructing ACIs of the
parameters in the presence of small sample sizes.

4 Bootstrap confidence intervals

Traditional statistical methodsmay struggle with small sample sizes, and therefore CIs
based on the asymptotic results may not perform well. Parametric bootstrap addresses
this issue by resampling from the estimated parametric distribution of the data, allow-
ing for the generation of a large number of bootstrap samples. This process provides
a means to estimate the sampling distribution of a statistic of interest. Consequently,
CIs constructed using parametric bootstrap tend to be more reliable and accurate,
especially when dealing with small samples. Two parametric bootstrap techniques are
provided, one is Boot-p which is proposed by Efron (1982) and the other is Boot-t
which is proposed by Hall (1988).

4.1 Parametric Boot-p

1. Through the original data x
R j1
j1:m j :n j :k j , x

R j2
j2:m j :n j :k j , . . . , x

R jmj
jm j :m j :n j :k j , j = 1, 2,

compute α̂, β̂, λ̂, and μ̂ by maximizing the Eqs. (11–14).
2. Utilize the censoring plan (n j ,m j , k j , R ji ) and (α̂, β̂, λ̂, μ̂) to generate a PFFC

bootstrap sample x
∗R j1
j1:m j :n j :k j , x

∗R j2
j2:m j :n j :k j , . . . , x

∗R jmj
jm j :m j :n j :k j .

3. From x
∗R j1
j1:m j :n j :k j , x

∗R j2
j2:m j :n j :k j , . . . , x

∗R jmj
jm j :m j :n j :k j , compute bootstrap estimates

which can be denoted by ς̂∗ where ς stands for α, β, λ,and μ .
4. Do steps (2) and (3) repeatedly for Nboot times to obtain ς̂∗

1 , ς̂∗
2 , . . . , ς̂∗

Nboot .
5. Sort ς̂∗

j , j = 1, 2, . . . , Nboot ascendingly as ς̂∗
( j), j = 1, 2, . . . , Nboot .

Let ψ1(z) = P (ς̂∗ ≤ z) be the CDF of ς̂∗. Define ς̂Boot−p = ψ−1
1 (z) for given z.

The approximate 100(1 − γ )% Boot-p CI of ς̂ is given by

[ς̂Boot−p(γ /2), ς̂Boot−p(1 − γ /2)] (20)

4.2 Parametric Boot-t

1-3 Same as in parametric Boot-p.
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4. Compute I−1∗(α̂∗, β̂∗, λ̂∗, μ̂∗) based on the asymptotic variance-covariance
matrix (16).

5. Compute the statistic ϑ∗ς as:

ϑ∗ς = (ς̂∗ − ς̂ )
√

̂var(ς̂∗)
. (21)

6. Reiterate Steps 2 − 5 Nboot times and obtain ϑ
∗ς
1 , ϑ

∗ς
2 , . . . , ϑ

∗ς
Nboot .

7. In ascending order, sort ϑ
∗ς
j , j = 1, 2, . . . , Nboot and obtain ϑ

∗ς

( j), j =
1, 2, . . . , Nboot .

Let ψ2(z) = P (ϑ∗ ≤ z) be the CDF of ϑ∗. For a given z, define

ς̂Boot−t = ς̂ +
√

̂var(ς̂∗)ψ−1
2 (z). (22)

Thus, the approximate 100(1 − γ )% Boot-t CI of ς̂ is given by:

[ς̂Boot−t (γ /2), ς̂Boot−t (1 − γ /2)]. (23)

5 Bayesian estimation

In the inferential procedure, the Bayesian approach is distinguished from the fre-
quentist approach in that it allows the incorporation of subjective prior information
about life parameters which plays a pivotal and effective role in reliability analysis;
additionally, it tends to use fewer sample data which makes it of great importance
in expensive life tests. Now, we have to determine the appropriate prior distributions
for the unknown parameters. Assume that α, β, γ , and μ follow independent gamma
prior distributions G1(a1, b1), G2(a2, b2), G3(a3, b3), and G4(a4, b4), respectively,
because they have more flexibility in covering a large variety of prior beliefs. Since
there is no prior information about the acceleration factor μ, the hyperparameters will
be set to zero. Hence, the PDFs of the prior distributions can be formulated as:

⎧
⎪⎪⎨

⎪⎪⎩

π1(α) ∝ αa1−1 exp {−b1α} , α > 0, a1, b1 > 0,
π2(β) ∝ βa2−1 exp {−b2β} , β > 0, a2, b2 > 0,
π3(λ) ∝ λa3−1 exp {−b3λ} , λ > 0, a3, b3 > 0,

π4(μ) ∝ μ−1, μ > 1.

(24)

The above positive hyperparameters a1, a2, a3, b1, b2, and b3 are selected to reflect
prior knowledge about the unknown parameters. Hence, a technique to elicit the values
of the hyperparameters is presented in in Subsect. 5.3. Now, the joint prior density can
be formulated as follows:

π(α, β, λ, μ) = π1(α)π2(β)π3(λ)π4(μ). (25)
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Consequently, the joint posterior density can be formulated as follows:

π∗(α, β, λ, μ|x) = L(α, β, λ, μ|x)π(α, β, λ, μ)
∫∞
0

∫∞
0

∫∞
0

∫∞
0 L(α, β, λ, μ|x)π(α, β, λ, μ)dαdβdλdμ

.

(26)

Thus, the Bayesian estimate for a given function can be constructed through a given
loss function.

5.1 Loss functions

Within the framework of Bayesian approach, the loss function plays a pivotal role in
evaluating the degree of difference between the true and estimated values. Let κ̂ refer
to the estimation of κ. Thus, the loss function denoted by L(κ̂, κ) can be defined as
a real-valued function satisfying L(κ̂, κ) ≥ 0 for all possible estimates κ̂ and all κ.
In other words, it can be said that the loss function equals the loss incurred if one of
the estimates is κ̂ when κ is the true value of the parameter. The loss function can be
divided into two types, symmetric and asymmetric.

5.1.1 Symmetric loss function

In practice, when the loss resulting from overestimation and underestimation is just as
important, symmetric loss functions are preferred among which the SE loss function
is well-known for its good mathematical properties which can be defined as

LSE (κ̂, κ) = (κ̂ − κ)2. (27)

The Bayesian estimate of κ under SE loss function is

κ̂SE = E
κ

(κ|x). (28)

Hence, the Bayesian estimate for a given function ϕ(α, β, λ, μ) under SE loss function
can be expressed as:

ϕ̂(α, β, λ, μ)SE

=
∫∞
0

∫∞
0

∫∞
0

∫∞
0 ϕ(α, β, λ, μ)L(α, β, λ, μ|x)π(α, β, λ, μ)dαdβdλdμ

∫∞
0

∫∞
0

∫∞
0

∫∞
0 L(α, β, λ, μ|x)π(α, β, λ, μ)dαdβdλdμ

.

(29)

5.1.2 Asymmetric loss function

Sometimes, overestimation and underestimation can lead to various losses. Therefore,
it is not appropriate in such cases to use symmetric loss functions; instead, asymmetric
loss functions are used for the sake of making the Bayesian approach more practical

123



A. Fathi et al.

and applicable. Among the asymmetric loss functions, the LX loss function is the
dominant one, defined as:

LLX (κ̂, κ) = ec(κ̂−κ) − c(κ̂ − κ) − 1, c 
= 0. (30)

The sign and size of c represent the orientation and degree of asymmetry, respectively.
When c > 0, overestimation is more costly than underestimation and vice versa. As
for c approaching zero, the LX loss function behaves approximately like the SE loss
function and is therefore almost symmetric, for more details, see (Zellner 1986).

The Bayesian estimate for κ under LX loss function is

κ̂LX = −1

c
ln E

κ
(e−cκ |x). (31)

Hence, theBayesian estimate for a given functionϕ(α, β, λ, μ) under LX loss function
can be expressed as:

ϕ̂(α, β, λ, μ)LX

= −1

c
ln

[∫∞
0

∫∞
0

∫∞
0

∫∞
0 e−cϕ(α,β,λ,μ)L(α, β, λ, μ|x)π(α, β, λ, μ)dαdβdλdμ

∫∞
0

∫∞
0

∫∞
0

∫∞
0 L(α, β, λ, μ|x)π(α, β, λ, μ)dαdβdλdμ

]

.

(32)

Obviously, the Bayesian estimates in the previous types of loss functions involve
four integrals and cannot be constructed in closed forms. Therefore, the MCMC tech-
nique will be applied to derive such estimates.

5.2 MCMC technique

In realistic and complex statistical modeling, MCMCmethodology provides valuable
tools for Bayesian computations. One such tool that is considered to be the simplest
and most widely used is the Gibbs sampling algorithm which was originally proposed
by Geman and Geman (1984). The idea of this procedure is to draw samples from the
conditional density of each variable. A more general procedure than Gibbs sampling
is the Metropolis-Hastings (M-H) algorithm, originally presented by Metropolis et al.
(1953) and Hastings (1970). In this procedure, samples can be drawn by making use
of the conditional density and proposal distributions for each parameter of interest.
Thereafter, by making use of drawn samples, Bayesian estimates can be computed
and corresponding CRIs can also be established.

From (26), the joint posterior density can be reformulated as follows:

π∗(α, β, λ, μ|x) ∝ αm1+m2+a1−1βm1+m2+a2−1λm1+m2+a3−1μm2−1

⎡

⎢
⎣

2∏

j=1

m j∏

i=1

(
exp

{
λ
x ji

}
− 1

)−(β+1)

x2j i

⎤

⎥
⎦
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× exp

⎧
⎨

⎩
− (b1α + b2β + b3λ) +

2∑

j=1

m j∑

i=1

(
λ

x ji

−αϒ j k j
(
R ji + 1

) (
exp

{
λ

x ji

}
− 1

)−β
)}

. (33)

where ϒ j =
{
1, if j = 1,
μ, if j = 2.

Thus, the conditional densities can be expressed as follows:

π∗
1 (α|β, λ, μ,x) ∝ αm1+m2+a1−1

× exp

⎧
⎨

⎩
−α

⎛

⎝b1 +
2∑

j=1

m j∑

i=1

k jϒ j
(
R ji + 1

) (
exp

{
λ

x ji

}
− 1

)−β
⎞

⎠

⎫
⎬

⎭
,

(34)

π∗
2 (β|α, λ, μ,x) ∝ βm1+m2+a2−1

⎡

⎣
2∏

j=1

m j∏

i=1

(
exp

{
λ

x ji

}
− 1

)−β
⎤

⎦

× exp

⎧
⎨

⎩
−
⎛

⎝b2β + α

2∑

j=1

m j∑

i=1

k jϒ j
(
R ji + 1

) (
exp

{
λ

x ji

}
− 1

)−β
⎞

⎠

⎫
⎬

⎭
, (35)

π∗
3 (λ|α, β, μ,x) ∝ λm1+m2+a3−1

⎡

⎣
2∏

j=1

m j∏

i=1

(
exp

{
λ

x ji

}
− 1

)−(β+1)
⎤

⎦

× exp

⎧
⎨

⎩
−b3λ +

2∑

j=1

m j∑

i=1

(
λ

x ji
− αk jϒ j

(
R ji + 1

) (
exp

{
λ

x ji

}
− 1

)−β
)⎫⎬

⎭
,

(36)

π∗
4 (μ|α, β, λ,x) ∝ μm2−1 exp

{

−αμk2

m2∑

i=1

(R2i + 1)

(
exp

{
λ

x2i

}
− 1

)−β
}

.

(37)

It is clear that Eqs. (34) and (37) represent gamma density. Thus, samples of α and
μ can be easily drawn using any gamma-generating routines. On the other hand, Eqs.
(35) and (36) do not represent well-known distributions. Consequently, employing
the Gibbs sampler to generate samples is not appropriate; instead, the M-H algorithm
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is utilized to implement the MCMC methodology. The hybrid procedure involving
Gibbs sampling and the M-H algorithm will be run in the following steps:

1. Initialize with (α(0) = α̂ML , β(0) = β̂ML , λ(0) = λ̂ML , μ(0) = μ̂ML) as an initial
guess and set J = 1.

2. Generate α(J ) from Gamma distribution π∗
1 (α|β(J−1), λ(J−1), μ(J−1),x).

3. Generate μ(J ) from Gamma distribution π∗
4 (μ|α(J ), β(J−1), λ(J−1),x).

4. Activating the M-H algorithm, generate β(J ) and λ(J ) from Eqs. (35) and (36)
with normal proposal distributions N (β(J−1), Var(β̂)) and N (λ(J−1), Var(λ̂)),
respectively.

5. Record α(J ), β(J ), λ(J ) and μ(J ).

6. Set J = J + 1.
7. Reiterate steps 2 − 6 N times.
8. Remove B (the number of iterative values before achieving the stationary distri-

bution) as burn-in period and derive the Bayesian estimates �̂SE and �̂LX of �

under SE and LX loss functions, respectively, by

�̂SE = 1

N − B

N∑

J=B+1

�(J ). (38)

�̂LX = −1

c
Log

(
1

N − B

N∑

J=B+1

e−c�(J )

)

, where c 
= 0. (39)

where � stands for α, β, λ, and μ.

9. To establish two-sidedCRIs of�, sort �̂(J ), J = B+1, B+2, . . . , N in ascending

order as
{
�̂(1) < �̂(2) < ... < �̂(N−B)

}
. Hence, (1−γ )100%Bayesian two-sided

CRIs of � can be constructed as:

[
�((N−B)γ /2), �((N−B)(1−γ /2))

]
. (40)

5.3 Hyperparameters elicitation technique

In Bayesian inference, prior distributions are generally classified as informative
and non-informative according to the values of the hyperparameters. In terms of
non-informative prior distributions, the hyperparameters are selected to be equal or
approach zero while regarding informative prior distributions, the hyperparameters
can be elicitated from the following technique:

1. Obtain n number of samples fromWIED under normal and accelerated conditions.
2. Calculate the associated ML estimates (α̂ j , β̂ j , λ̂ j ), j = 1, 2, . . . , n.

3. Calculate the mean and variance of (α̂ j , β̂ j , λ̂ j ), j = 1, 2, . . . , n as

1

n

n∑

j=1

�̂ j ,
1

n − 1

n∑

j=1

(

�̂ j − 1

n

n∑

i=1

�̂i

)2

. (41)
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where � stands for α, β, and λ.
4. Calculate the mean and variance of the considered priors, which, in our case,

are the gamma prior π(�) ∝ �h1−1 exp {−h2�} where for � = α we have
h1 = a1, h2 = b1, for � = β we have h1 = a2, h2 = b2, and for � = λ we have
h1 = a3, h2 = b3.

5. Equate the mean and variance of �̂ j , j = 1, 2, . . . , n with the mean and variance
of the gamma priors and solve the equations, hence, the estimated hyperparameters
can be derived from the following forms:

h1 =
(
1
n

∑n
j=1 �̂ j

)2

1
n−1

∑n
j=1

(
�̂ j − 1

n

n∑

i=1
�̂i

)2 , h2 =
1
n

∑n
j=1 �̂ j

1
n−1

∑n
j=1

(
�̂ j − 1

n

n∑

i=1
�̂i

)2 .

(42)

Such a technique has been used by Dey et al. (2016).

6 Simulation study

In attempts to evaluate the performance of the proposed methods, some computa-
tions are performed in accordance with Monte Carlo simulation experiments utilizing
(MATHEMATICA ver. 12.0). In light of the proposed algorithmmentioned in Balakr-
ishnan and Sandhu (1995) with the distribution function 1−(1 − F(x))k , 1000 PFFC
samples were generated under both normal and acceleration conditions from WIED
with the parameters α = 0.5, β = 1, λ = 0.6, and μ = 1.5. The performance of the
estimates derived for α, β, λ, and μ from different proposed methods (ML estima-
tion, two parametric bootstraps, and MCMC technique) is compared in terms of point
and interval estimates. To this end, the average estimate (AE) and mean square error
(MSE) are considered for point estimates while the average width (AW) and coverage
probability (CP) are considered for interval estimates.

In order to conduct our study, distinct combinations of k1 = k2 = k (group size),
different values of n1 = n2 = n (number of groups), and m j , j = 1, 2 (observed
data) are taken into account with different censoring schemes (CSs) R j , j = 1, 2. For
convenience, three types of CSs are considered:

CS I: R j = (
n − m j , 0∗m j−1

)
.

CS II: R j(m j /2) = n − m j , R ji = 0 for i 
= m j/2 if m j even; R j((m j+1)/2) =
n − m j , R ji = 0 for i 
= (m j + 1)/2 if m j odd.

CS III: R j = (
0∗m j−1, n − m j

)
.

In this work, informative priors are adopted in which the hyperparameters are
selected in accordance with the mentioned technique in Subsect. 5.3 as a1 = 8.2750,
b1 = 13.0085, a2 = 59.1713, b2 = 62.5731, a3 = 18.3662, and b3 = 26.1601 and
inserted to compute the required estimates. Besides, theMCMC technique is reiterated
30, 000 timeswith the first 5, 000 times discarded as a sufficient burn-in period to erase
the effect of the initial values. The simulation results are shown in Tables 1, 2, 3, 4, 5,
6, 7 and 8 , according to which we note the following:
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Table 5 AW and (CP) of 95% CIs

k, (n,m1,m2),cs p ML Boot-p Boot-t MCMC

1,(40,15,15),I α 5.6195(0.960) 4.4991(0.965) 3.6499(0.980) 0.6337(1.000)

β 1.1901(0.910) 1.0634(0.960) 0.9792(0.990) 0.3557(0.990)

λ 2.3465(0.990) 2.1600(0.980) 1.5116(0.990) 0.4561(0.990)

μ 2.8030(0.930) 2.7622(0.950) 2.6506(0.940) 2.3167(0.960)

1,(40,15,15),II α 4.6568(0.920) 4.4112(0.940) 3.7685(0.970) 0.6546(0.995)

β 1.1840(0.950) 1.4108(0.950) 0.9889(0.990) 0.3632(0.990)

λ 2.3046(1.000) 2.1026(0.990) 1.6348(0.990) 0.4484(1.000)

μ 2.7595(0.950) 2.7451(0.960) 2.5796(0.960) 2.4419(0.980)

1,(40,15,15),III α 6.8426(0.900) 5.6257(0.980) 4.0113(0.940) 0.6203(0.990)

β 6.8019(0.955) 1.6831(0.965) 1.8649(0.970) 0.4102(0.995)

λ 12.233(0.960) 8.4944(0.960) 5.1722(0.980) 0.4522(1.000)

μ 3.0342(0.940) 2.7695(0.945) 2.7687(0.960) 2.5327(0.980)

1,(40,25,30),I α 2.7602(0.950) 2.6324(0.980) 2.2318(0.985) 0.5927(0.990)

β 0.8326(0.910) 0.8017(0.965) 0.7425(0.980) 0.3206(0.980)

λ 1.5319(0.990) 1.3794(0.990) 1.0991(1.000) 0.4340(1.000)

μ 1.8959(0.930) 1.5856(0.980) 1.8673(0.985) 1.6890(0.990)

1,(40,25,30),II α 2.6884(0.940) 2.6352(0.990) 2.5066(0.985) 0.5955(1.000)

β 0.8185(0.960) 0.7849(0.990) 0.7401(0.990) 0.3199(1.000)

λ 1.6618(0.970) 1.4410(0.980) 1.2769(0.985) 0.4360(0.995)

μ 1.7405(0.950) 1.9753(0.980) 1.7028(0.975) 1.6057(0.980)

1,(40,25,30),III α 4.3040(0.890) 3.6788(0.960) 3.1913(0.965) 0.5921(1.000)

β 1.4478(0.960) 1.3857(0.980) 1.1367(0.980) 0.3623(0.990)

λ 3.4670(0.990) 3.1084(0.960) 2.2452(0.980) 0.4452(0.980)

μ 1.8334(0.880) 1.8306(0.920) 1.8123(0.900) 1.6640(0.970)

1. For fixed n, the MSEs and AWs of all parameters tend to decrease as the effective
sample size m j gets larger.

2. With n and m j keeping invariant but k increases, the MSEs have no obvious trend
on the whole.

3. MCMC technique has the best performance compared to the rest methods in terms
of MSEs.

4. Between two loss functions, LX loss function with c = 0.5 is the best mode for
α, λ, and μ, in contrast, LX loss function with c = −0.5 is the best mode for β, all
based on the smallest MSEs.

5. Overall, MCMC CRIs are the most satisfactory because they have the narrowest
width.

6. Scheme I often performs better than the rest schemes with regard to the MSEs and
AWs.
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Table 6 AW and (CP) of 95% CIs

k, (n,m1,m2),cs p ML Boot-p Boot-t MCMC

1,(70,40,45),I α 1.7478(0.930) 1.7293(0.970) 1.7178(0.980) 0.5637(0.990)

β 0.6469(0.920) 0.6418(0.970) 0.6144(0.985) 0.2892(0.995)

λ 1.0882(0.950) 1.0082(0.960) 0.9209(0.970) 0.4049(0.990)

μ 1.4334(0.950) 1.4201(0.965) 1.4170(0.960) 1.3262(0.975)

1,(70,40,45),II α 1.7107(0.880) 1.7002(0.960) 1.6055(0.965) 0.5547(0.980)

β 0.6322(0.970) 0.6138(0.990) 0.5949(0.990) 0.2908(0.995)

λ 1.1308(0.950) 1.0413(0.960) 0.9506(0.965) 0.4077(0.980)

μ 1.3813(0.940) 1.3809(0.955) 1.3764(0.970) 1.3099(0.990)

1,(70,40,45),III α 2.3661(0.940) 2.2116(0.985) 2.1806(0.990) 0.5292(0.995)

β 1.1792(0.980) 1.1383(0.980) 0.9709(0.990) 0.3391(0.990)

λ 2.4214(0.980) 2.2520(0.965) 1.8412(0.975) 0.4158(0.985)

μ 1.4590(0.915) 1.4407(0.935) 1.4349(0.945) 1.3440(0.960)

1,(70,55,60),I α 1.5322(0.940) 1.5140(0.980) 1.4887(0.980) 0.5448(0.990)

β 0.5548(0.970) 0.5484(0.990) 0.5307(0.980) 0.2700(0.995)

λ 1.0036(0.970) 0.9737(0.980) 0.8852(0.990) 0.3966(0.995)

μ 1.2195(0.910) 1.2108(0.975) 1.2092(0.985) 1.1438(0.990)

1,(70,55,60),II α 1.4152(0.930) 2.6993(0.980) 1.3700(0.980) 0.5284(0.990)

β 0.5486(0.945) 0.8839(0.990) 0.5259(0.985) 0.2706(0.995)

λ 0.9828(0.940) 3.9173(0.960) 0.8540(0.975) 0.3970(0.980)

μ 1.2350(0.960) 1.3082(0.970) 1.2261(0.980) 1.1656(0.980)

1,(70,55,60),III α 1.8222(0.925) 1.8030(0.945) 1.6218(0.945) 0.5327(0.980)

β 0.7242(0.980) 0.7048(0.960) 0.6769(0.985) 0.2959(0.990)

λ 1.3537(0.975) 1.2212(0.980) 1.1280(0.970) 0.4084(0.995)

μ 1.2173(0.920) 1.1933(0.970) 1.1831(0.980) 1.1610(0.985)

7 Practical data analysis

In this part, authentic data sets that represent observed failure times in life testing
of a light-emitting diode (LED) are used to display and illustrate the performance of
the proposed inferential methods. These data were originally analyzed by Cheng and
Wang (2012) and recently by Dey et al. (2022). Table 9 shows the complete observed
failure samples generated under normal and accelerated conditions.

To test the degree of fit between WIED and the data mentioned in Table 9, the
Kolmogorov-Smirnov (K-S) test statistic is used. Through computations, the K–S
distances and their corresponding p-value (.) under normal use and accelerated con-
ditions are obtained, respectively, as 0.0934(0.6564) and 0.0921(0.6738). Based on
the calculated p-values, we can conclude that the WIED fits perfectly with these data.
For further illustration, Figures 2 and 3 display the empirical cumulative distributions
with the fitted survival functions. By implementing the procedure characterized in
Sect. 2 on the original data mentioned in Table 9, PFFC samples are obtained within
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Table 7 AW and (CP) of 95% CIs

k, (n,m1,m2),cs p ML Boot-p Boot-t MCMC

4,(40,15,15),I α 4.2119(0.980) 3.8905(0.980) 2.9245(0.990) 0.6009(0.995)

β 1.9710(0.965) 1.6309(0.970) 1.4028(0.970) 0.3872(0.985)

λ 2.6618(0.980) 2.1883(0.975) 1.9530(0.970) 0.4075(0.985)

μ 2.9735(0.985) 2.9069(0.990) 2.7747(0.995) 2.5324(0.995)

4,(40,15,15),II α 4.7092(0.925) 4.1138(0.925) 3.1056(0.945) 0.6412(0.970)

β 2.5616(0.960) 1.6635(0.970) 1.5608(0.975) 0.3943(0.990)

λ 5.5780(0.980) 4.6829(0.985) 4.1074(0.990) 0.3989(0.995)

μ 2.8410(0.945) 2.8034(0.950) 2.7061(0.965) 2.5575(0.985)

4,(40,15,15),III α 9.4855(0.890) 7.3322(0.920) 2.4062(0.965) 0.6534(0.980)

β 6.2943(0.925) 4.9531(0.945) 2.536(0.945) 0.4301(0.975)

λ 10.624(0.915) 7.4357(0.970) 6.3351(0.975) 0.4075(0.980)

μ 6.7342(0.950) 6.5743(0.960) 3.0865(0.980) 2.8405(0.995)

4,(40,25,30),I α 2.4795(0.950) 2.3212(0.960) 2.1183(0.960) 0.5571(0.980)

β 1.4709(0.965) 1.3776(0.965) 1.1440(0.980) 0.3663(0.990)

λ 2.9184(0.970) 2.7752(0.980) 2.678(0.990) 0.3992(0.995)

μ 1.8856(0.920) 1.8496(0.935) 1.8283(0.950) 1.7028(0.985)

4,(40,25,30),II α 2.3926(0.930) 2.1372(0.945) 2.0418(0.970) 0.5629(0.990)

β 1.5700(0.960) 1.3805(0.970) 1.1650(0.975) 0.3673(0.985)

λ 3.0792(0.925) 3.0672(0.925) 2.1875(0.960) 0.3943(0.970)

μ 1.7963(0.970) 1.7587(0.980) 1.7441(0.985) 1.6607(0.995)

4,(40,25,30),III α 3.7293(0.890) 3.0448(0.925) 2.5605(0.960) 0.5789(0.980)

β 7.5731(0.960) 4.5729(0.975) 1.8056(0.980) 0.4041(0.990)

λ 8.8341(0.925) 7.1906(0.950) 6.1177(0.965) 0.3980(0.995)

μ 4.7983(0.900) 2.7939(0.920) 1.7605(0.970) 1.6680(0.985)

the CSPALT framework. All details are provided in Table 10. Besides, Figure 1 shows
the PDFs under both normal use and accelerated stress conditions. The ML, Boot-
p, and Boot-t point estimates, along with their corresponding CIs, are obtained. For
Bayesian estimation, informative priors are adopted where the hyperparameters are
selected as a1 = 14.3403, b1 = 85.5635, a2 = 165.31, b2 = 141.36, a3 = 35.1201,
and b3 = 82.4022 based on the mentioned technique in Subsect. 5.3. Furthermore,
the chain was run for 30, 000 iterations, with the initial 5, 000 values discarded as
’burn-in’, which is deemed adequate for eliminating the influence of the initial val-
ues. Bayesian point estimates are computed under both SE and LX loss functions
with various values of the parameter c; moreover, 95% CRIs are also constructed. All
results of point and interval estimates are presented in Tables 11 and 12. It is clear
that Boot-t CIs and CRIs are the narrowest, while ACIs and Boot-p CIs are the widest,
and therefore the worst in terms of interval lengths. Figures 4 and 5 display trace plots
of the parameters generated by the MCMC approach and the associated histograms,
respectively.
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Table 8 AW and (CP) of 95% CIs

k, (n,m1,m2),cs p ML Boot-p Boot-t MCMC

4,(70,40,45),I α 1.4941(0.940) 1.4651(0.970) 1.4133(0.960) 0.4970(0.995)

β 1.0923(0.900) 1.0078(0.925) 0.9311(0.945) 0.3479(0.980)

λ 1.2826(0.945) 1.1529(0.965) 1.1145(0.980) 0.3718(0.990)

μ 1.5078(0.950) 1.5028(0.970) 1.4567(0.980) 1.3858(0.980)

4,(70,40,45),II α 1.5955(0.900) 1.5596(0.925) 1.6002(0.930) 0.5239(0.975)

β 1.1393(0.945) 1.2348(0.930) 0.9902(0.980) 0.3534(0.980)

λ 1.4261(0.980) 1.4067(0.985) 1.2205(0.990) 0.3714(0.995)

μ 1.3410(0.930) 1.3301(0.975) 1.3203(0.985) 1.2756(0.995)

4,(70,40,45),III α 3.0434(0.980) 2.1883(0.975) 1.8077(0.990) 0.5006(0.995)

β 2.9146(0.940) 1.5239(0.950) 1.7812(0.960) 0.3874(0.990)

λ 5.1221(0.985) 3.5129(0.985) 3.1418(0.980) 0.3665(0.980)

μ 1.5075(0.975) 1.3663(0.980) 1.4579(0.945) 1.4173(0.980)

4,(70,55,60),I α 1.1193(0.900) 1.0540(0.910) 1.0146(0.945) 0.4839(0.975)

β 1.1963(0.925) 1.0663(0.950) 0.6293(0.960) 0.3308(0.990)

λ 1.0373(0.945) 1.0073(0.925) 0.8796(0.980) 0.3715(0.995)

μ 0.9642(0.965) 0.9442(0.950) 0.7494(0.975) 1.1182(0.980)

4,(70,55,60),II α 1.3126(0.970) 1.3070(0.980) 1.2386(0.985) 0.4871(0.990)

β 1.2499(0.950) 1.1561(0.965) 0.8501(0.950) 0.3365(0.985)

λ 1.0966(0.985) 1.0413(0.970) 0.9507(0.975) 0.3677(0.980)

μ 1.2827(0.965) 1.1978(0.945) 1.1379(0.990) 1.1052(0.995)

4,(70,55,60),III α 1.6794(0.890) 1.6692(0.925) 1.4682(0.945) 0.4716(0.980)

β 1.7424(0.940) 1.2861(0.950) 1.2522(0.965) 0.3548(0.995)

λ 3.9008(0.965) 2.9935(0.970) 2.2854(0.970) 0.3655(0.980)

μ 1.1687(0.940) 1.1669(0.985) 1.1550(0.980) 1.1167(0.990)

Table 9 Complete CSPALT LED failure data

Normal use condition

0.18 0.19 0.19 0.34 0.36 0.40 0.44 0.44 0.45 0.46 0.47 0.53 0.57 0.57 0.63 0.65 0.70 0.71

0.71 0.75 0.76 0.76 0.79 0.80 0.85 0.98 1.01 1.07 1.12 1.14 1.15 1.17 1.20 1.23 1.24 1.25

1.26 1.32 1.33 1.33 1.39 1.42 1.50 1.55 1.58 1.59 1.62 1.68 1.70 1.79 2.00 2.01 2.04 2.54

3.61 3.76 4.65 8.97

Accelerated stress condition

0.13 0.16 0.20 0.20 0.21 0.25 0.26 0.28 0.28 0.30 0.31 0.33 0.35 0.35 0.35 0.39 0.50 0.52

0.58 0.60 0.60 0.62 0.63 0.67 0.71 0.73 0.75 0.75 0.78 0.80 0.80 0.86 0.90 0.91 0.93 0.93

0.94 0.98 0.99 1.01 1.03 1.06 1.06 1.10 1.22 1.22 1.24 1.28 1.39 1.39 1.46 1.48 1.52 1.74

1.95 2.46 3.02 5.16
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Fig. 1 PDFs under normal and accelerated conditions

Fig. 2 Fitness of real data obtained under normal condition

Fig. 3 Fitness of real data obtained under accelerated condition
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Table 10 PFFC CSPALT LED failure data

Normal use condition: (n1,m1, k1) = (29, 20, 2) and CS1 = (2, 0∗3, 1, 0∗3, 3, 0∗4, 1, 0∗3, 2, 0∗2)
0.18 0.19 0.36 0.45 0.47 0.57 0.63 0.70 0.71 0.76 0.79 0.85 1.01 1.15 1.24 1.26 1.33 1.39

1.62 4.65

Accelerated stress condition: (n2,m2, k2) = (29, 22, 2) and CS2 = (1, 0∗2, 2, 0∗5, 1, 0∗5, 1, 0∗4, 2, 0∗1)
0.13 0.20 0.21 0.26 0.31 0.35 0.50 0.58 0.60 0.63 0.75 0.78 0.80 0.93 0.94 0.99 1.06 1.22

1.24 1.39 1.46 1.52

Table 11 Different point estimates for α, β, λ, and μ

P ML bootstrap MCMC

Boot-p Boot-t SE LX

c = −0.1 c = 0.0001 c= 0.1

α 0.1300 0.1986 0.2259 0.1656 0.1656 0.1656 0.1655

β 1.2260 1.2952 1.0785 1.1728 1.1731 1.1728 1.1725

λ 0.3784 0.4314 0.5336 0.4301 0.4303 0.4301 0.4300

μ 1.5489 1.7589 1.4445 1.5738 1.5844 1.5738 1.5634

8 Conclusive remarks

In this article, the statistical inference of WIED in the presence of CSPALT under the
PFFC is highlighted. This combination makes our research more practical and applied
in industrial and engineering fields by saving time, the number of test units and thus
cost. Throughout this paper, several methods are developed to estimate the interested
parameters of WIED. For classical estimation, ML estimates are acquired and the
associated ACIs are established by making use of the observed FIM. Besides, two
parametric bootstrap models (Boot-p and Boot-t) for point and interval estimates are
also presented for comparison purposes. For Bayesian estimation, point and interval
estimates are constructed with the help of theMCMC technique due to the difficulty of
producing Bayesian estimates in closed form. Via extensive Monte Carlo simulations,
the performance of the proposed methods is investigated. According to the results,
Boot-t and Bayesian estimates demonstrate superior performance and accuracy com-
pared to conventional likelihood and Boot-p estimates. Furthermore, employing the
proposed hyperparameters elicitation technique enhances the efficiency and effective-
ness ofBayesian estimates relative to othermethods. Finally, one set of real engineering
data is analyzed to demonstrate the applicability of the study.
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Fig. 4 Trance plots of α, β, λ and μ obtained from MCMC approach

Fig. 5 Histograms of α, β, λ and μ obtained from MCMC approach

Acknowledgements The authors would like to express their thanks to the editors and referees for their
valuable comments and suggestions that significantly improved the paper.

123



A. Fathi et al.

Funding Open access funding provided by The Science, Technology amp; Innovation Funding Authority
(STDF) in cooperation with The Egyptian Knowledge Bank (EKB).

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abdel-Hamid Alaa H, Al-Hussaini Essam K (2007) Progressive stress accelerated life tests under finite
mixture models. Metrika 66(2):213–231

Abushal Tahani A, Soliman Ahmed A (2015) Estimating the pareto parameters under progressive censoring
data for constant-partially accelerated life tests. J Stat Comput Simul 85(5):917–934

Akgul FG, Keming Yu, Senoglu B (2020) Classical and bayesian inferences in step-stress partially acceler-
ated life tests for inverse weibull distribution under type-i censoring. Strength Mater 52(3):480–496

Ali A, Almarashi Abdullah M, Hassan O, Tony NHK (2020) E-bayesian estimation of chen distribution
based on type-i censoring scheme. Entropy 22(6):636

Arnold Z (1986) Bayesian estimation and prediction using asymmetric loss functions. J Am Stat Assoc
81(394):446–451

Balakrishnan N, Donghoon H (2008) Exact inference for a simple step-stress model with competing risks
for failure from exponential distribution under type-ii censoring. J Stat Plann Inference 138(12):4172–
4186

Balakrishnan N, Sandhu RA (1995) A simple simulational algorithm for generating progressive type-ii
censored samples. Am Stat 49(2):229–230

Bingxing W (2006) Unbiased estimations for the exponential distribution based on step-stress accelerated
life-testing data. Appl Math Comput 173(2):1227–1237

Bradley E (1982) The jackknife, the bootstrap and other resampling plans. SIAM, Philadelphia
Chandrakant RMK, Tripathi YM (2018) On a weibull-inverse exponential distribution. Annal Data Sci

5(2):209–234
Chien-Tai L, Yao-Yu H, Siao-Yu L, Balakrishnan N (2019) Inference on constant stress accelerated life

tests for log-location-scale lifetime distributions with type-i hybrid censoring. J Stat Comput Simul
89(4):720–749

Debasis K, Hatem H (2010) Bayesian inference and prediction of the inverse weibull distribution for type-ii
censored data. Comput Stat Data Anal 54(6):1547–1558

Greene William H (2000) Econometric analysis, 4th edn. Prentice Hall, International edition, New Jersey,
pp 201–215

Hassan Amal S, Nassr Said G, Sukanta P, Maiti Sudhansu S (2020) Estimation in constant stress partially
accelerated life tests for weibull distribution based on censored competing risks data. Annal Data Sci
7(1):45–62

Huizhong L, Liang W, Yuhlong L, Sanku D (2023) Estimation of matusita measure between generalized
inverted exponential distributions under progressive first-failure censored data. J Comput Appl Math
421:114836

IsmailAliA (2016) Statistical inference for a step-stress partially-accelerated life testmodelwith an adaptive
type-i progressively hybrid censored data from weibull distribution. Stat Papers 57(2):271–301

Ismail Ali A, Al-Babtain AA (2015) On studying partially accelerated life tests under progressive stress. J
Test Eval 43(4):897–905

Junru R, Wenhao G (2021) Inference and optimal censoring scheme for progressively type-ii censored
competing risks model for generalized rayleigh distribution. Comput Stat 36(1):479–513

Keith HW (1970) Monte carlo sampling metho ds using markov chains and their applications. Biometrika
57(1):97–109

123

http://creativecommons.org/licenses/by/4.0/


Inference on Weibull inverted...

Kumar MA, Sanku D, Mani TY (2020) Statistical inference on progressive-stress accelerated life testing
for the logistic exponential distribution under progressive type-ii censoring. Qual Reliab Eng Int
36(1):112–124

KumarMA,Mani TY,Wu S-J (2021) Statistical inference based on progressively type-ii censored data from
the burr x distribution under progressive-stress accelerated life test. J Stat Comput Simul 91(2):368–
382

Lei G,WenhaoG (2018) Statistical inference of the reliability for generalized exponential distribution under
progressive type-ii censoring schemes. IEEE Trans Reliab 67(2):470–480

Meeker William Q, Escobar Luis A (1998) Statistical methods for reliability data. Wiley, New York
Nelson Wayne B (2009) Accelerated testing: statistical models, test plans, and data analysis. John Wiley &

Sons
Nicholas M, Rosenbluth Arianna W, Rosenbluth Marshall N, Teller Augusta H, Edward T (1953) Equation

of state calculations by fast computing machines. J Chem Phys 21(6):1087–1092
Nooshin H (2021) Comparison between constant-stress and step-stress accelerated life tests under a cost

constraint for progressive type i censoring. Sequent Anal 40(1):17–31
Peter H (1988) Theoretical comparison of bootstrap confidence intervals. Annal Stat 16(3):927–953
Rashad E-SM (2018) Estimation of parameters of weibull-gamma distribution based on progressively

censored data. Stat Papers 59(2):725–757
Sajid A, Muhammad A (2013) Choice of suitable informative prior for the scale parameter of mixture of

laplace distribution using type-i censoring scheme under different loss function. Electron J Appl Stat
Anal 6(1):32–56

Sanku D, Mazen N (2020) Generalized inverted exponential distribution under constant stress accelerated
life test: Different estimation methods with application. Qual Reliab Eng Int 36(4):1296–1312

Sanku D, Sukhdev S, Mani TY, Asgharzadeh A (2016) Estimation and prediction for a progressively
censored generalized inverted exponential distribution. Stat Methodol 32:185–202

Sanku D, Liang W, Mazen N (2022) Inference on nadarajah-haghighi distribution with constant stress
partially accelerated life tests under progressive type-ii censoring. J Appl Stat 49(11):2891–2912

Singh S, Tripathi YM (2015) Reliability sampling plans for a lognormal distribution under progressive
first-failure censoring with cost constraint. Stat Papers 56:773–817

Stuart G, Donald G (1984) Stochastic relaxation, gibbs distributions, and the bayesian restoration of images.
IEEE Trans Pattern Anal Mach Intell 6:721–741
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