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Abstract
The aim of this paper is to develop a change-point test for functional time series that
uses the full functional information and is less sensitive to outliers compared to the
classical CUSUM test. For this aim, the Wilcoxon two-sample test is generalized to
functional data. To obtain the asymptotic distribution of the test statistic, we prove
a limit theorem for a process of U -statistics with values in a Hilbert space under
weak dependence. Critical values can be obtained by a newly developed version of
the dependent wild bootstrap for non-degenerate 2-sample U -statistics.

Mathematics Subject Classification 62R10 · 62G35 · 62M10 · 62F40

1 Introduction

Statistical methods for observations consisting of functions are widely discussed since
at least the work by Ramsay (1982), and there is a growing interest in recent years
because more and more data is available in high resolution that can not be treated as
multivariate data. Functional data analysis might even be helpful for one-dimensional
time series (see e.g. Hörmann and Kokoszka 2010). Functional observations are often
modelled as random variables taking values in a Hilbert space, we recommend the
book by Hörmann and Kokoszka (2012) for an introduction.

In this paper, we will propose new methods for the detection of change-points:
Suppose that we observe X1, . . . , Xn being a part of a time series (Xn)n∈Z with
values in a separable Hilbert space H (equipped with inner product 〈·, ·, 〉 and norm
‖ · ‖ = √〈·, ·〉). The at most one change-point problem is to test the null hypothesis
of stationarity against the alternative of an abrupt change of the distribution at an
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4768 L. Wegner, M. Wendler

unknown time point k�: X1
D= · · · D= Xk� and Xk�+1

D= · · · D= Xn , but X1
D�= Xn

(where Xi
D= X j means that Xi and X j have the same distribution).

Functional data is often projected on lower dimensional spaceswith functional prin-
cipal components, see (Berkes et al. 2009) for a change in mean of independent data
and Aston and Kirch (2012) for a change in mean of time series. Fremdt et al. (2014)
proposed to let the dimension on the subspace onwhich the data is projected growwith
the sample size. But is is also possible to use change-point tests without dimension
reduction as done by Horváth et al. (2014) under independence, by Sharipov et al.
(2016) and Aue et al. (2018) under dependence. Since using the asymptotic distri-
bution would require knowledge of the infinite-dimensional covariance operator, it is
convenient to use bootstrapmethods. In the context of change-point detection for func-
tional time series, the non-overlapping block bootstrap was studied by Sharipov et al.
(2016), the dependent wild bootstrap by Bucchia and Wendler (2017) and the block
multiplier bootstrap (for Banach-space-valued times series) by Dette et al. (2020).

Typically, these tests are based on variants of the CUSUM-test, where CUSUM
stands for cumulated sums. Such tests make use of sample means and thus, they
are sensitive to outliers. For real-valued time series, several authors have constructed
more robust tests based on the Mann–Whitney-Wilcoxon-U -test. For the two-sample
problem (do the two real-valued samples X1, . . . , Xn1 and Y1, . . . , Yn2 have the same
location?), the Mann–Whitney-Wilcoxon-U -statistic can be written as

U (X1, . . . , Xn1 , Y1, . . . , Yn2) = 1

n1n2

n1∑

i=1

n2∑

j=1

sgn(Xi − Y j )

= 1

n1n2

n1∑

i=1

n2∑

j=1

Xi − Y j

|Xi − Y j |

(where 0/0 is set to 0). Chakraborty and Chaudhuri (2017) have generalized this test
statistic to Hilbert spaces by replacing the sign by the so called spatial sign:

U (X1, . . . , Xn1 , Y1, . . . , Yn2) = 1

n1n2

n1∑

i=1

n2∑

j=1

Xi − Y j

‖Xi − Y j‖

They have shown the weak convergence to a Gaussian distribution for independent
random variables. For change-point detection, one encounters several problems: In
practice, the change-point is typically unknown, so it is not known where to split the
sequence of the observations into two samples. In many applications, the assumption
of independence is not realistic, one rather has to deal with time series. Furthermore,
the covariance operator is not known.

To deal with these problems, we will study limit theorems for two-sample U -
processes with values in Hilbert spaces and deduce the asymptotic distribution of the
Wilcoxon-type change-point-statistic
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max
k=1,...,n−1

∥∥∥
1

n3/2

k∑

i=1

n∑

j=k+1

Xi − X j

‖Xi − X j‖
∥∥∥

for a short-range dependent, Hilbert-space-valued time series (Xn)n∈Z. Change-point
tests based on Wilcoxon have been studied before, but mainly for real-valued obser-
vations, starting with Darkhovsky (1976) and Pettitt (1979). Yu and Chen (2022) used
the maximum of componentwiseWilcoxon-type statistics. Very recently and indepen-
dently of our work, Jiang et al. (2022) introduced a test statistic based on spatial signs
for independent, high-dimensional observations, which is very similar to the square of
our test statistic. However, Jiang et al. (2022) obtained the limit for a growing dimen-
sion of the observations and assuming that the entries of each vector form a stationary,
weakly dependent time series, while we consider observations in a fixed Hilbert space
H and take the limit for a growing number of observations. Furthermore, they use
self-normalization instead of bootstrap to obtain critical values.

Let us note that spatial signs have been used for change-point detection before
by other authors: Vogel and Fried (2015) have studied a robust test for changes in
the dependence structure of a finite-dimensional time series based on the spatial sign
covariance matrix.

As the Mann–Whitney-Wilcoxon-U -statistic is a special case of a two-sample U -
statistic, authors like (Csörgő and Horváth 1989; Gombay and Horváth 2002) studied
more general U -statistics for change point detection under independence and Dehling
et al. (2015) under dependence. We will provide our theory not only for the special
case of the test statistic based on spatial signs, but for general test statistics based on
two-sample H -valued U -statistics under dependence.

As the limit depends on the unknown, infinite-dimensional long-run covariance
operator, one would either need to estimate this operator, or one could use resampling
techniques. Leucht and Neumann (2013) have developed a variant of the depen-
dent wild bootstrap (introduced by Shao (2010)) for U -statistics. However, their
method works only for degenerate U -statistics. As the Wilcoxon-type statistic is non-
degenerate, we propose a new version of the dependent wild bootstrap for this type of
U -statistic. The bootstrap version of our change-point test statistic is

max
k=1,...,n−1

∥∥∥
1

n3/2

k∑

i=1

n∑

j=k+1

Xi − X j

‖Xi − X j‖ (εi + ε j )

∥∥∥,

where ε1, . . . , εn is a stationary sequence of dependent N (0, 1)-distributedmultipliers,
independent of X1, . . . , Xn .Wewill prove the asymptotic validity of our newbootstrap
method. Our variant of the dependent wild bootstrap is similar, but not identical to the
variant proposed by Doukhan et al. (2015) for non-degenerate von Mises statistics.
Note that this bootstrap differs from the multiplier bootstrap proposed by Bücher and
Kojadinovic (2016), as it does not rely on pre-linearization, that means replacing the
U -statistic by a partial sum.
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4770 L. Wegner, M. Wendler

2 Main results

Wewill treat the CUSUM statistic and theWilcoxon-type statistic as two special cases
of a general class based on two-sample U -statistics. Let h : H2 → H be a kernel
function. We define

Un,k =
k∑

i=1

n∑

j=k+1

h(Xi , X j ).

For h(x, y) = x − y, we obtain with a short calculation

max
1≤k<n

1

n3/2

∥∥Un,k
∥∥ = max

1≤k<n

1√
n

∥∥∥
k∑

i=1

(
Xi − 1

n

n∑

j=1

X j
)∥∥∥,

which is the CUSUM-statistic for functional data. On the other hand, with the kernel
h(x, y) = (x − y)/‖x − y‖, we get the Wilcoxon-type statistic. Other kernels would
be possible, e.g. h(x, y) = (x − y)/(c + ‖x − y‖) for some c > 0 as a compromise
between the CUSUM and the Wilcoxon approach. Before stating our limit theorem
for this class based on two-sample U -statistics, we have to define some concepts and
our assumptions.

We will start with our concept of short range dependence, which is based on a
combination of absolute regularity (introduced by Volkonskii and Rozanov (1959))
and P-near-epoch dependence (introduced by Dehling et al. (2017)). In the following,
let H be a separable Hilbert space with inner product 〈·, ·〉 and norm ‖x‖ = √〈x, x〉.

Definition 1 (Absolute Regularity) Let (ζn)n∈Z be a stationary sequence of random
variables. We define the mixing coefficients (βm)m∈Z by

βm = E
[

sup
A∈F∞

m

(
P(A|F0−∞) − P(A)

) ]
,

where Fb
a is the σ -field generated by ζa, . . . , ζb, and call the sequence (ζn)n∈Z abso-

lutely regular if βm → 0 as m → ∞.

Definition 2 (P-NED) Let (ζn)n∈Z be a stationary sequence of random variables.
(Xn)n∈Z is called near-epoch-dependent in probability (P-NED) on (ζn)n∈Z if there

exist sequences (ak)k∈N with ak
k→∞−−−→ 0 and ( fk)k∈Z and a non-increasing function

� : (0,∞) → (0,∞) such that

P(‖X0 − fk(ζ−k, . . . , ζk)‖ > ε) ≤ ak�(ε) ∀k ∈ N, ε > 0.

Definition 3 (L p-NED) Let (ζn)n∈Z be a stationary sequence of random variables.
(Xn)n∈Z is called L p-NED on (ζn)n∈Z if there exists a sequence of approximation
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Robust change-point detection... 4771

constants (ak)k∈N with ak
k→∞−−−→ 0 and

E[‖X0 − E[X0|Fk
−k]‖p] 1

p ≤ ak,p.

P-NED has the advantage of not implying finite moments (unlike L p-NED), which is
useful to allow for heavy tailed distributions.

Additionally, we will need assumptions on the kernel:

Definition 4 (Antisymmetry) A kernel h : H2 → H is called antisymmetric, if for all
x, y ∈ H

h(x, y) = −h(y, x).

Antisymmetric kernels are natural candidates for comparing two distributions, because
if X and X̃ are independent, H -valued random variables with the same distribution
and h is antisymmetric, we have E[h(X , X̃)] = 0, so our test statistic should have
values close to 0, see also Račkauskas and Wendler (2020).

Definition 5 (Uniform Moments) If there is a M > 0 such that for all k, n ∈ N

E[‖h
(

fk(ζ−k, . . . , ζk), fk(ζn−k, . . . , ζn+k)
)‖m

H ] ≤ M,

E[‖h
(
X0, fk(ζn−k, . . . , ζn+k)

)‖m
H ] ≤ M,

E[‖h
(
X0, Xn

)‖m
H ] ≤ M,

we say that the kernel has uniform m-th moments under approximation.

Furthermore, we need the following mild continuity condition on the kernel, which is
called variation condition andwas introduced byDenker andKeller (1986). The kernel
h(x, y) = (x − y)/‖x − y‖ will fulfill the condition, as long as there exists a constant
C such that P(‖X1 − x‖ ≤ ε) ≤ Cε for all x ∈ H and ε > 0. This can be proved
along the lines of Remark 2 in Dehling et al. (2022). P(‖X1 − x‖ ≤ ε) ≤ Cε for all
x ∈ H , ε > 0 does not hold if the distribution of X1 has points with positive mass, but
it still can hold if the distribution is concentrated on finite-dimensional sub-spaces.

Definition 6 (Variation condition) The kernel h fulfills the variation condition if there
exist L , ε0 > 0 such that for every ε ∈ (0, ε0):

E

[(
sup

‖x−X‖≤ε

‖y−X̃‖≤ε

‖h(x, y) − h(X , X̃)‖H

)2] ≤ Lε

Finally, we will need Hoeffding’s decomposition of the kernel to be able to define the
limit distribution:

Definition 7 (Hoeffding’s decomposition) Let h : H × H → H be an antisymmetric
kernel. Let X , X̃ be two i.i.d. random variables with the same distribution as X1.
Hoeffding’s decomposition of h is defined as

h(x, y) = h1(x) − h1(y) + h2(x, y)∀x, y ∈ H
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4772 L. Wegner, M. Wendler

where

h1(x) = E[h(x, X̃)]
h2(x, y) = h(x, y) − E[h(x, X̃)] − E[h(X , y)] = h(x, y) − h1(x) + h1(y)

Nowwe can state our first theorem on the asymptotic distribution of our test statistic
under the null hypothesis (stationarity of the time series):

Theorem 1 Let (Xn)n∈Z be stationary and P-NED on an absolutely regular sequence

(ζn)n∈Z such that ak�(k−8 δ+3
δ ) = O(k−8 (δ+3)(δ+2)

δ2 ) and
∑∞

k=1 k2β
δ

4+δ

k < ∞ for some
δ > 0. Assume that h : H2 → H is an antisymmetric kernel that fulfills the variation
condition and is either bounded or has uniform (4+δ)-moments under approximation.
Then it holds that

max
1≤k<n

1

n3/2

∥∥∥
k∑

i=1

n∑

j=k+1

h(Xi , X j )

∥∥∥ D−→ sup
λ∈[0,1]

‖W (λ) − λW (1)‖

where W is an H-valued Brownian motion and the covariance operator S of W (1) is
given by

〈S(x), y〉 =
∞∑

i=−∞
Cov (〈h1(X0), x〉, 〈h1(Xi ), y〉) .

For the kernel h(x, y) = x − y, we obtain as a special case a limit theorem for the
functional CUSUM-statistic similar to Corollary 1 of Sharipov et al. (2016) (although
our assumptions on near epoch dependence are stronger). In the next section, we will
compare theWilcoxon-type statistic and the CUSUM-statistic with a simulation study.
The proofs of the results can be found in Sect. 5. The next theorem will show that the
test statistic converges to infinity in probability under some alternatives, so a test based
on this statistic consistently detects these type of changes.

For this, we consider the following model: We have a stationary, H ⊗ H -valued
sequence (Xn, Zn)n∈Z and we observe Y1, . . . , Yn with

Yi =
{

Xi for i ≤ nλ�� = k�

Zi for i > nλ�� = k�
,

so λ� ∈ (0, 1) is the proportion of observations after which the change happens. If
the distribution of Xi and Zi is not the same, then the alternative hypothesis holds:

X1
D= · · · D= Xk� and Xk�+1

D= · · · D= Xn , but X1
D�= Xn . A simple example might

be Zi = Xi + μ, where μ ∈ H and μ �= 0. However, let us point out that not
all changes in distribution can be consistently detected. The change is detectable, if
E[h(X1, Z̃1)] �= 0 for an independent copy Z̃1 of Z1. For example, with the kernel
h(x, y) = x − y and Zi = Xi + μ with μ �= 0, the change is always detectable.
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Theorem 2 Let (Xn, Zn)n∈Z be P-NED on an absolutely regular sequence (ζn)n∈Z
such that ak�(k−8 δ+3

δ ) = O(k−8 (δ+3)(δ+2)
δ2 ) and

∑∞
k=1 k2β

δ
4+δ

k < ∞ for some δ > 0.
Assume that h : H2 → H is an antisymmetric kernel that fulfills the variation
condition and is either bounded or has uniform (4+δ)-moments under approximation
for both processes (Xn)n∈Z and (Zn)n∈Z, that E[‖h(X1, Z̃1)‖4+δ] < ∞, and that
E[h(X1, Z̃1)] �= 0, were Z̃1 is an independent copy of Z1. Then

max
1≤k<n

1

n3/2

∥∥∥
k∑

i=1

n∑

j=k+1

h(Yi , Y j )

∥∥∥ P−→ ∞.

These results on the asymptotic distribution can not be applied directly in many
practical applications, because the covariance operator is unknown. For this rea-
son, we introduce the dependent wild bootstrap for non-degenerate U -statistics: Let
(εi,n)i≤n,n∈N be a rowwise stationary triangular scheme of N (0, 1)-distributed vari-
ables (we often drop the second index for notational convenience: εi = εi,n). The
bootstrap version of our U -statistic is then

U �
n,k =

k∑

i=1

n∑

j=k+1

h(Xi , X j )(εi + ε j ).

Theorem 3 Let the assumptions of Theorem 1 hold for (Xn)n∈Z and h : H2 → H.
Assume that (εi,n)i≤n,n∈N is independent of (Xn)n∈Z, has standard normal marginal
distribution and Cov(εi , ε j ) = w(|i − j |/qn), where w is symmetric and continuous
with w(0) = 1 and

∫∞
−∞ |w(t)|dt < ∞. Assume that qn → ∞ and qn/n → 0. Then

it holds that
(
max
1≤k<n

1

n3/2

∥∥∥Un,k

∥∥∥, max
1≤k<n

1

n3/2

∥∥∥U �
n,k

∥∥∥
)

D−→
(

sup
λ∈[0,1]

‖W (λ) − λW (1)‖, sup
λ∈[0,1]

‖W �(λ) − λW �(1)‖
)

where W and W � are two independent, H-valued Brownian motions with covariance
operator as in Theorem 1.

From this statement, it follows that the bootstrap is consistent and it can be evaluated
using the Monte Carlo method. If you generate several copies of the bootstrapped
test statistic independent conditional on X1, . . . , Xn , the empirical quantiles of the
bootstrapped test statistics can be used as critical values for the test. For a deeper
discussion on bootstrap validity, see Bücher and Kojadinovic (2019). Of course, in
practical applications, the function w and the bandwidth qn have to be chosen. We
will apply a method by Rice and Shang (2017) for the bandwidth selection.

Instead of using multipliers with a standard normal distribution, one might also
choose other distributions for (εi,n)i≤n,n∈N. This is done for the traditional wild boot-
strap to capture skewness. Under the hypothesis, the distribution of h(Xi , X j ) is close
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4774 L. Wegner, M. Wendler

to symmetric for i and j far apart, so we do not expect a large improvement by
non-Gaussian multipliers and limit our analysis in this paper to the case of Gaussian
multipliers.

3 Data example and simulation results

Bootstrap procedure

Since no theoretical values of the limit distribution of our test-statistic exist,weperform
a bootstrap to find critical values for a test-decision. The procedure to find the critical
value for significance level α ∈ (0, 1) is the following:

• Calculate h(Xi , X j ) for all i < j
• For each of the bootstrap iterations t = 1, . . . , m:

– Calculate h(Xi , X j )(ε
(t)
i + ε

(t)
j ), where (ε

(t)
i )i<n are random multiplier

– Calculate U (t)
n,k = ∑k

i=1
∑n

j=k+1 h(Xi , X j )(ε
(t)
i + ε

(t)
j ) for all k < n

– Find max
1≤k<n

‖U (t)
n,k‖

• Identify the empirical α-quantile Uα of all max
1≤k<n

‖U (1)
n,k‖, . . . , max

1≤k<n
‖U (m)

n,k ‖
• Calculate Un,k = ∑k

i=1
∑n

j=k+1 h(Xi , X j ) for all 1 ≤ k < n
• Test decision: If max

1≤k<n
‖Un,k‖ > Uα , reject the null hypothesis

To ensure a certain covariance structure within the multiplier (that fulfills the assump-
tions of the multiplier theorem), we calculate them as

(ε
(t)
i )i≤n = A(ηi )i≤n

where η1, . . . , ηi are i.i.d. N (0, 1)-distributed and A is the square root of the quadratic
spectral covariance matrix constructed with bandwidth-parameter q (chosen with the
method by Rice and Shang (2017) described below). That means AAt = B, where B
has the entries

Bi, j = v|i− j | ∀ 1 ≤ i, j ≤ n

with

v0 = 1

vi = 25

12π2(i − 1)2/q2

(
sin( 6π(i−1)/q

5 )

6π(i−1)/q
5

− cos(
6π(i − 1)/q

5
)

)
∀ 1 ≤ i ≤ n − 1.
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Bandwidth

We use a data adapted bandwidth parameter qadpt in the bootstrap which is evaluated
for each simulated data sample X1, . . . , Xn by the following procedure:

• Calculate X̃1, . . . , X̃n where X̃i = 1
n−1

∑n
j=1, j �=i h(Xi , X j )

• Determine a starting value q0 = n1/5

• Calculate matrices Vk = 1
n

∑n−(k−1)
i=1 X̃i ⊗ X̃k for k = 1, . . . , q0, where ⊗ is the

outer product
• Compute C P0 = V1 + 2

∑q0−1
k=1 w(k, q0)Vk+1

and C P1 = 2
∑q0−1

k=1 k w(k, q0)Vk+1
w is a kernel function, we use the quadratic spectral kernel

w(k, q) = 25
12π2k2/q2

(
sin( 6πk/q

5 )
6πk/q

5

− cos( 6πk/q
5 )

)

• Receive the data adapted bandwidth

qadpt =
⌈( 3n

∑d
i=1

∑d
j=1 C P1i, j

∑d
i=1

∑d
j=1 C P0i, j +∑d

j=1 C P0
2
j, j

)1/5 ⌉

For theoretical details about the data adapted bandwidth we refer to Rice and Shang
(2017).

Data example

We look at data of 344 monitoring stations of the ’Umweltbundesamt’ for air
pollutants located all over Germany (Source: Umweltbundesamt, https://www.
umweltbundesamt.de/daten/luft/luftdaten/stationen Accessed on 06.08.2020). The
particular data is the daily average of particulate matter with particles smaller than
10μm (P M10) measured inμg/m3 from January 1, 2020 toMay 31, 2020. Thismeans
we have n = 152 observations and treat the measurements of all stations on one day
as a data from R

344.
Since the official restrictions of the German Government in course of the COVID-

19 pandemic came into force onMarch 22, 2020, an often asked question was whether
these restrictions (social distancing, closed gastronomy, closed/reduced work or work
from home) had an effect on the air quality in Germany. This question comes from the
assumption that the restrictions lead to reduced traffic, resulting in reduced amount of
particulate matter.

There are several publications from various countries studying the effects of lock-
down measures on air pollution parameters like nitrogen oxides (N O , N O2), ozone
(O3) and particulate matter (P M10, P M2.5). For example, Lian et al. (2020) investi-
gated data from the city of Wuhan, or Zangari et al. (2020) for New York City. Data
for Berlin, as for 19 other Cities around the world, are investigated by Fu et al. (2020).
They observed a decline in particular matter (P M10 and P M2.5, only significant for
P M2.5) in the period of lockdown. But the observed time period is rather short (one
month - Mar. 17 to Apr. 19, 2020) and the findings for a densely populated city may
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Table 1 Empirical p-values for
CUSUM and spatial sign test
with data adapted bandwidth.
m = 3000 Bootstrap iterations
were used

p-values
CUSUM Spatial Sign

0.226 0.027

Table 2 Empirical p-values for
CUSUM and spatial sign test
with data adapted bandwidth for
data excluding January 1, 2020.
m = 3000 Bootstrap iterations
were used

p-values (data excluding Jan. 1)
CUSUM Spatial Sign

0.078 0.030

not simply be transferred to the whole of Germany. In contrast to that, we use data
from measuring stations located across the whole country and over a period of five
months.

Looking at the empirical p-values of the CUSUM test and the Wilcoxon-type test
(based on spatial signs) resulting from m = 3000 Bootstrap iterations in Table 1, we
see that with CUSUM, the null hypothesis H0 is never rejected for any significance
level α < 0.2. But the Wilcoxon-type test rejects H0 for significance level α larger
than 0.03.

Since the data exhibits a massive outlier located at January 1 (likely due to New
Year’s firework), we repeated the test procedure without the data of this day. We
observed that the resulting p-value for the Wilcoxon-type test changed just slightly
(Table 2). Whereas the p-value for CUSUM decreased notably - it is now around
0.08. In this example we see that CUSUM is clearly more influenced by the outlier
in the data than the spatial signs based test. Evaluation showed that the data adapted
bandwidth was set to qadpt = 3 for both the CUSUM test and the Wilcoxon-type test
for both scenarios.

A natural approach to estimate the location k̂ of the change-point, is to determine
the smallest 1 ≤ k < n for which the test statistic attains its maximum:

k̂ = min{k : ‖ 1

n3/2 Un,k‖ = max
1≤ j<n

‖ 1

n3/2 Un, j‖}

The maximum of the spatial sign test statistic, which marks our estimated change
point, is received at March 15, 2020. (The maximum of the CUSUM statistic
is indeed located at the same point.) The estimated change-point in our exam-
ple lies a week before the official restrictions regarding COVID-19 were imposed.
One could argue that the citizen, being aware of the situation, changed their
behaviour beforehand, without strict official restrictions. Data projects using mobile
phone data (e.g Covid-19 Mobility Project and Destatis) indeed show a decline
in mobility preceding the official restrictions on March 22 by around a week.
(see https://www.covid-19-mobility.org/de/data-info/, https://www.destatis.de/DE/
Service/EXDAT/Datensaetze/mobilitaetsindikatoren-mobilfunkdaten.html)

But if we look at our data (Fig. 1), one gets the impression that a change in mean
would rather be upwards than downwards, meaning that the daily average pollution
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Fig. 1 Daily average of P M10 in μg/m3 for 344 monitoring stations from January 1, 2020 to May 31,
2020. Each line corresponds to one station. The blue vertical line is the estimated change-point location.
The massive outlier at January 1 could result from New Year’s fireworks

increased after March 15, 2020 compared to the beginning of the year. Indeed, after
averaging over the 344 monitoring stations and applying the two-sample Hodges-
Lehmann estimator to the resulting one-dimensional time series, we estimate the
average increase to be 3.8μg/m3. However, our test does not reject the null hypothesis
when applied to this one-dimensional time series.

Similar findings about in increase in P M10 were made by Ropkins and Tate (2021).
They studied the impact of the COVID-19 lockdown on air quality across the UK.
While using long-term data (Jan. 2015 to Jun. 2020) from Rural Background, Urban
Background and Urban Traffic stations, they observed an increase for P M10 and
P M2.5 while locking down. Noting that this trend is "highly inconsistent with an air
quality response to the lockdown", they discussed the possibility that the lockdown
did not greatly limit the largest impacts on particulate matter. We assume that the
findings are to some extend comparable to Germany due to the similar geographic and
demographic characteristics of the countries.

Furthermore, the German ’Umweltbundesamt’ states that traffic is not the main
contributor to P M10 in Germany (anymore) and other sources of particulate matter
(e.g. fertilization, Saharan dust, soil erosion, fires) can overlay effects of reduced traffic
(source: https://www.umweltbundesamt.de/faq-auswirkungen-der-corona-krise-auf-
die#welche-auswirkungen-hat-die-corona-krise-auf-die-feinstaub-pm10-belastung).
It is known that one mayor meteorological effect on particulate matter is precipita-
tion, since it washes the dust out of the air (scavenging). Comparing the data with
the meteorological recordings (Fig. 2) another explanation for the change-point gets
visible: While January was relatively warm with few precipitation, February and first
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Fig. 2 Daily rainfall (precipitation) in mm in Germany averaged over 1637 weather stations

half of March had much of it. Beginning in the middle of March, a relatively drought
period started and lasted through April and May. (Data extracted from DWD Climate
Data Center (CDC): Daily station observations precipitation height in mm, v19.3,
02.09.2020. https://cdc.dwd.de/portal/202107291811/mapview)

Comparing this findings with Fig. 1, we can see that it fits the data quite well.
Especially in February and the first half ofMarch,with higher quantity of precipitation,
we have relatively low quantity of P M10. Beginning with the drought weather, the
concentration of P M10 goes up and especially the bottom-peaks are now higher than
before, meaning that days with a concentration of P M10 as low as in the beginning of
the year are clearly more rare.

We like to note that this findings donot contradict the satellite data published byESA
(e.g. https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-5P/
Air_pollution_remains_low_as_Europeans_stay_at_home)which shows a reduced air
pollution over Europe in 2020 compared to 2019. While the satellites measure atmo-
spheric pollution, the data of the ’Umweltbundesamt’ is collected at stations at ground
level. It is known that there is a difference between these two sorts of pollution.

Simulation study

In this section we report the results of our simulation study. We compare size and
power performance of our test statistic with the well established CUSUM. To do
so, we construct different data examples which are described below. Note that we
can easily adapt the bootstrap and the adapted bandwidth procedure described above
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to CUSUM by using h(x, y) = x − y instead of the spatial sign kernel function
h(x, y) = (x − y)/‖x − y‖.

Generating sample

We use a functional AR(1)-process on [0, 1], where the innovations are standard
Brownian motions. We use an approximation on a finite grid with d grid points, if
not indicated otherwise. To be more precise, we simulate data as follows:

X−B I = (ξ1, ξ1 + ξ2, . . . ,

d∑

i=1

ξi )/
√

d, ξi i.i.d. N (0, 1)-distributed

Xt = a �XT
t−1 + Wt ∀ −B I < t ≤ n

where � ∈ R
d×d with entries �i, j =

{
i/d2 i ≤ j

j/d2 i > j
= min(i, j)/d2

and Wt = (ξ
(t)
1 , ξ

(t)
1 + ξ

(t)
2 , . . . ,

d∑

i=1

ξ
(t)
i )/

√
d, ξ

(t)
i i.i.d. N (0, 1)-distributed

The scalar a ∈ R is an AR-parameter, we use a = 1. The first (B I + 1) observations
are not used (burn-in period). Through this simulation structure we achieve temproal
dependence and spatial dependence. We consider sample sizes n = 100, 200, 250 for
the size and n = 200 with observations on a grid of size d with d = 100 if not stated
otherwise.

Size

To calculate the empirical size, data simulation and test procedure via bootstrap is
repeated S = 3000 times with m = 1000 bootstrap repetitions. We count the number
of times the null hypothesis was rejected both for the CUSUM-type and theWilcoxon-
type statistic (based on spatial signs). By using S = 3000 simulation runs, the standard
deviation of the rejection frequencies is always below 1% and is below 0.4% if the
true rejection probability is at 5%.

To analyse how good the test statistics performs if outliers are present or if Gaus-
sianity is not given, we study two additional simulations:

• Data simulated as above, but with presence of outliers:

Yi =
{

Xi i /∈ {0.2n, 0.4n, 0.6n, 0.8n}
10Xi i ∈ {0.2n, 0.4n, 0.6n, 0.8n}

• Data simulated similar to the above, but with ξ
(t)
i ∼ t1 ∀i ≤ d, −B I < t ≤ n, i.e.

heavy tailed data.
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Table 3 Empirical size ofCUSUMand spatial sign testwithGaussian data, significance levelα and different
sample sizes n

Empirical Size
Gaussian n = 100 Gaussian n = 200 Gaussian n = 250

α CUSUM Spatial Sign CUSUM Spatial Sign CUSUM Spatial Sign

0.1 0.052 0.057 0.080 0.078 0.082 0.079

0.05 0.013 0.013 0.033 0.032 0.031 0.029

0.025 0.003 0.003 0.008 0.001 0.010 0.008

0.01 0 0 0.002 0.002 0.003 0.002

Table 4 Empirical size of CUSUM and spatial sign test with significance level α, sample size n = 200 and
different distributions

Empirical Size
Gaussian outlier heavy tails

α CUSUM Spatial Sign CUSUM Spatial Sign CUSUM Spatial Sign

0.1 0.080 0.078 0.051 0.086 0.018 0.077

0.05 0.033 0.032 0.015 0.035 0.003 0.030

0.025 0.008 0.001 0.004 0.012 0 0.010

0.01 0.002 0.002 0.001 0.003 0 0.002

As we can see in Table 3, the Wilcoxon-type test and the CUSUM test perform
almost similarly under Gaussianity, both are somewhat undersized, especially for a
smaller size of n = 100, but also for n = 200 or n = 250. In the presence of outliers
or for heavy-tailed data, the rejection frequency of the Wilcoxon-type test does not
change much, see Table 4. In contrast, the CUSUM test is very conservative in these
situations.

Power

To evaluate the performance of the test statistics in presence of a change in mean, we
construct four scenarios. The sample size is n = 200 with a change after k� = 50 or
k� = 100 observations:

Scenario 1: Gaussian observations with uniform jump of +0.3 after k� observations:

Yi =
{

Xi i ≤ k�

Xi + 0.3u i > k�

where u = (1, . . . , 1)t .
Scenario 2: Gaussian observations with sinus-jump after k� of observations:

Yi =
{

Xi i ≤ k�

Xi + 1
2
√
2
(sin(π D/d))D≤d i > k�
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Fig. 3 Size-Power-Plot for CUSUM and Spatial Sign Test, Scenario 1–4, sample size n = 200

Scenario 3: Uniform jump of +0.3 after k� observations in presence of outlier at
0.2n, 0.4n, 0.6n, 0.8n:

Yi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Xi i < n/2, i /∈ {0.2n, 0.4n}
10Xi i ∈ {0.2n, 0.4n}
Xi + 0.3u i ≥ n/2, i /∈ {0.6n, 0.8n}
10Xi + 0.3u i ∈ {0.6n, 0.8n}

Scenario 4: Heavy tails - In the simulation of (Xi )i≤n we use ξ
(t)
i ∼ t1 (Cauchy dis-

tributed) ∀i ≤ d,−B I < t ≤ n and a uniform jump of +5 after k�

observations

As in the analysis under null hypothesis H0, we chose m = 1000 bootstrap repe-
titions. The data simulation and test procedure via bootstrap is repeated S = 3000
times for each scenario and the number of times H0 was rejected is counted to cal-
culate the empirical power. To compare our test-statistic with CUSUM, we calculate
the Wilcoxon-type test (spatial sign) and the CUSUM test simultaneously in each
simulation run.

Comparing the size-power plots for both test statistics (Fig. 3), we see that the
Wilcoxon-type test (based on spatial signs) outperforms the CUSUM test in all sce-
narios. As expected, a change in the middle of the data (k� = 100) is detected with
higher probability than an earlier change (k� = 50). The difference in the power
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Table 5 Empirical size of
CUSUM and spatial sign based
test for different significance
level α, Scenario 5 with
d = 350, n = 150

Empirical size—Gaussian with d > n
α CUSUM Spatial Sign

0.1 0.067 0.064

0.05 0.025 0.020

0.025 0.005 0.007

0.01 0.001 0.002

between the Wilcoxon-type test and the CUSUM test is less pronounced in the Sce-
narios 1 and 2 with Gaussian data. While the Wilcoxon-type test is not much affected
by the outliers in Scenario 3, size and power of the CUSUM-test are reduced, so that
the spatial sign based test shows clearly more empirical power. In Scenario 4 with
heavy tails, we see that the CUSUM test barely provides any empirical power at all.
Even for α = 0.1 CUSUM shows an empirical power < 0.04. In heavy contrast, the
Wilcoxon-type test shows relatively large empirical power (note that the jump is larger
compared to the other scenarios).

For exact values of the empirical power in each scenario, seeTable 6 in the appendix.
In the appendix can also be found a short examination of the behaviour of the test
statistics if the change-point lies evenmore closely to the beginning of the observations
(k� = 30).Here shall just be noted that theWilcoxon-type test loses power if the change
point lies closer to the edge, but still has similar power compared to theCUSUM-test. In
the case of one-dimensional observations, Dehling et al. (2020) have also observed that
changes not in the middle of the data can not be detected as good with the Wilcoxon-
type change-point test. Finally, we consider the case that d is larger than n. The size of
both tests is not affected stronlgy by this, see Table 5. The Wilcoxon-type test suffers
less loss in power than the CUSUM test if d = 350.

4 Auxilary results

4.1 Hoeffding decomposition and linear part

The proofs will make use of Hoeffding’s decomposition of the kernel h, so recall that
Hoeffding’s decomposition of h is defined as

h(x, y) = h1(x) − h1(y) + h2(x, y)∀x, y ∈ H ,

where

h1(x) = E[h(x, X̃)]
h2(x, y) = h(x, y) − E[h(x, X̃)] − E[h(X , y)] = h(x, y) − h1(x) + h1(y)

where X , X̃ are independent copies of X0. It is well known that h2 is degenerate,
that means E[h2(x, X̃)] = E[h2(X , y)] = 0, see e.g. Section 1.6 in the book of Lee
(2019).
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Lemma 1 (Hoeffding’s decomposition of Un,k) Let h : H × H → H be an antisym-
metric kernel. Under Hoeffding’s decomposition it holds for the test statistic that

Un,k =
k∑

i=1

n∑

j=k+1

h(Xi , X j ) = n
k∑

i=1

(h1(Xi ) − h1(X))

︸ ︷︷ ︸
linear part

+
k∑

i=1

n∑

j=k+1

h2(Xi , X j )

︸ ︷︷ ︸
degenerate part

where h1(X) = 1
n

∑n
j=1 h1(X j ).

Proof To prove the formula for Un,k , we use Hoeffding’s decomposition for h:

Un,k =
k∑

i=1

n∑

j=k+1

h(Xi , X j ) =
k∑

i=1

n∑

j=k+1

[h1(Xi ) − h1(X j ) + h2(Xi , X j )]

=
k∑

i=1

n∑

j=k+1

[h1(Xi ) − h1(X j )] +
k∑

i=1

n∑

j=k+1

h2(Xi , X j )

= (n − k)h1(X1) −
n∑

j=k+1

h1(X j ) + · · · + (n − k)h1(Xk) −
n∑

j=k+1

h1(X j )

+
k∑

i=1

n∑

j=k+1

h2(Xi , X j )

= nh1(X1) −
n∑

j=1

h1(X j ) + · · · + nh1(Xk) −
n∑

j=1

h1(X j )

+
k∑

i=1

n∑

j=k+1

h2(Xi , X j )

= n
( k∑

i=1

[h1(Xi ) − 1

n

n∑

j=1

h1(X j )]
)

+
k∑

i=1

n∑

j=k+1

h2(Xi , X j )

= n
k∑

i=1

(
h1(Xi ) − h1(X)

)
+

k∑

i=1

n∑

j=k+1

h2(Xi , X j ).

��
To use existing results about partial sums, we need to investigate the properties of the
sequence (h1(Xn))n∈Z.

Lemma 2 Under the assumptions of Theorem 1, (h1(Xn))n∈Z is L2-NED with approx-

imation constants ak,2 = O(k−4 δ+3
δ ).
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Proof By Hoeffding’s decomposition for h it holds that ∀x, x ′ ∈ H

‖h1(x) − h1(x ′)‖ = ‖E[h(x, X̃)] − E[h(x ′, X̃)]‖

Let X , X̃ be independent copies of X0. Then by Jensen’s inequality for conditional
expectations and the variation condition

E

[(
sup

‖x−X‖≤ε

‖h1(x) − h1(X)‖H

)2]

= E

[(
sup

‖x−X‖≤ε

E
[‖h(x, X̃) − h(X , X̃)‖∣∣X]

)2]

≤ E

[(
sup

‖x−X‖≤ε

‖h(x, X̃) − h(X , X̃)‖
)2]

≤ E

[(
sup

‖x−X‖≤ε

‖y−X̃‖≤ε

‖h(x, y) − h(X , X̃)‖
)2] ≤ Lε. (1)

We introduce the following notation: Let Xn,k = fk(ζn−k, . . . , ζn+k) and X̃n,k and
independent copy of this random variable. Now, we can find the approximation con-
stants of (h1(Xn))n by using (1) and some further inequalities:

E[‖h1(X0) − E[h1(X0)|Fk
−k]‖2] ≤ E[‖h1(X0) − h1(X0,k)‖2]

= E[‖h1(X0) − h1(X0,k)‖21{‖X0−X0,k‖>sk }]
+ E[‖h1(X0) − h1(X0,k)‖21{‖X0−X0,k‖≤sk }]

≤ E[‖h1(X0) − h1(X0,k)‖21{‖X0−X0,k‖>sk }]
+ E

[(
sup

‖X0−X0,k‖≤sk

‖h1(X0) − h1(X0,k)‖
)2]

︸ ︷︷ ︸
(1)≤ Lsk

≤ ∥∥‖h1(X0) − h1(X0, k)‖2∥∥ 2+δ
2

+ ∥∥1{‖X0−X0,k‖>sk }
∥∥

2+δ
δ

+ Lsk

by Hölder’s inequality

= ∥∥‖h1(X0) − h1(X0, k)‖2∥∥ 2+δ
2

+ P(‖X0 − X0,k‖ > sk)
δ

2+δ + Lsk

≤ E[‖h1(X0) − h1(X0,k)‖2+δ] 2
2+δ + (ak�(sk))

δ
2+δ + Lsk since (Xn)n is P-NED

= E

[∥∥∥E[h(X0, X̃0)|X0, X0,k] − E[h(X0,k, X̃0,k)|X0, X0,k]
∥∥∥
2+δ

] 2
2+δ

(ak�(sk))
δ

2+δ

+ Lsk

≤ E

[
E[‖h(X0, X̃0) − h(X0,k, X̃0,k)‖2+δ|X0, X0,k]

] 2
2+δ

(ak�(sk))
δ

2+δ + Lsk

by Jensen’s inequality
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=
(
E[‖h(X0, X̃0) − h(X0,k, X̃0,k)‖2+δ] 1

2+δ

)2
(ak�(sk))

δ
2+δ + Lsk

≤
(
E[‖h(X0, X̃0)‖2+δ] 1

2+δ + E[‖h(X0,k, X̃0,k)‖2+δ] 1
2+δ

)2
(ak�(sk))

δ
2+δ + Lsk

by Minkowski’s inequality

≤ (M
1

2+δ + M
1

2+δ )2(ak�(sk))
δ

2+δ + Lsk

by the uniform moment condition, choose sk = k−8 3+δ
δ

≤ C(k−8 (3+δ)(2+δ)

δ2 )
δ

2+δ + Lk−8 3+δ
δ by the assumption on the P-NED coefficients

= Ck−8 3+δ
δ .

By taking the square root, we get the result:

(
E[‖h1(X0) − E[h1(X0)|Fk

−k]‖2]
) 1

2 ≤ Ck−4 3+δ
δ =: ak,2.

Since it holds that ak,2
k→∞−−−→ 0, (Xn)n∈Z is L2-NED. ��

Proposition 1 Under Assumptions of Theorem 1 it holds:

( 1√
n

nλ�∑

i=1

h1(Xi )
)

λ∈[0,1] ⇒ (W (λ))λ∈[0,1]

where (W (λ))λ∈[0,1] is a Brownian motion with covariance operator as defined in
Theorem 1.

Proof We want to use Theorem 1 (Sharipov et al. 2016) for (h1(Xn))n∈Z, so we have
to check the assumptions:

Assumption 1: (h1(Xn))n∈Z is L1-NED.
We know by Lemma 2 that (h1(Xn))n∈Z is L2-NED. Thus, L1-NED follows by

Jensen’s inequality:

E[‖h1(X0) − E[h1(X0)|Fk
−k]‖] ≤ E[‖h1(X0) − E[h1(X0)|Fk

−k]‖2]
1
2 ≤ ak,2

So, (h1(Xn))n∈Z is L1-NED with constants ak,1 = ak,2 = Ck−4 3+δ
δ .

Assumption 2: Existing (4 + δ)-moments.
This follows from the assumption of uniform moments under approximation:

E[‖h1(X0)‖4+δ] = E[‖E[h(X0, X̃0)|X0]‖4+δ]
≤ E[E[‖h(X0, X̃0)‖4+δ|X0]] by Jensen’s inequality

= E[‖h(X0, X̃0)‖4+δ] ≤ M < ∞

In the case that h is bounded, the same holds for h1.
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Assumption 3:
∑∞

m=1 m2a
δ

3+δ

m,1 < ∞

∞∑

m=1

m2a
δ

3+δ

m,1 = C
∞∑

m=1

m2(m−4 3+δ
δ )

δ
3+δ = C

∞∑

m=1

m2m−4 = C
∞∑

m=1

m−2 < ∞

Assumption 4:
∑∞

m=1 m2β
δ

4+δ
m < ∞.

This holds directly by the assumed rate on the coefficients βm .
We have checked that all assumptions for Theorem 1 (Sharipov et al. 2016) are

fulfilled and since E[h1(X0)] = 0 because h is antisymmetric, the statement of the
theorem follows. ��

4.2 Degenerate part

Lemma 3 Under the assumptions of Theorem 1, there exists a universal constant
C > 0 such that for every i, k, l ∈ N, ε > 0 it holds that

E[‖h2(Xi , Xi+k+2l) − h2(Xi,l , Xi+k+2l,l)‖2] 12 ≤ C(
√

ε + β
δ

2(2+δ)

k + (al�(ε))
δ

2(2+δ) ),

where Xi,l = fl(ζi−l , . . . , ζi+l).

Proof By Lemma D1 (Dehling et al. 2017) there exist copies (ζ ′
n)n∈Z, (ζ ′′

n )n∈Z of
(ζn)n∈Z which are independent of each other and satisfy

P((ζ ′
n)n≥i+k+l = (ζn)n≥i+k+l) = 1 − βk and P((ζ ′′

n )n≤i+l = (ζn)n≤i+l) = 1 − βk

(2)

Define

X ′
i = f ((ζ ′

i+n)n∈Z) , X ′′
i = f ((ζ ′′

i+n)n∈Z)

X ′
i,l = fl(ζ

′
i−l , . . . , ζ

′
i+l) , X ′′

i,l = fl(ζ
′′
i−l , . . . , ζ

′′
i+l).

With the help of these, we can write

E[‖h2(Xi , Xi+k+2l) − h2(Xi,l , Xi+k+2l,l)‖2] 12
≤ E[‖h2(Xi , Xi+k+2l) − h2(X ′′

i , X ′
i+k+2l)‖2]

1
2 (3)

+ E[‖h2(X ′′
i , X ′

i+k+2l) − h2(X ′′
i,l , X ′

i+k+2l,l)‖2]
1
2 (4)

+ E[‖h2(X ′′
i,l , X ′

i+k+2l,l) − h2(Xi,l , Xi+k+2l,l)‖2] 12 (5)
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by using the triangle inequality. We will look at the three summands separately. For
abbreviation, we define

B = {(ζ ′
n)n≥i+k+l = (ζn)n≥i+k+l , (ζ ′′

n )n≤i+l = (ζn)n≤i+l}
Bc = {(ζ ′

n)n≥i+k+l �= (ζn)n≥i+k+l or (ζ ′′
n )n≤i+l �= (ζn)n≤i+l}

(3) = E[‖h2(Xi , Xi+k+2l) − h2(X ′′
i , X ′

i+k+2l)‖2]
1
2

≤ E[‖h2(Xi , Xi+k+2l) − h2(X ′′
i , X ′

i+k+2l)‖21Bc ] 12 (3.A)

+ E[‖h2(Xi , Xi+k+2l) − h2(X ′′
i , X ′

i+k+2l)‖21B] 12 . (3.B)

For (3.A), we use Hölder’s inequality together with our assumptions on uniform
moments under approximation and get

(3.A) ≤ E[‖h2(Xi , Xi+k+2l) − h2(X ′′
i , X ′

i+k+2l)‖
2(2+δ)

2 ] 2
2(2+δ)P(Bc)

δ
2(2+δ)

≤
(
E[‖h2(Xi , Xi+k+2l)‖2+δ] 1

2+δ + E[‖h2(X ′′
i , X ′

i+k+2l)‖2+δ] 1
2+δ

)

· (P({ζ ′
n)n≥i+k+l �= (ζn)n≥i+k+l}) + P({(ζ ′′

n )n≤i+l �= (ζn)n≤i+l})
) δ
2(2+δ)

≤ 2M
1

2+δ (2β
δ

2(2+δ)

k )

≤ Cβ
δ

2(2+δ)

k ,

where we used property (2) of the copied series (ζ ′
n)n∈Z, (ζ ′′

n )n∈Z for the second to
last inequality. For (3.B), we split up again:

(3.B) ≤ E[‖h2(Xi , Xi+k+2l) − h2(X ′′
i , X ′

i+k+2l)‖21B

1{‖Xi −X ′′
i ‖≤2ε, ‖Xi+k+2l−X ′

i+k+2l‖≤2ε}]
1
2

+ E[‖h2(Xi , Xi+k+2l) − h2(X ′′
i , X ′

i+k+2l)‖21B

1{‖Xi −X ′′
i ‖>2ε or ‖Xi+k+2l−X ′

i+k+2l‖>2ε}]
1
2 .

For the first summand, we use variation condition. For the second, notice that on B:

‖Xi − X ′′
i ‖ ≤ ‖Xi − Xi,l‖ + ‖Xi,l − X ′′

i ‖ = ‖Xi − Xi,l‖ + ‖X ′′
i,l − X ′′

i ‖

and

‖Xi+k+2l − X ′
i+k+2l‖ ≤ ‖Xi+k+2l − Xi+k+2l,l‖ + ‖Xi+k+2l,l − X ′

i+k+2l‖
= ‖Xi+k+2l − Xi+k+2l,l‖ + ‖X ′

i+k+2l,l − X ′
i+k+2l‖.
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4788 L. Wegner, M. Wendler

So,

(3.B) ≤ √
L2ε

+ E[‖h2(Xi , Xi+k+2l) − h2(X ′′
i , X ′

i+k+2l)‖21{‖Xi −Xi,l‖>ε}] 12
+ E[‖h2(Xi , Xi+k+2l) − h2(X ′′

i , X ′
i+k+2l)‖21{‖X ′′

i −X ′′
i,l‖>ε}]

1
2

+ E[‖h2(Xi , Xi+k+2l) − h2(X ′′
i , X ′

i+k+2l)‖21{‖Xi+k+2l−Xi+k+2l,l‖>ε}] 12
+ E[‖h2(Xi , Xi+k+2l) − h2(X ′′

i , X ′
i+k+2l)‖21{‖X ′

i+k+2l−X ′
i+k+2l,l‖>ε}]

1
2

≤ √
L2ε + 4 · 2M

1
2+δ (P(‖Xi − Xi,l‖ > ε))

δ
2(2+δ)

by our moment assumptions and Hölder’s inequality

≤ √
L2ε + 4 · 2M

1
2+δ (al�(ε))

δ
2(2+δ) since (Xn)n∈Z is P-NED

≤ C
(√

ε + (al�(ε))
δ

2(2+δ)

)

Combining the results for (3.A) and (3.B) we get

(3) ≤ (3.A) + (3.B) ≤ C

(
β

δ
2(2+δ)

k + √
ε + (al�(ε))

δ
2(2+δ)

)
.

We can now look at (4). Again, we split the term into two summands, (similar as for
(3)) we use the variation condition for the first and Hölder’s inequality for the second
summand:

(4) = E[‖h2(X ′′
i , X ′

i+k+2l) − h2(X ′′
i,l , X ′

i+k+2l,l)‖2]
1
2

≤ E[‖h2(X ′′
i , X ′

i+k+2l) − h2(X ′′
i,l , X ′

i+k+2l,l)‖2

1{‖X ′′
i −X ′′

i,l‖≤ε, ‖X ′
i+k+2l−X ′

i+k+2l,l‖≤ε}]
1
2

+ E[‖h2(X ′′
i , X ′

i+k+2l) − h2(X ′′
i,l , X ′

i+k+2l,l)‖2

1{‖X ′′
i −X ′′

i,l‖>ε or ‖X ′
i+k+2l−X ′

i+k+2l,l‖>ε}]
1
2

≤ √
Lε +

(
E[‖h2(X ′′

i , X ′
i+k+2l)‖2+δ] 1

2+δ + E[‖h2(X ′′
i,l , X ′

i+k+2l,l)‖2+δ] 1
2+δ

)

· (P(‖X ′′
i − X ′′

i,l‖ > ε) + P(‖X ′
i+k+2l − X ′

i+k+2l,l‖ > ε)
) δ
2(2+δ)

≤ √
Lε + 2M

1
2+δ (2al�(ε))

δ
2(2+δ) since (Xn)n∈Z is P-NED

≤ C
(√

ε + (al�(ε))
δ

2(2+δ)

)

Lastly, we split up (5) as well:

(5) = E[‖h2(X ′′
i,l , X ′

i+k+2l,l) − h2(Xi,l , Xi+k+2l,l)‖2] 12
≤ E[‖h2(X ′′

i,l , X ′
i+k+2l,l) − h2(Xi,l , Xi+k+2l,l)‖21Bc ] 12

+ E[‖h2(X ′′
i,l , X ′

i+k+2l,l) − h2(Xi,l , Xi+k+2l,l)‖21B] 12 .
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Since on B it is Xi+k+2l,l = X ′
i+k+2l,l and Xi,l = X ′′

i,l , the second summand equals
zero. For the first summand, we use Hölder’s inequality again and the properties of
(ζ ′

n)n≤i+l , (ζ ′′
n )n≤i+l , see (2):

(5) ≤ 2M
1

2+δ
(
P({(ζ ′

n)n≥i+k+l �= (ζn)n≥i+k+l})+P({(ζ ′′
n )n≤i+l �= (ζn)n≤i+l})

) δ
2(2+δ)

≤ 2M
1

2+δ (2βk)
δ

2(2+δ) ≤ Cβ
δ

2(2+δ)

k

We can finally put everything together:

E[‖h2(Xi , Xi+k+2l) − h2(Xi,l , Xi+k+2l,l)‖2] 12 ≤ (3) + (4) + (5)

≤ C

(
β

δ
2(2+δ)

k + √
ε + (al�(ε))

δ
2(2+δ)

)
+ C

(√
ε + (al�(ε))

δ
2(2+δ)

)
+ Cβ

δ
2(2+δ)

k

≤ C

(√
ε + β

δ
2(2+δ)

k + (al�(ε))
δ

2(2+δ)

)

��
Lemma 4 Under the assumptions of Theorem 1 it holds for any n1 < n2 < n3 < n4

and l =
⌊

n
3
16
4

⌋
:

E

[( ∑

n1≤i≤n2

∑

n3≤ j≤n4

‖h2(Xi , X j ) − h2(Xi,l , X j,l)‖
)2] 1

2 ≤ C(n4 − n3)n
1
4
4

Proof The important step of the proof is to bound the left hand side expectation from
above by a sum of E[‖h2(Xi , X j ) − h2(Xi,l , Y j,l)‖2]1/2 terms. We can then use
Lemma 3 to achieve the stated approximation. First note that

E

[( ∑

n1≤i≤n2

∑

n3≤ j≤n4

‖h2(Xi , X j ) − h2(Xi,l , X j,l)‖
)2] 1

2

≤ E

[( ∑

1≤i≤ j−1

∑

n3≤ j≤n4

‖h2(Xi , X j ) − h2(Xi,l , X j,l)‖
)2] 1

2 .

For any fixed j it is

E

[ ∑

1≤i< j

‖h2(Xi , X j )‖
]

= E

[ j−1∑

k=1

‖h2(X j−k, X j )‖
]

≤ E

[ n4∑

k=1

‖h2(X j−k, X j )‖
]
.

And for j there are at most (n4 − n3) possibilities. So

E

[ ∑

n3≤ j≤n4

∑

1≤i< j

‖h2(Xi , X j )‖
]

≤ (n4 − n3)E

[ n4∑

k=1

‖h2(X j−k, X j )‖
]
.
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The analog holds for h2(Xi,l , X j,l). Thus,

E

[( ∑

1≤i< j,n3≤ j≤n4

‖h2(Xi , X j ) − h2(Xi,l , X j,l)‖
)2] 1

2

≤
∑

n3≤ j≤n4

∑

1≤i< j

E[‖h2(Xi , X j ) − h2(Xi,l , X j,l)‖2] 12

≤ (n4 − n3)

n4∑

k=1

E[‖h2(X j−k, X j ) − h2(X j−k,l , X j,l)‖2] 12

≤ (n4 − n3)

n4∑

k=1

C

(√
ε + β

δ
2(2+δ)

k−2l + (al�(ε))
δ

2(2+δ)

)
by Lemma 3. (6)

Now set ε = l−8 3+δ
δ and define βk = 1 if k < 0. Then by our assumptions on the

approximation constants and the mixing coefficients

(6) = C(n4 − n3)

n4∑

k=1

(
l−8 3+δ

δ
1
2 + βk−2l

δ
2(2+δ) + (al�(l−8 3+δ

δ ))
δ

2(2+δ)

)

≤ C(n4 − n3)

n4∑

k=1

(
l−4 3+δ

δ + βk−2l
δ

2(2+δ) + l−4 3+δ
δ

)

≤ C(n4 − n3)
( n4∑

k=1

l−4 +
2l−1∑

k=1

β
δ

4+δ

k−2l︸ ︷︷ ︸
=1

+
n4∑

k=2l

β
δ

4+δ

k−2l

)

≤ C(n4 − n3)
(

n4l−4 + 2l +
n4∑

k=2l

(k − 2l)2β
δ

4+δ

k−2l

︸ ︷︷ ︸
<∞

)

≤ C(n4 − n3)n
1
4
4 .

So the statement of the lemma is proven. ��

Lemma 5 Under the assumptions of Theorem 1, it holds for any n1 < n2 < n3 < n4

and l =
⌊

n
3
16
4

⌋
:

E

[( ∑

n1≤i≤n2, n3≤ j≤n4

‖h2,l(Xi,l , X j,l) − h2(Xi,l , X j,l)‖
)2] 1

2 ≤ C(n4 − n3)n
1
4
4

where h2,l(x, y) = h(x, y) − E[h(x, X̃ j,l)] − E[h(X̃i,l , y)] ∀i, j,∈ N and X̃i,l =
fl(ζ̃i−l , . . . , ζ̃i+l), where (ζ̃n)n∈ζ is an independent copy of (ζn)n∈ζ .
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Proof For (ζ̃n)n∈Z an independent copy of (ζn)n∈ζ , write X̃i = f ((ζ̃i+n)n∈Z). So
(X̃i )i∈Z is an independent copy of (Xn)n∈Z. We will use Hoeffding’s decomposition
and rewrite h2 as h2(x, y) = h(x, y) − E[h(x, X̃ j )] − E[h(X̃i , y)] and similarly for
h2,l . By doing so, we obtain

E[‖h2,l(Xi,l , X j,l) − h2(Xi,l , X j,l)‖2] 12
= E[‖ h(Xi,l , X j,l) − EX̃ [h(Xi,l , X̃ j,l)] − EX̃ [h(X̃i,l , X j,l)]

− h(Xi,l , X j,l) + EX̃ [h(Xi,l , X̃ j )] + EX̃ [h(X̃i , X j,l)]‖2] 12
≤ E[‖h(Xi,l , X̃ j,l) − h(Xi,l , X̃ j )‖2] 12 (7)

+ E[‖h(X̃i,l , X j,l) − h(X̃i , X j,l)‖2] 12 . (8)

Here EX̃ denotes the expectation with respect to X̃ , E = EX ,X̃ is the expectation with

respect to X and X̃ . We bound the two terms separately, starting with (8):

E[‖h(X̃i,l , X j,l) − h(X̃i , X j,l)‖2] 12 (8.A)

≤ E[‖h(X̃i,l , X j,l) − h(X̃i , X j )‖2] 12

+ E[‖h(X̃i , X j,l) − h(X̃i , X j )‖2] 12 (8.B)

Now, for the first summand, we obtain

(8.A) = E[‖h(X̃i,l , X j,l) − h(X̃i , X j )‖21{‖X̃i −X̃i,l‖≤ε, ‖X j −X j,l‖≤ε}]
1
2

+ E[‖h(X̃i,l , X j,l) − h(X̃i , X j )‖21{‖X̃i −X̃i,l‖>ε or ‖X j −X j,l‖>ε}]
1
2

≤ √
Lε + E[‖h(X̃i,l , X j,l) − h(X̃i , X j )‖2+δ] 1

2+δ

·
(
P(‖X̃i − X̃i,l‖ > ε) + P(‖X j − X j,l‖ > ε)

)

by using the variation condition for the first summand and Hölder’s inequality for the
second. By our moment and P-NED assumptions

(8.A) ≤ √
Lε + 2M

1
2+δ (2al�(ε)) ≤ C

(√
ε + (2al�(ε))

δ
2(2+δ)

)
.
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For (8.B) we use similar arguments:

(8.B) ≤ E[‖h(X̃i , X j,l) − h(X̃i , X j )‖21{‖X j −X j,l‖>ε}] 12
+ E[‖h(X̃i , X j,l) − h(X̃i , X j )‖21{‖X j −X j,l‖≤ε}] 12
≤ E[‖h(X̃i , X j,l) − h(X̃i , X j )‖2+δ] 1

2+δ · P(‖X j − X j,l‖ > ε)
δ

2(2+δ) + √
Lε

≤ 2M
1

2+δ (al�(ε))
δ

2(2+δ) + √
Lε ≤ C

(√
ε + (al�(ε))

δ
2(2+δ)

)

Putting these two terms together, we get

(8) ≤ C
(√

ε + (al�(ε))
δ

2(2+δ)

)
.

Bounding (7) works completely analogous, just with i and j interchanged, so

(7) ≤
(√

ε + (al�(ε))
δ

2(2+δ)

)
.

All together this yields

E[‖h2,l(Xi,l , X j,l) − h2(Xi,l , X j,l)‖2] 12 ≤ (7) + (8) ≤ C
(√

ε + (al�(ε))
δ

2(2+δ)

)
.

So we finally get that

E[(
∑

n1≤i≤n2, n3≤ j≤n4

‖h2,l(Xi,l , X j,l) − h2(Xi,l , X j,l)‖)2] 12

≤ E[(
∑

1≤i< j, n3≤ j≤n4

‖h2,l(Xi,l , X j,l) − h2(Xi,l , X j,l)‖)2] 12

≤
∑

1≤i< j, n3≤ j≤n4

E[‖h2,l(Xi,l , X j,l) − h2(Xi,l , X j,l)‖2] 12

≤
∑

1≤i< j, n3≤ j≤n4

C
(√

ε + (al�(ε))
δ

2(2+δ)

)

≤ C(n4 − n3)

n4∑

k=1

(√
ε + (al�(ε))

δ
2(2+δ)

)
≤ C(n4 − n3)n

1
4
4

where the last line is achieved by setting ε = l−8 3+δ
δ and similar calculations as in

Lemma 4. ��
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Lemma 6 Under the assumptions of Theorem 1, it holds for any n1 < n2 < n3 < n4

and l =
⌊

n
3
16
4

⌋
:

E

[(∥∥ ∑

n1≤i≤n2, n3≤ j≤n4

h2,l(Xi,l , X j,l)
∥∥
)2] ≤ C(n4 − n3)n

3
2
4 .

For the definition of h2,l , see Lemma 5.

Proof In this proof, wewant to use Lemma 1 (Yoshihara 1976), which is the following:
Let g(x1, . . . , xk) be a Borel function. For any 0 ≤ j ≤ k − 1 with

E[|g(X I ,l , X ′
I C ,l)|1+δ̃] ≤ M (♦)

for some δ̃ > 0, where I = {i1, . . . , i j }, I C = {i j+1, . . . , ik} and X ′ an independent
copy of X , it holds that

∣∣∣E[g(Xi1,l , . . . , Xik ,l)] − E[g(X I ,l , X ′
I C ,l)]

∣∣∣ ≤ 4M1/(1+δ̃)β
δ̃/(1+δ̃)

(i j+1−i j )−2l . (Y)

Now, for the proof of the lemma, first observe that we can rewrite the squared norm
as the scalar product and thus:

E[‖
∑

n1≤i≤n2, n3≤ j≤n4

h2,l(Xi,l , X j,l)‖2]

= E[〈
∑

n1≤i≤n2, n3≤ j≤n4

h2,l(Xi,l , X j,l),
∑

n1≤i≤n2, n3≤ j≤n4

h2,l(Xi,l , X j,l)〉]

=
∑

n1≤i1≤n2, n3≤ j1≤n4

∑

n1≤i2≤n2, n3≤ j2≤n4
(i1 �=i2) or ( j1 �= j2) or both

E[〈h2,l(Xi1,l , X j1,l), h2,l(Xi2,l , X j2,l)〉]

(9)

+
∑

n1≤i≤n2, n3≤ j≤n4

E[〈h2,l(Xi,l , X j,l), h2,l(Xi,l , X j,l)〉] (10)

We know by the uniform moments under approximation that (10) is bounded by
the following:

(10) =
∑

n1≤i≤n2, n3≤ j≤n4

E[‖h2,l(Xi,l , X j,l)‖2] ≤ (n2 − n1)(n4 − n3)M

< n4(n4 − n3)M

For (9) we use the above mentioned lemma of Yoshihara (1976). Note that by the
double summation, we have three different cases to analyse: (i1 �= i2) or ( j1 �= j2) or
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both. Universal, let m = max( j1 − i1, j2 − i2), first assume that m = j1 − i1 and let
δ̃ = δ/2 > 0.

First case: i1 �= i2 and j1 �= j2
Define the function g(x1, x2, x3, x4) := 〈h2,l(x1, x2), h2,l(x3, x4)〉 and check that

(♦) holds true for I = {i1} and I C = { j1, i2, j2}:

E[|g(Xi1,l , X ′
j1,l , X ′

i2,l , X ′
j2,l)|1+δ̃] ≤ E[‖h2,l(Xi1,l , X ′

j1,l)‖1+δ̃‖h2,l(X ′
i2,l , X ′

j2,l)‖1+δ̃]
≤ E[‖h2,l(Xi1,l , X ′

j1,l)‖2(1+δ̃)]1/2E[‖h2,l(X ′
i2,l , X ′

j2,l)‖2(1+δ̃)]1/2 ≤ M

by our moment assumptions and δ = δ̃/2. Here, we first use the Cauchy-Schwarz
inequality and then Hölder’s inequality. Now (Y) states that

∣∣∣E[g(Xi1,l , X j1,l , Xi2,l , X j2,l)] − E[g(Xi1,l , X ′
j1,l , X ′

i2,l , X ′
j2,l)]

∣∣∣ ≤ Cβ
δ̃/(1+δ̃)
m−2l (11)

The second expectation equals 0, which can be seen by using the law of the iterated
expectation:

E[g(Xi1,l , X ′
j1,l , X ′

i2,l , X ′
j2,l)] = E[E[g(Xi1,l , X ′

j1,l , X ′
i2,l , X ′

j2,l)|X ′
j1,l , X ′

i2,l , X ′
j2,l ]]

= E[E[〈h2,l(Xi1,l , X ′
j1,l), h2,l(X ′

i2,l , X ′
j2,l)〉|X ′

j1,l , X ′
i2,l , X ′

j2,l ]]
= E[〈E[h2,l(Xi1,l , X ′

j1,l)|X ′
j1,l , X ′

i2,l , X ′
j2,l ], h2,l(X ′

i2,l , X ′
j2,l)〉] (12)

since h2,l(X ′
i2,l

, X ′
j2,l

) is measurable with respect to the inner (conditional) expecta-
tion. In general it holds for random variables X , Y that E[〈Y , X〉|B] = 〈Y ,E[X |B]〉
if Y is measurable with respect to B. So,

(12) = E[〈E[h2,l(Xi1,l , X ′
j1,l)|X ′

j1,l , X ′
i2,l , X ′

j2,l ]︸ ︷︷ ︸
= 0 because h2,l is degenerated

, h2,l(X ′
i2,l , X ′

j2,l)〉] = 0.

Plugging this into (11), we get that

E[〈h2,l(Xi1,l , X j1,l), h2,l(Xi2,l , X j2,l)〉] ≤ ∣∣E[g(Xi1,l , X j1,l , Xi2,l , X j2,l)]
∣∣ ≤ Cβ

δ̃/(1+δ̃)
m−2l .

We repeat the above argumentation for the other two cases:
Second case: i1 �= i2 but j1 = j2
Define the function g(x1, x2, x3) := 〈h2,l(x1, x2), h2,l(x3, x2)〉 and check that (♦)

holds true for I = {i1} and I C = { j1, i2}:

E[|g(Xi1,l , X ′
j1,l , X ′

j2,l)|1+δ̃]
≤ E[‖h2,l(Xi1,l , X ′

j1,l)‖2(1+δ̃)]1/2E[‖h2,l(X ′
i2,l , X ′

j1,l)‖2(1+δ̃)]1/2 ≤ M
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Here, (Y) states that

∣∣∣E[g(Xi1,l , X j1,l , Xi2,l)] − E[g(Xi1,l , X ′
j1,l , X ′

i2,l)]
∣∣∣ ≤ Cβ

δ̃/(1+δ̃)
m−2l (13)

Again, the second expectation equals zero:

E[g(Xi1,l , X ′
j1,l , X ′

i2,l)] = E[E[〈h2,l(Xi1,l , X ′
j1,l), h2,l(X ′

i2,l , X ′
j1,l)〉|X ′

i2,l , X ′
j1,l ]]

= E[〈E[h2,l(Xi1,l , X ′
j1,l)|X ′

i2,l , X ′
j1,l ]︸ ︷︷ ︸

=0

, h2,l(X ′
i2,l , X ′

j1,l)〉]

= 0

Plugging this into (13), we get that

E[〈h2,l(Xi1,l , X j1,l), h2,l(Xi2,l , X j1,l)〉] ≤ ∣∣E[g(Xi1,l , X j1,l , Xi2,l)]
∣∣ ≤ Cβ

δ̃/(1+δ̃)
m−2l .

Third case: j1 �= j2 but i1 = i2
Define the function g(x1, x2, x3) := 〈h2,l(x1, x2), h2,l(x1, x3)〉. Checking that (♦)

holds true for I = {i1} and I C = { j1, j2}works completely similar to the second case.
And noting that we have to condition on Xi1,l , X ′

j2,l
in this case, yields:

E[〈h2,l(Xi1,l , X j1,l), h2,l(Xi1,l , X j2,l)〉] ≤ ∣∣E[g(Xi1,l , X j1,l , X j2,l)]
∣∣ ≤ Cβ

δ̃/(1+δ̃)
m−2l

We can conclude for the quadratic term:

E[‖
∑

n1≤i≤n2, n3≤ j≤n4

h2,l(Xi,l , X j,l)‖2]

=
∑

n1≤i1≤n2, n3≤ j1≤n4

∑

n1≤i2≤n2, n3≤ j2≤n4
(i1 �=i2) or ( j1 �= j2) or both

Cβ
δ̃/(1+δ̃)
m−2l + n4(n4 − n3)M (14)

For a fixed m we have the following possibilities to choose:
Since we assumed m = j1 − i1, there are

• at most n2 − n1 < n4 possibilities for i1, so only 1 possibility for j1
• at most (n4 − n3) possibilities for j2, so at most m possibilities for i2, since by the
definition of m the value j2 − i2 is smaller (or equal) than m.

So, recalling that δ = δ̃/2, we have

∑

n1≤i1≤n2, n3≤ j1≤n4

∑

n1≤i2≤n2, n3≤ j2≤n4
(i1 �=i2) or ( j1 �= j2) or both

Cβ
δ̃/(1+δ̃)
m−2l

≤ C(n4 − n3)n4

n4∑

m=1

mβ
δ

2+δ

m−2l = C(n4 − n3)

⎛

⎜⎝
2l−1∑

m=1

m β
δ

2+δ

m−2l︸ ︷︷ ︸
=1

+
n4∑

m=2l

β
δ

2+δ

m−2l

⎞

⎟⎠
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≤ C(n4 − n3)n4

(
2l−1∑

m=1

m +
n4∑

m=2l

(m − 2l)β
δ

2+δ

m−2l +
n4∑

m=2l

2lβ
δ

2+δ

m−2l

)

≤ C(n4 − n3)n4

(
(2l)2 +

n4∑

m=2l

(m − 2l)β
δ

2+δ

m−2l + 2l
n4∑

m=2l

(m − 2l)β
δ

2+δ

m−2l

)

= C(n4 − n3)n4

(
l2 + (1 + 2l)

n4∑

m=2l

(m − 2l)β
δ

2+δ

m−2l

)

≤ C(n4 − n3)n4

(
l2 + (2l)2

n4∑

m=2l

(m − 2l)β
δ

2+δ

m−2l

)
for l >

1

2

≤ C(n4 − n3)n4

(
l2 + l2

n4∑

m=2l

(m − 2l)2β
δ

2+δ

m−2l

︸ ︷︷ ︸
<∞

)

≤ C(n4 − n3)n4l2 ≤ C(n4 − n3)n
3
2
4 .

So (14) ≤ C(n4−n3)n
3
2
4 . Ifm = j2−i2, it works very similar. Just a few comments on

what changes:Weget in the first case I = {i1, j1, j2}, I C = { j2}, which leads to defin-
ing the function g(Xi1,l , X j1,l , Xi2,l , X ′

j2,l
) := 〈h2,l(Xi1,l , X j1,l), h2,l(Xi2,l , X ′

j2,l
)〉

and conditioning on Xi1,l , X j1,l , Xi2,l . For the second case it is I = {i1, i2}, I C =
{ j2}.We define g(Xi1,l , X ′

j2,l
, Xi2,l) := 〈h2,l(Xi1,l , X ′

j2,l
), h2,l(Xi2,l , X ′

j2,l
)〉 and con-

dition on Xi2,l , X ′
j2,l

. In the third case it is I = {i1, j1}, I C = { j2}, function
g(Xi1,l , X j1,l , X ′

j2,l
) := 〈h2,l(Xi1,l , X j1,l), h2,l(Xi1,l , X ′

j2,l
)〉 and we condition on

Xi1,l , X j1,l .
This proves the lemma. ��

Proposition 2 Under the assumptions of Theorem 1, it holds that

(a)

E

[(
max

1≤n1<n

∥∥
n1∑

i=1

n∑

j=n1+1

h2(Xi , X j )
∥∥
)2] 1

2 ≤ Cs22
5s
4

for s large enough that n ≤ 2s .

(b)

max
1≤n1<n

1

n3/2

∥∥∥
n1∑

i=1

n∑

j=n1+1

h2(Xi , X j )

∥∥∥ a.s.−→ 0 for n → ∞.
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Proof Part a)We split the expectation with the help of the triangle inequality into three
parts:

E

[(
max

1≤n1<n
‖

n1∑

i=1

n∑

j=n1+1

h2(Xi , X j )‖
)2] 1

2

≤ E

[(
max

1≤n1<n

n1∑

i=1

n∑

j=n1+1

‖h2(Xi , X j ) − h2(Xi,l , X j,l)‖
)2] 1

2 (15)

+ E

[(
max

1≤n1<n

n1∑

i=1

n∑

j=n1+1

‖h2,l(Xi,l , X j,l) − h2(Xi,l , X j,l)‖
)2] 1

2 (16)

+ E

[(
max

1≤n1<n
‖

n1∑

i=1

n∑

j=n1+1

h2,l(Xi,l , X j,l)‖
)2] 1

2 (17)

We want to use Lemmas 4–6 to bound the three terms. Because the summands of (15)
are all positive, we have by Lemma 4

(15) ≤ E

[( n∑

j=1

j−1∑

i=1

‖h2(Xi , X j ) − h2(Xi,l , X j,l)‖
)2] ≤ Cn5/4.

(16) can be bounded in the same way, using Lemma 5. For (17), the idea is to rewrite
the double sum. First note that for n1 < n2

n2∑

i=1

n∑

j=n2+1

h2,l(Xi,l , X j,l) −
n1∑

i=1

n∑

j=n1+1

h2,l(Xi,l , X j,l)

=
n2∑

i=n1+1

n∑

j=n2+1

h2,l(Xi,l , X j,l) −
n1∑

i=1

n2∑

j=n1+1

h2,l(Xi,l , X j,l).

So we can conclude by Lemma 6 that

E

[(
‖

n2∑

i=1

n∑

j=n2+1

h2,l(Xi,l , X j,l) −
n1∑

i=1

n∑

j=n1+1

h2,l(Xi,l , X j,l)‖
)2]

≤ (n2 − n1)n
3/2 ≤ (n2 − n1)2

3s/2

as n ≤ 2s . By Theorem 1 (Móricz 1976) (which also holds in Hilbert spaces) it follows
that

E

[(
max

1≤n1<n
‖

n1∑

i=1

n∑

j=n1+1

h2,l(Xi,l , X j,l)‖
)2] ≤ Cs225s/2
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and by taking the square root

(17) = E

[(
max

1≤n1<n
‖

n1∑

i=1

n∑

j=n1+1

h2,l(Xi,l , X j,l)‖
)2] 1

2 ≤ Cs
3
2 2

5s
4 ≤ Cs22

5s
4 .

This yields all together

E

[(
max

1≤n1<n
‖

n1∑

i=1

n∑

j=n1+1

h2(Xi , X j )‖
)2] 1

2 ≤ Cs22
5s
4

Part b) Recall that s is chosen such that n ≤ 2s and thus n
3
2 ≤ 2

3s
2 . To prove almost

sure convergence, it is enough to prove that for any ε > 0

∞∑

s=1

P

(
2− 3s

2 max
1≤n1<n

∥∥
n1∑

s=1

n∑

j=n1+1

h2(Xi , X j )
∥∥ > ε

)
< ∞

We do this by using Markov’s inequality and our result from a):

∞∑

s=1

P

(
2− 3s

2 max
1≤n1<n

‖
n1∑

s=1

n∑

j=n1+1

h2(Xi , X j )‖ > ε
)

≤ 1

ε2

∞∑

s=1

E

[(
2− 3s

2 max
1≤n1<n

‖
n1∑

s=1

n∑

j=n1+1

h2(Xi , X j )‖
)2]

= 1

ε2

∞∑

s=1

2−3s
E

[(
max

1≤n1<n
‖

n1∑

s=1

n∑

j=n1+1

h2(Xi , X j )‖
)2]

≤ 1

ε2

∞∑

s=1

2−3s(Cs22
5s
4 )2 by part a)

= C

ε2

∞∑

s=1

s42− s
2 < ∞

By the Borel–Cantelli lemma follows the almost sure convergence
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max
1≤n1<n

1

n3/2 ‖
n1∑

i=1

n∑

j=n1+1

h2(Xi , X j )‖ a.s.−→ 0 for n → ∞.

��

4.3 Results under alternative

Recall our model under the alternative:
(Xn, Zn)n∈Z is a stationary, H ⊗ H -valued sequence and we observe Y1, . . . , Yn

with

Yi =
{

Xi for i ≤ nλ�� = k�

Zi for i > nλ�� = k�
,

so λ� ∈ (0, 1) is the proportion of observations after which the change happens. We
assume that the process (Xi , Zi )i∈Z is stationary and P-NED on an absolutely regular
sequences (ζn)n∈Z.

Leth : H×H → H be an antisymmetric kernel and assume thatE[h(X0, Z̃0)] �= 0,
where Z̃0 is an independent copy of Z0 and independent of X0. Since X0 and Z̃0 are
not identically distributed, Hoeffding’s decomposition of h equals

h(x, y) = h�
1(x) − h1(y) + h�

2(x, y)

where

h1(x) = E[h(x, X0)] , h�
1(x) = E[h(x, Z0)] (18)

h�
2(x, y) = h(x, y) − h�

1(x) + h1(y) (19)

So it holds for the test statistic Un,k� (Y ) := ∑k�

i=1
∑n

j=k�+1 h(Yi , Y j ) that

Un,k� (Y ) =
k�∑

i=1

n∑

j=k�+1

h(Xi , Z j )

=
k�∑

i=1

n∑

j=k�+1

(
h�
1(Xi ) − h1(Z j ) + h�

2(Xi , Z j )
)

= (n − k�)

k�∑

i=1

h�
1(Xi ) − k�

n∑

j=k�+1

h1(Z j ) +
k�∑

i=1

n∑

j=k�+1

h�
2(Xi , Z j ).
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Lemma 7 Let the Assumption of Theorem 2 hold for (Xi , Zi )i∈Z and let h�
2 as defined

in (19). Then it holds that

1

n3/2 ‖
k�∑

i=1

n∑

j=k�+1

h�
2(Xi , Z j ) + E[h(X0, Z̃0)‖ a.s.−→ 0 for n → ∞,

where Z̃0 is an independent copy of Z0 and independent of X0.

Proof Notice that h�
2(x, z) + E[h(X0, Z̃0) is degenerated since E[h�

1(X0)] =
E[h(X0, Z̃0)] and

E
[
h�
2(X0, z) + E[h(X0, Z̃0)]

]

= E
[
h(X0, y) − h�

1(X0) − h1(y) + E[h(X0, Z̃0)]
]

= h1(y) − E[h(X0, Z̃0)] − h1(y) + E[h(X0, Z̃0)] = 0

and similarly E[h�
2(x, Z̃0)+E[h(X0, Z̃0)] = 0. So we can prove the lemma along the

same arguments as under the null hypothesis. ��
Lemma 8 Under the assumption of Theorem 2 it holds that

( 1√
n

nλ�∑

i=1

(
h�
1(Xi ) − E[h(X0, Z̃0)]

))

λ∈[0,1] ⇒ (W1(λ))λ∈[0,1]

and

( 1√
n

nλ�∑

i=1

(
h1(Zi ) + E[h(X0, Z̃0)]

))

λ∈[0,1] ⇒ (W2(λ))λ∈[0,1]

where (W1(λ))λ∈[0,1], (W2(λ))λ∈[0,1] are Brownian motions with covariance operator
as defined in Theorem 1.

Proof The proof follows the steps of Theorem 1. So, we have to check the assumptions
of Theorem 1 (Sharipov et al. 2016). We will do this for h�

1(Xi ), for h1(Zi ) everything
holds similarly. First note that E[h�

1(X0)] = E[h(X0, Z̃0)].
Assumption 1: (h�

1(Xn))n∈Z is L1-NED.
Along the lines of the proof of Lemma 2 we can show that (h�

1(Xn))n∈Z is L2-NED

with approximating constants ak,2 = O(k−4 3+δ
δ ). By Jensen’s inequality it follows

that (h�
1(Xn))n∈Z is L1-NED with approximating constants ak,1 = ak,2.

Assumption 2: Existing (4 + δ)-moments.

Recall that h�
1(x) = E[h(x, Z̃0)], so by Jensen inequality

E
[
|h�

1(Xi )|4+δ
]

≤ E[|h(X1, Z̃1)|4+δ] < ∞
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Assumption 3:
∑∞

m=1 m2a
δ

3+δ

m,1 ≤ ∞ follows similar as in Theorem 1.

Assumption 4:
∑∞

m=1 m2β
δ

4+δ
m < ∞ is assumed in Theorem 2.

��

Corollary 1 Under assumptions of Theorem 1, it holds that

1

n3/2

k�∑

i=1

n∑

j=k�+1

(
h�
1(Xi ) − h1(Z j ) − 2E[h(X0, Z̃0)]

)

is stochastically bounded.

Proof This follows from Lemma 8 above:

∣∣∣∣
1

n3/2

k�∑

i=1

n∑

j=k�+1

(
h�
1(Xi ) − h1(Z j ) − 2E[h(X0, Z̃0)]

)∣∣∣∣

≤
∣∣∣∣

1

n1/2

k�∑

i=1

h�
1(Xi ) − E[h(X0, Z̃0)]

∣∣∣∣+
∣∣∣∣

1

n1/2

n∑

j=k�+1

h1(Z j ) + E[h(X0, Z̃0)]
∣∣∣∣

Both summands converge weakly to a Gaussian limit and are stochastically bounded.
��

4.4 Dependent wild bootstrap

Proposition 3 Let (εi )i≤n,n∈N be a triangular scheme of random multiplier indepen-
dent from (Xi )i∈Z, such that the moment condition E[|εi |2] < ∞ holds.

Then under the Assumptions of Theorem 1, it holds that

max
1≤k<n

1

n3/2

∥∥
k∑

i=1

n∑

j=k+1

h2(Xi , X j )(εi + ε j )
∥∥ a.s.−→ 0 for n → ∞

Proof The statement follows along the line of the proofs of the Lemmas 5 to 6 and
Proposition 2. For this, note that by the independence of (εi )i≤n,n∈N and (Xi )i∈Z and
by Lemma 3

E[‖h2(Xi , Xi+k+2l)(εi + εi+k+2l) − h2(Xi,l , Xi+k+2l,l(εi + εi+k+2l))‖2] 12
= E[‖h2(Xi , Xi+k+2l) − h2(Xi,l , Xi+k+2l,l‖2] 12 · E[(εi + εi+k+2l)

2] 12

≤ C(
√

ε + β
δ

2(2+δ)

k + (al�(ε))
δ

2(2+δ) )

123



4802 L. Wegner, M. Wendler

From this, we can conclude that for any n1 < n2 < n3 < n4 and l =
⌊

n
3
16
4

⌋
:

E

[( ∑

n1≤i≤n2

∑

n3≤ j≤n4

‖h2(Xi , X j ) − h2(Xi,l , X j,l)(εi + ε j )‖
)2] 1

2 ≤ C(n4 − n3)n
1
4
4

as in Lemma 4. Similary, we obtain (making use of the independence of (εi )i≤n and
(Xi )i∈Z again)

E[‖h2,l(Xi,l , X j,l) − h2(Xi,l , X j,l)(εi + ε j )‖2]
= E[‖h2,l(Xi,l , X j,l) − h2(Xi,l , X j,l)‖2]E[(εi + ε j )

2] ≤ C
(√

ε + (al�(ε))
δ

2(2+δ)

)

and along the lines of the proof of Lemma 5 for any n1 < n2 < n3 < n4 and

l =
⌊

n
3
16
4

⌋
:

E

[( ∑

n1≤i≤n2, n3≤ j≤n4

‖h2,l(Xi,l , X j,l) − h2(Xi,l , X j,l)(εi + ε j )‖
)2] 1

2≤C(n4 − n3)n
1
4
4 .

With the same type of argument, we also obtain the analogous result to Lemma 6:

E

[(
‖

∑

n1≤i≤n2, n3≤ j≤n4

h2,l(Xi,l , X j,l)(εi + ε j )‖
)2] ≤ C(n4 − n3)n

3
2
4

and then we can proceed as in the proof of Proposition 2. ��

Lemma 9 Under the assumptions of Theorem 3, for any t0 = 0 < t1 < t2, . . . , tk = 1
and any a1, . . . , ak ∈ H

Var

[
1√
n

k∑

j=1

nt j �∑

i=nt j−1�+1

〈a j , h1(Xi )εi 〉
∣∣∣X1, . . . , Xn

]
P−→

Var

[ k∑

j=1

〈a j , W (t j ) − W (t j−1)〉
]

Proof To simplify the notation, we introduce a triangular scheme Vi,n = 〈a j , h1(Xi )〉
for i = nt j−1�+1, . . . , i = nt j�. By our assumptions, Cov(εi , ε j ) = w(|i − j |/qn),
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so we obtain for the variance condition on X1, . . . , Xn :

Var

[
1√
n

k∑

j=1

nt j �∑

i=nt j−1�+1

〈a j , h1(Xi )εi 〉
∣∣∣X1, . . . , Xn

]

=
n∑

i=1

n∑

l=1

Vi,n Vl,n Cov(εi , εl) =
n∑

i=1

n∑

l=1

Vi,n Vl,nw(|i − l|/qn).

This is the kernel estimator for the variance, which is consistent even for heteroscedas-
tic time series under the assumptions of Jong and Davidson (2000). The L2-NED
follows by Lemma 2. Note that the mixing coefficients for absolute regularity are
larger than the strong mixing coefficients used by Jong and Davidson (2000), so their
mixing assumption follows directly from ours. ��
Proposition 4 Under the assumptions of Theorem 3, we have the weak convergence
(in the space DH2 [0, 1])

(
1√
n

[nt]∑

i=1

(h1(Xi ), h1(Xi )εi )

)

t∈[0,1]
⇒ (W (t), W �(t))t∈[0,1]

where W and W � are independent Brownian motions with covariance operator as in
Theorem 1.

Proof Wehave to prove finite-dimensional convergence and tightness. As the tightness
for the first component was already established in the proof of Theorem 1 of Sharipov
et al. (2016), we only have to deal with the second component. The tightness of the
partial sum process of h1(Xi )εi , i ∈ N, can be shown along the lines of the proof of
the same theorem: For this note that by the independence of (εi )i≤n and X1, . . . , Xn

∣∣E
[〈h1(Xi )εi , h1(X j )ε j 〉〈h1(Xk)εk, h1(Xl)εl〉

]∣∣

= ∣∣E
[〈h1(Xi ), h1(X j )〉〈h1(Xk), h1(Xl)〉

]
E[εiε jεkεl ]

∣∣
≤ 3

∣∣E
[〈h1(Xi ), h1(X j )〉〈h1(Xk), h1(Xl)〉

]∣∣ ,

the rest follows as in Lemma 2.24 of Borovkova et al. (2001) and in the proof of
Theorem 1 of Sharipov et al. (2016).

For the finite dimensional convergence, we will show the weak convergence of the
second component conditional on h1(Xi )εi , i ∈ N, because the weak convergence
of the first component is already established in Proposition 1. By the continuity of
the limit process, it is sufficient to study the distribution for t1, . . . , tk ∈ Q ∩ [0, 1]
and by the Cramér-Wold-device and the separability of H , it is enough to show the

convergence of the condition distribution of 1√
n

∑k
j=1

∑[nt j ]
i=[nt j−1]+1〈a j , h1(Xi )εi 〉 for

a1, . . . , ak from a countable subset of H . Conditional on X1, . . . , Xn , the distribution
of 1√

n

∑k
j=1

∑[nt j ]
i=[nt j−1]+1〈a j , h1(Xi )εi 〉 is Gaussian with expectation 0 and variance

converging to the right limit in probability by Lemma 9.
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Using a well-known characterization of convergence in probability, for every sub-
series there is another subseries such that this convergence holds almost surely.
So we can construct a subseries that the almost sure convergence holds for all k,
t1, . . . , tk ∈ Q ∩ [0, 1] and all a1, . . . , ak from the countable subset of H , so we can
find a subseries such that the convergence of the finite-dimensional distributions holds
almost surely. Thus, the finite-dimensional convergence of the conditional distribution
holds in probability and the statement of the proposition is proved. ��

5 Proof of main results

Proof of Theorem 1 Wewill bound the maximum from above by the sum of the degen-
erate and the linear part, using Hoeffding’s decomposition, as shown in Lemma 1:

max
1≤k<n

1

n3/2 ‖Un,k‖ = max
1≤k<n

1

n3/2 ‖n
k∑

i=1

(h1(Xi ) − h1(X)) +
k∑

i=1

n∑

j=k+1

h2(Xi , X j )‖

≤ max
1≤k<n

1

n3/2 ‖n
k∑

i=1

(h1(Xi ) − h1(X))‖ + max
1≤k<n

1

n3/2 ‖
k∑

i=1

n∑

j=k+1

h2(Xi , X j )‖

by triangle inequality. For the degenerate part, we can use the convergence to 0 from
Proposition 2:

max
1≤k<n

1

n3/2 ‖
k∑

i=1

n∑

j=k+1

h2(Xi , X j )‖ P−→ 0

since convergence in probability follows from almost sure convergence.
Now observe that we can write the linear part as

max
1≤k<n

1

n3/2 ‖n
k∑

i=1

(h1(Xi ) − h1(X))‖ = max
λ∈[0,1]

1

n3/2 ‖n
nλ�∑

i=1

(h1(Xi ) − h1(X))‖

= max
λ∈[0,1]

1

n3/2 ‖n
nλ�∑

i=1

h1(Xi ) − n nλ� 1

n

n∑

j=1

h1(X j )‖

= max
λ∈[0,1] ‖

1√
n

nλ�∑

i=1

h1(Xi ) − nλ�
n3/2

n∑

j=1

h1(X j )‖

≈ sup
λ∈[0,1]

‖ 1√
n

nλ�∑

i=1

h1(Xi )

︸ ︷︷ ︸
=:x(λ)

− λ√
n

n∑

j=1

h1(Xi )‖ for n large enough

= sup
λ∈[0,1]

‖x(λ) − λx(1)‖
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We know by Proposition 1 that

(x(λ))λ∈[0,1]
D−→ (W (λ))λ∈[0,1]

By the continuous mapping theorem it follows that (x(λ)−λx(1))λ∈[0,1]
D−→ (W (λ)−

λW (1))λ∈[0,1]. And thus we can finally conclude that

max
1≤k<n

1

n3/2 ‖Un,k‖ D−→ sup
λ∈[0,1]

‖W (λ) − λW (1)‖.

��

Proof of Theorem 2 We can bound the maximum from below using the reverse triangle
inequality and then make use of previous results:

max
1≤k≤n

‖ 1

n3/2 Un,k(Y )‖ ≥ ‖ 1

n3/2 Un,k� (Y )‖ where k� = ⌊
nλ�

⌋

= ‖ 1

n3/2

(
Un,k� (Y ) − k�(n − k�)E[h(X0, Z̃0)]

)+ k�(n − k�)

n3/2 E[h(X0, Z̃0)]‖

≥
∣∣∣‖ 1

n3/2 (Un,k� (Y ) − k�(n − k�)E[h(X0, Z̃0)])‖ − ‖k�(n − k�)

n3/2 E[h(X0, Z̃0)]‖
∣∣∣

by using the reverse triangle inequality

=
∣∣∣‖ 1

n3/2

k�∑

i=1

n∑

j=k�+1

(
h�
1(Xi ) − h1(Z j ) + h2(Xi , Z j ) − E[h2(Xi , Z j )]

)‖

− ‖k�(n − k�)

n3/2 E[h(X0, Z̃0)]‖
∣∣∣

≥ ‖k�(n − k�)

n3/2 E[h(X0, Z̃0)]‖

− ‖ 1

n3/2

k�∑

i=1

n∑

j=k�+1

(
h�
1(Xi ) − h1(Z j ) − 2E[h(X0, Z̃0)]

)‖

− ‖ 1

n3/2

k�∑

i=1

n∑

j=k�+1

h2(Xi , Z j ) + E[h(X0, Z̃0)]‖

by using the reverse triangle inequality again. By Corollary 1 we know that

‖ 1

n3/2

k�∑

i=1

n∑

j=k�+1

h�
1(Xi ) − h1(Z j ) − 2E[h�

1(Xi ) − h1(Z j )]‖
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is stochastically bounded. And by Lemma 7 it holds that

‖ 1

n3/2

k�∑

i=1

n∑

j=k�+1

h2(Xi , Z j ) + E[h2(Xi , Z j )]‖ n→∞−−−→ 0

But since E[h(X0, Z̃0)] �= 0 the last part diverges to infinity:

‖ 1

n3/2 k�(n − k�)E[h(X0, Z̃0)]‖ ≈ ‖√nλ�(1 − λ�)E[h(X0, Z̃0)]‖ n→∞−−−→ ∞,

and thus max
1≤k≤n

‖ 1
n3/2

Un,k(Y )‖ n→∞−−−→ ∞. ��

Proof of Theorem 3 Because the convergence in distribution of max
1≤k<n

1
n3/2

||Un,k || has
already been established in Theorem 1, it is enough to prove the convergence in
distribution of max

1≤k<n

1
n3/2

||U �
n,k || conditional on X1, . . . , Xn . For this, we apply the

Hoeffding decomposition:

1

n3/2 U �
n,k = 1

n3/2

k∑

i=1

n∑

j=k+1

h(Xi , X j )(εi + ε j )

= 1

n3/2

k∑

i=1

n∑

j=k+1

(h1(Xi ) − h1(X j )(εi + ε j ) + 1

n3/2

k∑

i=1

n∑

j=k+1

h2(Xi , X j )(εi + ε j )

The second sum converges to 0 by Proposition 3. The first summand can be split into
three parts with a short calculation:

1

n3/2

k∑

i=1

n∑

j=k+1

(h1(Xi ) − h1(X j ))(εi + ε j ) = 1√
n

(
k∑

i=1

h1(Xi )εi + k

n

n∑

i=1

h1(Xi )εi

)

+ 1

n3/2

k∑

i=1

h1(Xi )

n∑

j=1

ε j + 1

n3/2

n∑

i=1

h1(Xi )

k∑

j=1

ε j

ByProposition 4 and the continuousmapping theorem,we have theweak convergence

max
1≤k<n

∥∥∥∥∥
1√
n

(
k∑

i=1

h1(Xi )εi + k

n

n∑

i=1

h1(Xi )εi

)∥∥∥∥∥ ⇒ sup
λ∈[0,1]

∥∥W �(λ) − λW �(1)
∥∥
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conditional on X1, . . . , Xn . For the second part, note that

Var

(
1

n

n∑

i=1

εi

)
= 1

n2

n∑

i, j=1

w(|i − j |/qn)

≤ 1

n

n∑

i=−n

|w(i/qn)| ≈ qn

n

∫ ∞

−∞
|w(x)|dx → 0

for n → ∞ by our assumptions on qn . So 1
n

∑n
i=1 εi → 0 in probability and

max
k=1,...,n

∣∣∣
1

n3/2

k∑

i=1

h1(Xi )

n∑

j=1

ε j

∣∣∣ = max
k=1,...,n

∣∣∣
1

n1/2

k∑

i=1

h1(Xi )

∣∣∣
∣∣∣
1

n

n∑

j=1

ε j

∣∣∣ → 0

for n → ∞ in probability using the fact that 1
n1/2

∑k
i=1 h1(Xi ) is stochastically

bounded, see Proposition 1. For the third part, we consider increments of the par-
tial sum and bound the variance of increments similar as above by

Var

(
k∑

i=l+1

εi

)
≤ Ckqn .

Because the εi are Gaussian, it follows that

E

[( k∑

i=l+1

εi

)4
]

≤ C(kqn)2.

By Theorem 1 of Móricz (1976), we have

E

[
max

k=1,...,n

( k∑

i=1

εi

)4
]

≤ C(nqn)2.

and 1
n maxk=1,...,n |∑k

i=1 εi | → 0 in probability because qn/n → 0. So

max
k=1,...,n

∣∣∣
1

n3/2

n∑

i=1

h1(Xi )

k∑

j=1

ε j

∣∣∣ =
∣∣∣

1

n1/2

n∑

i=1

h1(Xi )

∣∣∣ max
k=1,...,n

∣∣∣
1

n

k∑

j=1

ε j

∣∣∣ n→∞−−−→ 0

which completes the proof. ��
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Appendix

In the following, we give some more information on the simulation results. To demon-
strate that our test can also be applied when the dimension of the observations is larger
than the sample size, we have simulated the Gaussian autoregressive process as before,
but with sample size n = 150 on a grid of d = 350. The size of the CUSUM test and
the Wilcoxon-type test (based on spatial signs) is given in Table 5. As before, we used
S = 3000 simulation runs with m = 1000 bootstrap repetitions.

In Table 6, we give the numerical values used for Fig. 3 as well as some additional
results on the power of the tests. For Scenario 1 (Gaussian observations with uniform
jump), we study a jump in the beginning of our time series after k� = 30 observations
(total sample size n = 200). For such an early change, we see a drastic decline in power
for both statistics. Spatial sign nevertheless keeps a small advantage over CUSUM in
this scenario.

Scenario 5 is the same as Scenario 1, but with sample size n = 150, k� = 75
and grid size d = 350. We see a reduction of power for both statistics compared to
Scenario 1. Nevertheless, we can still observe that the Wilcoxon-type test provides a
greater empirical power than CUSUM.

Table 6 Empirical power of CUSUM test (CUS.) and spatial sign based test (Sp.S.) for different significance
level α and different time of change k�, Scenario 1 to 4 (Sc1–Sc4 ) with sample size n = 200, Scenario 5
(Sc5) with n = 150

α Sc1, k�=100 Sc1, k�=50 Sc1, k�=30 Sc2, k�=100 Sc2, k�=50
CUS Sp.S CUS Sp.S CUS Sp.S CUS Sp.S CUS Sp.S

10% 0.907 0.975 0.685 0.811 0.337 0.372 0.774 0.903 0.504 0.633

5% 0.796 0.929 0.496 0.643 0.173 0.193 0.609 0.802 0.331 0.445

2.5% 0.660 0.846 0.321 0.458 0.076 0.084 0.451 0.650 0.183 0.281

1% 0.409 0.627 0.132 0.235 0.024 0.027 0.231 0.405 0.068 0.121

Sc3, k�=100 Sc3, k�=50 Sc4, k�=100 Sc4, k�=50 Sc5, k�=75
α CUS Sp.S CUS Sp.S CUS Sp.S CUS Sp.S CUS Sp.S

10% 0.635 0.981 0.420 0.803 0.038 0.994 0.021 0.865 0.759 0.903

5% 0.456 0.934 0.227 0.642 0.014 0.967 0.006 0.729 0.586 0.757

2.5% 0.283 0.839 0.107 0.445 0.005 0.906 0.002 0.550 0.391 0.552

1% 0.115 0.621 0.039 0.237 0.001 0.721 0 0.288 0.145 0.239
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